
TextureMontage:

Seamless Texturing of Arbitrary Surfaces From Multiple Images

Kun Zhou∗ Xi Wang∗ Yiying Tong† Mathieu Desbrun† Baining Guo∗ Heung-Yeung Shum∗

∗Microsoft Research Asia † Caltech

Abstract

We propose a technique, called TextureMontage, to seamlessly map
a patchwork of texture images onto an arbitrary 3D model. A tex-
ture atlas can be created through the specification of a set of corre-
spondences between the model and any number of texture images.
First, our technique automatically partitions the mesh and the im-
ages, driven solely by the choice of feature correspondences. Most
charts will then be parameterized over their corresponding image
planes through the minimization of a distortion metric based on
both geometric distortion and texture mismatch across patch bound-
aries and images. Lastly, a surface texture inpainting technique is
used to fill in the remaining charts of the surface with no corre-
sponding texture patches. The resulting texture mapping satisfies
the (sparse or dense) user-specified constraints while minimizing
the distortion of the texture images and ensuring a smooth transi-
tion across the boundaries of different mesh patches.

Keywords: Texture Mapping, Parametrization, Content-based
Metric, Geometry-based Metric.

1 Introduction

Texture mapping has long been used in computer graphics as a way
to enhance the visual richness of a 3D surface, be it for overly sim-
plified character meshes in game engines or for complex digital
models in computer-generated feature films. Seamlessly mapping
synthesized and/or real-life textures onto 3D models with little vi-
sual distortion can be, however, painstaking to do by hand. As a
consequence, multiple techniques have been proposed over the past
few years to simplify this meticulous process.

1.1 Related Work

To provide assistance in decorating 3D models, a variety of tools
has been developed in the field of digital geometry processing.

Parameterization Without Feature Correspondence Tex-
ture mapping of a surface patch is specified through a parameter-
ization, i.e., a one-to-one map from a texture domain to the surface
patch. In most cases, a disk-like patch of a non-flat, piecewise-
linear surface is mapped onto the plane with inevitable distortion.
A first series of tools proposed variational approaches to reduce a
particular distortion measure such as angle or area distortion (see,
e.g., [Maillot et al. 1993; Hormann and Greiner 1999; Sander et al.
2001; Lévy et al. 2002; Desbrun et al. 2002; Floater 2003] and the
survey by Floater and Hormann [2003]). The content of the tex-
ture can even be taken into account to create a signal-optimized

∗e-mail: {kunzhou,t-xiwang,bainguo,hshum}@microsoft.com
†e-mail: {yiying,mathieu}@caltech.edu

(a)

(b) (c)

Figure 1: TextureMontage: from a cat model and some images of a leopard

(a), a user can transfer the leopard’s skin onto the 3D model through the

definition of an arbitrary number of feature correspondences between the

cat and any of the images. A texture atlas is automatically generated (b),

resulting in a seamless texturing on the input model (c).

parameterization [Sander et al. 2002; Balmelli et al. 2002]. How-
ever, if one has to map a whole object instead of a single patch, a
partitioning (or atlas of charts [Grimm and Hughes 1995]) of the
surface into genus-0 patches must be completed first. Here again,
various tools have been designed to offer an automatic or user-
guided atlas creation [Maillot et al. 1993; Eck et al. 1995; Lee et al.
1998; Lévy et al. 2002; Zhou et al. 2004; Zhang et al. 2005], even
with smooth transition of texture coordinates across patch bound-
aries [Khodakovsky et al. 2003]. Recently, variants have been intro-
duced for objects of genus-0 through spherical embedding [Gu and
Yau 2003; Gotsman et al. 2003; Praun and Hoppe 2003] or higher
genus models through a single cut [Sheffer and Hart 2002; Gu et al.
2003] where an atlas is no longer needed.

Parameterization With Feature Correspondence Even
equipped with these tools, decorating surfaces often requires fea-
ture correspondences: specific features of the surface often need to
be mapped to a particular region of the texture. For instance, dec-
orating a humanoid model will require the texture representing the
eyes to be mapped to the actual eyes’ position on the mesh. This
difficult problem found practical solutions in [Lévy 2001] where
soft constraints were implemented, as well as in [Desbrun et al.
2002] through the use of Lagrange multipliers and in [Eckstein
et al. 2001] where Steiner vertices were inserted to satisfy hard
constraints. A recent algorithm, called Matchmaker [Kraevoy et al.
2003] provides a more robust solution by automatically partition-
ing a mesh into genus-0 patches, and allowing the user to set corre-
spondences between the patches and one (or two) texture image(s).
C1 continuity through patch boundaries can even be obtained, but
this procedure is time intensive for the user as a large number of
correspondences needs to be defined. Note that two recent al-
gorithms, cross-parameterization [Kraevoy and Sheffer 2004] and
inter-surface mapping [Schreiner et al. 2004] propose a similar ap-
proach for the design of mappings between two surfaces instead of

between a surface and texture space, and can also handle feature
correspondences. Although our method is algorithmically similar
to these last two methods, we construct instead a map between a
surface and several texture images.

