
143

SyncUp: Vision-based Practice Support for Synchronized Dancing
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The beauty of synchronized dancing lies in the synchronization of body movements among multiple dancers. While dancers
utilize camera recordings for their practice, standard video interfaces do not efficiently support their activities of identifying
segments where they are not well synchronized. This thus fails to close a tight loop of an iterative practice process (i.e.,
capturing a practice, reviewing the video, and practicing again). We present SyncUp, a system that provides multiple interactive
visualizations to support the practice of synchronized dancing and liberate users from manual inspection of recorded practice
videos. By analyzing videos uploaded by users, SyncUp quantifies two aspects of synchronization in dancing: pose similarity
among multiple dancers and temporal alignment of their movements. The system then highlights which body parts and
which portions of the dance routine require further practice to achieve better synchronization. The results of our system
evaluations show that our pose similarity estimation and temporal alignment predictions were correlated well with human
ratings. Participants in our qualitative user evaluation expressed the benefits and its potential use of SyncUp, confirming that
it would enable quick iterative practice.
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1 INTRODUCTION
Synchronized dancing consists of a series of synchronized poses and/or temporally aligned movements by multiple
dancers that create visual aesthetics. Many amateur dancers engage in such dances by replicating choreographies
performed by popular idols and anime characters. They also share their performances via online social network
services, often generating a huge popularity spike. It is thus an increasingly common practice for amateur dancers
to record their dance performances.

Besides dissemination on social networks, dancers also use these recordings for their practice. They use cameras
on smartphones or tablets to capture their practices and share the recordings with other members to review the
portions of their dance that require improvements (e.g., moments where poses of the dancers are different or the
timing of their motions are not aligned). This is an important activity because it offers a good common ground for
dancers to understand what needs to be improved. However, the most common approach for reviewing videos
uses a naïve video player with simple navigation functionalities (e.g., on the smartphone). Even experienced
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Fig. 1. Left: SyncUp heatmap overlays on dancers highlight which body parts break synchronization in their poses. Colors
closer to red and blue represent higher or lower degrees of position discrepancy of each body part, respectively. Right: The
SyncUp web interface. After dancers upload their practice videos, the system quantifies the degree of synchronization of
their dance and offers feedback using three visualizations (i.e., heatmap overlays on dancers’ poses and two 1D heatmaps).
This helps users quickly look for and replay a portion of their dances where there is an issue in synchronization.

dancers require time and effort to identify moments where dancers are not well-synchronized. Thus, dancers
typically review their recordings after they finish all practices. As a result, practices and their review activities
are isolated, which can lead to less satisfactory user experience.

Existing research has examined interactive systems to support dance practices by recognizing dancers’ poses
and offering correction feedback [1, 13]. These systems typically require specialized hardware and infrastructure,
making them less accessible to a general user population [1, 10]. To allow use by dancers without technical
skills or ownership of such specialized hardware, a support system should offer quick access to moments where
their dances are not well-synchronized while utilizing commodity video recording devices. Recent work [27]
has demonstrated a mobile system to offer feedback on dances performed by a single person. However, the
system only considers the differences in poses, and lacks the consideration of the temporal alignments of dancers’
movements, which is another critical component that creates visual aesthetics seen in synchronized dancing.

We present SyncUp, which provides support for synchronized dance practices using computer vision technology
and interactive visualization. The main advantage of SyncUp is to offer quick access to the portions of recordings
where the system considers that dances are not well-synchronized in an in-situ manner. Unlike existing work
[1, 6, 27], SyncUp considers both pose similarity among dancers and the temporal alignment of motions, another
key element of synchronized dancing for inferring the degree of synchronization. SyncUp then visualizes them
as 1D heatmaps (Figure 1 right). In this manner, dancers are presented with an overview of the performance
evaluation estimated by the system. They can quickly navigate to moments where the degree of synchronization
is low, and further investigate how to fix the issues. We envision that SyncUp can mitigate the existing isolation
of practices from reviews using recordings.
This work offers the following contributions:
• A formative study that summarizes existing practice procedures and features desired in support systems
for synchronized dancing;

• Development of two methods to quantify the degree of synchronization from synchronized dance videos
captured with a normal RGB camera in terms of both pose similarity and the temporal alignment of dancers’
movements;

• Design of an interactive system for synchronized dancing practice support;
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• System evaluations on the accuracy and the robustness of our two quantification methods; and
• A qualitative user evaluation to confirm the benefits of SyncUp and uncover its potential uses in actual
practices.

In this paper, we present an exploration of how we designed, built and evaluated SyncUp. We first conducted
formative studies to understand current practices and problems in synchronized dance practices and derive
desired features for SyncUp. We developed vision-based approaches to identify pose similarity and temporal
alignment of motions using videos captured with a normal RGB camera. This paper reports the results of our
system and user evaluations, and discusses our findings as well as future directions for improvements.

2 RELATED WORK

2.1 Dance Practice Systems
Prior research uncovered the complexity of dance learning [3, 20], stimulating the development of practice
systems for dancers [4, 35]. Many such systems support practice with perception enhancement [6, 25]. Drobny
et al. [10] found that a common challenge for dance learners was synchronizing their movements with the
underlying rhythm of the music. To address this issue, they created Saltate, which provides beginners with
drum-sound feedback at beat onsets. Nakamura et al. [34] employed a movable robot to address the depth
ambiguity problem of dance learning videos that only convey 2D information to dancers. The robot moves
forward or backward according to motion-depth information. Their research allowed dancers to improve their
understanding of their movements in a 3D space. YouMove [1] is an augmented-reality mirror that supports
dance learning by visually comparing the poses of a student and instructor at several key dance moments. The
system also provides quantitative performance evaluations with detailed notes from the instructor to help the
student understand how to improve their dancing.

Existing research has also revealed design guidelines for interactive dance practice support systems [8, 19, 36].
From comparative studies, Trajkova et al. [43] found that the efficacy of feedback modalities (e.g., verbal or visual)
in augmented mirror systems depends on the dancer’s expertise level. Riviere et al. [37] compared two dance
decomposition methods (i.e., led by dancers or instructors) for dance learning. They found that decomposition
performed by instructors is appropriate for introductory-level students whereas, decomposition by dancers is
preferable for experts.
These projects only used pose information for dance performance evaluations, and the temporal alignment

of dance movements were not fully considered. An interactive system that utilizes commodity devices (i.e.,
smartphones or tablets) and computer vision methods to support synchronized dancing practice can liberate
users from specialized equipment (e.g.,a depth camera and an augmented-reality mirror), and expand use cases.

