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Abstract. Visual-inertial odometry (VIO) is the pose estimation back-
bone for most AR/VR and autonomous robotic systems today, in both
academia and industry. However, these systems are highly sensitive to
the initialization of key parameters such as sensor biases, gravity di-
rection, and metric scale. In practical scenarios where high-parallax or
variable acceleration assumptions are rarely met (e.g. hovering aerial
robot, smartphone AR user not gesticulating with phone), classical visual-
inertial initialization formulations often become ill-conditioned and/or
fail to meaningfully converge. In this paper we target visual-inertial
initialization specifically for these low-excitation scenarios critical to
in-the-wild usage. We propose to circumvent the limitations of classical
visual-inertial structure-from-motion (SfM) initialization by incorporating
a new learning-based measurement as a higher-level input. We leverage
learned monocular depth images (mono-depth) to constrain the relative
depth of features, and upgrade the mono-depth to metric scale by jointly
optimizing for its scale and shift. Our experiments show a significant
improvement in problem conditioning compared to a classical formulation
for visual-inertial initialization, and demonstrate significant accuracy
and robustness improvements relative to the state-of-the-art on public
benchmarks, particularly under motion-restricted scenarios. We further
extend this improvement to implementation within an existing odometry
system to illustrate the impact of our improved initialization method on
resulting tracking trajectories.

Keywords: Visual-inertial initialization, Monocular depth, Visual-
inertial structure from motion

1 Introduction

Monocular visual-inertial odometry (VIO) enables accurate tracking of metric
3D position and orientation (pose) using just a monocular camera and inertial
measurement unit (IMU) providing linear acceleration and rotational velocity.
These techniques have unlocked an economical and near-ubiquitous solution
for powering augmented or virtual reality (AR/VR) experiences on commodity
platforms (e.g, ARCore on Android and ARKit on iOS [1]), alongside other
robotic applications such as aerial delivery drones. A precondition of successful
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(a) First Row: Intensity image inputs. Second Row: Mono-depth images. Third
Row: Metric-depth images, recovered after joint motion, scale, and shift optimization.
Stable metric-depth is recovered after the optimization from initial inconsistent and
inaccurate mono-depth. Green Tracks on First Row: Inlier feature-tracks for mono
depth constraints. Red Tracks on First Row: Outlier feature-tracks due to temporally
inconsistent associated mono-depth values (see Sec. 3.2)

(b) Left: Initialization trajectory under low motion/parallax scenario in meters. Tra-
jectory recovery is improved with tight coupling between VI-SFM and mono-depth
(note incorrect scale in blue trajectory). Right: Mono-depth coupling improves problem
conditioning, potentially reducing uncertainty of estimates and increasing accuracy.

Fig. 1: At top, demonstration of depth constraints over a keyframe initialization
window. At bottom, demonstration of trajectories estimated with and without
mono depth on the sequence shown at top, and illustration of feature position
uncertainty.

operation in these scenarios is successful (and accurate) initialization of key system
parameters such as scale, initial velocity, accelerometer and gyro biases, and
initial gravity direction. Poor initialization typically leads to tracking divergence,
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unacceptable transients, low-accuracy operation, or outright failures, especially
of downstream modules (e.g. drone navigation software). Unfortunately, visual-
inertial initialization routines have a very common failure mode in these realistic
scenarios: insufficient motion for the system’s motion and calibration states to
be unambiguously resolvable [2–6]. This occurs, for example, if the user of a
phone-based AR game moves with very little parallax relative to the visible scene
or when a drone must initialize while hovering. These are extremely common in
practice. To improve VIO initialization in these scenarios on commodity hardware
we must optimize for the total (user-visible) latency to initialization and accuracy
of the resulting trajectories, while not violating real-time operation. For example,
a phone-based AR user may expect a responsive (< 500ms) startup of their
game, regardless of how they moved their phone, and without taking noticeable
compute resources from the primary AR application.