Texture Painting and Synthesis Painting directly on a sur-
face is a very convenient tool for artists to help design textures
on 3D models [Igarashi and Cosgrove 2001; Carr and Hart 2004].
The process is, however, often laborious and requires artistic skills.
On the other hand, texture synthesis (see, i.e., [Praun et al. 2000;
Turk 2001; Wei and Levoy 2001; Soler et al. 2002]) can semi-
automatically decorate objects if repeating textures are desired, but
is very limited in the style of design an artist can obtain otherwise.

Texture Mapping in 3D Scanning The issue addressed in this
paper is also related to the texture mapping problem in 3D scan-
ning. In this context, the textures are captured directly from the
object being texture mapped. The correspondence between the ob-
ject and images is thus automatically implied by the scanning pro-
cess, and only distortions due to the camera have to be accounted
for in fitting the images to the object. Therefore, our approach can
be seen as generalization of existing methods [Rocchini et al. 1999;
Neugebauer and Klein 1999].

1.2 Motivation

In light of this overview of existing tools, it appears that making use
of multiple texture images for surface decoration is still a labored
task. Indeed, seamlessly mapping a series of real-life photos onto
a 3D model (such as in Figure 1) requires the features of the tex-
ture images and the models to be aligned, demanding an impractical
amount of manual work to put dense constraints along patch bound-
aries. Additionally, even if boundary continuity can somehow be
ensured automatically, the number of correspondences required to
guarantee that each triangle of the original domain has correspond-
ing texture coordinates in a texture image can be arbitrarily large
for meshes of high genus, making it once again impractical for the
user.

However, using multiple texture images could significantly reduce
the amount of time needed for 3D model decoration. Imagine for
instance an artist trying to decorate a model from a series of digital
pictures or man-made drawings (of a given subject under various
points of view, or of different subjects): combining parts of these
images in order to create a “composite” texture, without having to
care about cutting the model in patches or painstakingly ensuring
continuity across textured regions, would render the task as easy
as a photo montage [Agarwala et al. 2004]. Consequently, we pro-
pose in this paper to provide a digital photomontage-like decoration
of meshes—although the algorithms involved are seemingly more
difficult due to the non-preventable mapping distortion between a
surface and its local parameterization texture.

1.3 Contributions

Our new technique, called TextureMontage, offers a powerful, prac-
tical tool for decorating arbitrary 3D models using multiple texture
images. The user specifies an (arbitrary large or small) set of feature
correspondences, each constraining a vertex on the mesh to a point
in one or more images (see Figure 2). Given these user-specified
correspondences, the algorithm then computes, through optimiza-
tion, the texture coordinates of most of the surface triangles taking
into account both mapping distortion and texture color continuity,
to result in a visually seamless decoration of the mesh. Finally, for
the few mesh regions that do not get automatically mapped to a tex-
ture image (by lack of user-input correspondences), an automatic

Mapping

Inpainting

Input Model Input Images

Partition Simplification Coarse Mapping Fine Mapping

Final Results Texture Atlas

Figure 2: Decoration process of TextureMontage: from a 3D model and a

few images, an initial mapping of feature correspondences is input by the

user; then a hierarchical optimization procedure is run to compute most of

the mapping; finally, the resulting parts of the mesh not yet textured are

inpainted to complete the texture atlas.

surface texture inpainting technique using a Poisson-based interpo-
lation [Pérez et al. 2003] is used to fill in these gaps. The inpainted
colors in these regions render the overall mesh decoration seamless.

To achieve this general framework for combining multiple images
over arbitrary 3D models with minimum user interaction, we make
heavy use of existing algorithms, and add the following contribu-
tions:

• An automatic approach to partition a mesh and multiple im-
ages simultaneously according to (a few or multiple) user-
specified correspondences (Section 3.1).

• A content-based measure of texture mismatch across patch
boundaries and an interleaved texture-coordinate optimization
algorithm to minimize it while still optimizing geometric dis-
tortion (Section 4).

• A surface texture inpainting technique to smoothly fill in non-
textured regions on a surface described in Section 5.

2 Overview and Terminology

As shown in Figure 2, the decoration process in TextureMontage
progresses as follows:

1. Partition of Mesh and Images: After the user has speci-
fied feature correspondences, we generate a correspondence-
driven partitioning of both the mesh and the images.

2. Progressive Mesh Creation: We then use repeated half-
edge collapses to create a progressive mesh that preserves the

boundaries of the aforementioned partition; the base mesh al-
lows us to build a coarse mapping between the mesh and im-
ages.

3. Coarse-to-fine Map Construction: While we unroll the pro-
gressive mesh from the base mesh to its original form, we use
both geometric and texture information to derive the texture
coordinates of each inserted vertex, minimizing both parame-
terization distortion and texture mismatch along patch bound-
aries.

4. Surface Texture Inpainting: For the triangular patches with
no corresponding texture coordinates, we use an automatic or
user-guided inpainting to fill in the holes by upsampling the
region and coloring each inside vertex in order to smoothly
blend in with the surrounding textures.

5. Atlas Generation: Finally, we create a texture image for each
inpainted hole; the only thing left to do is to pack all the tex-
ture patches used into a texture atlas.

