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Fig. 1. Rendered objects with LitAR compared to a physical mirror ball and with ARKit [34]. Row 1: LitAR
produces visually-coherent reflective rendering while ARKit fails; the bottom part of the ARKit-rendered ball
does not faithfully reflect the book cover. The top part of the LitAR-rendered ball has an intentionally gradient
blurring effect for quality-performance trade-offs (see §4.2). Row 2: LitAR achieves more realistic and visually
coherent rendering effects than ARKit for objects with different materials.

An accurate understanding of omnidirectional environment lighting is crucial for high-quality virtual object rendering in
mobile augmented reality (AR). In particular, to support reflective rendering, existing methods have leveraged deep learning
models to estimate or have used physical light probes to capture physical lighting, typically represented in the form of an
environment map. However, these methods often fail to provide visually coherent details or require additional setups. For
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example, the commercial framework ARKit uses a convolutional neural network that can generate realistic environment maps;
however the corresponding reflective rendering might not match the physical environments. In this work, we present the
design and implementation of a lighting reconstruction framework called LitAR that enables realistic and visually-coherent
rendering. LitAR addresses several challenges of supporting lighting information for mobile AR.

First, to address the spatial variance problem, LitAR uses two-field lighting reconstruction to divide the lighting recon-
struction task into the spatial variance-aware near-field reconstruction and the directional-aware far-field reconstruction. The
corresponding environment map allows reflective rendering with correct color tones. Second, LitAR uses two noise-tolerant
data capturing policies to ensure data quality, namely guided bootstrapped movement and motion-based automatic capturing.
Third, to handle the mismatch between the mobile computation capability and the high computation requirement of lighting
reconstruction, LitAR employs two novel real-time environment map rendering techniques called multi-resolution projection
and anchor extrapolation. These two techniques effectively remove the need of time-consuming mesh reconstruction while
maintaining visual quality. Lastly, LitAR provides several knobs to facilitate mobile AR application developers making quality
and performance trade-offs in lighting reconstruction. We evaluated the performance of LitAR using a small-scale testbed
experiment and a controlled simulation. Our testbed-based evaluation shows that LitAR achieves more visually coherent
rendering effects than ARKit. Our design of multi-resolution projection significantly reduces the time of point cloud projection
from about 3 seconds to 14.6 milliseconds. Our simulation shows that LitAR, on average, achieves up to 44.1% higher PSNR
value than a recent work Xihe on two complex objects with physically-based materials.

CCS Concepts: • Computing methodologies → Mixed / augmented reality; • Human-centered computing → Ubiqui-
tous and mobile computing systems and tools; • Computer systems organization → Distributed architectures.

Additional Key Words and Phrases: mobile augmented reality; lighting estimation; 3D vision
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1 INTRODUCTION

Mobile augmented reality (AR) has attracted increasing interest from academia and industry to better engage
users by allowing seamless integration of physical and virtual environments [3, 27, 35]. The current mobile AR
ecosystem is infused with new hardware development [32], improved frameworks [34], advancing vision and
graphics algorithms [64], as well as end-user facing applications ranging from e-commerce ones to educational
ones [2].
Given the interactive nature of AR applications, users often prefer virtual objects of high visual quality. The

rendered virtual objects should look realistic and feel like they belong to the physical surroundings, a property
commonly referred to as visual coherence. For example, virtual sunglasses that are overlaid on a user’s face
should look like physical sunglasses (realistic) and reflect the correct physical environment (visually coherent).
To achieve both realistic and visually coherent rendering, mobile AR applications require access to an accurate
representation of omnidirectional environment lighting (often represented as environment map for image-based
lighting) at the user-specified rendering position [47, 64].

However, obtaining a high-quality environmentmap formobile AR has to overcome several key challenges. First,
the inherently spatial variation of indoor environment lighting makes the environment map at the observation
position—which can be more easily reconstructed with more camera observations—a poor approximation of the
rendering position environment map. This challenge was demonstrated in prior work [24, 64] and our motivating
example (see Figure 3). Second, the natural user mobility of mobile AR usage can induce noise to necessary data
(such as 6DoF tracking and RGB image data) for lighting estimation. For example, we observe that the tracking
data provided by ARKit can show that consecutive camera frames are misaligned, although they represent the
same physical space. Third, mobile devices can have heterogeneous sensing capability, e.g., in terms of cameras’
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field-of-view (FoV) or their depth-sensing ability, which makes it necessary to consider auxiliary components
(such as depth estimation [1, 48, 63]) for obtaining accurate lighting. Fourth, mobile devices have relatively limited
resources compared to their desktop counterpart, while the interactivity nature often requires 30 fps rendering.
The computational limitation makes it challenging to directly use computational-intensive models designed to
run on powerful GPU servers [52], and motivates minimal usage or optimization of time-consuming operations
(such as point cloud registration [9] and mesh reconstruction [8]).

In this work, we investigate the problem of providing high-quality lighting information for mobile AR by
addressing the above four key challenges. Our key goal is to support realistic and visually coherent rendering
of virtual objects with various geometries and materials. Figure 1 compares the visual effect of virtual objects
rendered with lighting information obtained with our proposed system called LitAR and ARKit. We show that
LitAR achieves high-quality rendering with structurally similar reflections with the physical object and more
visually coherent reflection than objects rendered with ARKit.

LitAR involves a novel technique called two-field lighting reconstruction and several complementary compo-
nents that work together to deliver a high-quality environment map with low-performance impact. We design
the two-field lighting reconstruction with the insight of dividing the camera observations into two types, i.e., the
near-field and far-field observations, to speed up lighting reconstruction while maintaining the visual quality.
This technique shares a similar spirit to the well-known screen space reflection [42] and is tailored to mobile
AR by fully exploring user mobility. Specifically, LitAR generates a multi-view dense point cloud to represent
near-field observations, corresponding to the portion of the environment map that receives more accurate and
higher confidence depth information surrounding the rendering position. This design helps produce geometri-
cally accurate lighting transformation between the observation and rendering positions, thus supporting key
rendering features like reflections and providing visually coherent results. Furthermore, LitAR leverages far-field
observations to handle the anisotropic lighting property by reconstructing sparse point clouds to reduce visual
errors.
On top of the two-field lighting reconstruction, we incorporate two noise-tolerant data capturing policies,

i.e., guided bootstrapped movement and motion-based automatic capturing, to improve the data quality. The
guided bootstrapped movement policy directs the camera views to capture required near-field and far-field
observations efficiently. This policy also brings other benefits, such as enlarged FoVs and reduced user movement,
for reconstructing high-quality lighting. It is worth noting that LitAR can leverage new observations, e.g.,
device orientation and user movement, to improve the quality of the environment map progressively. The
motion-based automatic capturing policy leverages multi-sensory information to capture spatially and temporally
new observations. Moreover, we propose two performance optimizations that significantly reduce the time
reconstructing the final environment map from the intermediate 3D point clouds. The first optimization uses
a lightweight multi-resolution projection instead of the traditional expensive mesh reconstruction to generate
the near-field portion. The second optimization uses a unit sphere-based approach called anchor extrapolation
to generate gradient coloring and blurring effect of the far-field portion. Lastly, LitAR supports reconstruction
quality and time trade-offs to account for dynamic lighting conditions. By default, LitAR provides three quality
presets for mobile AR developers.
We implement LitAR as an edge-assisted framework that consists of about 2.2K lines of code running on

both the mobile device and the edge server. Specifically, the client-side component works with various sensors,
including color, depth, and motion sensors, to capture near-field and far-field observations. The resulting data is
encoded and sent to the edge server to generate a fixed-size unit sphere point cloud and multi-view dense point
clouds with good alignment and visual pixel continuity. Mobile AR applications built with Unity ARFoundation
can directly use LitAR to render realistic virtual objects. We also implement a reference iOS AR application for
our testbed-based evaluation. To evaluate LitAR in a controlled environment, we develop a simulator based on
Unreal Engine that exposes multiple knobs for controlling physical factors such as camera location and FoV while
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providing ground truth lighting information. The testbed-based system evaluation shows that LitAR achieves
more visually coherent rendering results and higher PSNR/SSIM values than ARKit for three real-world scenes.
The end-to-end latency measurements show that LitAR can generate about 22 environment maps per second,
effectively supporting 22 fps which is sufficient for most mobile AR applications [61, 62]. Our simulator-based
evaluations include one realistic indoor scene and six virtual objects of different shapes and materials. We evaluate
the performance of LitAR with various observation-rendering position pairs. We show that it achieves 36.7%
and 17.1% higher rendering PSNR compared to a recent deep learning-based lighting approach [65] and the
environment lighting captured by 360◦ cameras at the observation position, respectively.

Related work on generating spatially-varying lighting includes classical physical probe-based techniques [15,
16, 47] and learning-based solutions [24, 51, 52, 64]. Physical probe-based techniques often produce high-quality
environment maps but have more constrained usage scenarios since they require additional setup [51]. On the
other hand, the applicability of learning-based solutions is often limited by the access to extensive training
datasets, e.g., Matterport3D [11], and their suitability to run on heterogeneous mobile devices [52]. Another side
effect is the difficulty of conducting comprehensive comparisons due to the lack of publicly available source code
and benchmark dataset [51]. In this work, we are interested in designing a mobile-specific lighting framework that
circumvents the above-mentioned limitations by considering mobile characteristics from the outset. Compared
to a recent method by Somanath et al. [51] that generates HDR environment maps using a neural network based
on adversarial training, LitAR has the advantage of simplicity yet achieving good visual coherence.