Due to its impact, many recent works have focused on formulating fast and
accurate initialization algorithms for robust monocular VIO [5, 7–11]. These
works rely on sparse visual feature tracks to constrain relative pose (up to
scale) in the visual-inertial structure-from-motion (VI-SFM) problem. Under low
parallax initialization scenarios, any classical depth estimation approach for these
features in the VI-SFM problem will be susceptible to large uncertainty, such
as in the sequence in Fig. 1a. This uncertainty (illustrated in Fig. 1b) makes
the overall system ill-conditioned, often resulting in poor or failed initializations.
This ambiguity is exacerbated if the inertial measurements lack enough variation
to reliably recover metric scale [5].

Inspired by the robustness achievements of depth-enabled visual SLAM sys-
tems [12–15] and recent advances in generalized learning-based monocular depth
(mono-depth) [16,17], we propose a novel formulation of monocular VIO initializa-
tion. We incorporate depth measurements from a mono-depth model directly into
a classical VI-SFM framework as measurements. Our proposed method operates
in real-time on a mobile phone and is able to accurately initialize in traditionally
challenging low parallax or limited acceleration scenarios, without requiring an
additional dedicated sensor for estimating depth (e.g. LiDAR, Time-of-Flight).
Our primary contributions are:

– We apply learned monocular depth priors for VIO initialization. To the best
of our knowledge, we are the first to leverage the power of learned depth for
this problem through coupling with classical methods.

– We propose a novel residual function which tightly couples scale and shift
invariant monocular depth measurements within a traditional VI-SFM for-
mulation.

– We propose a gradient-based residual weighting function and an outlier
rejection module to effectively deal with noisy depth predictions.

– We demonstrate robust and accurate initialization relative to the state-of-
the-art on public benchmarks, particularly under motion-restricted scenarios
and when embedded within an existing tracking system. We achieve all of
the above while maintaining real-time performance on 10Hz image streams
on resource constrained devices.
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2 Related Work

Visual-inertial odometry [18,19] is a well-studied problem in both the computer
vision and robotics communities and many works [20–28] have focused specifically
on accurate initial estimation of states required by the inertial sensor. These works
can be roughly classified into two categories - 1) jointly solving a visual-inertial
SFM problem directly in closed form or as a bundle adjustment problem [5,10,29]
and 2) cascaded approaches which solve a pure visual SFM for up to scale
pose followed by metric scale recovery using inertial observations [7–9,30]. Both
approaches typically use a visual-inertial bundle adjustment (VI-BA) step to
further refine their solution.

Feature-based visual odometry (VO) plays a key role in VIO initialization but
often exhibits large uncertainty in low parallax and motion scenarios. Additionally,
the VO prior requires enough non-zero inertial measurements for observing
metric scale [5] to initialize VIO. A recent state-of-the-art method [7] (used as
the initialization routine for the popular ORBSLAM3 system [23]) still requires
around 2 seconds (at 10Hz) to initialize and only succeeds with reasonable motion
excitation. Our proposed method aims to initialize with lower (user-visible)
latency (i.e. less data collection time) even in challenging low-motion scenarios.
Some prior works have explored using higher order visual information such as
lines [30] for increased system observability in monocular VIO. Additionally,
RGB-D SLAM systems [12–14] have been tremendously successful in a number of
domains (AR/VR, self driving cars, etc.) and can inherently initialize faster given
direct depth observations. For example, [31] demonstrated that the inclusion of
a depth sensor significantly reduces the required number of feature observations.

With the advent of deep learning, there has been significant interest in end-
to-end learning for VIO [32–37]. However, the proposed methods often lack the
explainability and modular nature of traditional VIO systems, have alternative
end-goals (e.g. self supervised depth/optical flow/camera pose estimation), or are
too expensive to operate on commodity hardware without custom accelerators.
Moreover, end-to-end methods don’t explicitly consider in-motion initialization
and often benchmark on datasets with the trajectory starting at stationary point
[38,39]. Prior works have also explored learning methods in purely inertial [40–42]
or visual systems [43–45]. CodeVIO [46] demonstrated that incorporating a
differentiable depth decoder into an existing VIO system (OpenVINS) [47] can
improve tracking odometry accuracy. Note that CodeVIO does not tackle the VIO
initialization problem and relies on tracking landmarks from already-initialized
VIO. It uses the OpenVINS initialization solution which only initializes after
observing enough IMU excitation following a static period. However, CodeVIO
does demonstrate an effective and modular integration of learned priors within
VIO and inspires us to deliver similar improvements to VIO initialization, while
operating under realtime performance constraints.
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Fig. 2: Overall initialization diagram composed of monocular depth inference
module running on each keyframe, and the visual-inertial bundle adjustment
module. Initialized states are then fed into our VIO for tracking.