Note that our use of a fine-coarse-fine strategy is not arbitrary: even
if a parameterization can be computed directly after the first step,
we adopt a hierarchical approach as in [Schreiner et al. 2004] to en-
sure a good non-linear minimization of the texture assignments; our
goal of enforcing smooth texture transition across path boundaries
further motivates this progressive scheme. Also, notice that we will
not give details on the last step of the algorithm since the chartifica-
tion and parameterization of hole regions and the atlas packing are
done as in [Lévy et al. 2002]. Finally, and to reduce possible confu-
sions, we will denote by path a polyline (i.e., sequence of vertices)
traced on a mesh, while curve will be used to describe a polyline
(i.e., sequence of 2D coordinates) in the texture domain.

Preprocessing Before starting our algorithm, we perform three
preprocessing steps on the input images. First, to deal with pos-
sible color mismatch caused by different lighting conditions in the
source images, we use Adobe Photoshop to adjust exposure differ-
ences and color balances between these images. Then, we interac-
tively segment the useless background regions using, for instance,
recent image cutout techniques [Li et al. 2004]. The output for each
pixel is an alpha value ranging from zero to one, where zero values
are assigned only to background pixels. Finally, for each pixel, we
store the distance to the nearest non-background pixel. The prepro-
cessing steps take a few minutes and only need to be carried out
once for each image, prior to the texturing process.

3 Texture Map Initialization

As in [Kraevoy et al. 2003], we begin our texturing process by run-
ning a partition algorithm that looks for a set of path-curve pairs on
the mesh and the images. However, we depart from their strategy by
not requiring that the paths partition the mesh into a set of triangu-
lar patches. As a consequence, some patches on the mesh may not
have any corresponding texture patches after partition; but we will
show, in Section 5, that this issue can be easily resolved through a
surface texture inpainting process. Thus, our new strategy allows
the user to deal with any model and any feature correspondences.
Note that even in the worst case, i.e., when no feature correspon-
dences are specified, our algorithm still proceeds normally with the
whole mesh considered as a unique patch.

3.1 Mesh Partitioning by Mesh-Texture Matching

The initial partitioning algorithm proceeds similar to [Kraevoy et al.
2003; Kraevoy and Sheffer 2004; Schreiner et al. 2004]: 1) First,
we compute the shortest paths between all pairs of feature vertices,
and put them in a priority queue ordered by length; 2) We then

test the shortest path (i.e., the first on the queue): if both ends of
the path have corresponding texture coordinates in the same image,
and if it is a valid path-curve pair [Kraevoy et al. 2003], then we add
the path-curve pair to the correspondence set. Note that a same pair
can be stored twice, one for each direction of the path; 3) Repeat
Step 2 until the queue is empty.

Most of the details of our partitioning algorithm, such as the addi-
tion of Steiner points along the paths, are exactly as in [Kraevoy
et al. 2003]; there are, however, fundamental differences. First, we
use this algorithm to derive an ab-initio partition of the mesh, while
the authors of [Kraevoy et al. 2003] started from a pre-cut mesh.
Second, we do not make a priori assumptions on the texture content
contrary to what was used in [Kraevoy et al. 2003]. Instead, we al-
low multiple texture images and do not enforce any constraints on
the number of feature correspondences. As a consequence, some
path-curve pairs can cross background regions, causing undesir-
able partitions. We, therefore, have recourse to the precomputed
distance function to evaluate the validity of the image paths; our
simple solution is to compute the average distance between an im-
age path and the foreground region. If the distance is less (resp.,
more) than a given threshold (2 pixels in our implementation), the
edge is declared valid (resp., invalid). We uniformly distribute sam-
pling points along the image paths such that the distance between
successive sampling points is less than one pixel. The distance for
each sampling point can be computed by interpolating the precom-
puted distance function on the texture image during the preprocess-
ing stage. Then the distance for the image curve is computed as the
average of the distances of all sampling points.

It is important to remark that, with basically no additional effort,
our approach supports feature lines and feature polygons: we can
simply add the path-curve pairs corresponding to feature lines and
polygons to the set of pairs before running the path matching algo-
rithm.

3.2 Base Mesh and Coarse Texture Map

Once the set of pairs has been established, we run a half-edge
collapse simplification to build a progressive mesh structure. As
in [Schreiner et al. 2004], we retain feature vertices and constrain
the edge collapse sequence to preserve the topology of both the path
network and of the original mesh. The result of this simplification
is a base mesh, for which each edge corresponds to a path on the
original mesh. Then, for each triangle of the base mesh, if it corre-
sponds to a texture triangle in one image, we map it into that image
by setting the corresponding texture coordinates for its three ver-
tices (this chart will be parameterized over its corresponding image
plane in the next step). The triangles with no corresponding texture
triangles are flagged as empty, and will be filled in later (see Sec-
tion 5). Because we prevent some edges from collapsing in order to
preserve topology, the base mesh often ends up containing vertices
that are not feature vertices; all triangles containing those vertices
are also flagged as empty for now.

For each vertex deleted during a half-edge collapse operation, we
compute its relative position with respect to its neighbors. Sup-
pose that {vi,v j} is the selected edge to be collapsed next, and vi

is the vertex chosen to be deleted. First, the one-ring neighbors of
vi before collapse are flattened over the 2D plane using a discrete
conformal mapping [Lévy et al. 2002; Desbrun et al. 2002]. Then
the generalized barycentric coordinates of vi with respect to its one-
ring neighbors [Meyer et al. 2002] are computed in the 2D plane.
However, if the vertex vi is on one of the matching paths (defined
in Section 3.1), the one-ring of vi is split into two sub-polygons,
separated by the path. The barycentric coordinates of vi with re-
spect to the left and right sub-polygons are then computed: this
left-side and right-side relative location information will be used in
the coarse-to-fine map construction.