In summary, we make the following key contributions:
• We design a novel technique called two-field lighting reconstruction, which generates high-quality environment
maps from mobile cameras with limited FoV. Each environment map consists of near-field and far-field portions,
separately constructed from near-field and far-field observations. The resulting environment map captures
spatial and directional variances and is suitable for reflective rendering.

• We develop several complementary approaches to handle mobility-induced noise, limited mobile sensing
capabilities, and the computation intensity that naturally arises during the lighting reconstruction process.
For example, our multi-resolution projection and anchor extrapolation techniques efficiently project the
intermediate 3D point clouds to the final 2D environment maps. These techniques ensure high data input
quality, good usability, and low reconstruction time.

• We implement the entire framework as an edge-assisted system called LitAR and develop a simulator based on
Unreal Engine for evaluation purposes. The system implementation provides a platform to compare LitAR to
the commercial framework ARKit. The simulator facilitates controlled experiments and allows easy comparisons
between lighting techniques and ground truth lighting. Our source code and related artifacts are available at
https://github.com/cake-lab/LitAR to encourage follow-up research.

• We evaluate the performance of LitAR on a small-scale testbed using the simulator. The testbed-based system
evaluation shows that LitAR (at all three quality presets) outperforms ARKit in three real-world indoor
scenes. LitAR also delivers environment maps at 22 fps or even higher, depending on the quality settings. The
simulation-based evaluation shows that LitAR can achieve up to 36.7% higher PSNR values on objects with
various geometries and materials than a recent lighting framework [65].

2 BACKGROUND: LIGHTING FOR MOBILE AR

Obtaining lighting information is a classic problem in computer vision and computer graphics [20]. Access to
accurate environment lighting information is crucial to many applications related to photorealistic rendering and
image manipulation, such as 3D object composition [23] and portrait relighting [46].
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Fig. 2. A simplified workflow of mobile AR lighting reconstruction. In this example, the mobile device starts
at position 𝑃𝑡1 and points toward the rendering position on the table specified by the mobile user. Data such
as color and depth images, as well as device tracking data, will be captured. The device will further capture
more data (e.g., color/depth images from a different viewing direction) at position 𝑃𝑡2, which naturally overlaps
with the data captured at 𝑃𝑡1. The data is maintained in a fixed-size buffer and will be aggregated to generate a
global multi-view point cloud. We will update the point cloud as new data arrives and use it to generate the final
environment map for virtual object rendering.

As the capability of mobile devices improves and AR re-emerges in user-facing applications [2, 35], obtaining
environment lighting for photorealistic rendering has gained increasing interests in various research communi-
ties [12, 47, 51, 64, 65]. In addition to these mobile-specific lighting techniques, researchers have investigated
image-based lighting [14, 15, 36], generating environment lighting representations from camera videos [28, 30, 58],
and assisted lighting reconstruction with physical probes [16], object cues [54], or scene geometry [6, 41]. Recent
work is mostly deep learning-based and can be broadly categorized based on the output: estimating low-frequency
lighting [24, 65] or high-quality lighting [22, 52].

This paper aims to provide lighting support for mobile augmented reality (AR), an emerging application that
augments the real world by overlaying with virtual objects in indoor scenes. Our work will develop a non-
learning-based approach by leveraging lighting reconstruction (§2.1) to address the following two issues: (i) the
typical limitations of deep learning based methods such as training data availability and inference performance on
heterogeneous mobile resources; (ii) the underexploited mobile characteristics. Note that techniques commonly
used for creating realistic virtual worlds, such are screen space rendering [42] that only ray traces what is being
presented on the screen, can fall short in delivering the visual coherence required by AR. This shortcoming is
mainly due to the key difference in perceivable lighting impact on virtual objects; unlike in fully immersive
environments, AR users can observe environment lighting outside screen space and potentially perceive incoherent
visual artifacts.

Furthermore, we will focus on developing lighting understanding techniques for image-based rendering [15],
e.g., representing lighting in the form of an environment map to render virtual objects with different materials.
Our key goal is to generate high-quality environment maps for visually coherent rendering for mobile AR while
keeping the time cost low. Specifically, we aim to reduce the overall time to obtain the final environment map
and the component-wise time for intermediate outputs (such as point cloud projection).

2.1 Lighting Reconstruction Primer

In this section, we present the critical information of multi-view lighting reconstruction (refer to Figure 2), which
serves as the basis for understanding our proposed lighting reconstruction framework LitAR. At a high level, we
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define lighting reconstruction as a task similar to multi-view 3D reconstruction [10, 43] with the key difference in
the reconstruction target. Our key insight is that by leveraging multiple captures of the physical environment that
are often required by commercial AR frameworks [25, 34], we can use typical techniques used by 3D reconstruction
to understand the environment lighting. Conceptually simple, we have to address several challenges specific to the
mobile AR environment (detailed in §3). Next, we describe the general procedure for the lighting reconstruction
task.

2.1.1 Step 1: Capture Environment Data. Several different types of data, e.g., color images and depth information,
are needed in lighting reconstruction. The common way to obtain these required data is to leverage a modern
mobile device with a reasonable camera directly and to have the mobile AR users move the mobile device to scan
the surroundings manually. The resulting captured data is often in the format of LDR or HDR images, which
can then be used to reconstruct the environment’s appearance and geometry. To improve the reconstruction
quality and performance, one can also resort to additional setups such as using a physical chrome ball [15, 47] or
additional mobile sensors such as depth sensors [31, 32] and accelerometers. Ambient light sensors can also be
used to observe the ambient color, which helps match the object’s color tone with the environment’s lighting. In
this work, we focus on mobile devices that can capture color and depth images and provide device tracking data,
e.g., a LiDAR-equipped iPad Pro. Data will be captured from different viewing positions and used in the next step
for generating a multi-view point cloud.

2.1.2 Step 2: Generate a Point Cloud. Similar to other 3D reconstruction tasks [10, 43], we convert the camera
color, depth images, and device tracking data, into a point cloud-based representation in the world space. The
point cloud data structure allows us to combine the subsequent view data more efficiently than directly stitching
2D images. Two practical issues often need to be addressed. First, real-world device tracking data can be noisy;
one way to handle this issue is to use point cloud registration techniques such as the iterative closest point
registration [9] to align the points. Second, some points might not have accurate depth information; to ensure the
reconstruction quality, only points with high depth confidence values, which measure the accuracy of depth data,
should be used. Note that we will update the point cloud based on newer data; conceptually, such an update helps
deal with both spatial and temporal variance by initializing/overriding points in the 3D space at different times.

2.1.3 Step 3: Finalize Environment Lighting. The generated multi-view point cloud consists of rich environment
information and is equivalent to having an enlarged virtual camera FoV at the rendering position. It is worth
noting that enlarging the camera FoV at the observation position can also increase the camera observation
coverage, though less effective than multi-view enlargement. To directly use modern rendering engines to support
realistic rendering, we convert the point cloud to lighting formats, such as spherical image format or environment
map. For example, one can project the point cloud into a 2D environment map that captures the omnidirectional
environment lighting.

3 MOTIVATION AND CHALLENGES

3.1 Spatial and Temporal Variance

Indoor lighting can be both spatially and temporally varying [24, 53, 64]. Rendering virtual objects using
lighting information from locations other than the rendering position may lead to potential visual degradation. To
demonstrate the impact of such variances on the rendering effect, we compare a virtual object rendered with the
lighting information at the rendering position and at the observation position in Figure 3a. We can see that the
mirror ball on the right does not have the desired visual appearance, i.e., neither of the zoomed-in views contains
the correct reflections of the chair and the table. Thus, it is crucial to account for spatial variance when designing
the reconstruction framework. Intuitively, lighting can change temporally even at the same rendering position.
In this work, we handle the temporal variance by periodically reconstructing lighting.
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(a) Spatial lighting variance (b) Mobility-induced noise

Fig. 3. Motivating examples. (a) The same mirror ball object rendered with environment maps at the AR mobile
device’s position and the mirror ball placement position can have very different visual appearances. (b) The
mobility-induced tracking noise leads to a misaligned point cloud generated from two consecutive frames.

3.2 Mobility-induced Noise

The inherent user mobility can naturally introduce noise to data required by the lighting reconstruction pipeline.
For example, when a mobile user engages with an AR application, the user might move around, introducing
measurement errors into the 6DoF tracking data or leading to blurred RGB images. Other factors, such as the
mobile camera’s position relative to the rendering position, can also impact the quality of camera observations.
Both tracking and camera data are commonly used for lighting estimation [64, 65]. Figure 3b shows that the
point cloud can have incorrect alignment when naively using two consecutive color and depth images. We note
that misalignment is a common error in current AR applications that uses ARKit’s world tracking data [18].

3.3 Limited Sensing Capability

Mobile vision sensors have become more potent over the past few years, especially with the newly equipped
depth-sensing capability. However, most commercial mobile cameras still have limited FoVs (< 120◦) [5, 26], much
less than the desired 360◦ cameras commonly used by the movie industry to reconstruct lighting information [38].
Furthermore, many modern phones still do not have access to depth sensors and rely on different algorithms to
estimate depth [19, 63]. Depth estimation errors can significantly impact the 3D point cloud generation process.
In short, the limited mobile sensing capability can make capturing high-quality data for lighting reconstruction
challenging.