3 Methodology

Our proposed system is composed of two modules as shown in Fig. 2: 1) monocular
depth inference which infers (relative) depth from each RGB keyframe, and 2) a
VIO initialization module which forms a visual-inertial structure-from-motion (VI-
SFM) problem, with the relative depth constraints from the inferred monocular
depth. This VI-SFM problem aims to estimate keyframe poses, velocity, and
calibration states, which are then used as the initial condition for a full VIO
system.

Like most VIO initialization algorithms [7,8,29], our VIO initialization consists
of a closed-form solver, whose solution is then refined with visual-inertial bundle
adjustment (VI-BA). In this section, we first briefly describe our mono-depth
model. Then, we detail our contribution on employing mono-depth constraints in
VI-BA refinement.

3.1 Light-weight Monocular Depth Model

Our key contribution in this work is to incorporate prior-driven monocular depth
constraints within a classical VIO initialization framework for better tracking
initialization. For the final system to be practical, we require the mono-depth
model to generalize to a wide variety of scenes and operate under a small
compute budget. We follow recent state-of-the-art monocular depth estimation
models [16] and train a lightweight mono-depth network. Specifically, we use
the robust scale-shift invariant loss [16] alongside various edge-sensitive depth
losses [16,48] and train a small UNet model on a variety of datasets including
ScanNet [49], MannequinChallenge [48] as well as pseudo-ground truth disparity
maps generated on the OpenImages [50] dataset using large pretrained publicly
available models [16]. For datasets with metric depth ground truth (e.g. ScanNet),
we also add a loose metric depth loss term (Charbonnier loss [51] between
prediction and inverse metric depth) to inform the scale and shift priors in
Eq. (5). We trained our model on gravity-aligned (or “upright”) images to avoid
having it learn depth maps for “sideways” images and better use its limited model
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capacity. Our final model is fast (Tab. 3), light-weight (∼ 600K parameters) and
predicts relative (inverse) depth maps as shown in Fig. 1a.

Given the scale-shift invariant nature of our training losses, the metric inverse
depth, z, can be expressed as a scaled and shifted version of the model prediction,
d, as z = ad+ b, where a and b are the scale and shift parameters respectively.
Moreover, as our model is trained on gravity aligned (“upright") images, we
rotate the input image in 90-degree increments before inferring depth. Since
only 45-degree accuracy is required to get the best rotation, for simplicity we
use accelerometer measurements rotated through pre-calibrated IMU-camera
extrinsics as an estimate of gravity in the camera frame.

3.2 VI-BA with Monocular Depth Constraints

We aim to solve for the following state parameters, X , in our VI-BA problem

X = [X0; . . . ;XN−1; Cjf0; . . . ; CjfM−1;S0; . . . ;SN−1] (1)

where

– Xk represents the kth IMU keyframe state among N keyframes in total, which
is [qk;pk;vk; bak; bωk ]. qk and pk are the kth IMU keyframe pose parameterized
as quarternion and translation w.r.t the global frame {G} in which we assume
the direction of gravity is known. vk is the velocity in {G} and bak, b

ω
k are

the accelerometer and gyro biases at the kth keyframes.
– Cjfi represents the ith feature point parameterized in local inverse depth

[uij , vij , wij ]
T with respect to the jth keyframe’s camera coordinates. uij and

vij lie on normalized image XY plane and wij is the inverse depth [52].
– Sk = [ak; bk] following Sec. 3.1, which are scale and shift for recovering metric

depth from the raw mono-depth at the kth keyframe.
– The IMU-camera extrinsics (qC , pC) and 3D-2D projection parameters
Proj(·) are not estimated due to lack of information in such a small initial-
ization window. We adopt pre-calibrated values as is customary.