2.2 Vision-based Human Motion Analysis
Accurate human pose detection is an active research area in the computer vision field. Researchers have developed
real-time robust pose detection methods using depth cameras [24, 40, 41]. Additionally, recent breakthroughs in
computer vision [23] have established robust algorithms to locate human skeletons in images, including those
captured by a typical RGB camera [5, 16, 46, 48]. The key idea behind these methods is to train convolutional neural
networks (CNNs) using large-scale fine-labeled datasets [2, 29]. OpenPose [5], one of the earliest CNN-based
real-time multi-person pose estimators, predicts the pixel positions of 18 different human body parts (keypoints)
in a given frame. Thus, developers can easily construct body skeletons using these predictions. SyncUp employs
AlphaPose [16], another well-known multi-person pose estimator, because of its superior performance vs.
OpenPose.
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2.3 Vision-based Pose Similarity Estimation
Pose similarity estimation plays a critical role in various applications, including action recognition [12, 30],
motor skill learning [1, 6], and motion retrieval [38, 42]. One basic pose similarity estimation approach uses
the Euclidean distances between body parts in two poses. For example, Chan et al. [6] created a virtual reality
dance practice system that employed a simple threshold-based method using the Euclidean distance of each
body part between the reference dancer and learner. However, Chen et al. [7] noted that such features were
insufficient to evaluate more complex actions. Therefore, they introduced a collection of high-dimensional
pose features (1,683 dimensions) to describe human motions and an algorithm to learn the similarity metric
based on Mahalanobis distances, which was found robust when using these high-dimensional features. Recently,
researchers [39, 47] started to encode the semantics of pose similarities using an implicit model (i.e., a graphic
CNN) instead of manually crafted features. However, these methods require a large dataset, and their direct
application to synchronized dancing is not yet feasible.
Although pose similarity estimation is a critical component in dance practice support systems, most prior

work relies on the summation of the Euclidean distances of body parts. These methods implicitly assume uniform
weights on body parts, and their results may not match well with human perception. For instance, the angles of
arms may contribute to the perceived pose similarity of dancers more strongly than those of legs. Thus, further
explorations are necessary to build a pose similarity quantification method for synchronized dancing.

2.4 Visual Beats
Existing computer vision research has explored methods for intelligent systems to understand the tempo of
human motions. One application of these methods is to synthesize dance-like motions [28, 44, 50]. Davis and
Agrawala [9] developed the concept of a visual beat, which involves the rhythmic patterns of object movements in
a video. Their system synthesizes dance-like motions by matching visual beats with the beats of the background
music. Lee et al. [26] developed a system that generates various types of artificial human-dancing videos based
on the background music style, such as “Ballet" or “Zumba". Their method uses a generative adversarial network
generator [18] that includes a feature representing the music genre to recurrently create a sequence of video
frames.

Our work applies visual beats to synchronized dance performance evaluations. Instead of synthesizing dance-
like motions, the primary objective of this work lies in quantifying the temporal alignment of dancer motions. In
particular, SyncUp extracts the visual beat features from dancers’ movements and computes how their timings
are aligned (i.e., whether a movement is ahead of or behind the reference motion).

3 FORMATIVE STUDIES
To inform our interface design, we conducted focus groups to understand how dancers practice synchronized
dancing. Additionally, we conducted an online survey to prioritize features to be implemented in SyncUp.

3.1 Focus Groups
We first held focus groups to understand the current practices of synchronized dancers and derive potential system
features. We recruited three dance groups at our university to participate in the focus groups. Each dancer group
consisted of 4–10 people who regularly perform synchronized dancing at university events (e.g., school festivals)
and external occasions (e.g., dance competitions). We began our focus group by asking ice-breaker questions (e.g.,
what type of dancing they perform and how often they practice), and then we asked our participants to share
their practice approaches and current challenges.
We extracted the common practices and problems observed in our focus groups and derived the following

major findings:
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Table 1. Online survey results. Features are sorted by their average scores from highest to lowest. Six features (F1, F3, F4, F5,
F7 and F8) were implemented in the current SyncUp system. Note that we excluded F2 and F6 in this work because they are
already well supported in existing systems.

Feature Description Mean (SD)
F1. Pose correction feedback Provide detailed textual and/or visual instructions on how to fix dancer

out-of-sync motions and poses.
4.66 (0.55)

F2. Slow practice mode Allow dancers to practice a portion of or the entire dance at a slower tempo. 4.44 (1.06)
F3. Mistake summary Automatically summarize the moments where dancers made mistakes. 4.34 (0.81)
F4. Temporal alignment feed-
back

Visualize the synchronization degree between dance and music. 4.31 (0.81)

F5. Leader mode Allow a team leader to record the reference video, and other dancers to
compare it to their own dancing. Dancers can also visually compare their
dancing and ground truth side by side using two video streams.

4.21 (1.01)

F6. Focus mode Allow dancers to repeatedly practice a specific portion of the dance. 4.17 (1.14)
F7. Comparison against pre-
vious practices

Allow dancers to compare their current dancing to past data. 4.10 (1.08)

F8. Detection of pose differ-
ences

Detect and highlight differences in poses among multiple dancers. 3.97 (0.87)

Hand pose tracking Track dancer hand poses during dancing and provide feedback. 3.65 (1.20)
Dance scoring Scores represent the degree of pose similarity, motion similarity and facial

expressions.
3.55 (1.12)

Detection of differences in mo-
tions between poses

Detect and highlight differences in transition between two consecutive
poses among multiple dancers.

3.55 (1.12)

Facial expression detection Detect dancer facial expressions and provide feedback (e.g., “smile more"
or “show your face").

3.38 (1.12)

Detection of motion stability Detect dancer stability and provide feedback. 3.34 (1.01)

• All groups used video recording (mostly smartphones) for their practices. These videos were useful for
finding small but important mistakes in their dancing. In addition, the participants commented that recorded
videos allow them to review their dancing from the audience perspective.

• All groups preferred checking their recording only after finishing their entire practices (e.g., after going
back home). One group had never checked their videos when they were together because it was time
consuming.

• In all groups, dancers first practiced individually; then, they practiced as a group. In this manner, they could
focus on improving their synchronization instead of learning movements and poses during group practices.

• All groups typically selected a leader responsible for providing feedback to the other members (i.e., followers)
in their group practices. However, they noted that the leader could not always identify all mistakes.

• One group manually created a sheet that summarizes which parts of their dances required additional
practice after repeatedly reviewing their videos.

We found that video recording is a common approach for synchronized dancing practice. However, focus
group participants tend to rely on the manual inspection of these recorded videos to identify dance segments
requiring further practice. These results are in line with our motivation to design an interactive system that
supports synchronized dance practices using commodity devices.
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3.2 Online Survey
We later conducted an online survey to understand which functionalities are most desired by synchronized
dancers. We generated 13 potential features (Table 1) based on the results of our focus groups to address participant
concerns regarding the time-consuming aspects of their practices. We conducted an online survey to examine
the importance of each feature from the user perspective. The survey asked participants to rate each feature
on a 5-Point Likert scale concerning the potential usefulness to their practice (5: they would definitely use the
feature; 1: they would never use the feature). We recruited 29 individuals (six males and 23 females) with different
dancing engagement levels from casual dancers to professionals.

3.3 Survey Results and Discussion
Table 1 summarizes our results, including the mean rating and standard deviation of each feature. All features
were considered useful; the lowest average score was greater than 3.0. However, implementing all proposed
features would overwhelm our target users and hinder the core value of our system. In addition, certain features
may be error-prone due to the limitations of existing computer vision technology (e.g., hand pose tracking).
Furthermore, we decided to exclude features that are already well supported by existing systems (e.g., F2 and F6)
and focused on designing quantitative feedback on dance performances. We thus narrowed down the features to
those that are critical and sufficiently robust with existing technologies for our prototype. We excluded features
with scores of 3.65 or below as there was a substantial gap (0.32) there. This led us to focus on the six features in
Table 1 (i.e., F1, F3, F4, F5, F7, and F8).

4 SYNCUP INTERFACE
SyncUp is designed as a web-based interface that can run on laptops, smartphones, and tablets. All features
except the spotlight view (explained in Section 4.4) are contained in one web page (F3).