3.4 Resource-quality Trade-offs

The task of generating high-quality environment lighting information can be very compute-intensive. State-of-
the-art lighting models, which support visually coherent reflection, often require running on a powerful GPU
server to achieve reasonable performance [52]. With an additional setup of physical light probes, for example,
GLEAM can take from 30ms to 400ms to update scene lighting estimation [47]. By sacrificing the lighting quality,
Zhao et al. achieved real-time lighting estimation (20.1ms) with low-fidelity spherical harmonics coefficients [65];
Somanath et al. trained a deep learning model that can generate an HDR environment map in less than 9ms on
recent iPhones but severely sacrifices visual coherence [51]. It is challenging to navigate the resource-quality
trade-offs in providing visually coherent lighting.
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4 LITAR DESIGN

4.1 Overview

We design LitAR to address the challenges mentioned above to reconstruct high-quality environment lighting
information. LitAR is an adaptive framework that progressively, e.g., as AR users naturally move around the
indoor environment, reconstructs environment lighting for any user-specified reconstruction positions. In
contrast to prior estimation-based work [22, 39, 52, 64], the core of LitAR lies in how to effectively reconstruct
environment lighting information from a sequence of limited camera observations. Our reconstruction-based
approach promises to obtain more accurate lighting information and achieves better visual results without
requiring expensive data collection, model training, or physical setup [47].

Specifically, LitAR proposes a novel two-field lighting reconstruction technique (§4.2) to produce geometrically
accurate transformations to handle the challenge of spatial variance by transforming indirect scene observations
to the desired lighting information. Figure 4 presents an overview of LitAR. To mitigate the impact of mobility-
induced noise on the reconstruction quality, LitAR proposes two policies for guiding bootstrapped device
movement (§4.3.1) and automatically capturing required data based on motion (§4.3.2). To account for limited
mobile sensing capability, LitAR only requires depth information on some camera observations (i.e., near-field
observations that have the reconstruction position in the view) and applies point cloud registration to correct the
device tracking errors (§4.5.2). The resource intensity is dealt with from the outset with a mobile-centered design.
Specifically, LitAR divides camera observations and has them go through two separate execution branches
to a multi-view dense point cloud and a fixed-size point cloud. This two-branch design effectively reduces
the computational cost and memory consumption of LitAR. We propose two novel performance optimization
techniques, i.e., multi-resolution projection (§4.4) and anchor extrapolation (§4.4.2), to render environment maps
in real time at the edge. While many knobs can impact the quality and efficiency of lighting reconstruction,
LitAR allows mobile AR developers to make such trade-offs via a configurable design (§4.5.1).

4.2 Two-Field Lighting Reconstruction

At the high level, our two-field lighting reconstruction technique divides the task of lighting reconstruction into
two sub-tasks: one that leverages depth information to produce high-quality lighting from near-field observations
and one lightweight task for reconstructing lighting from far-field observations. In other words, LitAR will
generate two intermediate point clouds from camera observations for rendering environment maps. A multi-view
dense point cloud is the outcome of judiciously applying the geometrically accurate transformation and dense
sampling on near-field observations; A unit-sphere point cloud is the sampling outcome of the sparse point clouds
from the far-field observations and the dense point clouds. Recall that we divide the camera observations into
two types, near-field observation that includes the reconstruction position in the view and far-field observation
that does not. As explained below, such division is based on the key insight that camera observations are subject
to varying levels of spatial variance.

Figure 5 illustrates the different importance of considering spatial variance, depending on the relative position
of the interested pixel to the observation and reconstruction positions. Assume a position 𝑃𝑒𝑛𝑣 in the physical
environment. To render 𝑃𝑒𝑛𝑣 on a virtual object surface, 𝑃𝑒𝑛𝑣 should be observable from the reconstruction
position 𝑃𝑟𝑒𝑐 . To perceive any position 𝑃𝑒𝑛𝑣 in the environment, one has to observe light emitted/reflected from
𝑃𝑒𝑛𝑣 . Without loss of generality, in Figure 5a, we show the intersection 𝑙𝑟𝑒𝑐 of vector ⟨𝑃𝑒𝑛𝑣, 𝑃𝑟𝑒𝑐⟩ and the surface
of the unisphere (with 𝑃𝑟𝑒𝑐 being the center) represents the desired reflection. However, if we directly reconstruct
the light ray from the camera observation position 𝑃𝑜𝑏𝑠 , we end up with 𝑙𝑜𝑏𝑠 , the intersection between vector
⟨𝑃𝑒𝑛𝑣, 𝑃𝑜𝑏𝑠⟩ and the surface of the 𝑃𝑜𝑏𝑠-centered unisphere. If we translate 𝑙𝑜𝑏𝑠 to the 𝑃𝑟𝑒𝑐-centered unisphere
by applying the vector ⟨𝑃𝑜𝑏𝑠 , 𝑃𝑟𝑒𝑐⟩, we will get a third intersection 𝑙 ′

𝑜𝑏𝑠
. Observe that the light ray represented

by ⟨𝑃𝑟𝑒𝑐 , 𝑙 ′𝑜𝑏𝑠⟩ can differ significantly (i.e., larger Δ𝛼) from ⟨𝑃𝑟𝑒𝑐 , 𝑙𝑟𝑒𝑐⟩, the light ray that should be perceived at
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Fig. 4. LitAR’s overview. LitAR separately reconstruct for the near-field (§4.2.1) and far-field (§4.2.2) regions
from camera observations strategically guided and automatically captured. The near-field data, which has a
higher impact on spatial variance and consists of more accurate depth information, will be used to generate a
multi-view dense point cloud. The far-field data will be projected to color a unit-sphere point cloud (USPC) with
the sampling technique from [65], and then will be extrapolated to fill neighboring pixels in the environment map.
Finally, the dense point cloud will be projected to multi-resolution environment maps which will be combined,
using our multi-resolution projection technique (§4.4.1).

𝑃𝑟𝑒𝑐 . In short, near-field observations are impacted much more by spatial variance. On the contrary, as shown in
Figure 5b, if the 𝑃𝑒𝑛𝑣 is in the far-field, 𝑙 ′

𝑜𝑏𝑠
can be a good approximation for 𝑙𝑟𝑒𝑐 (i.e., much smaller Δ𝛼). In short,

far-field observations are impacted much less by spatial variance.
Other benefits of separating camera observations into near-field and far-field include better tolerance of

limited mobile depth-sensing capability and resource efficiency. A naive alternative design of applying the same
reconstruction pipeline to all camera observations can lead to incorrect point clouds and demand resources
proportional to the indoor scene space (i.e., the total number of points). In contrast, our design of processing
far-field observations demands less memory and computation resources by using a fixed-size point cloud [65].

4.2.1 Spatial Variance-Aware Near-Field Reconstruction. To effectively transform camera observation(s) to the
environment map at the reconstruction position, LitAR leverages the increasingly popular depth sensor in mobile
camera system [31, 32]. Depth sensors enable the possibility of capturing geometrically accurate environment
observations. First, we densely sample color and depth buffers of the camera images for each near-field observation.
Then, the image buffers and the camera transformation matrix (i.e., rotation and translation) are used to generate
the geometry and color of a dense 3D point cloud. In our implementation, we use the camera transformation
matrix information provided by commercial AR frameworks. Such information is often referred to as device
tracking data. The point cloud generation process can be time-consuming. To speed up this process, we separate
the geometry and color generation tasks and then execute both tasks on the GPU. Finally, the output dense point
cloud (i.e., geometry and color information) is written to a global point cloud buffer that maintains a multi-view
point cloud for the current reconstruction session.

To support multi-view reconstruction, LitAR uses amotion-based automatic capturing scheme (§4.3.2) to supply
the reconstruction pipeline with new near-field observation. LitAR assigns a unique indexing identifier for each
near-field observation. This identifier is subsequently used for other data, including the camera transformation
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(a) Spatial variance in near-field (b) Spatial variance in far-field
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Fig. 5. Illustration of spatial variance impact. We visualize the near-field and far-field observations in a 2D front
view. 𝑃𝑜𝑏𝑠 and 𝑃𝑟𝑒𝑐 represent observation position and reconstruction position, respectively. (a) & (b) It is more
important to consider spatial variance for pixels observed in near-field than ones in far-fields, i.e., larger Δ𝛼 . (c)
Increasing the near-field boundary size (e.g., from 𝑟 to 2𝑟 vs. 2𝑟 to 3𝑟 ) has a diminishing impact on the reflection
surface.

matrix and the derived dense point cloud. The global point cloud buffer is updated with the least-recently observed
policy, i.e., the points associated with the oldest near-field observation will be replaced.
We define near-field boundary as a constrained cubic space that contains points belonging to the near-field

observations that will undergo further processing. For points outside the near-field boundary, we will not
perform multi-resolution projection (§4.4.1). Theoretically, this boundary can be as big as the indoor scene.
However, having a too large boundary may have undesirable implications on both the memory and computation
consumption and is often unnecessary. Figure 5c shows that increasing the near-field boundary size has a
diminishing return on the reflection surface. For example, increasing the boundary from 2X to 3X of the virtual
object size only increases the coverage by 8.13◦, a 1.13X. In short, we use a configurable near-field boundary for a
trade-off between resource consumption and reconstruction quality. We set the near-field boundary side length
to two meters based on the AR virtual objects we use for testing. It is worth noting that AR developers should
adjust this boundary for large virtual objects or divide the large object into smaller objects to have multiple
reconstruction positions. The dense near-field point cloud generation allows us to produce geometrically accurate
camera observation transformations and produce continuous lighting representations.
Our spatial variance-aware observation transformation still generates an approximated observation at the

reconstruction position due to the lighting variance from different observation directions. We assume that
the light does not change between different observation directions, which suffices for mobile AR rendering in
most cases. However, such an assumption may lead to visually incorrect results if the environment around the
reconstruction position contains reflective physical objects, e.g., mirrors. It is possible to further address such
concerns by meticulously selecting light ray directions between observations, which we leave as future work.