We initialize the state X using a standard closed-form solver [10] for a VI-SFM
problem formulated with reprojection error, the formulation and derivation are in
the supplemental material. Given keyframes K, with up to scale and shift mono
inverse depth, feature points F , and L(⊂ F) feature points with mono inverse
depth measurements, the VI-BA minimizes the following objective function

X̂ = argmin
X

∑
(i,j)∈K

‖rIij‖2Σij︸ ︷︷ ︸
Inertial Constraints

+
∑
i∈F

∑
k∈K

ρ(‖rFik‖2ΣF
)︸ ︷︷ ︸

Visual Constraints

+
∑
i∈L

∑
k∈K

λikρ(‖rLik
‖2)︸ ︷︷ ︸

Mono-Depth Constraints

+ ‖r0‖2Σ0
+
∑
i∈K
‖rSi‖2ΣS︸ ︷︷ ︸

Prior Constraints

(2)
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Fig. 3: A factor graph illustration of the VI-SFM depth refinement problem
Eq. (2). Circled nodes represent X in Eq. (1) to be estimated. They are connected
by constraints illustrated in the graph. The pink dashed box is the traditional
VI-SFM problem. The green dashed box represents the new proposed con-
straints to maintain relative feature depth consistency across keyframes. Feature
points and poses are constrained through the scale-shift parameters S.

where rIij is the IMU preintegration residual error [53] corresponding to IMU
measurements between two consecutive keyframes, rFik is the standard visual
reprojection residual resulting from subtracting a feature-point’s pixel measure-
ment from the projection of fi into the kth keyframe [54], rLik

is an inverse
depth temporal consistency residual for incorporating mono-depth, and rSi is
a residual relative to a prior for scale and shift (Sec. 3.2). r0 is a prior for the
bias estimates of the 0th keyframe and Σ0, Σij , ΣF , ΣS are the corresponding
measurement covariance matrices. λik is a scalar weight for each depth residual
and ρ(.) refers the huber-loss function [55].

The factor graph resulting from (2) is illustrated in Fig. 3. (rIij , rFik , r0)
forms the traditional VI-SFM problem as highlighted in the pink dashed box.
The following sections detail the proposed depth constraints (rLik

, rSi) which
are grouped by green dashed box.

3.3 Weighted Mono-Depth Constraints

As illustrated in Fig. 3, depth constraints relate observed feature-point depth with
that keyframe’s scale-shift parameters, Sk. Hence only 2 additional parameters
are needed to model the hundreds of mono-depth residual equations for each
keyframe-landmark pair. As demonstrated in Sec. 4, this improves the system
conditioning under motion restricted scenarios.

The depth constraints comprise three major components - the residual
function, the weight for each residual and the outlier rejection module to
reject inconsistent mono-depth measurements across keyframes.
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Inverse Depth Residual Function. Inspired by the loss functions employed
in monocular deep depth estimation [56], our proposed depth residual for keyframe
k and feature point i takes the form of the log of the ratio between the measured
depth scaled/shifted by Sk and the feature point’s estimated depth:

rLik
= log

(
(akdik + bk) ·Ω(Cjfi, qj ,pj , qk,pk

)
) (3)

Where Ω(·) is the depth of the feature point i (which is parameterized with
respect to keyframe j) in keyframe k. If k = j then Ω(·) can be simplified to
w−1ij . This is how we tie mono-depth parameters to multiple features and poses
to better constrain the problem.

It is well known that this residual can lead to a degenerate solution of scale
going to zero or a negative value [57]. To avoid this, we adopt the common
technique of defining the scale parameter ak as

ak = ε+ log(esk + 1) (4)

where ε = 10−5, which prevents ak from being either negative or zero, allowing
us to optimize sk freely.

Scale-shift Prior. Reiterating Sec. 3.1, the ML model is trained on certain
metric depth datasets with a loss where the scale is supposed to be 1 and shift is
0. We define prior residuals for scale and shift at the ith frame as

rSi =
[
1− ai −bi

]T (5)

Since metric depth is not observable from the ML model, in practice we assign
a very large covariance ΣS to these scale-shift priors terms (0.3 for scale, 0.2 for
shift), which keeps parameters bounded to the regime in which model training
occurred, and in degenerate situations such as zero-acceleration, allows us to
converge to a sensible scale.