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

(b)(a)

Figure 3: Mapping a hand model: (a) without background restriction, ver-

tices in the image used as texture will move to background region in the

image and cause undesirable results; (b) mapping with background restric-

tion fixes the problem.

4 Coarse-to-Fine Map Construction

Given the partial, coarse texture coordinate assignments on the base
mesh and the progressive mesh built previously, we now derive tex-
ture coordinates for all the vertices of the original mesh, or at least
for those we can find a proper, unambiguous assignment. The re-
maining ones will be dealt with in Section 5.

During this coarse-to-fine process, we reinsert vertices one at a
time, in the reverse order of the previous edge collapse operations.
As in [Schreiner et al. 2004], we optimize its texture coordinates by
moving it around within the region formed by its one-ring neigh-
bors in the texture domain, before optimizing each of its one-ring
neighbors in the same manner. The initial texture coordinates of
the inserted vertex is computed using the barycentric coordinates
stored during the half-edge collapse simplification. The (u,v) tex-
ture coordinates assigned to the inserted vertex are obtained through
iterative random line search [Sander et al. 2001] as we detail next.

4.1 Texture Coordinates Optimization

Based on the mesh partitioning and simplification processes, ver-
tices can be divided into three categories. The first category con-
sists of the feature vertices which need to be fixed in the texture
domain to satisfy the constraints specified by the user. The second
category includes the inner vertices of patches as well as vertices
on the boundary between patches that are mapped onto the same
image—that is, the vertices in this category have all of their neigh-
boring triangles mapped into the same image. The third category
includes vertices on the boundary between patches that are mapped
into different images. The vertices inside regions flagged as empty
are ignored for this step, and the ones on the boundary between
empty and non-empty regions are treated as in the second category.

The first category of points has already been dealt with during the
base mesh construction. Now, for each vertex vi belonging to the
second category, suppose it is reinserted (i.e., split) from v j. If the
neighboring triangles of v j are empty, then we simply do not com-
pute texture coordinates for vi, and the newly introduced triangles
are set as empty. Otherwise, the neighboring triangles of v j are
mapped into the same image, so the newly added triangles will be
mapped into this image and the texture coordinates of vi are initial-

vk
vj vi

vl

p

vm

vj

(a)

(b) (c)

p

vj

vi

vk
p

vm

GA(p)

vj

vi

p

vk

vl

GB(p)

Figure 4: Boundary vertex split and optimization: (a) a vertex vi is rein-

serted from v j; triangles in lighter gray are mapped onto image I1 shown

in (b) and triangles in darker gray are mapped into image I2 shown in (c).

The blue dots along {vi,v j} and {vi,vk} show the sampling points that are

used to compute the texture mismatch energy. The green arrows in (b) and

(c) indicate the image color gradients at sampling point p.

ized as the linear combination of texture coordinates of its one-ring
neighbors in this image using the barycentric coordinates wk previ-
ously computed during the edge collapse phase:

(u
v

)

(vi) = ∑
vk∈N (vi)

wk

(u
v

)

(vk), (1)

where N (vi) are the 1-ring neighbors of vertex vi.

In the rare occurrences where the initial texture coordinates cause
triangle flipping, we place vi at the centroid of its neighborhood
polygon, as recommended in [Sander et al. 2002]. From these ini-
tial assignments, the optimization of (u,v)(vi) is done using the L∞-
based geometric stretch minimization routine defined in [Sander
et al. 2001]. However, we also consider the image background re-
striction: while guaranteeing the validity of the parameterization
(no flipped triangles in texture space) by staying within the one-
ring, the optimization process performs a binary search in a random
direction, but rejects assignments to the background regions in the
texture image. The comparison shown in Figure 3 demonstrates the
necessity of the background restriction.

4.2 Texture Coords Optimization Along Boundaries

Each vertex of the third category is mapped into two images. There-
fore, during optimization, we need to consider not only the geomet-
ric distortion of the parameterization but also the texture mismatch
along the patch. In this section, we describe how to initialize and
optimize the texture coordinates for these particular vertices.

As shown in Fig. 4, when a vertex vi belonging to a patch bound-
ary is reinserted, it will appear in two images I1 and I2. The
newly added triangle {vi,vm,v j} is mapped to I1 and {vi,v j,vl} is
mapped to I2. The initial texture coordinates of vi in I1 ((u1,v1)(vi))
can be computed by adapting Equation (1) to only count the neigh-
bors mapped into I1 (these one-sided barycentric weights were
computed in Section 3.1). A similar treatment is performed for the
texture coordinates (u2,v2)(vi) in I2.

The optimization of the vertex vi in each image must now take tex-
ture mismatch between the two sides of the boundary into account
(see Figure 5). To achieve this effect, we use a weighted energy
mixing both geometric and texture constraints:

Eboundary = λEgeo +(1−λ)Etex, (2)

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

(b)(a) (c) (d)

Figure 5: An example of content-based optimization: (a) the Venus model

is split right in the middle into two charts (the feature points are marked in

red). (b) with geometric stretch optimization only, discontinuities appear.