4.2.2 Directional-Aware Far-Field Reconstruction. Mobile depth sensors usually only capture the surrounding
environment within a limited range. For example, the LiDAR sensor on iPhone 13 Pro can capture depth up
to 5 meters away [50]. Thus, it might not be suitable for sensing large physical environments. However, the
desired environment lighting for AR rendering varies directionally depending on the surrounding physical
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world environment. To address the directional variations, i.e., the anisotropy of environment lighting, LitAR
reconstructs far-field lighting by sparsely sampling camera observation to provide omnidirectional lighting.
Even with the recent advancements in hardware, modern cameras still have small FoVs and thus capture

only a small portion of the environment covering limited directions. However, reconstructing a dense point
cloud to address the anisotropic lighting property from far-field observations is impractical as generating a
dense point cloud for a far-field environment can be potentially unconstrained regarding computation and data
storage. In addition, objects in the far-field observations may exceed the range limit of mobile depth sensors,
which makes it difficult to obtain geometrically accurate transformation. The inherent nature of the far-field
environment thus leads to lower confident far-field depth observations, which makes it ill-suited for dense point
cloud reconstruction.
To address these limitations, we design a lightweight process to reconstruct far-field lighting from sparsely

sampled camera images. Recall that a camera observation is considered a far-field observation if the reconstruction
position falls outside the camera view. For a far-field observation, we sparsely sample a low-resolution camera
image and obtain the current camera transformation matrix, similar to §4.2.1. Note that we do not capture depth
data for the far-field observation as its depth information may be inaccurate, and the spatial variance has less
impact.

To generate the sparse point cloud, we assume the depth of all pixels to be one and scale the camera intrinsic
values accordingly. We use a similar design to [65] by projecting the sparse point cloud to a set of uniformly
distributed points, referred to anchors, on a unit sphere. The resulting data structure is a unit sphere-based point
cloud (USPC). As demonstrated in prior work [65], the design of USPC is aware of directional lighting variance
and thus addresses the anisotropy property of environmental lighting. In this work, we set the number of anchors
of the USPC to be 1280, the same as prior work [65]. The anchor points are colored by combining the color
data from the sparse point cloud and ambient light sensor readings. Recall that we want USPC to represent the
lighting from all directions, including near-field observations. Therefore, we sparsely sample the dense point
cloud generated from the near-field observation; then, the resulting sparse point cloud is similarly projected to
the same USPC. In short, the reconstructed far-field lighting is represented as a unit-sphere point cloud with a
much smaller memory footprint (proportional to the anchor size) while still providing sufficient directional-aware
lighting information.

4.3 Noise-tolerant Data Capturing Policies

4.3.1 Guided Bootstrapped Movement. Another key design of LitAR to reconstruct high-quality lighting is to
exploit user movement, a feature of mobile AR. We observe that commercial mobile AR frameworks such as ARKit
have built-in support for explicitly guiding mobile AR users to scan their physical surrounding environment
before using the app. Note such practice is often used for calibrating world tracking data, but not for lighting
estimation [4]. However, this commonly adopted movement practice typically leads to a biased sampling of
environment lighting in concentrated observation directions. This biased sampling is due to the narrow focus on
increasing the observation of the nearby environment around the reconstruction position. Although commercial
frameworks use deep learning-based models to estimate environment lighting from observations, such biased
observations create a barrier to more accurate estimation. As we will show in §6.2.3, increasing observations
with the common practice shows little improvement in rendering results.

Instead, we propose a novel yet simple guided movement policy to look at the backward environment, i.e.,
observable from the opposite direction to the virtual object viewing direction. This guided movement is designed
to increase the observation directions rather than the observation overlapping and to help address the anisotropic
lighting property. In other words, our guided movement policy provides bootstrapped data at the AR application
startup time to increase the far-field observations. As illustrated in Figure 6, our policy guides the user to look
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(a) Front & back facing observations (b) Horizontal & vertical movement (c)Movement direction grid

Fig. 6. Guided bootstrapped movement. Our guided bootstrapping movement technique directs users to point
the mobile camera toward the opposite direction ®𝑉𝑔𝑢𝑖𝑑𝑒 of the virtual object viewing direction ®𝑉𝑜𝑏 𝑗 and rotate
along horizontal and vertical directions to increase the far-field observations. The movement follows a grid-style
pattern, where (𝜃 and 𝜙) denote the observation direction in spherical coordinates.

at the backside of the intended virtual object observation direction. We use a grid-style pattern to partition the
observation directions and provide guided viewing directions for the user. Specifically, as shown in Figure 6c,
the optimal choices on the number of observations could be {1, 3, 5, 9} based on the horizontal and vertical
direction partitions. The number of observations corresponds to the combination of moving left and right in
horizontal direction, as well as up and down in vertical direction. We currently use an angular difference of
30 degrees in horizontal and vertical directions. Furthermore, as our far-field reconstruction method does not
reconstruct detailed observations, our guided movement can be performed without the user focusing on each
camera observation orientation for a long time. In § 6.2.4, we will show that by using the guided movement,
LitAR can find more accurate color tones to fill unseen areas and produce more accurate renderings.

4.3.2 Motion-based Automatic Capturing. Continuously capturing all camera observations or relying on the
mobile AR user to manually capture them can lead to poor usability, low-quality data (e.g., images with motion
blur), and high consumption of mobile resources. For example, prior work has demonstrated that motion blur is
a common occurrence in mobile AR—which we also observe—and can lead to low accuracy for AR tasks [40].
Additionally, a recent low-frequency lighting estimation framework has demonstrated that strategically skipping
the capture of specific camera frames has little impact on the estimation accuracy [65]. Intending to provide
good usability, capture high-quality data, and reduce resource consumption, we design a motion-based automatic
capturing technique that leverages multi-sensor data to automatically select camera frames and AR data for
lighting reconstruction. In a nutshell, this technique will only capture observation data that is new spatially (i.e.,
by checking device position and rotation information) and temporally (i.e., by updating a previously captured
frame with the same device information).
Specifically, LitAR uses a simple timer-based policy to assess the need to capture new data by checking if

the mobile device has exhibited significant movement. In this work, we leverage the device accelerometer and
gyroscope sensors to maintain a moving window of the device’s most recent 𝐾 position and rotation information
(i.e., 6DoF). Every 𝐶 milliseconds, LitAR will compare the device 6DoF information at the current frame to the
ones in the moving window to assess the likelihood of motion blur. If the device pose has changed for more than
10cm and 10◦, the device is considered to have significant movement in a short time window, and the current
frame is skipped. LitAR will re-run the check every frame until a new frame is found while the device is relatively
stable. Otherwise, the current frame is captured. The timer will be reset once a new frame is captured in both
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Fig. 7. Illustration of multi-resolution projection and anchor extrapolation. (a) We show an example of multi-
resolution projection with three levels. The dense point cloud will be projected three times. The higher projection
resolution leads to more visual details but has more discrete pixels; the lower projection resolution has more
continuous pixels but fewer visual details and exhibits pixelation. We obtain a high-quality final environment
map by scaling and overlaying each intermediate environment map. (b) We show that a larger𝑤 value leads to a
less blurry environment map and that our nearest-anchor acceleration has minimal visual impact.

cases. Our motion-based automatic capturing will produce new data at least every 𝐶 millisecond, depending on
the mobility. Both the moving window and capturing frequency can be configured. In our implementation, we
set 𝐾 = 5 and 𝐶 = 300.

4.4 Real-time Environment Map Rendering Techniques

Thus far, our two-field lighting reconstruction has generated two intermediate point clouds. To support high-
quality multi-view lighting reconstruction for mobile AR, we need to convert the point cloud presentation into a
lighting representation commonly supported by modern rendering engines. In this work, we choose environment
map as the final lighting representation, which most mobile rendering engines can directly use. At the high level,
to generate a high-quality environment map (i.e., visually continuous pixels) from a point cloud that consists of
discrete points, one often needs to handle occlusion and inter-point connection. One common way to recreate
the inter-point connections and calculate occlusion is to resort to conventional 3D reconstruction methods, e.g.,
Ball-Pivoting surface mesh reconstruction algorithms [8]. However, such a method is ill-suited for real-time
applications as surface mesh reconstruction can be computationally expensive, e.g., we observe that it takes
about 3 seconds to perform mesh reconstruction on a five-view dense point cloud. In this section, we describe
two novel techniques called multi-resolution projection and anchor extrapolation for generating near-field and
far-field portions of the environment map in real-time.

