
VirtualCube: An Immersive 3D Video Communication System

Yizhong Zhang*, Jiaolong Yang*, Zhen Liu, Ruicheng Wang, Guojun Chen, Xin Tong, and Baining Guo,
Fellow, IEEE

(a) (b) (c)

Fig. 1. Snapshots of the VirtualCube system in action, with the local participant in the foreground. The images of remote participants
on the screen are synthesized from the RGBD data acquired by cameras. (a) A face-to-face meeting with two participants. (b)
A round-table meeting with multiple participants, each in a different location. No two participants are in the same location. (c) A
side-by-side meeting that includes sharing work items on the participants’ screens, as if the participants were sitting next to each other
working together. Our system achieves mutual eye contact and visual attention as in in-person meetings. The lively recorded videos
can be found on the project page.

Abstract— The VirtualCube system is a 3D video conference system that attempts to overcome some limitations of conventional
technologies. The key ingredient is VirtualCube, an abstract representation of a real-world cubicle instrumented with RGBD cameras
for capturing the user’s 3D geometry and texture. We design VirtualCube so that the task of data capturing is standardized and
significantly simplified, and everything can be built using off-the-shelf hardware. We use VirtualCubes as the basic building blocks of a
virtual conferencing environment, and we provide each VirtualCube user with a surrounding display showing life-size videos of remote
participants. To achieve real-time rendering of remote participants, we develop the V-Cube View algorithm, which uses multi-view
stereo for more accurate depth estimation and Lumi-Net rendering for better rendering quality. The VirtualCube system correctly
preserves the mutual eye gaze between participants, allowing them to establish eye contact and be aware of who is visually paying
attention to them. The system also allows a participant to have side discussions with remote participants as if they were in the same
room. Finally, the system sheds lights on how to support the shared space of work items (e.g., documents and applications) and track
participants’ visual attention to work items.

Index Terms—3D video, Teleportation, Telecollaboration

1 INTRODUCTION

In a real-life conversation, many visual cues, eye contact, and gaze
direction contribute substantially to communication and thus make
the conversation much more effective than video conferencing [7, 13].
Nevertheless, video conferences have become increasingly important
because remote collaboration over long distances – either for work or
for entertainment – has become commonplace. It is often simply too
time-consuming and costly to bring remote parties to the same location.
Furthermore, the recent COVID pandemic has taught us that sometimes
it is impossible to bring people together physically and it has made a
distributed workforce a permanent part of many organizations world-
wide. Thus, it is of significant interest to develop video conferencing
technologies that facilitate more effective communication [18, 37, 43]
and possibly create the illusion that the remote participants are in the
same room [4, 29, 53, 62, 65].

• Yizhong Zhang, Jiaolong Yang, Xin Tong, Guojun Chen, and Baining Guo
are with Microsoft Research Asia, Beijing, China.
Email: {yizzhan, jiaoyan, guoch, xtong, baingguo}@microsoft.com

• Zhen Liu is with Nanjing University, Nanjing, China. Work done during
internship at Microsoft Research Asia. Email: zhenliu@smail.nju.edu.cn

• Ruicheng Wang is with University of Science and Technology, Hefei, China.
Work done during internship at Microsoft Research Asia.
Email: wangrc2018cs@mail.ustc.edu.cn

• * Joint first authors with equal contribution; order determined by coin flip.

Manuscript received xx xxx. 202x; accepted xx xxx. 202x. Date of Publication
xx xxx. 202x; date of current version xx xxx. 202x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx

Conventional video conference technologies unfortunately fall short
of expectations. For example, with most existing technologies it is
difficult to establish eye contact with remote participants and be aware
of who is paying attention to you visually. Yet head turning and mu-
tual eye gaze is such an essential part of everyday conversation and is
commonly used to manage turn-taking and floor control in in-person
meetings. Another limitation of existing technologies is that it is dif-
ficult to glance sideways at and have side conversations with other
participants, which are also common practices in in-person meetings.