Fig. 1a shows the effectiveness of the depth constraints and scale-shift priors.
With them, we are able to upgrade the learned depth to metric level. The
better-conditioned problem then yields a more accurate trajectory, illustrated in
Fig. 1b.

Edge Awareness Weight. The ML model doesn’t explicitly yield prediction
uncertainty, however, we empirically observe the uncertainty is larger near depth
edges and propose a loss weight, λik, which modulates the residual with gradients
of image Ik and depth Dk as follows

λik = e−(α|∇
2Φ(Ik(uik,vik))|+|∇2Φ(Dk(uik,vik))|) (6)

where ∇2 is the laplacian operator, Φ(·) is a bilateral filter for sharpening image
and depth edges, α is a hyperparameter for relative weighting of image/depth
gradients and (uik, vik) is the pixel location of the feature point in keyframe k.
This weight diminishes the effect of depth constraints on feature points near
image/depth edges and favors non-edge regions where the depth and image
gradients are in agreement.
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Algorithm 1 Outlier Depth Measurements Rejection
Input: Mono-depth residuals rLik, i ∈ L, k ∈ K; thresholds

σmin, σmax

Output: Set of inlier mono-depth residuals
1: σL ← {}
2: for i ∈ L do
3: Append σi =

√∑
k(rik−r̂i)

N−1
to σL

4: end for
5: if percentile(σL, 25) > σmax then

return {}
6: else if percentile(σL, 85) < σmin then

return {rLik, ∀i ∈ L, ∀k ∈ K}
7: else

return {rLik|σi < percentile(σL, 85)}
8: end if

Outlier Rejection for Depth Measurements. The weighting function
Eq. (6) helps mitigate effects of erroneous mono-depth measurements at a given
keyframe, but cannot reconcile inconsistency in depth measurements across
keyframes. For a short initialization window (< 2s), keyframe images tend not
to vary drastically. Given this, we expect the mono-depth output to not vary
significantly as well (even though they are up to an unknown scale and shift).
For example, if the mono-depth model predicts a feature point to have small
depth w.r.t the rest of the scene in one keyframe but large depth in another, the
mono-depth residuals for this given feature are likely to be unreliable and should
not be included in the final optimization.

Thus, we devise an outlier-rejection scheme detailed in Algorithm 1. This
algorithm first evaluates the standard deviations of residuals involving a given
feature point, σL = {σi,∀i ∈ L}. Then depending on the distribution of σL we
choose the inlier set. (i) If the 25th percentile of σL is larger than a maximum
threshold, we reject all mono-depth constraints. This scenario occurs when the
ML inference is highly unstable and typically does not yeild useful constraints. (ii)
When mono-depth constraints are generally self-consistent (the 85th percentile of
σL is smaller than a minimum threshold) we accept all mono-depth constraints.
(iii) In all other cases, we reject residuals corresponding to σi in upper 15th

percentile of σL, removing the least self-consistent constraints. Such a scenario is
depicted in Fig. 1a, where the mono-depth residuals involving red feature tracks
are rejected.

In practice, we require an up-to-scale accurate estimate of camera pose and
feature position to evaluate rLik for input to Algorithm 1. Therefore, we first solve
the VI-BA without mono-depth (i.e., the pink rectangle portion of Fig. 3). Finally
after convergence of the depth-less cost-function, we add the depth constraints
as detailed in this section, and solve Eq. (2).
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4 Experiments

We perform two sets of experiments on the popular EuRoC dataset [39], containing
visual and inertial data from a micro air vehicle (MAV) along with accurate
motion ground truth. To generate reliable correspondences for visual and mono-
depth constraints, our front-end uses gyro measurements as a prior for frame-to-
frame rotations following 2-pt RANSAC [58]. We first exhaustively evaluate VIO
initialization performance on the whole trajectory by running our initialization
routine in windows sampled throughout each trajectory in the dataset, which is
commonly done in a variety initialization works [7, 8, 30]. Additionally, we also
evaluate the effect of initialization on tracking performance by employing our
method on a baseline similar to OpenVINS [47] in 10s time windows distributed
uniformly across datasets. In both cases, we compare against ground truth poses
captured by a VICON system present in the dataset.