We envision that dancers will capture their multiple practice sessions consecutively at one time, and SyncUp
will then offer feedback when they take short breaks between practices. When each practice session finishes,
the system will upload the video for analysis while a mobile device captures the next session. In our current
implementation, SyncUp requires approximately 85 s to analyze a 1-min video with three dancers at 30 fps and
at 360p resolution. In addition, providing feedback in a post-hoc manner (i.e., after finishing a practice session
rather than real time during the practice) is in line with the findings by Trajkova et al. [43]. SyncUp highlights
segments where synchronization is deemed low by the system, and dancers can discuss whether they want to
add practice in corresponding portions of their dance program. In this manner, SyncUp alleviates the isolation of
practices from reviews using video recordings, as observed in our formative studies.

4.1 Side-by-Side Video Replay
The main feature in SyncUp is the side-by-side video replay with heatmap overlays. The contents in the video
replay view differ in the two practice modes offered by SyncUp: group and individual practice modes.

4.1.1 Group Practice Mode. The group practice mode is utilized when dancers are physically together practicing
a synchronized dance. In the group practice mode, SyncUp offers a side-by-side view of the original practice
video and the one with heatmap overlays that visualize the degree of similarity of dancer poses at a particular
time (F1). In the example of Figure 2a, the heatmap overlays highlight dancers’ arms in red, suggesting that this
body part is not well synchronized. This visualization helps dancers quickly identify which body parts require
adjustment in future practices.

4.1.2 Individual Practice Mode. The individual practice mode is used when dancers wish to practice separately.
Our focus groups suggested that this is common during the early stages of practices. In this practice mode, one
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(a) Side-by-side video replay with heatmap overlays in
the group practice mode.

(b) Side-by-side video replay with heatmap overlays in
the individual practice mode.

(c) Pose similarity visualization. Dance segments with low pose similarity are indicated by a dark
red color.

(d) Temporal alignment visualization. Dance segments where dancers’ movements are not aligned
are represented by a dark blue color.

Fig. 2. Interactive visualizations in SyncUp. SyncUp presents a side-by-side video (either 2a or 2b) at the top of the interface.
The interface also includes 1D heatmaps of multiple practice videos. The values in the horizontal axis in both 2c and 2d
show the indices of video segments (8 beats long). Green rectangles highlight the corresponding segment played in the
side-by-side video replay view. Both 2c and 2d show the analysis results for 2a.

dancer is typically responsible for teaching the others. In this paper, we refer to this dancer as the “leader” and
the others as “followers”. The side-by-side video replay shows the video of the leader on the left and that of the
follower with heatmap overlays on the right (Figure 2b). Alignment between the two videos is performed through
the background music alignment [14]. This mode allows the leader to record their dances as the reference data to
support followers’ practices (F5).

4.2 Pose Similarity Visualization
Pose similarity quantifies how well the poses of multiple dancers are synchronized in a particular video frame. In
addition to the heatmap overlays, SyncUp also offers a 1D heatmap to visualize the average score of pose similarity
(F8) in each segment of the dance video derived by our algorithm (explained later). A darker red color indicates a
lower degree of synchronization. We define the length of a segment as 8 beats long because it is commonly used
in dance practices. Multiple rows of 1D heatmaps present a comparison of the synchronization scores among
multiple practice videos. This helps dancers review how their pose similarity improves over multiple rounds of
practice (F7, Figure 1 right).
When the user clicks a block on the heatmap, it activates a replay of the corresponding segment in the

side-by-side video replay at a play speed specified by the user. In addition, when a user replays the video, the
green highlight in the heatmaps is also updated to inform the location of the corresponding segment.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 143. Publication date: September 2021.



143:8 • Zhou et al.

(a) Skeletons constructed based on pose detection with AlphaPose [16, 45]. The four frames are randomly selected.

(b) Body-part-level Pose Distance (BPD) visualization with heatmap overlays.

Fig. 3. Example results of our pose similarity quantification method.

4.3 Temporal Alignment Visualization
Pose similarity considers the degree of synchronization at a video frame level. Another aspect that contributes to
synchronization is the alignment of the movement timing. For example, if one dancer raises his/her right hand at
the same time that another dancer raises his/her left leg, the poses of two dancers differ, but the timing of their
motions is synchronized. We thus need to also consider whether dancers’ motions are aligned in the temporal
domain.
It is challenging to directly detect how the movements of the dancers are aligned with the music without

human annotations. Such annotations are very tedious . Our system therefore determines how the timing of the
followers’ movements (i.e., the two dancers on the side of Figure 2a) is synchronized with that of the leader (i.e.,
the central dancer in Figure 2a). Dancers identify the leader by choosing a skeleton from the menu. SyncUp then
visualizes the degree of the temporal alignment of their movements in a 1D heatmap, as shown in Figure 2d (F4).
A darker blue color suggests a larger difference in terms of the movement timing. Similar to the pose similarity
visualization, users can click a block of the heatmap to navigate to the corresponding segment.

4.4 Spotlight View
In addition to the default view shown in Figure 2, SyncUp offers another interface: the spotlight view. This view
offers a collection of segments that are sorted by the synchronization score calculated from the pose similarity
and temporal alignment in ascending order. The segment atop this view is the portion of the video in which
the system considers that a dance had the worst synchronization. This view is intended to offer direct access to
moments where additional practices may be necessary by liberating users from inspecting with the full-length
footage.

5 DANCE PERFORMANCE QUANTIFICATION
SyncUp executes two kinds of analyses to quantify the degree of synchronization in dances: pose similarity and
temporal alignment. Pose similarity analysis examines how the poses of multiple dancers are synchronized with
each other in a given frame. Temporal alignment analysis quantifies the timing differences of motions among
multiple dancers, indicating how well synchronized a dancer’s motion is with others at a specific time interval.
Our interface ultimately visualizes the results of these analyses, as shown in Figure 2c.
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5.1 Video Pre-processing
5.1.1 Video Segmentation by Music Beats. Counting eight beats in a loop is a common dance practice technique.
Referring to this technique, SyncUp divides a practice video into a series of segments, each of which is 8 beats
long. We use Ellis’s method [15] to estimate the tempo of the music and segment the video.

5.1.2 Dancer Pose Detection. We use AlphaPose [16], a multi-person pose estimator, for identifying dancers’
poses. In AlpahPose, a person’s pose is represented by a list of pixel positions having 18 keypoints (𝑝) [5, 29],
similar to OpenPose [5]. These keypoints are the 2D pixel locations of a person’s eyes, ears, nose, neck, shoulders,
elbows, wrists, hips, knees, and ankles. Figure 3a displays the overlays of skeletons created from the AlphaPose
keypoints on example recorded dancing videos. We did not formally experiment with the accuracy of pose
detection because it is out of the scope of this work. However, we found that AlphaPose successfully detected
dancers’ poses except in the case where a person was largely occluded.

5.1.3 Dancer Tracking. After pose detection, the system performs Xiu et al.’s method [45], which tracks each
dancer between frames. We hypothesize that the poses of the same dancer at two consecutive frames will be very
similar. Hence, the body part locations will also be similar between the frames. The system first calculates the
distances of all skeletons between frames. We define the skeleton distance between frames as the total distances
of the 18 keypoints. The system then finds the combination that minimizes the overall distances, resulting in the
mapping of the dancers between frames.
In rare cases, AlphaPose fails to identify the same number of dancers as in the previous frame (e.g., three

dancers in the previous frame, but two in the current frame). The system still performs the same procedure, and
it carries over the skeleton information of the unmatched dancer(s) to the current frame (i.e., the system regards
that these dancers did not move at all between the two frames).