In this work, we present the VirtualCube system that attempts to
overcome some of these limitations. The key ingredient of the system is
VirtualCube (or V-Cube for short), which is an abstract representation
of a standardized real-world cubicle instrumented with multiple RGBD
cameras for acquiring the user’s 3D geometry and texture. We only
capture the user’s upper body so that we not only obtain the most
important visual gestures, including facial and hand gestures, but also
protect the user’s privacy to some extent. VirtualCube provides the
user with a surrounding display showing life-size videos of remote
participants. This surrounding display consists of three large-format
screens on the front and two side walls around the user. We also segment
the user from the background. Thus VirtualCube essentially represents
the user’s 3D geometry and texture and the enclosing geometric cube
corresponding to the physical cubicle.

An important feature of VirtualCube is that it is easy to set up most
video conferences by using VirtualCubes as basic building blocks. As
a result, the VirtualCube system provides a highly versatile way to
conduct video conferences. With VirtualCube, we can build video
conferences for the common scenarios of face-to-face meetings with
two participants and round table meetings with multiple participants.
We can also model the important scenario of a side-by-side meeting in
which both participants and their desktops are all part of the meeting,

1

ar
X

iv
:2

11
2.

06
73

0v
2

 [
cs

.C
V

]
 2

9
D

ec
 2

02
1

https://www.microsoft.com/en-us/research/project/virtualcube/

as if the participants were sitting next to each other working together.
This last scenario is quite common in real life but receives only limited
support with existing video conferencing technologies. When a video
conference is constructed from a set of adjacent VirtualCubes sitting
on a common floor, we call the resulting assembly of VirtualCubes a
V-Cube Assembly. In essence, we can view the V-Cube Assembly as
the global virtual environment of the video conference.

The VirtualCube system provides each meeting participant with real-
time rendering of all remote participants on his/her surrounding display,
thanks to the acquired 3D geometry and texture data of all constituent
VirtualCubes of the video conference. Most importantly, the rendering
correctly preserves the mutual eye gaze between participants because
the VirtualCube system renders the remote participants in life-size
using their positions in the global virtual environment and the local
participant’s view position in the global virtual environment, just as
if the local participant was seeing the remote participants through the
screens of the VirtualCube. The VirtualCube system can perform such
rendering since it knows both the 3D geometry of all participants and
the geometry of their VirtualCubes (both their dimensions and absolute
positions in the virtual environment) and thus can properly carry out all
the 3D geometric transformations needed for correct rendering.

For rendering remote participants, real-time frame rates are essen-
tial. To achieve real-time performance while improving rendering
quality, we develop the V-Cube View algorithm for novel view syn-
thesis. For a given viewpoint, we adapt multi-view stereo to more
accurately estimate the depth of each image pixel. To best compute
the pixel color from the acquired textures, we develop the Lumi-Net
rendering technique for geometry-aware texture blending based on
lightfield/lumigraph principles [5,16,27,46]. Both the depth estimation
and Lumi-Net rendering are carefully crafted to ensure that the overall
rendering process achieves real-time performance.

In summary, the VirtualCube system has the following advantages:

• Standardized and simplified, all using off-the-shelf hardware. As
every VirtualCube is made the same, the VirtualCube system pro-
vides a consistent physical environment and device setup which
not only simplifies the workload of device calibration but also
reduces the difficulty of 3D video capturing and processing. Also,
we only capture the upper body of a seated user, which greatly
reduces the workload for capturing and modeling of complex
human poses.

• Versatile modeling. A set of VirtualCubes can be easily assembled
into a V-Cube Assembly to model different video communication
scenarios, including scenarios which are poorly supported by
existing technologies.

• Real-time, high-quality rendering. The real-time rendering can
capture a variety of subtle surface appearances, such as glossy
reflection on human faces and clothing, as shown in the accompa-
nying video.

Our experiments with the VirtualCube system show that it can bring
video conferencing significantly closer to our everyday experience of in-
person meetings. The VirtualCube system allows meeting participants
to establish eye contact and be aware of who is visually paying attention
to them. The system also allow a participant to make side glances and
side conversations to remote participants as if they are in the same
room. Taken together, these abilities form the cornerstone of the notion
of a personal space, a notion that we have acquired and internalized
through our lifetime experience of in-person conversations [7].