4.1 Exhaustive Initialization Evaluation

Table 1: Exhaustive initialization benchmark results per dataset from Inertial-
only, our baseline, and our proposed method using 5 KFs with 10Hz image data.
For each metric, lower is better.

Scale Error (%) Position RMSE Gravity RMSE log(Condition Num)
¯||a|| > 0.005G (meters) (degrees) ¯||a|| < 0.005G

Dataset Inertial-only Baseline Ours Inertial-only Baseline Ours Inertial-only Baseline Ours Baseline Ours

mh_01 41.34 43.65 31.11 0.047 0.035 0.025 1.38 2.43 1.82 13.97 13.16
mh_02 38.80 41.41 34.98 0.048 0.033 0.026 1.33 2.04 1.81 13.31 12.50
mh_03 57.44 59.09 34.65 0.145 0.091 0.055 3.09 3.73 2.89 13.83 12.73
mh_04 74.29 56.26 48.40 0.179 0.090 0.075 2.38 2.69 2.31 13.42 11.27
mh_05 70.35 54.64 44.52 0.145 0.078 0.063 2.13 2.77 2.30 13.66 12.51
v1_01 55.44 54.25 25.59 0.056 0.038 0.021 3.47 3.73 3.36 12.93 11.43
v1_02 56.86 45.12 26.12 0.106 0.069 0.038 3.77 3.86 2.44 13.26 11.67
v1_03 56.93 38.55 20.01 0.097 0.048 0.025 5.36 3.59 2.37 12.62 12.03
v2_01 42.40 40.84 23.51 0.035 0.026 0.015 1.49 1.78 1.35 13.45 12.84
v2_02 41.27 34.31 19.33 0.035 0.026 0.015 2.92 2.66 1.96 12.20 12.27
v2_03 59.64 36.42 27.87 0.116 0.044 0.033 4.10 2.81 2.24 13.30 11.17

Mean 54.07 45.87 30.55 0.092 0.053 0.036 2.86 2.92 2.26 13.27 12.14

Following prior related initialization works [7,8,30], we exhaustively create
VIO initialization events across the whole trajectory to evaluate performance
across different motion and visual scenarios. For a fair comparison, we split
each dataset into segments evenly and attempt to initialize all methods on the
same set of segments. We collect poses from all successful initializations for the
evaluation, though note: not all trials are successful due to internal validation
steps of the respective algorithms and success does not necessarily mean that the
initialization poses are qualified for tracking. Accuracy may be poor (measured
by scale error or RMSE), in which case tracking may diverge.

Our baseline method consists of a closed-form initialization [10] followed by
VI-BA [59] with only the VI-SFM portion of residuals present (pink rectangle in
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Fig. 3). We also compare against the state-of-the-art VI-initialization method
Inertial-only [7], implementation of which is obtained from the open-sourced
SLAM method [23]. Given N keyframes, Inertial-only uses up-to-scale visual
odometry as the prior in a MAP framework to recover the metric scale, gravity
vector, and IMU biases, followed by a VI-BA refinement step. Inertial-only’s
visual front-end performs RANSAC with PnP [60].

We configured all three methods to operate on 10Hz image streams following
previous works [7–9]. We treat each image as keyframe and use either 5 or 10
keyframes (KFs) for initialization. In the 5KFs setting, we split datasets into 0.8s
initialization windows evenly. We specifically highlight a 5KFs experiment to
further exacerbate issues of insufficient baseline/motion, which are commonplace
in deployment scenarios (e.g. MAVs, AR/VR). We were able to generate 1078,
1545, 1547, initialization trajectories respectively for Inertial-only, baseline, and
our proposed method over all EuRoC datasets from 1680 initialization attempts.
The average initialization trajectory latency for the three methods were 0.592s,
0.399s, and 0.399s respectively. For our 10KFs setting, we split datasets into
1.6s windows. We generated 571, 809, 815 initialization trajectories for the three
methods with an average trajectory latency of 1.367, 0.897 and 0.897 from 839
initialization attempts. Since Inertial-only uses visual odometry as the prior, to
better align with the resulting expectations across different methods, we rejected
those trajectories with poor resulting reprojection error of each visual constraint
for the baseline and our proposed method. We observed that Inertial-only had
longer initialization latency and typically led to fewer successful initializations
because it requires mean trajectory acceleration larger than 0.5% of gravity
( ¯||a|| > 0.005G) as stated in [7].