(c) our content-based optimization offers automatic matching of the texture

colors at the boundaries. (d) C1 smoothness can be further achieved by

gradient matching.

where Egeo is the L∞-based geometric distortion measure defined
in [Sander et al. 2001], and Etex is a measure of the mismatch
between the two texture images’ content along the shared boundary
as discussed in detail in the next section.

In practice, we uniformly distribute a set of points {sk},1 ≤ k ≤ n,
along the shared edges {vi,v j} and {vi,vk} as shown in Fig. 4.
Etex can then be computed as the sum of squared differences of the
contents of image I1 and I2 at these sampling points:

Etex =
n

∑
k=1

‖I1(sk)− I2(sk)‖LUV (3)

(where Ik(s) indicates the color of point s in image Ik) for a
perceptually-based LUV metric of the color space. Note that we
will consider more sophisticated measures in the following section
for added control.

As the sampling points may not be located at integer pixel positions,
a bilinear interpolation of the image is used. The number of sam-
pling points is decided based on the texture image resolutions, to
make the distance between two successive points always less than
half of the size of a pixel in both images.

To minimize the nonlinear function Eboundary, we perform random
line searches [Sander et al. 2001] alternately on (u1,v1) and (u2,v2)
in the following way:

• Fix (u2,v2)(vi), and perform a random line search for
(u1,v1)(vi) to improve Eboundary;

• Update I1(si) and L∞(t) for t ∈ I1;

• Fix (u1,v1)(vi), and perform a random line search for
(u2,v2)(vi) to improve Eboundary;

• Update I2(si) and L∞(t) for t ∈ I2.

The above procedure is repeated until Eboundary cannot be further
decreased; however, in all our experiments, 30 such iterations have
always been enough to get satisfactory visual results. In our cur-
rent implementation, Etex is normalized to be within [0,1] and the
weighting parameter λ is set to 0.1.

4.3 Evaluating Texture Mismatch Energy Etex

Minimizing color mismatches across patch boundaries is natural for
a typical texture mapping application that aims at seamlessly map-
ping multiple photos of a single object to a 3D model. As we just

discussed, the simplest mismatch measure Etex is the sum of differ-
ences of image colors. However, in applications where users want
to compose features from photos of different objects over the same
surface, color matching is simply not enough. More sophisticated
image contents such as color gradient should be considered. For
instance, one can choose a texture mismatch energy Etex to be a
combination of the colors and their gradients:

Etex =
n

∑
k=1

(α‖I1(sk)− I2(sk)‖+(1−α)‖G′
1(sk)−G′

2(sk)‖), (4)

where the weighting parameter α allows users to get a proper bal-
ance between color matching and gradient matching. I1(s) and
I2(s) are the colors of image I1 and I2 at s respectively; G′

1(s) and
G′

2(s) are the color gradients transformed to the tangent space on
the mesh: note that they are different from the original color gra-
dients G1(s) and G2(s) of the images. We compute them in the
following manner: suppose that s is located on the edge {vi,v j}
as shown in Fig. 4. We take the two surface triangles ({vi,vm,v j}
and {vi,v j,vl}) that share the common edge {vi,v j} and flatten
them with a hinge map. The texture triangle in image I1 corre-
sponding to {vi,vm,v j} and the rotated triangle define an affine

mapping ψ{vi,vm,v j} from image I1 to the plane. G′
1(s) is then

computed as ψ{vi,vm,v j}(G1(p)). Similarly, G′
2(p) is computed as

ψ{vi,v j ,vl}(G2(p)). The reason for not using the original color gra-

dient is that Etex should measure the texture mismatch on the 3D
surface, instead of in the images: the orientation and scale of im-
ages being potentially very different (see Fig. 4), computing the dif-
ference between the gradients in the images does not usually make
sense.

Finally, to minimize gradient mismatch, the texture coordinates of
the immediate neighbor vertices inside the boundaries of adjacent
patches can be moved as well as those of boundary vertices (since
they will affect the affine mapping ψ in gradient computation). Fig-
ure 5(d) shows the mapping result with gradient mismatch energy.

5 Surface Texture Inpainting

As explained previously, the constraints defined by the user may
not be sufficient to assign textures on the whole surface, and tex-
ture “holes” can be present. If the user does not wish to impose
more constraints with more texture images to fill in these holes,
we provide a simple, yet efficient surface texture inpainting, where
the texture colors are filled in using a Poisson-based interpolation
technique.

PDE-based inpainting approaches have been shown to be quite ef-
fective for images [Bertalmio et al. 2000; Pérez et al. 2003]. Re-
cently, [Yu et al. 2004] used the canonical Poisson equation for
mesh modeling and interpolation. In this section, we propose
Poisson-based editing of the texture colors on triangular meshes.

Setup What is known as the Poisson equation for a function f
with Dirichlet boundary condition can be expressed as follows:

∆ f = d over Ω, with f |∂Ω = f ∗|∂Ω,

where ∆ is the Laplace operator and d is a scalar field (for instance,
the divergence of a guidance vector field v). Ω is a closed region
of an arbitrary domain (e.g., a flat image or a non-flat mesh) with
boundary ∂Ω. The function f ∗ is a known scalar function, while f
is the unknown scalar function defined over Ω that can be uniquely
determined by solving this Poisson equation. Since the Laplacian
is a linear differential operator, the Poisson equation can be dis-
cretized into a sparse linear system that can be solved efficiently

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

for any discrete domain Ω. We use the cotangent formula for dis-
crete meshes in our implementation; for details, we refer the reader
to [Polthier and Preuss 2000; Pérez et al. 2003; Tong et al. 2003].