5.2 Pose Similarity Analysis
The algorithm first computes the degree of pose similarity among dancers at the body part level (Body-part-level
Pose Distance, or BPD in short), which the system uses to display the heatmap overlay (Figure 2a & 2b). The
system also computes a metric called Overall Pose Similarity (OPS), which describes the overall similarity of poses
at a given frame with the BPD values of all dancers. SyncUp then averages the OPS values across all frames in
each segment and presents the result as 1D heatmaps (Figure 2c).

5.2.1 Body-part-level Pose Distance. SyncUp uses 14 keypoints (all except eyes and ears) to compute 13 body-part
feature vectors. We exclude the four features of eyes and ears because we wanted to focus on body poses rather
than face directions. We normalize the feature vectors into their corresponding unit vectors to preserve only
the directional information of each body part. This avoids a scale-difference problem caused by different human
heights and camera distances. We use these 13 unit vectors as the source input to our algorithm to calculate the
BPD value (𝐵𝑃𝐷 (𝑖, 𝑡)) for each body part 𝑖 at a given frame 𝑡 .

The system calculates the accumulated absolute difference of each body part across all dancers (𝑑 (𝑖, 𝑡)) according
to the formula:

𝑑 (𝑖, 𝑡) =
𝐽∑︁
𝑗

|®𝑣 𝑗 (𝑖, 𝑡) − ®𝑣𝑅 (𝑖, 𝑡) | (1)

where ®𝑣 𝑗 (𝑖, 𝑡) is the 𝑖-th unit vector (𝑖 ∈ {1, 2..., 13}) of the 𝑗-th person ( 𝑗 ∈ {1, 2..., 𝐽 }), and ®𝑣𝑅 (𝑖, 𝑡) is the 𝑖-th unit
reference vector, equal to the average of the unit vectors of all dancers (i.e., ®𝑣𝑅 (𝑖, 𝑡) = 1

𝐽

∑
𝑗 ®𝑣 𝑗 (𝑖, 𝑡)).
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(a) _ = 0.5 (b) _ = 1 (c) _ = 2

Fig. 4. Heatmap overlay results with different _ values.

Note that 𝑑 (𝑖, 𝑡) is an unbound variable that is strongly influenced by the number of people in the analysis. We
thus use the following formula for normalization to derive 𝐵𝑃𝐷 :

𝐵𝑃𝐷 (𝑖, 𝑡) =
(
𝑑 (𝑖, 𝑡)

𝐽

)_
=

(∑
𝐽 |®𝑣 𝑗 (𝑖, 𝑡) − ®𝑣𝑅 (𝑖, 𝑡) |

𝐽

)_
(2)

A higher value of 𝐵𝑃𝐷 (𝑖, 𝑡) means a larger discrepancy in the poses of the 𝑖-th body part across dancers,
implying low synchronization performance. In our heatmap overlays, we linearly convert the value of 𝐵𝑃𝐷 (𝑖, 𝑡)
to a color in the spectrum implemented in the COLORMAP_JET class1.
_ is a trade-off parameter used to control the sensitivity of the heatmap overlays to the discrepancy of poses.

Figure 4 shows how this parameter can affect the heatmap overlays of SyncUp. A small _ highlights small
differences which advanced dancers may use to achieve perfect synchronization. A large _ is useful to suppress
such minor discrepancies and only highlight major differences.

5.2.2 Overall Pose Similarity. Given the 𝐵𝑃𝐷 (𝑖, 𝑡) values for all body parts in a frame, we then compute an Overall
Pose Similarity (𝑂𝑃𝑆 (𝑡)) value. We used a Support Vector Regression (SVR) model [11] as our study found that it
was the most robust (see Section 6.3). In our current implementation, our model takes all 13 𝐵𝑃𝐷 (𝑖, 𝑡) values as
input and predicts an 𝑂𝑃𝑆 (𝑡) value that ranges from 0 (totally ill-synchronized) to 1 (perfectly synchronized).
The system uses the predicted 𝑂𝑃𝑆 (𝑡) values for the 1D heatmap (Figure 2c).

5.3 Temporal Alignment Analysis
The temporal alignment of movements is another aspect of synchronization considered in SyncUp. We extend
Davis and Agrawala’s [9] notion of directogram to quantify motion rhythms. This notion is similar to a
spectrogram, which factors volume changes into frequencies, except that a directogram factors motions of
a video into different angles. We further modify their method to compute directogram-equivalent metrics for
body parts of multiple dancers.
We first define the pose flow of one dancer ®𝑓𝑗 (𝑡), which describes the movement of dancer 𝑗 at frame 𝑡 :

®𝑓𝑗 (𝑡) = {𝑝 𝑗 (𝑖, 𝑡 + 1) − 𝑝 𝑗 (𝑖, 𝑡)}, 𝑖 ∈ {1, 2, ..., 18} (3)
where 𝑝 𝑗 (𝑖, 𝑡) represents the 𝑖-th AlphaPose keypoint at frame 𝑡 . We use all 18 AlphaPose keypoints to compute

®𝑓𝑗 (𝑡) in our current implementation.
We then compute a posegram (P(𝑡, \ )) for each dancer in a similar manner to the directogram:

P𝑗 (𝑡, \ ) =
∑︁
𝑖

| ®𝑓𝑗 (𝑡) |1\ (∠ ®𝑓𝑗 (𝑡)), 1\ (𝜙) :=
{
1, if |\ − 𝜙 | ≤ 2𝜋

𝑁𝑏𝑖𝑛𝑠

0, otherwise (4)

1https://docs.opencv.org/2.4/modules/contrib/doc/facerec/colormaps.html
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Fig. 5. The Workflow of our temporal alignment analysis. (a)->(b): SyncUp first computes human poses and performs dancer
tracking. (b)->(c): To analyze the temporal alignment at the video segment 𝑠 , SyncUp samples impact envelopes (Equ. 5) at
the segment 𝑠 − 1, 𝑠 , and 𝑠 + 1. The system then applies a Gaussian weight distribution on impact envelopes over these three
segments to weigh the contributions by the segment 𝑠 . The system calculates the impact envelopes for the leader dancer
and one follower. (c)->(d): The system then computes the cross-correlation between the two envelopes. In this example, the
calculation result is 0.25 second, suggesting that the follower’s movements are behind those of the leader.

The posegram factors body-part motions of a dancer into 𝑁𝑏𝑖𝑛𝑠 different angles. For example, when a dancer
stretches only the right hand horizontally, the posegram will show a large value in the corresponding direction
while the other values are nearly zero.