To measure trajectory accuracy, we perform a Sim(3) alignment against
the ground truth trajectory to get scale error and position RMSE for each
initialization. Since the global frames of the IMU sensor should be gravity-
aligned, the gravity RMSE (in degrees) is computed from the global z axis
angular deviation in the IMU frame. Following past work [7], we omit scale
errors when the mean trajectory acceleration ¯||a|| < 0.005G, however gravity
and position RMSE are still reported. Finally, we also empirically compute the
condition number of the problem hessian in the most challenging of sequences
(mean acceleration ¯||a|| < 0.005G) to evaluate problem conditioning with the
added mono-depth constraints. We present our aggregated results for the 5KFs
setting in Tab. 1. We significantly outperform state-of-the-art Inertial-only in
all metrics and across datasets, achieving on average a 43% reduction in scale
error, 61% reduction in position RMSE, and 21% reduction in gravity RMSE
for the challenging 5KF setting at an initialization latency of 0.4s. Furthermore,
our formulation leads to a lower condition number compared to the baseline,
indicating improved problem conditioning.

In Fig. 4, we plot the cumulative distributions for the metrics above for
both the 10KFs (top) and 5KFs (bottom) settings. We can see that while we do
better than the baseline and Inertial-only in the 10KFs setting, the gains are
greater in the more challenging 5 KFs setting with reduced motion excitation,
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Fig. 4: Cumulative distribution plots for primary error metrics. First row:
Results with 10 keyframes. Second row: Results with 5 keyframes. For each
plot, the X axis denotes a threshold for error metric and the Y axis shows
the fraction of initialization attempts with the respective error metric smaller
than the threshold on the X axis. Note: 1) Improved gains in the 5KF (i.e.
less motion) setting where mono-depth residuals show greater impact. 2) Recall
doesn’t converge to 100% due to initialization failures among attempts.

highlighting the benefit of the mono-depth residuals. In order to gain insights
into where our method outperforms others, we visualize a dataset with trajectory
color coded by acceleration magnitude and scale error for the various methods
in Fig. 5. We outperform both Inertial-only and the baseline almost across the
whole trajectory but more specifically so in low acceleration regions which are
traditionally the hardest for classical VIO initialization methods. This further
validates our hypothesis that the added mono-depth constraints condition the
system better with direct (up to scale/shift) depth measurement priors in reduced
motion scenarios, which is critical for today’s practical applications of VIO.

4.2 Visual-inertial Odometry Evaluation

To better illustrate our method’s in-the-wild applicability, we conduct experiments
quantifying the impact of our method when used in-the-loop with odometry. Con-
sidering the additional challenge of 5KFs initialization, we focus our experiments
there instead of typical 10KFs [7] and evaluate the accuracy of final tracking tra-
jectories. The evaluation is performed with a baseline similar to OpenVINS [47],
which is a state-of-the-art VIO system commonly used in compute-limited use-
cases (e.g, mobile AR/VR, drones). Similar to Sec. 4.1, we create initialization
events periodically but evaluate the tracking trajectories instead. We split the
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Fig. 5: Acceleration and scale error visualizations for the v2_01 dataset (best
viewed in color). Left: Trajectory colored by acceleration magnitude as %G
(lighter indicates low acceleration). Right: Segments of poses colored by scale
error magnitude for each initialization window in the dataset (lighter is better).
Segments colored black indicate failed initializations for the respective methods.
We outperform other methods over the entire trajectory on scale error, especially
in low acceleration regions where our method performs significantly better.