For our surface texture inpainting, we set f ∗ to be the color around
the hole resulting from the previous texture mapping process. The
function f represents the vertex colors in the hole regions we want
to solve for. The Poisson equation on a mesh can only solve for
colors at vertices; in order to store the whole texture on the mesh
temporarily for the computation, we need to uniformly subdivide
the triangles in the hole regions so that the mesh resolution matches
the image resolution first. Note that we put newly inserted vertices
onto the original piecewise linear mesh, so the shape of the mesh is
unchanged. This subdivision allows us to solve the Poisson equa-
tion with a multigrid solver too. The refined mesh is only used for
the inpainting process and the subsequent texture atlas generation:
it is discarded once the inpainting process is done.

By setting d in different ways, we can get the following desirable
effects:

Simple Interpolation Setting d to zero results in a harmonic
interpolant; unfortunately such a color interpolation is rarely suffi-
cient for complex textures. A better blending scheme is to derive an
appropriate field d from the boundaries of the hole region. We can
subdivide the immediate neighboring faces outside the boundary of
the hole, and set boundary values of d as the Laplacian of the color
vector (RGB) mapped on the refined mesh evaluated at the closest
outer (refined) vertex to a boundary vertex. We then interpolate d at
inner vertices using Gaussian radial basis functions (RBF), where
the distance used is the usual Dijkstra’s distance. Both interpolants
can be computed interactively and work well for most simple, small
regions in our applications. Figure 6(a) gives an example of such
an interpolation.

User-guided Inpainting For hole regions surrounded by tex-
tures with salient patterns, the user can interactively specify vectors
at a few vertices in the hole region to serve as blending “strokes”.
A non-vanishing vector field defined at every vertex is then au-
tomatically computed using RBF interpolation. After computing
the boundary values of d as described in the above paragraph, the
value of d at a given inside vertex is assigned as follows: by tracing
the flow line forward and backward from this vertex, we find two
boundary values (one at each end of the flow line); the d value is
set to the weighted average of the d values at the two end vertices
(where the weight is based on the distances along the flow line to
the two boundary intersections). This simple procedure allows us to
seamlessly stitch the texture patterns from all around the boundary
as demonstrated in Figure 6(b).

Seamless Cloning By setting d directly to the Laplacian of the
color values of a chosen image, we can also get a seamless cloning
tool for surfaces. This operation requires the user to specify a
source region in an arbitrary image and the associated target region
on a surface 1. We begin with the initialization of the region with
a field d using a RBF-based method as described in the “Simple
Interpolation” paragraph above. Then, like in PhotoMontage, we
replace the values of d in the regions on the mesh covered by the
user-specified image by using the Laplacian of the color mapped
onto the mesh. By fixing the colors of the vertices that are not cov-
ered by the image region as a boundary condition, we solve the
Poisson equation to get the new colors for vertices in the covered
region. Our system supports preview of the cloning results by di-
rectly projecting the texture region onto the surface. Although the
previewed texture is not seamlessly integrated with the surrounding

1This procedure is proposed not only for non-textured holes, but also for

any other mesh region as it is a convenient texturing tool.

(b)(a) (c)

Figure 6: Surface texture inpainting: (a) a simple interpolation for the tail

region of the feline shown in Figure 9; (b) user guided inpainting for the

abdomen of the horse shown in Figure 8; (c) seamless cloning of the ear of

the bunny shown in Figure 2.

surface areas, this feature still provides valuable visual feedback.
Figure 6(c) shows a cloning operation on the bunny’s ear.

Besides filling in texture holes, Poisson equation can be further used
to smooth the color discontinuity along the patch boundaries: sim-
ilarly to [Agarwala et al. 2004], we can calculate the mean color
between patches of each seam once textured on the object, and use
Poisson equation to adjust the intensity of texture color in texture
space according to the mean color. This post-processing method
can efficiently suppress the residual color mismatch between dif-
ferent texture images.

6 Results

We have developed a texturing system based on the presented tech-
nique. Our tests and results have convinced us that TextureMontage
offers a very flexible platform for mesh texturing. Indeed, we have
been able to decorate existing 3D models by using multiple pictures
(taken from the web, or photographed by ourselves) and assigning
a set of feature correspondences.

The general process of specifying features proceeds as follows:
first, specify the feature polygons along the contour of the images,
and then specify important features that must be aligned, such as
eye, nose, ankle etc. If the same feature point on surface appears
in multiple images, it should be specified multiple times such that
these image features are precisely matched, which is necessary be-
cause our system takes all feature points as hard constraints and
their texture coordinates are fixed during optimization.