Similar to Davis and Agarawala’s work, we further define a flux P𝐹,𝑗 (𝑡, \ ) and an impact envelope 𝑢 𝑗 (𝑡) of a
posegram as follows:

P𝐹,𝑗 (𝑡, \ ) = P𝑗 (𝑡, \ ) − P𝑗 (𝑡 − 1, \ ), 𝑢 𝑗 (𝑡) =
\𝑁𝑏𝑖𝑛𝑠∑︁
\=\𝑖

|P𝐹,𝑗 (𝑡, \ ) | (5)

The flux is the temporal differentiation of consecutive posegrams, which is analogous to acceleration. The impact
envelope sums up all fluxes within a dancer along the angular bin axes. This highlights how much one person’s
motion changes at one time. Figure 5b shows an example of impact envelopes of two different dancers.
The impact envelopes identifies the temporal differences of visual beats between two dancers. We use three

consecutive segments to secure a sufficient number of samples for reliable calculation of cross-correlation. We
also apply Gaussian weights to impact envelopes in three consecutive segments to highlight the degree of the
temporal alignment at the center segment. The Gaussian weights also help reduce artificial noise caused by the
cutoff of the impact envelopes. Cross-correlation analysis identifies how much time shift will offer the best match
between the two impact envelopes. The time shift exhibiting the highest cross-correlation value is considered as
the degree of the temporal alignment against the reference dance, denoted as 𝜏 𝑗 (𝑠) (𝑠 is a segment). SyncUp uses
the accumulation of the absolute values of the temporal alignment scores calculated between all leader-follower
pairs (i.e., 𝜏 (𝑠) = ∑

𝑗 |𝜏 𝑗 (𝑠) |) in the 1D heatmap visualization (Figure 2d).
Figure 5 summarizes the workflow of how SyncUp computes the temporal alignment at each segment. Figure 5c

shows two examples of impact envelope plots after the Gaussian weights are applied. The dotted lines are the
boundaries of the segments. By looking at the peaks and valleys of the two plots, the figure suggests that the
follower’s dance (orange line) is behind the leader’s dance (blue line). 𝜏 𝑗 (𝑠) is 0.25 s in this example, confirming
the delay.
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Fig. 6. Composition of Data-IPV. Each dancer in one group provided 3 practice videos, resulting 9 videos in total. Two of the

3 leader’s videos were then treated as the references ( ). To cover different degrees of synchronization, we deliberately

created pairs to represent extreme cases where synchronization was close to or far from perfection (i.e., pairs with with
exclamation marks). In this manner, we created seven pairs from each dance group.

6 SYSTEM EVALUATION
We conducted system evaluations on the two dance performance quantification methods. For our evaluations
and the training of the neural networks for pose similarity analysis, we created a collection of dance videos and
the corresponding labels of the degree of synchronization.

6.1 Dance Video Data Collection
Because we have two practice modes (individual and group), we collected two types of dance videos for our
evaluations as well as training of learning-based approaches.

6.1.1 Individual Practice Video Pairs (Data-IPV). We collected videos where individual dancers practiced
separately. We recruited one volunteer group, consisting of three dancers, for this part of data collection. All of
them practiced synchronized dancing that Asian pop stars or anime characters originally performed. We asked
each volunteer to perform practices of three dance routines individually and capture their practices using their
smartphones or webcams. This led to nine videos from one group, and we used them to create seven pairs.
Figure 6 shows how we created these pairs. Our objectivewas to create a wide range of in- and

out-of-synchronization samples from the limited number of dance data collected. To create a realistic
perfectly-synchronized pair, we paired two videos from the leader (the pair that included in Figure 6). When
collecting the dancing data, we asked one follower to deliberately dance ahead of the correct timing ( in
Figure 6). By pairing this with the reference video, we created a pair that represented a case where the follower’s
motions occurred ahead of those of the leader. Furthermore, to create a pair that represents a case where the
follower’s motions occurred in a delayed manner, we deliberately introduced a delay of 100 ms only to the video
footage (but not the audio track) in another follower’s practice videos ( in Figure 6). We confirmed that this
caused sufficient lagging effects throughout the video for our ML approaches. These three pairs were created to
cover extreme cases where synchronization was close to or far from perfection. We then paired the remaining
four videos ( without the exclamation mark) to the reference videos ( ). As a result, we created seven pairs of
videos from each dance group.
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Fig. 7. A web interface was used for collecting human ratings on pose similarity. We used a similar system for human
assessment collection on the temporal alignment evaluation.

6.1.2 Group Practice Videos (Data-GPV). To evaluate our dance performance quantification methods in the
scenario of group practices, we also gathered videos where multiple dancers danced together. We recruited
another four dance groups (2–4 dancers in each group) and received nine videos of group practices from them in
total. Their dance style was similar to that of the individual practice video data.

6.2 Dance Performance Assessments with Human Raters
6.2.1 Pose Similarity. Because the pose similarity algorithm uses frames of a dance video, we created a set
of frames and asked our volunteers to rate how well the poses of the two dancers were synchronized. We
randomly-sampled 100 frames from each of the two data sources (i.e., Data-IPV and Data-GPV ), resulting in 200
frames in total. The number of random samples chosen from each practice video was set to be proportional to its
video length. We also confirmed that the seed for each data source was set to be different in our random sampling
so that we did not include frames of identical dance portions in both training and testing data. We then created
an online form where our volunteers shared their perceived pose similarity of the two dancers with according
to a 5-Point Likert scale (“Excellent”, “Good”, “Fair”, “Poor”, and “Very Bad”), which was internally mapped to
numerical scores of 1, 0.75, 0.5, 0.25, and 0, respectively.

We recruited 161 volunteers (98 males, 60 females, and 3 prefer not to say) for this part of the rating collection.
Each volunteer was assigned to randomly selected 25 frames. As a result, we obtained 20 ratings on average
for each frame. We removed outliers that were beyond three standard deviations from the mean rating of each
sample, which is a common heuristic for outlier removal. Our algorithm regards the mean of the remaining
ratings as the overall human rating of the pose similarity. We treated this overall human rating as a continuous
value and used it as the training label for our following learning-based regression models.

6.2.2 Temporal Alignment. For evaluating the temporal alignment algorithm, we extracted 20 frames (randomly-
selected 10 scenes from each of Data-IPV and Data-GPV ). We then created another online form similar to that for
pose similarity for collecting ratings from our volunteers. To clarify our focus in this part of the rating collection,
we explicitly instructed our volunteers to judge only the temporal alignment of two dancers in the given frame.
We deliberately slowed down the playback speed of each frame (70% of original) so that the volunteers could
closely examine the temporal alignment. We also clarified which dancer was the reference in the instruction.
The volunteers were asked to rate their perceived temporal alignment according to a 5-Point Likert scale (“A
lot faster”, “A little faster”, “At the same time", “A little slower”, and “A lot slower”), which corresponded to the
numerical scores of 1, 0.5, 0, -0.5, and -1, respectively.

We recruited 15 volunteers (eight males and seven females) for this rating collection. All volunteers rated the
whole set of 20 frames. We employed the same outlier exclusion as in the pose similarity, but we did not find any
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Table 2. Comparison of OPS prediction results. The results are shown in the format of “RMSE (Pearson’s 𝑟 value)”. All 𝑝
values for Pearson’s 𝑟 values were smaller than .05.

Method _

0.333 0.426 0.543 0.693 0.885 1.13 1.44 1.84 2.35 3

Simple Addition
0.168
(0.65)

0.170
(0.67)

0.174
(0.69)

0.181
(0.71)

0.191
(0.73)

0.205
(0.72)

0.237
(0.69)

0.278
(0.64)

0.317
(0.64)

0.348
(0.59)

SVR
0.163
(0.63)

0.159
(0.65)

0.156
(0.66)

0.154
(0.68)

0.151
(0.69)

0.153
(0.69)

0.158
(0.66)

0.161
(0.64)

0.169
(0.59)

0.180
(0.51)

Short_NN
0.204
(0.23)

0.216
(0.14)

0.199
(0.34)

0.174
(0.55)

0.165
(0.61)

0.164
(0.62)

0.170
(0.58)

0.177
(0.55)

0.184
(0.49)

0.190
(0.45)

Long_NN
0.172
(0.57)

0.173
(0.60)

0.166
(0.61)

0.167
(0.61)

0.167
(0.61)

0.165
(0.62)

0.170
(0.61)

0.170
(0.60)

0.175
(0.58)

0.176
(0.54)

outlier. Therefore, we directly used the mean value of the ratings for each frame as the ground truth temporal
alignment score.