4.4.1 Multi-resolution Projection. We propose a lightweight technique called multi-resolution projection to
convert the near-field dense point cloud to the respective portion in the environment map. We use the common
equirectangular format to present the environment map. Specifically, multi-resolution projection projects a
point cloud into a set of environment map images with decreasing resolutions and addresses the inter-point
connection and occlusion at the 2D-pixel level. When projecting a point cloud onto one environment map
image, multi-resolution projection first converts the position of the point cloud from the Cartesian coordinate
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system to the Spherical coordinate system. Then, for each point, we calculate its 2D projection coordinate on the
environment map based on the angle values of its spherical coordinates. Then, we assign the point cloud color to
the corresponding pixel on the environment map. As multiple points can be projected to the same pixel of the
environment map, for each pixel, we handle the point occlusion by selecting the shortest-distant projected point
to color the pixel. Figure 7a illustrates an example of three-level projection.
However, when the point cloud density is low, e.g., due to low capturing resolution, projecting point cloud

only onto one environment map image resolution may lead to degraded visual quality. For example, it might
result in an image with discretely projected points rather than a continuous view of the scene, and it might
not adequately represent the inter-point occlusion. To address these issues, we assign different size values for
projected points via multi-resolution image projection. We first project the point cloud into a series of images
with decreasing resolutions. Then we scale all the projected images to the largest resolution via the nearest
pixel interpolation. Finally, the multi-resolution projection results are merged into a single environment map by
selecting the shortest-distant projected point to the reconstruction position from each projected image per pixel.
If multiple projections have the same distance, we select the one from the highest resolution as it has more visual
details.

We note that the number of resolution levels and per-level resolution can be adjusted for different combinations
of dense point clouds and reconstruction positions. However, our design of the near-field boundary described
previously in §4.2.1 suggests that all reconstructed near-field dense point clouds will be confined to a cubic space.
Thus, it is possible to have a relatively fixed configuration to handle various scenes. In this work, we choose two
resolution levels with per-level resolution as 1024x512 and 512x256, unless otherwise specified.

4.4.2 Anchor Extrapolation. Recall that by now, our two-field lighting reconstruction has generated a colored
unit sphere-based point cloud (USPC) for the far-field lighting. To generate the corresponding environment
map in the equirectangular format, we use the anchor points to color each environment map pixel. However,
the USPC, by design, only has a fixed number of anchor points. Therefore, directly projecting anchor points
to the environment map is likely to lead to many empty pixel values. To address this problem, we design an
anchor extrapolation technique that calculates each pixel value as a weighted average of USPC anchor values.
This technique, in essence, assigns color value to pixels by extrapolating from their nearby anchor colors and
will result in a gradient coloring and blurring effect.

Specifically, we first initialize each pixel of the environment map with a normal vector, i.e., a unit vector from
the sphere center to the pixel position. The initialization is feasible as a pixel in the equirectangular format of
an environment map can be easily presented in the spherical coordinate system. We then calculate the 𝑖𝑡ℎ pixel
color 𝑐𝑖 using the following equation:

𝑐𝑖 =
2
𝑁

𝑁∑︁
𝑗=1

max( ®𝑝 𝑗 · ®𝑛𝑖 , 0)𝑤𝑐 𝑗 , (1)

where ®𝑛𝑖 represents the pixel normal vector, 𝑁 is the number of anchors, ®𝑝 𝑗 and 𝑐 𝑗 are the normal vector and
color for the 𝑗-th anchor, respectively. Note that the dot product between ®𝑝 𝑗 · ®𝑛𝑖 is effectively the cosine value of
the angle between these vectors, as | ®𝑝 𝑗 | = | ®𝑛𝑖 | = 1. The max function effectively filters out all the anchor points
in the hemisphere opposite the 𝑖𝑡ℎ pixel. Furthermore,𝑤 is an exponent controlling the blurring level of far-field
reconstruction. Intuitively, a smaller𝑤 value will lead to more anchor points used for the pixel calculation. Thus,
a smaller𝑤 value will result in a blurrier environment map, while a larger𝑤 will produce a clearer environment
map, as demonstrated in Figure 7b. In this work, we set𝑤 to be 128.
Note that calculating the pixel color using Equation (1) can be time-consuming as the weighted average has

to iterate through all anchor points. However, anchors do not contribute equally to the pixel color calculation.
Intuitively, an anchor 𝑗 that has a smaller max( ®𝑝 𝑗 · ®𝑛𝑖 , 0) decreases more quickly with the power𝑤 . Such anchors
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are also farther away from the pixel of interest than anchors with a larger max( ®𝑝 𝑗 · ®𝑛𝑖 , 0) value. In fact, we find
that when 𝑤 = 128, only the 32 nearest anchors out of the 1280 contribute significantly (i.e., max( ®𝑝 𝑗 · ®𝑛𝑖 , 0) >
0.1). Thus, to speed up the pixel color calculation, we precompute the 32 nearest anchors for each pixel and their
respective cosine values. The precomputation effectively reduces the number of anchors by a factor of 40 and
allows the use of cached results for the weighted average calculation. Figure 7b shows that our acceleration has
minimal visual impact.

4.5 LitAR Quality-Performance Configurations

4.5.1 Reconstruction Session Settings and Initialization. LitAR uses a lighting reconstruction session to manage
each multi-view reconstruction task. A lighting reconstruction session has the same lifecycle as its corresponding
virtual object; the session is created when a virtual object placement request is issued and is destroyed when the
placed object is removed from the scene. As AR applications might need multiple virtual objects in the view, LitAR
supports multiple active lighting reconstruction session per AR session (i.e., during the AR application’s lifetime).
At the beginning of each session, LitAR collects static device-specific information, e.g., camera intrinsic, current
ambient lighting data, and camera image native resolutions, to bootstrap subsequent lighting reconstruction
operations.
LitAR supports configuring several knobs, including color image sampling rate, number of views, multi-

resolution projection resolution levels, and environment map size, that trade-off visual quality and reconstruction
performance. These knobs can be categorized into three types, i.e., data capturing, two-field lighting reconstruction,
and environment map rendering. Thus, the startup latency of each session and the subsequent near/far-field
reconstruction depend on the specific configurations. The users (e.g., mobile AR developers) can configure
each lighting reconstruction session based on performance requirements or select one of the three presets: low,
medium, and high. In §6.1.2, we will show that all three presets achieve better visual quality than ARKit but take
an increasing amount of time to generate an environment map.

4.5.2 Point Cloud Management. To achieve low-latency point cloud operations, LitAR leverages the edge to
generate, manage, and transform both the sparse and multi-view dense point clouds. To exploit the inherent
parallelism of point cloud operations, LitAR performs these operations on the GPU. However, even with unified
memory, the managed memory still must be copied to the GPU memory (by the driver) for data access. A naive
implementation may lead to expensive GPU memory access overhead. Thus, we carefully design the memory
layout using a continuous memory buffer to store the multi-view dense point cloud and a fixed number of anchor
points. When new view data is processed, LitAR overwrites the point cloud memory buffer by replacing the
oldest data for temporal consistency or replacing the data with the same view identifier for spatial consistency.
This fixed-view design keeps the memory layout unchanged, thus avoiding paging setup overhead while still
producing high-quality environment maps.

Additionally, LitAR includes an asynchronous point cloud registration to address the mobility-induced noises,
which can lead to misaligned point positions. In other words, LitAR runs point cloud registration in parallel to
the main two-field lighting reconstruction and will update the environment map with the aligned point cloud
once the registration completes. We note that the point misalignment is mainly due to the inaccurate device
tracking data provided by the AR framework, in this case, ARKit. Providing accurate device tracking information
is an essential but orthogonal research question; prior work such as ORB-SLAM2 [44] and Edge-SLAM [7] can
achieve good tracking in about 26ms-50ms. In this work, we use the iterative closest point registration [9] to
mitigate the impact of noisy tracking data on the lighting reconstruction. During our preliminary study, we found
that point cloud registration is not always necessary (e.g., when mobile AR users are relatively static) and can
take significantly longer than other operations (e.g., 200ms for handling five views with 1024x768 points). In our
implementation, the point cloud registration is turned off by default.
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Fig. 8. A system architecture overview of LitAR. The framework provides high-quality lighting as an environment
map for mobile AR applications with two logical components: client-side and edge service. LitAR can support
lighting for multiple reconstruction positions per AR session on the client-side and allows multi-user scene data
sharing via the edge service.

5 IMPLEMENTATIONS

We implement all the techniques described in §4 in a prototype system called LitAR (§5.1). To facilitate experiments
in a controlled manner, we also develop a mobile AR simulator based on Unreal Engine (§5.2).

5.1 Edge-Based Prototype

We implement LitAR in C# and Python with about 2.2K lines of code. Figure 8 shows an architecture overview of
LitAR. LitAR consists of two logical modules: a client-side that captures, encodes, and sends the data necessary
for the lighting reconstruction sessions; an edge-side that decodes the keyframe data, generates intermediate point
clouds, and renders the environment map. LitAR currently supports AR applications built with Unity3D [60] and
AR Foundation [59].