Figures 1, 7, 8 demonstrate that one can for instance take a few pic-
tures of an animal, and apply its “fur” directly onto a 3D model.
Figure 1 shows a cat model decorated by a leopard skin. Notice
in this example that a leopard texture could have been generated
directly using texture synthesis; however, the various anatomically-
correct variations of pattern shape and color are automatically trans-
ferred when TextureMontage is used, offering a much more com-
plete and versatile solution to mesh texturing. Figures 9 and 10
demonstrate the power of our system by composing textures from

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

t-rudu
Highlight

(c)

(a) (b)

Figure 7: Texturing a lioness model from images of a tiger: (a) input images;

(b) generated texture atlas; (c) mapping results.

(a) (b)

(c)

Figure 8: Decorating a horse model using textures from a zebra: (a) input

images; (b) generated texture atlas; (c) mapping results.

multiple objects on complicated models. Specifying correspon-
dences on the tail of the feline model (Figure 9) could have been
delicate (because of the genus), but a simple interpolation fills in
the hole smoothly and automatically (see Figure 6(a)). The Bud-
dha model (Figure 10) is extremely challenging due to its abundant
geometric features, high genus and also the existence of highly oc-
cluded regions like the bottom part of the gown. Texturing such a
model from nine images with a reasonable amount of user interac-
tion demonstrates the potential of our system. Automatic surface
texture inpainting, especially simple interpolation, plays a crucial
role in texturing a lot of hole regions. Note that a number of small
charts in the texture atlas are from those hole regions.

Table 1 gives the data statistics and session time for the models
presented in this paper. We selected complex 3D models and im-
ages where many features need to be carefully aligned. The timing
varies from half an hour to two hours (for an untrained graduate stu-
dent), depending on the number of images and feature correspon-
dences. Specifying features after features and frequently checking
the result (interactively) by computing the resulting texturing takes
mostly user time. The final model requires around 1 to 3 minutes
of computer time. In view of the complexity of our models and the
richness of the textures, we find this amount of user interaction ac-
ceptable, and much less than using existing texturing tools that we
know of.

(a) (b)

(c)

Figure 9: Texturing a chimeric feline model from images of multiple objects:

(a) input images; (b) generated texture atlas; (c) mapping results. Here

again, the use of inpainting is crucial for fast, good-looking results.

vertices # faces # images # features timing (min)

cat 7,207 14,410 3 168 ∼ 40

bunny 15,089 30,000 6 148 ∼ 30

horse 20,156 40,308 2 158 ∼ 35

lioness 5,000 9,996 2 167 ∼ 45

feline 19,998 40,000 6 309 ∼ 90

Buddha 24,990 50,000 9 353 ∼ 120

Table 1: Statistics and session time.

7 Conclusion and Future Work

In this paper, we have demonstrated how to provide a practical mesh
texturing tool that allows the user to work with a number of texture
images and significantly eases the process of creating a texture atlas
with nearly indiscernible patch transitions. We also offer a set of
tools to the user in order to provide much freedom in the design,
such as different inpainting options. There are no constraints on
the number of texture images that can be used, or on the genus of
the objects. If not enough constraints are given to unambiguously
texture the object, we provide automatic and seamless filling.

In the future, we would like to allow the user to define some feature
correspondences as soft constraints and optimizing their texture co-
ordinates with respect to the image contents to further accelerate
the texturing process. We are also interested in incorporating tex-
ture synthesis to our framework. The inpainting process in partic-
ular could benefit from existing automatic texture generation tech-
niques, widening the gamut of tools available for texturing artists.

Acknowledgements

The authors would like to thank Stanford University and Robert
W. Sumner for providing the 3D models used in this paper. The
images of leopard, tiger and zebra were provided by Mingdong
Xie. Special thanks to Kangying Cai and Jianwei Han for using
our system to generate the texturing results and Steve Lin for his

Figure 10: Texturing Buddha from textures of multiple objects. From left to right: input images, generated texture atlas and mapping results.

help on video production. The authors are grateful to the anony-
mous reviewers for their helpful suggestions and comments. The
Caltech authors were partially supported by NSF (CARGO DMS-
0221669 and DMS-0221666, CAREER CCR-0133983, and ITR
DMS-0453145), DOE (DE-FG02-04ER25657), and Pixar.

References

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER, S., COLBURN,

A., CURLESS, B., SALESIN, D., AND COHEN, M. 2004. Interactive digital

photomontage. In Proceedings of SIGGRAPH 2004, 294–302.

BALMELLI, L., TAUBIN, G., AND BERNARDINI, F. 2002. Space-optimized texture

maps. Computer Graphics Forum 21, 3 (Sept), 411–420.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER, C. 2000. Image

inpainting. In Proceedings of SIGGRAPH 2000, 417–424.

CARR, N. A., AND HART, J. C. 2004. Painting detail. In Proceedings of SIGGRAPH

2004, 842–849.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic parameterizations of

surface meshes. In Proceedings of Eurographics 2002.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUET-

ZLE, W. 1995. Multiresolution analysis of arbitrary meshes. In Proceedings of

SIGGRAPH 1995, 173–182.

ECKSTEIN, I., SURAZHSKY, V., AND GOTSMAN, C. 2001. Texture mapping with

hard constraints. Comput. Graph. Forum 20, 3.

FLOATER, M., AND HORMANN, K. 2003. Recent advances in surface parameteriza-

tion. Multiresolution in Geometric Modelling Workshop.

FLOATER, M. 2003. Mean value coordinates. CAGD 20, 1, 19–27.