6.3 Comparison for Pose Similarity
To evaluate both the accuracy and robustness of our prediction of 𝑂𝑃𝑆 , we experimented four different methods,
including the SVR-based approach used in our current SyncUp implementation.

6.3.1 Simple Addition. The most straightforward approach to computing 𝑂𝑃𝑆 (𝑡) uses the naïve sum of all
𝐵𝑃𝐷 (𝑖, 𝑡) values at every body part. We first normalized the sum of 𝐵𝑃𝐷 (𝑖, 𝑡) values into [0, 1] (denoted as
𝑆𝐵𝑃𝐷 (𝑖, 𝑡)). To match our human ratings, we applied the reverse conversion on 𝑆𝐵𝑃𝐷 (𝑖, 𝑡) (i.e., 𝑂𝑃𝑆 (𝑡) = 1 −
𝑆𝐵𝑃𝐷 (𝑖, 𝑡)). Themethod based on the simple addition is commonly used in existing research [7, 49]. One underlying
assumption is that all features (in our case, 𝐵𝑃𝐷) should weigh equally for the final overall score. This assumption
does not necessarily fit human perception of pose similarity [7, 33]. We used this as a baseline method in our
evaluation.

6.3.2 Neural Network. Neural networks (NNs) are often appropriate for complicated perceptual tasks, such as
object detection and face recognition [17, 23]. We included two types of NNs in our performance comparison:
short-NN and long-NN. Short-NN consisted of two layers: an input layer (i.e., 𝐵𝑃𝑆 with 13 dimensions) and an
output layer (𝑂𝑃𝑆 , one dimension). Long-NN consisted of four layers: input , two hidden (10-dimension and
5-dimension) and output . More complicated network structures may outperform, but we decided to experiment
rather simple networks due to the limited number of samples for training. We used 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 as the activation
function after each linear transformation. For training, we used the Root Mean Squared Error (RMSE) loss function
and Adam [21] as the optimizer with the learning rate of 0.01. The whole training session took 50 epochs.

6.4 Results
6.4.1 Pose Similarity. We performed predictions using the four 𝑂𝑃𝑆 computation methods (i.e., Simple Addition,
SVR, Short-NN, and Long-NN) with different _ values. We chose 10 values uniformly distributed between 0.333
and 3 in a logarithmic scale. An overly low or high _ was excluded because it was not practical (i.e., too many
differences or none were highlighted in the visualization, respectively). We employed cross validation where one
of the 16 data sources used for creating static frames (Section 6.2.1) was reserved for testing, and the remaining
data were used for training to evaluate our SVR and NN-based approaches. This led to 16-fold cross validation
(seven pairs from Data-IPV and nine dances from Data-GPV ).
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Table 3. The prediction results with Data-GPV and Data-IPV. The results are shown in the format of “RMSE (Pearson’s 𝑟
value)”. We highlight the lowest RMSE in each dataset condition. All 𝑝 values were smaller than .001.

Data-GPV Data-IPV Both
Addition 0.193 (0.54) 0.189 (0.88) 0.191 (0.73)
SVR 0.174 (0.45) 0.124 (0.87) 0.151 (0.69)

Short_NN 0.180 (0.34) 0.149 (0.80) 0.165 (0.61)
Long_NN 0.193 (0.33) 0.137 (0.82) 0.167 (0.61)

(a) Simple Addition (b) SVR (c) Short Neural Network (d) Long Neural Network

Fig. 8. Scatter plots of system predictions and average human ratings for the four OPS computation methods. _ was set to
0.885 in these results. The black dotted line represents the perfect prediction.

Table 2 shows the RMSE and Pearson’s 𝑟 values between the human rating averages and predictions by the
four methods under all _ conditions. The 𝑝 values for all 𝑟 were smaller than .05. With all _ values, we found that
the SVR-based method demonstrated the smallest RMSE. This suggests that the SVR-based method was the most
accurate and robust in our examination. We also found that correlation values of Simple Addition and SVR were
close while the values of the other two methods were lower. Figure 8 further visualizes the detailed results of all
200 samples with _ = 0.885. The plots compare their human ratings (x-axis) and predictions (y-axis). The red and
blue dots represent the results of Data-IPV and Data-GPV, respectively. We found that the red samples tended
to be positioned more closely to the black dotted line (perfect prediction). Table 3 summarizes the accuracy of
different methods using Data-GPV, Data-IPV, and both under the condition of _ = 0.885. The results show that
the overall accuracy in Data-IPV was higher than that in Data-GPV.

6.4.2 Temporal Alignment. To calculate the temporal alignment with our algorithm, we extracted the previous
and next segments of each segment given to the raters from the original video data. Figure 9 presents the
comparison of the temporal alignment results between human ratings and our prediction. Note that human
ratings were collected according to a 5-Point Likert scale (from -1 to 1), whereas our prediction was given using
the estimated time difference (ms). There are seven samples within a region of (±0.2, ±20 [ms]).
The Pearson’s 𝑟 was .712 (𝑝 < .001), showing a strong positive correlation. In the two cases where raters

unanimously marked “at the same time (a score of zero)”, our predictions were both zero. There are three notable
cases where our predicted scores were quite far from the human ratings (highlighted with red squares in Figure 9).
Excluding the three highlighted cases, the other 17 samples in Figure 9 shows that SyncUp’s temporal alignment
predictions were highly correlated with human ratings (Pearson’s 𝑟 = .890 (𝑝 < .001)).

6.5 Discussion
6.5.1 Pose Similarity. The evaluation results of pose similarity demonstrate a smaller RMSE by our prediction
(0.151) than human raters (0.223). The results suggest that our quantification method can predict a closer score of
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Fig. 9. A scatter plot for the human ratings and SyncUp
temporal alignment predictions. We highlight three cases
with a red rectangle where our predictions were largely
different from the ground truth. The number annotations
are included for the discussions in the paper.

Fig. 10. A scatter plot of the standard deviations vs. human
ratings and absolute prediction errors. The Pearson’s 𝑟
value was -.08 (𝑝 = .26).

pose similarity to the ground-truth data (i.e., the average of human ratings) than raters. However, it does not
necessarily mean that our method is more accurate than human raters in general. Quantifying pose similarity is
an inherently challenging task as even human raters demonstrate certain degrees of disagreement. In one case,
the standard deviation of human ratings was as large as .378. Human raters may have weighed different aspects
of dancing, potentially leading to a diverse set of ratings. Future work should investigate what caused the large
disagreements in some cases and how algorithms might account for such disagreement.