5.1.1 Client-side. The client module of LitAR is implemented as a Unity package. We provide an entry script
called ARLightingReconstructionManager as a MonoBehavior subclass to allow the developer to specify system
configurations and visual quality-related information via the Unity editor UI. ARLightingReconstructionManager
also manages the memory usage and function calls of all lighting reconstruction sessions in an application’s
lifecycle. We implement the motion-based automatic capturer by leveraging the AR device tracking data provided
by AR Foundation to automatically capture environment data that will not be subjected to camera motion blurs.
We perform the nearest neighbor sampling on the device’s native color and depth image data for the visual data.
Specifically, for the AR application running on our testing device, iPad Pro, we sample color and depth images in
the format of YCbCr 4:2:0 and float32, respectively. The captured color and depth images are then encoded with a
one-byte unique package identifier and device tracking information into three binary data packages, i.e., session
initialization, near-field, and far-field. We refer to these data packages as keyframe data. LitAR also manages a
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Fig. 9. Unreal engine-based simulator and synthetic dataset generation process. We generate an indoor synthetic
dataset using an Unreal Engine-based simulator. We use an orbit trajectory at each manually chosen position
to build observations around the position and place the virtual camera to capture images. We extract camera
positions, orientations, RGB-D images, and ground truth environment map.

WebSocket session for low latency communication with the edge server, i.e., sending keyframe data and receiving
environment map.

5.1.2 Edge-side. On the edge side, we implement a Tornado-based [56] WebSocket service to communicate with
the client. The WebSocket server dispatches the package to different operations for each received binary data
package based on its package identifier. We leverage NumPy [29] to decode and convert the received binary
packages into different data types and structures. To improve the performance of point cloud-related operations,
including point cloud generation, multi-resolution projection, and anchor extrapolation, we implement them in
CUDA kernels using the Numba library [37]. As such, these operations run on the edge GPU. In our edge system
memory management, we leverage the unified memory [13] to avoid time-consuming data copying between
CPU and GPU. Our edge server implementation can also fall back to traditional GPU memory without any
modification to support other GPU hardware that does not have unified memory.

5.1.3 Mobile-edge communication. We design a low-overhead and compact networking communication scheme
to support the goal of low-latency lighting reconstruction. Both the near and far-field data are serialized into
binary formats. Specifically, we stream only the device’s native color and depth data for near-field data and
reconstruct the point cloud on the edge side. Compared to directly streaming float32-encoded point cloud in
the XYZRGB format, we need at most 22.9% of the bytes. Also, as we only capture sparse camera images during
far-field reconstruction, the far-field keyframe data is significantly smaller than the near-field counterpart (1189
bytes vs. 270389 bytes).

5.2 Unreal Engine-Based Mobile AR Simulator

We implement a mobile AR simulator by leveraging a high-fidelity 3D graphics rendering engine, Unreal
Engine [21]. Figure 9 presents the workflow of our simulator. First, we use Unreal Engine 4 to create a photorealistic
indoor scene based on the ArchViz1 project, which provides high-quality architectural visualization for interior
design. Next, we create a virtual camera using the Blueprints Visual Scripting2 system that takes controlled
variables to modify the camera’s movement and internal properties, e.g., FoV. We simulate the device/user
movement by moving the virtual camera within a photorealistic 3D indoor scene. Finally, we can configure the
simulator with desired variable values to generate a synthetic dataset for rendering purposes, including camera
observations and environment physical properties. Our simulator can be extended to support future studies and
bears the following advantages over a device-based setup: (i) our simulator makes it easier to extract high-quality
environment lighting and physical information to serve as the ground truth. At the same time, obtaining such

1https://docs.unrealengine.com/4.27/en-US/Resources/Showcases/ArchVisInterior/
2https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
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information can be expensive or unpractical due to physical limitations on measurement and observation. (ii) it
is easier to study individual factors in isolation by applying controlled changes to the scene environment and
simulated mobile devices.

5.2.1 AR Virtual Object Rendering. We develop a browser-based renderer using the Three.js rendering frame-
work [55] to automate the process of rendering virtual objects of interest. Specifically, our renderer uses informa-
tion, including reconstructed lighting, the camera position, and properties, from our synthetic dataset to render a
3D virtual object at the resolution of 1024x768. The renderer then trims empty pixels outside rendered objects
to remove the object-to-frame size impact on PSNR calculation when using different camera FoV settings. The
resulting images of rendered objects serve as the basis for comparing different lighting reconstruction methods.

6 EVALUATION

We evaluate the performance of LitAR using a lab testbed and the simulator. The lab testbed includes a LiDAR-
enabled iPad Pro serving as the client and a Jetson Xavier NX [45] board serving as the edge server. The iPad and
the Jetson board communicate via resident WiFi with an average latency of 7.08 ms (± 3.31 ms) and network
bandwidth of 508 Mbits/sec (± 12 Mbits/sec). For testbed-based experiments, we choose three different indoor
scenes and compare LitAR with three different baselines: (i) ARKit 5 [34], a commercial AR framework developed
by Apple; (ii) LitAR with point cloud registration turned on; (iii) LitAR with mesh reconstruction instead of the
lightweight multi-resolution projection module. We use the Environment Probe [33] feature of ARKit to generate
environment maps. The lighting estimation feature of ARKit is backed up by EnvMapNet [51]. We measure both
the reconstruction time and visual quality for all the methods. We use the Peak signal-to-noise ratio (PSNR) and
Structural Similarity Index (SSIM) for quantitative visual quality comparison. The PSNR and SSIM values of each
method are calculated by comparing the rendered virtual object to the physical object. In this work, we use the
classical physical mirror ball as it can be easily acquired. The higher the values of PSNR and SSIM, the better the
visual performance.

We use the simulator to evaluate LitAR’s performance in a wider range of scenarios. Our simulator allows
easy extraction of ground truth lighting information at any reconstruction position in a photorealistic 3D indoor
scene. For simulation-based evaluations, LitAR is evaluated with six objects of different shapes and materials
and is compared to two baselines: (i) using a 360◦ camera at the observation position, akin to [57]; and (ii) Xihe, a
recent academic framework that produces real-time low-frequency lighting estimation from RGB-D images [65].
We describe the synthetic dataset used in our study in §6.2.1.

To provide an in-depth evaluation of LitAR’s performance, we also conduct a number of ablation studies that
demonstrate the quality-performance trade-offs (§6.1.2), highlight our design choices for near-field and far-field
reconstructions, as well as identify applicable scenarios (§6.2.3 and 6.2.4). The three quality presets for near-field
reconstruction are configured as following: (i) LitAR (low): number of views is 3, color image resolution is
256x192, multi-resolution projection resolutions are [512x256, 256x128, 64x32], environment map resolution
is 512x256; (ii) LitAR (medium): number of views is 4, color image resolution is 512x384, multi-resolution
projection resolutions are [768x384, 384x192], environment map resolution is 512x256; (iii) LitAR (high): number
of views is 5, color image resolution is 1024x768, multi-resolution projection resolutions are [1024x512, 512x256],
environment map resolution is 1024x512. All three presets for far-field reconstruction have the color image
resolution of 32x24 and share the same environment map resolution configurations as near-field reconstruction.

6.1 Testbed-Based System Performance

6.1.1 End-to-end Evaluation. We compare the end-to-end rendering visual results and the runtime performance
of LitAR and ARKit. As shown in Figure 10 (last two columns), the virtual mirror balls rendered with LitAR
have more reflection details and better color tune than those rendered with ARKit’s learning-based method.
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Fig. 10. Qualitative comparison between LitAR and ARKit on three real-world indoor scenes. Each row represents
an indoor scene. Column 1: the panorama view of a scene at the reconstruction position by unwrapping the
physical mirror ball reflection [15]. Column 2: LitAR’s environment maps have good visual quality and rich
details for the near-field portion while maintaining the structural similarity to the corresponding physical scene.
Column 3: ARKit’s environment maps show varying performance, sometimes completely different from the scene
(the first row), while others with less visual details.
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Fig. 11. Quantitative comparison between LitAR and ARKit in terms of PSNR and SSIM. LitAR outperforms ARKit
for all three real-world scenes. Further, using the conventional mesh reconstruction in place of our lightweight
multi-resolution projection only increases the PSNR/SSIM values slightly by 2%/1%. Similarly, turning on the
asynchronous point cloud registration has only minor improvement by 3%/1.5%. Recall that mesh reconstruction
and point cloud registration can take a few seconds (§4.4) and a couple hundred milliseconds (§4.5.2), respectively.
In short, LitAR achieves the best trade-off between visual quality and runtime performance.

Specifically, for all three scenes, LitAR’s virtual balls have higher visual similarity than physical mirror balls. In
contrast, the virtual balls rendered using ARKit either reflect incorrect indoor scenes (especially on the far-field
portion of the environment) or lack fine-grained visual details, e.g., the text on the book cover. We can more
easily observe such visual quality differences by comparing the generated environment maps (the second and
third columns) to the unwrapped images from the physical mirror ball. Note that the unwrapped images do not
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represent the ground truth lighting as they are often distorted but can serve as a visual guide of the panorama
view at the reconstruction position. By comparing the environment maps generated by LitAR to the unwrapped
images, we see that LitAR can accurately reconstruct scene elements from near-field observations while faithfully
recovering environmental geometry and color tone information from far-field observations.
Figure 11 quantifies the visual quality using two commonly used image metrics, i.e., PSNR and SSIM, by

comparing the rendered object to a physical mirror ball image at the same reconstruction position. We see that
LitAR outperforms ARKit on all three real-world captured scenes, with up to 14.3% higher PSNR and 5.5% higher
SSIM. When replacing our lightweight multi-resolution projection component of LitAR with the Ball-Pivoting
surface mesh reconstruction [8], we only notice a minor increase in the PSNR/SSIM values. This observation
demonstrates the effectiveness of multi-resolution projection for generating high-quality near-field reflections.
Similarly, we do not observe significant improvement when running LitAR with the point cloud registration
component. We suspect this is because AR frameworks such as ARKit can provide reasonable device tracking
data in most cases with slow movement. We observe that the tracking data of ARKit often drifts in cases of fast
movement, making the point cloud registration component integral. We omit their visual effect comparisons as
both of the LitAR’s variations do not show noticeable visual quality differences to LitAR.
Finally, the average end-to-end latency of near-field and far-field reconstruction is 134.4 ms and 57.5 ms,

respectively. Detailed component-wise time breakdown is discussed in the next section. These latencies translate
to updating high-quality lighting roughly at 22 fps, i.e., every 134.4 ms LitAR can provide one near-field and two
far-field environment maps. Such update frequency should be sufficient for most AR applications [61, 62]. For AR
applications that require higher update frequency, we can either resort to more powerful edge servers (currently
using an energy-efficient Jetson board) or use a lower quality setting, as discussed in the next section.