Table 2: Visual-inertial odometry benchmark results over all EuRoC datasets
with and without mono-depth constraints used in initialization. VIO runs at
10Hz and is initialized with 5KFs.

Position RMSE (m) Gravity RMSE (deg)

Dataset Baseline Ours Diff(%) Baseline Ours Diff(%)

mh_01 1.560 0.543 -65.19 2.21 1.55 -29.86
mh_02 0.604 0.071 -88.24 1.65 1.31 -20.60
mh_03 2.466 1.299 -47.32 2.88 2.29 -20.48
mh_04 0.526 0.124 -76.42 2.01 1.01 -49.75
mh_05 3.204 0.910 -71.59 3.44 1.88 -45.34
v1_01 3.438 0.082 -97.61 4.66 2.69 -42.27
v1_02 2.846 0.097 -96.59 3.57 1.22 -65.82
v1_03 2.649 0.059 -97.77 3.19 1.28 -59.87
v2_01 1.824 0.046 -97.47 2.19 1.08 -50.68
v2_02 2.615 0.060 -97.70 3.42 1.25 -63.45
v2_03 2.939 0.567 -80.70 3.99 2.06 -48.37

Mean 2.243 0.351 -84.35 3.02 1.61 -46.68

datasets evenly into 10s segments and initialize and perform VIO using the same
10s of information for both methods.

As in Sec. 4.1, our baseline is tracking initialized with VI-SFM only. We
generated a total of 142 trajectories using our protocol over all EuRoC datasets for
each method and report aggregated position and gravity RMSE for each dataset.
The aggregated results are shown in Tab. 2 where we see an 84% improvement
in position RMSE and 46% improvement in gravity RMSE over the baseline
method. This suggests a significant expected improvement in downstream uses of
odometry, such as rendering virtual content, depth estimation, or navigation.

Computation Cost. We ran our system on a Pixel4XL mobile phone using
only CPU cores. The computation cost (in milliseconds) for different initialization
modules is shown in Tab. 3. The closed-form initialization problem is solved using
Eigen [61] and the subsequent VI-BA is solved with the Ceres Solver [62] using
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Table 3: Computation duration of key modules in milliseconds.

Mono depth Closed-form Initialization VI-BA Solver (baseline) VI-BA Solver (ours)

71.64 0.73 16.2 39.8

Levenberg–Marquardt. We run ML inference on the CPU in its own thread and
hence achieve real-time performance (within 100ms for the 10Hz configuration)
on a mobile phone. While we do observe that adding depth constraints increases
the computational cost of the VI-SFM problem, we still improve in terms of
overall initialization speed by producing a satisfactory solution with only 5KFs
(0.5s of data) as opposed to 10KFs typically required by the baseline and
Inertial-only.

5 Conclusion

In this paper, we introduced a novel VIO initialization method leveraging learned
monocular depth. We integrated the learned depth estimates, with alignment
parameters, into a classical VI-SFM formulation. Through the learned image
priors, our method gains significant robustness to typical degenerate motion
configurations for VI-SFM, such as low parallax and near-zero acceleration. This
method only requires a lightweight ML model and additional residuals (with asso-
ciated states) to be added to a standard pipeline and does not significantly impact
runtime, enabling application to mobile devices. Our experiments demonstrated
significant improvements to accuracy, problem conditioning, and robustness rel-
ative to the state-of-the-art, even when significantly reducing the number of
keyframes used and exacerbating the problem of limited motion excitation. Our
method could serve as a straightforward upgrade for most traditional pipelines.

There are several key limitations and directions for future work to call out:

– We do not claim any direct upgrades to VI system observability. While the
use of a prior on scale and shift and the training of the mono-depth network
(assuming scale and shift being 1 and 0) may provide some direct scale
information, our work’s primary contribution is to problem conditioning and
behaviour under reduced motion, not zero motion.

– Mono-depth has generalization limitations due to biases in its training data,
learning scheme, and model structure. It is crucial to note that we did not
re-train our network for EuRoC. It was used off the shelf after training
on general imagery which are very different from EuRoC. With a network
trained specifically for the problem domain (or optimized in the loop at test
time per initialization window) we expect an even greater improvement.
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