The Pearson’s 𝑟 values in the Simple Addition method were slightly higher than those in the SVR-based method.
This implies that the data distribution in the Simple Addition method may demonstrate linearity alongside a
different slope and intercept. Learning-based models can be expected to accommodate such biases, and the
SVR-based method and NNs offer linear and non-linear mapping, respectively.
Our results show that the SVR-based method performed well over NNs. Neural network methods usually

perform well when they are applied directly to raw data, (e.g., images and texts). They can extract high-level
semantic features within these data. However, in our cases, the input of our ML models was a set of manually
crafted feature vectors because we were not able to have a sufficient number of labeled data for training NNs with
raw data. Furthermore, appropriate pre-trained models were not available for our purpose. This configuration
may have impacted the performance of the two methods using NNs. Another possible explanation for the results
in favor of the SVR-based method is that the intrinsic function that maps the input vectors to expected output
values was not highly complex unlike image recognition and text translation. Future work is encouraged to
further examine the capability of various machine learning approaches, but based on our RMSE results across
different _ values (Table 2), we decided to employ the SVR-based method in our current SyncUp prototype.
One major cause of the lower accuracy in Data-GPV was the occlusion of body parts (refer to Appendix B

for more details). Similar to other computer vision methods, occlusion leads to less reliable pose detections.
We closely examined all the segments in Data-GPV and found that 14 included occlusions of a dancer. When
excluding these 14 samples, we found the RMSE of Data-GPV improved to 0.174 from 0.146.
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We examined the relationship between the standard deviation of human ratings and prediction errors. We
expected that prediction would be less precise in cases where human ratings diverged. Figure 10 presents the
results vs. our SVR-based approach with _ = 0.885 (showing the best performance in Table 2). The Pearson’s 𝑟
value was -.08 (𝑝 = .26). Therefore, we were not able to confirm a clear connection between the degree of rater
agreement and prediction accuracy. This result reflects the challenging nature of predicting pose similarity using
computer vision approaches, though our SVR-based method performs well in general.

6.5.2 Temporal Alignment. Our results showed that the predictions of temporal alignments correlated well with
human ratings. We closely examined the three cases where we observed large errors. In the following section, we
discuss these cases in detail and each case corresponds to annotations in Figure 9.

• Case 1. In this case, the average human rating was .87, suggesting that our raters considered that the
movements of a follower in the video were largely delayed. However, the SyncUp prediction was 0 [ms].
By inspecting the corresponding video, we found that the follower skipped some movements to catch up
with the lead dancer. Although our method does not consider such skips, the human raters took them into
account for the rating, resulting in a large discrepancy in the temporal alignment score. However, our pose
similarity analysis can identify such cases, and thus this observation confirms that SyncUp should present
both pose similarity and temporal alignment results to users.

• Case 2. In this case, the average human rating was -.10, but the SyncUp prediction was -134 [ms]. We also
confirmed that the dancers were well synchronized in the given segment. However, the follower dancer
was largely ahead of the leader in the two adjacent segments which were not shown to our raters. We
thus concluded that the performance in these two adjacent segments affected our temporal alignment
prediction.

• Case 3. In this case, the average human rating was -.53, but the SyncUp prediction was 0 [ms]. In the
corresponding video, we found that the poses of the two dancers were largely different although the timing
of their movements was the same. We contacted the dancers who provided this video footage and they
agreed that they were synchronized in terms of the temporal alignment by commenting: “We truly look
different, but the movements are on-beat together.” We thus concluded that our prediction was correct, but
the large pose difference between the dancers caused a bias among the human raters. This case suggests
a benefit of SyncUp, in which the contributions of poses and movement timing can be distinguished to
accurately identify segments that exhibit a low degree of synchronization.

7 QUALITATIVE USER EVALUATION
We next conducted a user study to understand the potential benefits of SyncUp in actual use. Due to the spread
of COVID-19, we were unable to conduct an in-person user study. We instead conducted an online qualitative
study to obtain feedback from our target users.
We recruited three new dance groups (nine dancers in total, eight females and one male, ages: 24–32). All

dancers were amateur synchronized dancers practicing k-pop dances. We asked each group to perform the same
dance routine (65–78 s long) 12 times and to share the recordings with us. We then invited the leader dancers
of these three groups (DL 1–3) for our qualitative study. We first presented our SyncUp interface (including
the spotlight view) alongside the videos they shared with us. After explaining the features, they were invited
to use our system. To encourage active interaction, we asked them to perform tasks of identifying segments
where dancers were not well synchronized (ill-synchronized segments) with our system as well as a standard
Web video player interface. We also asked them to experience the spotlight view and perform the same task.
After they agreed that they understood the functionalities of SyncUp, we conducted a semi-structured interview
that included questions about how the system could be useful in their actual practices and how it could change
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interactions and communications among group members. After the study, each participant, including those who
did not attend our interviews, was offered approximately USD 70 in their local currency as compensation.

We also recruited another six dancer pairs (23–35 years old, and 11 female and one male) only for the interview
part. The experimental procedure was the same, except that we used the videos offered by the three groups prior
this interview. Hence, we reduced the participants’ burden for participation. We recruited the participants as
pairs so that they had opportunities to discuss their thoughts with each other during our interviews. We refer to
the dancer pairs as DP 1–6. They were offered approximately 40 USD in a local currency as compensation at the
completion of the study.
We transcribed all interviews and analyzed the information by categorizing quotes using the open coding

approach [32]. Open coding is a qualitative analysis approach by categorizing observed quotes that describe
the same or similar phenomena and creating names (or codes) that represent the corresponding categories.
Because none of our participants (leaders or pairs) was fluent in English, we conducted interviews in their spoken
language. We translated the quotes as faithfully as possible for the report in this paper.

7.1 Results
7.1.1 EnablingQuick Access to Ill-Synchronized Segments. All participants appreciated the design of visualizations
in SyncUp. DP2 and DP6 explicitly rementioned the inefficiency of dragging the seek bar of a video player for
locating ill-synchronized segments. On the other hand, they saw clear values in the visualizations offered by
SyncUp.

“These (1D heatmaps) are intuitive. It helps me quickly locate these [ill-synchronized] segments, and I do
not need to watch all the videos.” [DP1]
“This heatmap [overlays] is very clear. I can easily know where the problems are. Very useful.” [DP2]
“I like those vertical comparisons [in 1D heatmaps]. I can clearly know in which one (segment) dancers are
not well synchronized in each practice. We can then focus on practicing these parts (segments).” [DL-3]

Our participants also enjoyed the spotlight view and commented its potential benefits.
“I really like this function. It can intelligently recommend us segments in which we are very synchronized or
out of synchronization.” [DP5]

7.1.2 Offering an Objective Assessment on Dance Performances. In five of the interviews (DL2, DP1, DP3, DP4,
and DP6), we received explicit comments about how SyncUp supported the identification of ill-synchronized
segments more accurately than a standard video player interface. One reason mentioned by our participants is
that people may have biases when they review practice videos.

“If a person dances very well, then you will unconsciously focus your attention on that person, and ignore
the others. When you look back again, you may find they are synchronized quite well, but in fact, they are
not.” [DP4]
“Usually there are lots of people dancing together, and I might not be able to notice whether they are
synchronized or not.” [DL1]

They appreciated that our system could avoid these situations by “treating everyone equally” (DP4). Our
participants also appreciated that SyncUp considers temporal alignments. This feature is helpful for those who
are not well-trained with a sense of tempo.

“In fact, there truly exist people who are not sensitive to the tempo ... If there exists an app that can help this,
it can effectively help those people, like me.” [DP4]

One interesting anecdote was that an objective assessment offered by SyncUp can be more socially acceptable
and could encourage communication among dancers.
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“[Other] dancers are usually my friends ... If you directly say you are wrong here and there, it would hurt
our friendship ... In the past, we actually noticed lots of places that we all were wrong. Because we were shy,
we just kept silent.” [DL3]
“It (SyncUp) is objective. For those highlighted places (segments), we can click one, and check it together.
This encourages some proper communication.” [DL3]

7.1.3 Enabling aQuick Iteration of Review and Practice. Our participants confirmed the benefits of video recordings
for their practices. However, they also explicitly mentioned that they were unable to review their videos at the
place due to time constraints imposed by external factors:

“Mostly we watch these videos after we go back home because it is time-consuming. Also, there is a time
limit in renting a dance studio.” [DP4]
“Although we might occasionally watch [practice videos] on the spot, because we pay for renting the dance
studio and the time is limited, it is impossible to examine videos in detail.” [DP3]

Participants agreed that SyncUp could help them quickly review practice videos without viewing the full
footage closely. In particular, they appreciated the “high efficiency” (DL1, DL2, DL3, DP1, DP2, DP3, and DP6) of
our system.