6.1.2 Trade-Offs Between Rendering Quality and Runtime Performance . We compare the rendering quality and
latency of LitAR under different presets. Figure 12a shows the corresponding visual results. We note that the
environment maps generated at all three settings present visually coherent near-field reflection and correct
anisotropic far-field color tones. We can observe some pixelation effects in the environment map and the rendered
mirror ball object for the low-quality preset due to low capturing resolution. All three settings achieve better
quality than ARKit in terms of PSNR and SSIM values. For example, the low-quality preset has a 4.5% higher
SSIM value than ARKit. Moreover, the difference in visual quality among the three presets is marginal, with only
up to 3.5% between low and high quality.
Furthermore, we measure the time breakdown of LitAR’s near-field and far-field reconstructions. Table 12c

shows the average performance over three runs. For near-field reconstruction, the processing time of each
component increases with the quality setting. For example, the time to encode the camera observations sees
similar increases as the capturing resolutions, about 10X with 16X more pixels. We note that with the high-quality
setting, the total time to encode and upload data takes 68.4 ms, about 1.9X of the environment map downloading
time, even though the uploading/downloading resolution ratio is 1.5X. In contrast, in the medium-quality setting,
with the same uploading/downloading resolution ratio, it is 21.7% faster to encode and upload data than to
download. This is because the device data is uploaded in the format of YCbCr 4:2:0, which has a smaller data size
than the RGB environment map under the same resolution. Note that we are sending back the uncompressed RGB
environment map for quality consideration. This observation suggests an interesting trade-off presented by the
data encoding scheme in a real-world deployment. Moreover, this result also demonstrates that network-related
operations (an artifact of using the GPU-based edge device) take up most of the end-to-end time, at 62.6%, 72.6%,
and 77.5% for low, medium, and high-quality settings, respectively. The network performance bottleneck implies
an immediate performance gain by directly using mobile GPU to run the entire reconstruction pipeline.

The far-field reconstruction presents a similar but slower upward increase in total time with the quality presets.
In particular, the time to decode/offload image data and generate a sparse point cloud is the same for all three
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System Component Near-field (ms) Far-field (ms)

low Medium High low Medium High

Data Encode 5.11 15.01 50.13 0.18 0.18 0.18
Data Offload 4.07 7.78 18.24 0.55 0.55 0.55
Dense Point Cloud Generation 8.39 9.71 15.62 N/A N/A N/A
Multi-resolution Projection 9.02 9.89 14.56 N/A N/A N/A
Sparse Point Cloud Generation N/A N/A N/A 0.03 0.03 0.03
Anchor Extrapolation N/A N/A N/A 19.03 20.32 21.72
Environment Map Download 20.01 29.11 35.83 20.02 29.71 35.03

End-to-end Reconstruction 46.6 71.5 134.38 39.81 50.79 57.51

(c) Reconstruction latency

Fig. 12. LitAR rendering quality-performance trade-offs. We show the time breakdown for LitAR to generate a
near-field and far-field environment map. All quality settings achieve better SSIM than ARKit. A large portion of
time, at least 26.46%, was spent on edge-related operations (data encode/offload and environment map download).
This observation suggests that LitAR has the promise to deliver high-quality environment maps directly on the
device as mobile device GPU becomes more powerful.

quality presets. In all settings of far-field reconstruction, we downsample the native color images from 1920x1440
to a fixed resolution of 32x24. The anchor extrapolation and environment map downloading time increase
slightly with the environment map size. To put the latency performance of LitAR in context, we note that a
recent physical probe-based framework requires 30∼400 ms to generate environment map [47]. To understand
the ARKit’s performance, we use the inference time of its underlying deep learning model EnvMapNet [51]
since ARKit does not expose APIs to measure the end-to-end environment map generation. Even though the
EnvMapNet model can run in 9 ms, as reported by Somanath et al. [51], we have shown previously that it
often leads to inferior visual quality compared to LitAR. Moreover, the total time for ARKit to generate an
environment map is likely to be similar to LitAR if accounting for other necessary steps, including data capturing
and memory copying. In short, this detailed breakdown analysis demonstrates that far-field reconstruction can
achieve real-time performance for all presets; when used in conjunction with near-field reconstruction, the mobile
AR applications can receive a sufficient number of environment map updates per second.

6.1.3 Impacts of User Movement and Dynamic Scene. We investigate the impact of user movement on the
rendering quality of LitAR. Specifically, we are interested in understanding the need for our motion-based
automatic capturing policy. One of the authors (referred to as the participant) used the LitAR-powered AR app
on the iPad to perform a virtual object placement following a pre-determined trajectory. The participant was
instructed to keep the same distance to the placement position and only to move the iPad around the placement
position, resulting in a semi-circular trajectory. Further, the participant was asked to pause the movement every
30 degrees and to keep the camera views centered at the placement position. The experiment was repeated
with three timer values, i.e., disabled, 300 ms, and 500 ms, which control the frequency to check the movement.
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First, we observe that our motion-based automatic capturing policy successfully detected the movement and
resulted in six captured views (captured when the participant was static). Second, when comparing the generated
environment map to the ground truth environment map captured by the mirror ball (at the same placement
position), we did not observe noticeable visual quality differences for all three timer values. For example, the
PSNR values for the timer=300 ms stayed relatively the same for the entire experiment, at 13.37 db (± 0.25 db).
Our observations suggest that LitAR can provide visually coherent renderings under user movement when the
physical scene is static. Additionally, increasing the number of views (i.e., from one to six) provides limited visual
quality improvement. This is intuitive as most near-field observations can be captured in a single view when the
environment is simple and static.

In a second experiment, we created a simple dynamic scene by manually moving the physical object within the
near-field observations. Specifically, the participant was asked to fix the iPad’s position and select the placement
position on a math book (similar to Figure 1). While using the AR app, the participant moved the book in various
directions. We observed that LitAR could update the virtual object reflection to present details of different parts
of the book. Even though the lighting reconstruction task does not block the rendering task, we still observed
slightly choppy reflections. Please refer to the accompanying video for the visual quality demonstration. Two
key factors impact the choppiness: (i) the physical scene change rate and (ii) the reconstruction time. If the
physical scene changes very rapidly (e.g., faster than the reconstruction time), the virtual object reflection will be
perceived to lag. In addition to further speed up the lighting reconstruction, we suspect techniques that smooth
the transition between two distinct environment maps (e.g., image fade in) and policies that pipeline the lighting
reconstruction requests to mask network latency can also improve the user-perceived performance. We leave
such investigations as future work.

6.2 Simulation-Based Performance Evaluation

6.2.1 Synthetic Dataset Generation. We describe the methodology we followed to generate a synthetic dataset
using the Unity-based simulator (see Figure 9). In a synthetic indoor scene, we first manually choose ten reasonable
positions to be considered as lighting reconstruction positions for placing virtual objects. Example reconstruction
positions include on the floor or table. We vary several factors for each reconstruction position, including the
number of capturing positions, mobile user/device height, and observation distance, to generate 72 camera
observations. Specifically, we set up a circular capturing trajectory with eight positions by evenly dividing the
trajectory. We decide the height and radius of the capturing trajectory by simulating possible scenarios when the
mobile user is holding the device at chest height from a reasonable distance to the reconstruction position. We
choose three typical human height values at {160, 170, 180} centimeters and calculate the height of the trajectory
by multiplying the user’s height by 0.8 [17]. We further measure the radius of the trajectory using the number
of steps and choose three possible values of {0.5, 1, 1.5} steps and use the height multiplied by 0.3 as the step
length [49]. For each camera observation, we export the camera HDR observation image, depth image, position,
orientation, and ground truth lighting in the format of an equirectangular panorama image.

6.2.2 End-to-end Visual Quality Comparison. We compare the end-to-end rendering performance quantitatively
and qualitatively on six different virtual objects. For this experiment, we configure the simulator to run the
two-field lighting reconstruction to process one near-field observation and nine far-field observations based on the
guided movement policy. For near-field reconstruction, we use mesh reconstruction instead of multi-resolution
projection to support the high-quality point projection. The following results showcase the upper bound of visual
quality that LitAR can achieve.
Figure 13 shows the comparisons of PSNR values. Specifically, on complex objects with physically-based

materials (i.e., Damaged Helmet and Flight Helmet), LitAR achieves 44.1% and 12.1% higher values of PSNR than
a recent deep learning-based AR lighting estimation system [65] and the lighting information captured by a
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Fig. 13. Simulator-based visual quality comparison. LitAR achieves better rendering effects, i.e., higher PSNR
values (calculated against ground truth rendering), than other techniques for all objects. The PSNR comparisons
to Xihe are omitted for the first four virtual objects as Xihe only provides spatial-variant low-frequency lighting
estimation [65]. Virtual objects are rendered with lighting provided by ground truth lighting, 360◦ camera,
Xihe [65], and LitAR.