In addition to this shared “person space”, the VirtualCube system
also shows promise in supporting the shared space of work items
(including documents, applications, and other artifacts). In particular,
in a side-by-side meeting, both participants and their desktops are all
part of the video conference, as if the two participants were sitting next
to each other working together. This shared “work space” [7], which
encompasses both the participants and work items on their desktops,
is a useful addition to the shared “person space” because it lets each
participant see whether the remote participant is visually attending

to a specific work item as desired. For example, when a participant
highlights an item on his/her desktop with the cursor, he/she can easily
see whether the remote participant is visually paying attention to this
item. This experience, albeit simple and very common for in-person
collaboration [7], is not supported in conventional video conferences.

2 RELATED WORK

The techniques and systems for 3D video communication have been
widely studied in many fields. In this section, we discuss the previous
works that are directly related to our work, including 3D video commu-
nication systems, gaze-correction techniques for video conferencing,
and free viewpoint video of human characters. For more comprehen-
sive reviews of related techniques, the reader is referred to the latest
works [69, 71, 79] and surveys [56, 59].

2.1 3D Video Communication
Early 3D video communication systems [3,25,67] attempted to capture
the appearance and geometry of the participants at different locations
and place them in a common virtual environment. Without careful
system design and setup, the mutual gaze contact among users in these
systems is always poorly produced.

Many follow-up techniques [28, 37, 42, 45, 57, 64] have been de-
veloped for telecommunication between two sites. Although these
approaches improved eye contact and user experience in two-site meet-
ings, extending them to multiple sites is difficult.

For three-party teleconferencing, the tele-cubicle systems [76, 81]
use a cubicle with two walls. In their systems, users are difficult to
establish eye contact [76]. Their focus is to use the two walls as portals
to remote users’ offices; it is not their intention to bring remote users
into a common virtual meeting room as we do. Also note that the
remote users are reconstructed as 3D meshes in their system. Real-
time reconstruction of detailed 3D meshes that permit high-quality
rendering cannot be easily achieved even with modern hardware and
algorithms [15, 62]. Later, a number of systems [39, 87] have been
proposed where the participant positions in the virtual environment are
predefined and fixed for maintaining mutual eye contact. However, it is
unclear how to extend these systems to other seating arrangements and
meetings with different numbers of participants. Also, the rendering
quality of the remote participants is limited due to the fragile depth
reconstruction and image warping algorithms used in these systems. In
contrast, our system is designed for implementing meetings between
different numbers of participants, as well as meetings with various user
seating setups. To maintain mutual eye contact of the participants in
different meeting setups, we develop a new deep learning based V-Cube
View algorithm for capturing and rendering high-fidelity free-viewpoint
video of the participants in real time.

A collection of telepresence systems [4, 22, 29, 53, 65] have been
designed for capturing and rendering a virtual or augmented-reality
environment so that the participants at different sites could work to-
gether as if they were in one site. All these methods focus either on the
environment capturing and 3D display [22, 29, 53, 65] or the interac-
tions between the users and the virtual environment [4]. They are not
optimized for teleconference and thus it is difficult for them to achieve
faithful mutual gaze contacts between the participants at different sites.

2.2 Gaze Correction for Video Conferencing
Many approaches have been developed to correct the gaze of the partic-
ipants for better eye contact in video conferencing. Chen [13] studied
the sensitivity of eye contact in video conferencing and improved the
eye contact with more accurate horizontal gaze direction. Kuster et
al. [43] warped the face region of the remote participant captured by
an RGBD camera and then fused the warped part into the original
RGBD video frame for correcting vertical gaze direction. Later, Giger
et al. [26] extended this method for RGB videos captured by a web
camera. Hsu et al. [34] developed a convolutional neural network to
generate gaze corrected video of the participant by tracking and warp-
ing the eye region of the participant in each video frame. Tausif et
al. [71] moved a web camera behind a transparent screen according
to the remote participant’s eye position for capturing videos of the

2

participants with correct eye-contact. All these methods are designed
for video conferencing between two participants, and cannot handle
eye contact for three or more participants.

Different from these approaches, our method captures 3D video
of the participants and delivers natural gaze contact and other visual
communications by realistically rendering life-size remote participants
from the local participant’s viewpoint. Our method supports eye contact
between the participants in a teleconference with two or more users.