GOTSMAN, C., GU, X., AND SHEFFER, A. 2003. Fundamentals of spherical param-

eterization for 3d meshes. In Proceedings of SIGGRAPH 2003, 358–363.

GRIMM, C. M., AND HUGHES, J. F. 1995. Modeling surfaces of arbitrary topology

using manifolds. Computer Graphics 29, Annual Conference Series, 359–368.

GU, X., AND YAU, S.-T. 2003. Global conformal surface parameterization. In

Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry pro-

cessing, 127–137.

GU, X., GORTLER, S., AND HOPPE, H. 2003. Geometry images. In Proceedings of

SIGGRAPH 2002, 355–361.

HORMANN, K., AND GREINER, G. 1999. Mips: An efficient global parameterization

method. In Curve and Surface Design: Saint-Malo, Vanderbilt University Press,

219–226.

IGARASHI, T., AND COSGROVE, D. 2001. Adaptive unwrapping for interactive tex-

ture painting. In ACM Symposium on Interactive 3D Graphics, 209–216.

KHODAKOVSKY, A., LITKE, N., AND SCHRÖDER, P. 2003. Globally smooth param-

eterizations with low distortion. In Proceedings of SIGGRAPH 2003, 350–357.

KRAEVOY, V., AND SHEFFER, A. 2004. Cross-parameterization and compatible

remeshing of 3d models. In Proceedings of SIGGRAPH 2004, 861–869.

KRAEVOY, V., SHEFFER, A., AND GOTSMAN, C. 2003. Matchmaker: constructing

constrained texture maps. In Proceedings of SIGGRAPH 2003, 326–333.

LEE, A., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN, D. 1998.

Maps: multi-resolution adaptive parameterization of surfaces. In Proceedings of

SIGGRAPH 1998, 95–104.

LÉVY, B., PETITJEAN, S., RAY, N., AND MALLET, J.-L. 2002. Least squares con-

formal maps for automatic texture atlas generation. In Proceedings of SIGGRAPH

2002, 362–371.

LÉVY, B. 2001. Constrained texture mapping for polygonal meshes. In Proceedings

of SIGGRAPH 2001, 417–424.

LI, Y., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy snapping. In Proceed-

ings of SIGGRAPH 2004, 303–308.

MAILLOT, J., YAHIA, H., AND VERROUST, A. 1993. Interactive texture mapping. In

Proceedings of SIGGRAPH 1993, 27–34.

MEYER, M., LEE, H., BARR, A., AND DESBRUN, M. 2002. Generalized barycentric

coordinates on irregular polygons. J. Graph. Tools 7, 1, 13–22.

NEUGEBAUER, P. J., AND KLEIN, K. 1999. Texturing 3d models of real world objects

from multiple unregistered photographic views. Computer Graphics Forum 18, 3

(Sept), 245–256.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. In Pro-

ceedings of SIGGRAPH 2003, 313–318.

POLTHIER, K., AND PREUSS, E. 2000. Variational approach to vector field decom-

position. In Proc. Eurographics Workshop on Scientific Visualization.

PRAUN, E., AND HOPPE, H. 2003. Spherical parameterization and remeshing. In

Proceedings of SIGGRAPH 2003, 340–349.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. In Proceed-

ings of SIGGRAPH 2000, 465–470.

ROCCHINI, C., CIGNONI, P., MONTANI, C., AND SCOPIGNO, R. 1999. Multiple tex-

tures stitching and blending on 3d objects. In Proceedings of the 10th Eurographics

Workshop on Rendering, Eurographics Association, 127–138.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H. 2001. Texture

mapping progressive meshes. In Proceedings of SIGGRAPH 2001, 409–416.

SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H. 2002. Signal-

specialized parametrization. In Proceedings of the 13th Eurographics Workshop on

Rendering, Eurographics Association, 87–98.

SCHREINER, J., ASIRVATHAM, A., PRAUN, E., AND HOPPE, H. 2004. Inter-surface

mapping. In Proceedings of SIGGRAPH 2004, 870–877.

SHEFFER, A., AND HART, J. 2002. Seamster: inconspicuous low-distortion texture

seam layout. In Proceedings of IEEE Visualization 2002, 291–298.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical pattern mapping.

In Proceedings of SIGGRAPH 2002, 673–680.

TONG, Y., LOMBEYDA, S. V., HIRANI, A. N., AND DESBRUN, M. 2003. Discrete

multiscale vector field decomposition. ACM Trans. Graphics 22, 3, 445–452.

TURK, G. 2001. Texture synthesis on surfaces. In Proceedings of SIGGRAPH 2001,

347–354.

WEI, L., AND LEVOY, M. 2001. Texture synthesis over arbitrary manifold surfaces.

In Proceedings of SIGGRAPH 2001, 355–360.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND SHUM, H.-Y. 2004.

Mesh editing with poisson-based gradient field manipulation. In Proceedings of

SIGGRAPH 2004, 644–651.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2005. Feature-based surface param-

eterization and texture mapping. ACM Trans. Graphics 24, 1, 1–27.

ZHOU, K., SNYDER, J., GUO, B., AND SHUM, H.-Y. 2004. Iso-charts: Stretch-

driven mesh parameterization using spectral analysis. In Proceedings of the Euro-

graphics/ACM SIGGRAPH symposium on Geometry processing, 47–56.