360◦ camera, respectively. This result indicates that by correctly leveraging user movement and scene geometry
information, LitAR can generate highly accurate lighting from limited camera observations. In addition, as we
will see in Figure 14, the rendering performance of LitAR is roughly the same with fewer observations. Note that
we omit the comparison to the rendering PSNR by Xihe on metallic objects (Metallic Sphere and Metallic Box)
because Xihe only provides low-frequency lighting in SH coefficients format, which does not support reflective
rendering.

Figure 13b compares the visual effect of objects rendered with different lighting information. We observe that
LitAR produces visually coherent virtual objects. This observation suggests LitAR is effective in generating
a complete high-quality environment map. Compared to those rendered with the 360◦ camera observations,
helmets rendered with LitAR exhibit higher structural similarity to the ones rendered with ground truth lighting.
For example, the two reflective regions in the lower bottom of the Damaged Helmet are visually separated.

6.2.3 Ablation Study of Near-Field Lighting Reconstruction. This section demonstrates the effectiveness of our
two-field lighting reconstruction for the near-field observation and highlights the importance of LitAR’s far-field
design. As we have designed LitAR to progressively improve the intermediate point cloud by naturally exploiting
mobile user/device movement, we evaluate the impact of the number of near-field observations on the rendering
results We set up the experiment using our simulator as follows: (i) for each observation position, we combine
camera observations from 3, 5, 7 nearby positions on the orbiting trajectory; (ii) we use mesh reconstruction with
LitAR for combined observations. To eliminate the impact of far-field observations, we use a single dominant
image color to fill the far-field portion of the environment map to simulate the ambient light sensor data. Figure 14
compares the rendering accuracy for different numbers of observations. We observe that the rendering PSNR
values only increase slightly with the number of observations. This observation suggests that only a small
portion of the environment map needs to be processed with depth information, further motivating our design
choice of reconstructing near-field and far-field observations separately. Furthermore, we show that rendering
SSIM values increase significantly, 0.057 on average across the tested positions in Figure 14, with the number of
observations for the Metallic Sphere object for all ten tested reconstruction positions. This result is intuitive since
more complete near-field reflections will improve the structural similarity. However, higher SSIM values do not
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Fig. 14. Quantitative comparison of rendering quality with different numbers of camera observations. The
performance of LitAR, measured in PSNR, only exhibits slight improvement with more observations, while the
SSIM values increase significantly for reflective materials.

always guarantee better PSNR values, thus implying the necessity to use both metrics in quantitative studies for
lighting reconstruction.

6.2.4 Ablation Study of Far-Field Lighting Reconstruction. So far, we have demonstrated the effectiveness of
LitAR and its spatial variance-aware near-field reconstruction component. In this section, we evaluate the
performance of LitAR’s directional-aware far-field lighting reconstruction and the effectiveness of our guided
movement policy. We evaluate the rendering performance with different numbers of guided far-field observations.
Recall that guided movements naturally increase the observed scene, allowing LitAR to extrapolate environment
map pixel color closer to the ground truth. Figure 15 shows the comparison of rendering performance. We
observe that for all tested objects, having access to more guided observations improves the PSNR value by up to
31.04%. Furthermore, far-field observations present different levels of impact on objects with different shapes.
For example, both box-shaped objects are improved more significantly than spherical objects. This finding, if
generalized, can help further improve usability by providing guided movements for different objects.

7 RELATED WORK

7.1 Mobile-specific Lighting Support

Asmobile device capability increases and AR re-emerges in user-facing applications [2, 35], obtaining environment
lighting for photorealistic rendering has garnered increasing interests in the research communities [12, 47, 51, 64,
65]. For brevity, we only discuss techniques targeted at lighting for indoor scenes. On the more theoretical front,
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Fig. 15. Quantitative comparison of rendering quality for guided movements. Increasing the number of backward
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Cheng et al. leveraged both the rear and front cameras to estimate spherical harmonics coefficients [12], which is a
low-frequency lighting representation that does not support reflection. Zhao et al. proposed a two-staged pipeline
called PointAR that leverages the mobile depth sensor to estimate spatially-variant lighting [64]. Somanath et
al. introduced an efficient deep learning (DL) model called EnvMapNet that generates HDR environment maps
from LDR images [51]. In contrast to previous learning-based approaches, our work LitAR directly generates
high-quality environment maps with the core technique of two-field lighting reconstruction and several practical
optimizations, including multi-resolution projection. As such, LitAR is not subject to common limitations of DL-
based methods such as training data availability and inference performance on heterogeneous mobile resources.
We also note that LitAR includes a simulator that leverages 3D indoor scenes to conduct controlled experiments,
thus avoiding the need for an expensive manual process of obtaining ground truth lighting information.

7.2 System Supports for Lighting

On the system front, commercial SDKs such as ARKit [34] and ARCore [25] provide easy-to-use lighting estimation
APIs for mobile AR application development. Two recent academic frameworks improved upon commercial
solutions: GLEAM provides a real-time mobile illumination framework that supports reflective virtual objects
with the use of physical probes [47]; Xihe introduced a 3D-vision based framework that provides adaptive lighting
estimation [65]. We design LitAR from the outset by considering mobile characteristics, including limited FoVs,
natural device/user movements, and leveraging edge GPU assistance, which well positions it for high-quality and
efficient reconstruction of environment maps.

7.3 Image-based Lighting

In addition to methods for mobile-specific lighting discussed above, many researchers have investigated image-
based lighting [14, 15, 36]. For example, numerous works designed approaches for generating environment lighting
representations from camera videos [28, 30, 58], and assisted lighting reconstruction with physical probes [16],
object cues [54], or scene geometry [6, 41]. Recent work is DL-based primarily and can broadly fall into two
types based on the output, i.e., estimating low-frequency lighting [24, 53] or high-frequency lighting [22, 52].
For example, Gardner et al. proposed to divide the HDR environment map learning task into two subtasks and
generated one lighting estimation result per image [22]. Even though this work can handle the rendering of
specular objects, it does not consider spatial variance. On the contrary, both Garon et al. [24] and Lighthouse [53]
support spatially-variant lighting but are limited in rendering reflective materials. Our work falls in between these
two types of work by generating an environment map that consists of near-field and far-field components. This
hybrid environment map allows more effective reconstruction within mobile constraints such as user movement
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and depth-sensing accuracy while still achieving visually coherent rendering for various objects, including
reflective ones.

8 CONCLUSION

In this work, we introduced an end-to-end lighting reconstruction system called LitAR that generates high-
quality environment maps for mobile AR applications. As quantitatively and qualitatively demonstrated, AR
applications can use environment maps reconstructed by LitAR to render objects of various properties, including
reflective materials, with 14.3%/5.5% higher PSNR/SSIM and better visual coherence than ARKit. We showed
that LitAR could produce virtual objects with more realistic and visually coherent reflection, as well as fine-
grained visual details. We used physical object images for testbed-based experiments to serve as the basis of
desired visual quality. Furthermore, using our simulator, we compared against other techniques, including
Xihe and 360◦ camera, by having access to ground truth lighting. We have released our research artifacts at
https://github.com/cake-lab/LitAR to facilitate future research work in our community.
Aside from the realistic and visually coherent rendering goal, we designed LitAR with mobile-specific con-

straints, e.g., limited sensing and data noise, in mind. By exploring mobile user behaviors and working within
mobile sensing constraints, we proposed the two-field lighting reconstruction scheme that divides camera obser-
vations into near-field and far-field observations based on pixels’ relative distance to the reconstruction position.
LitAR can work with as few as one camera observation and can progressively improve the quality of generated
environment maps, especially for metallic objects, with more camera observations. Keeping usability in mind, we
further introduced the motion-based automatic capture and guided bootstrapped movement policies to help AR
users capture higher quality data and more suitable camera observations. LitAR significantly speeds up both
the near-field and far-field reconstructions by two novel point cloud techniques, i.e., multi-resolution projection
and anchor extrapolation. Last but not least, LitAR provides three quality presets and exposes several knobs for
mobile AR applications to make reconstruction quality and time trade-offs based on their specific use cases.

We evaluated LitAR’s performance with a lab-based testbed and a game engine-based simulator. We observed
that LitAR could generate higher-quality environment maps than ARKit and result in rendered objects with
up to 14.3%/5.5% higher PSNR/SSIM compared to the physical counterpart. Furthermore, we showed that multi-
resolution projection significantly reduces the point cloud projection from 3 seconds (using mesh reconstruction)
to 14.6ms. Overall, LitAR can generate about 22 high-quality environment maps per second when point cloud
registration is not required. As we design the point cloud registration to run asynchronously, the registration
step will not block the main reconstruction pipeline; once completed, LitAR will send an updated environment
map to the mobile device. As part of the future work, we will explore techniques to improve the details of the
generated environment maps and design runtime policies to handle temporally variant lighting more robustly.
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