“If I use the system, it will automatically recognize those ill-synchronized segments. In this way, we can
focus on these parts [during the practice], saving lots of time.” [DL2]
“The system can save time in many aspects of the practice. For example, we can record a video, and
the system outputs the analysis, showing several segments. Then we can just quickly practice these parts
(segments). Compared with slowly watching these videos and checking which parts (segments) we can
improve after we go home, this (SyncUp) is very efficient.” [DP6]

7.1.4 Other Potential Use of SyncUp. Participants also shared their potential creative uses of SyncUp for their
practices. DP6 explained their thoughts on how differently SyncUp could be useful depending on the dancer’s
skill level.

“"For those dancers who are already familiar with their dance routine, they would use it at a later stage.
They could study some tiny issues of the pose similarity. However, for beginners, they might not be able to
reach that stage, and would probably use this to help evaluate their tempo. Maybe from the early stage.”
[DP6]

DP4 expressed their interests in using SyncUp to appreciate their good performances. They further mentioned
that automatic extraction of good performance segments would be useful for sharing with online social networks.

“We record videos not only to find where we are out-of-synchronization, but also want to enjoy watching
the movements that we are perfectly synchronized ... If this system can have these moments there (in the
spotlight view), we can just download these videos and share them in our social app. We do not need to do
video editing any more.” [DP4]

7.2 Discussion
Our qualitative study with target users confirmed that SyncUp has a strong potential to support their practices. In
particular, they agreed that it would allow for a quick iterative practice process, which aligns with our goal. Our
results also imply that one major advantage of SyncUp is its objective assessment of dance performances. As DL3
commented, direct critical feedback on others’ mistakes can be strongly discouraging for people from certain
cultural backgrounds. A system like SyncUp could serve as a mediator in such cases, and help group dancers
maintain their relationships while allowing them to exchange honest feedback on their dance performances.
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Our participants suggested several improvements to make SyncUp more practical. These suggestions included
a customizable synchronization score calculation method to reflect their preferences; an intelligent segmentation
method that considers thematic changes of dances; and customizable discretization in overlay coloring (e.g.,
showing overlays only when the synchronization score becomes below a pre-defined threshold).

8 LIMITATIONS
This work has limitations that we mentioned herein. The current interface design and functionality are tailored
toward synchronized dancing, choreography consisting of a series of synchronized poses and/or temporally-
aligned movements among multiple dancers. Although some of the features may be useful for other kinds of
dancing or motions executed by multiple people, future work should examine whether such extensions would
match user requirements . For example, a Mexican wave (or a stadium wave) is a type of collective motions by
multiple people which is beyond the scope of the current SyncUp implementation. Supporting such a metachronal
rhythm would be an interesting direction for future work.

In our system evaluations, our data only covered particular types of synchronized dancing (i.e., dances originally
performed by Asian pop stars or anime characters). Although our performance quantification methods do not
assume domain knowledge of dances, future work should study how applicable they would be to different types
of synchronized dancing .

In our current implementation, the system uses 2D human skeletons. Recent technology [22] can achieve 3D
skeletons with a normal RGB camera, but the computation cost is much higher. Our main contributions lie in the
intergration of computer vision technology to enable quick reviews of synchronized dancing practice videos
rather than improving the accuracy of pose similarity analysis in synchronized dancing.

Our temporal alignment analysis assumes that ground truth movements (i.e., dances by the leader) are given.
Another approach is to identify the beats of the background music and quantify how well dancers’ motions
are aligned with them. We experimented with this, but decided not to incorporate it into the current SyncUp
implementation. We observed that dancers’ movements are not always on the beats of the background music
even though their dancing can be considered well synchronized. This issue can be intrinsically challenging, and
further explorations on human perception of temporal alignment in dances are encouraged.

In our current implementation, video analysis is performed using a remote computing resource in a post-hoc
manner (i.e., after one practice session was complete.) instead of on a mobile device in real time. Thus, users
would have a small amount of waiting time. However, we do envision SyncUp would be able to provide feedback
while dancers are taking a short break after running multiple practice sessions. In this manner, SyncUp can
contribute to mitigating large isolations between practices and reviews with recordings that dancers currently
experience. Future implementations may include more computationally efficient pose detection and temporal
alignment analysis, which may be executable for a smaller amount of time and/or on a mobile device. Recent
computer vision technology has achieved real-time human pose detection on mobile devices [31], however, the
extension to multi-person pose detection is still under development. We note that our scope of this work is
the development of dance analysis methods tailored toward synchronized dancing and both system and user
evaluations on the proposed system instead of improving the computational costs of the analysis process. Our
work encourages further research and development of such computer vision technologies by demonstrating
applications and interface designs that fit users’ needs and workflow.

9 CONCLUSION
Synchronized dancing attracts amateur dancers, but interactive support for its practice is still insufficient. This
paper presents SyncUp, a vision-based interactive system that includes multiple visualizations and offers quick
access to segments where dances are not well synchronized. The system integrates two approaches to quantify
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the performance of synchronized dancing: pose similarity and temporal alignment. Our system evaluations
confirm that performance predictions by SyncUp are highly correlated with human ratings. Participants in our
qualitative user study shared their positive opinions on the features in SyncUp, and they commented several
potential uses of the system. Future work should conduct an in-depth user study through the deployment of
SyncUp into actual practice sessions to validate the results reported in this paper.
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A EXAMPLES OF POSE SIMILARITY VISUALIZATION
Figure 11 provides three examples of side-by-side views with heatmap overlays alongside pose similarity score
visualizations. Note that a darker red color in the 1D heatmap visualization indicates a lower pose similarity
score.

(a) With a high pose similarity score

(b) With a middle pose similarity score

(c) With a low pose similarity score

Fig. 11. Three examples of visualization related to pose similarity. These examples were chosen to illustrate cases where the
pose similarity score was low, in the middle, and high.
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B EXAMPLE FRAMES WITH HIGH PREDICTION ERRORS IN THE ANALYSIS OF POSE
SIMILARITY

Figure 12 shows frames that caused the five largest pose similarity prediction errors with each OPS quantification
method. The top figure in each column shows the frame that exhibited the largest error with the corresponding
method. This result suggests that one major cause of large pose similarity prediction error was occlusion of body
parts. Other error attributes include lack of hand pose detection (the bottom of Figure 12a) and lack of 3D pose
detection support (the fourth figure in Figure 12d). Different from our learning-based method in which errors
are caused by our dependent pose detection algorithms, we observed that the Simple Addition method makes
high-error predictions even when the pose detection is correct. Such hard-to-interpret errors may confuse users
and developers in practice.

(a) SVR (b) Simple Addition (c) NN_short (d) NN_long

Fig. 12. Frames that caused the five largest pose similarity prediction errors with each OPS quantification method. The top
figure in each column shows the frame that exhibited the largest error with the corresponding method.
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