2.3 Free Viewpoint Video of Human Characters
Numerous methods have been proposed for generating a realistic avatar
of a subject. Some of them [1, 2, 21, 24, 40, 48, 55, 60, 61, 72–74, 80]
model a 3D avatar of a subject and then drive its animation using a
video sequence or speech text. However, dedicated device setup and
heavily manual work are always needed for generating a realistic avatar
and reconstructing the detailed appearance, subtle expressions, and
gaze movement of a subject. Recent deep-learning based methods [6,
12,30,32,58,78,79,82,85,86,88] avoid 3D avatar modeling and directly
synthesize a talking head video of a subject from one source image
of the subject and a video sequence. Elgharib et al. [18] developed
a solution for warping the video of a subject’s face from side view
to front view. Unfortunately, all these deep-learning based methods
cannot support arbitrary view rendering. Also, it is unclear how to
extend these methods for modeling the dynamics of the upper body.

Other methods [17,31,39,44,51,62,87,91] reconstruct a complete or
partial 3D geometry and texture of a dynamic character in real time and
then render it from novel viewpoints. Although they provide real-time
free-viewpoint rendering of the dynamic character, the reconstructed
3D geometry and texture are always imperfect or of low-resolution thus
leading to inferior rendering quality.

Generic image-based rendering methods have been developed for
synthesizing novel views from images or videos of a scene captured
from sparse or dense views. Traditional optimization-based meth-
ods [8, 15, 47, 63, 90] rely on fragile offline processing for obtaining
high quality rendering results. Deep-learning based approaches lever-
age neural networks to improve the robustness and speed of offline
optimization and have demonstrated high-quality novel view synthesis
results [14, 19, 20, 38, 69, 69, 89]. However, these methods still require
at least a few seconds on a modern GPU to synthesize a novel view.
Recently, several neural representations [9, 54, 77, 84] have been pro-
posed for modeling and rendering a 3D scene from a given multiview
image collection. Unfortunately, the computational cost of learning
and rendering these neural representations is still high. Although these
image-based approaches can be applied for rendering human characters,
they suffer from the trade-off between speed and quality. To the best of
our knowledge, methods have not been developed for online capturing
and realistic rendering in real-time.

In this work, we follow the principle of previous deep-learning based
methods [14,20,38,69] that first predicts the target-view depth and then
synthesizes texture, and develop a new V-Cube View method to achieve
real-time and high-quality 3D freeview synthesis.

3 THE VIRTUALCUBE SYSTEM

In this section, we first provide a conceptual overview of VirtualCube
and then present the implementation details. Our real-time rendering
algorithm is described in Section 4.

3.1 VirtualCube: A Conceptual Overview
The VirtualCube system aims to provide a standardized solution for
remote meeting participants to naturally communicate with one another
as if they were in the same room. For simplicity, we assume that
no two participants are co-located. The immersive experience of a
participant is created by surrounding him with a large format display
on which all other participants are rendered at life size. Meanwhile,
at each meeting site, multiple cameras capture the local participant’s
3D geometry and texture, and thus allow our system to synthesize the
video of this participant for all remote parties.

VirtualCube has two components: one physical and the other abstract.
The physical component is an instrumented real-world cubicle enclosed

RGBD Camera

(a) (b)

(c) (d)

Fig. 2. VirtualCube and various examples of video conferences con-
structed by using VirtualCubes as building blocks. (a) The physical setup
of VirtualCube, which consists of a surrounding display on the front and
two side walls and multiple RGBD cameras mounted around the screen
on the front wall. The back wall is outlined by dotted lines. (b) A round
table meeting of three participants. (c) A face-to-face meeting of two
participants. (d) A side-by-side meeting of two participants. To simplify
illustration, we only show one participant’s display in (b), (c), and (d).

by four vertical walls as shown in Fig. 2(a). The cubicle has a fixed
seat in the middle for the user and a table attached to the front wall.
The front and two side walls have large format screens attached for
displaying life-size videos of remote meeting participants. Along the
screen boundaries of the front wall a set of RGBD cameras (color and
depth) are attached for capturing the user’s 3D geometry and texture.
The back wall is painted solid gray for simplifying of the task of
segmenting the user from the background. The abstract component of
VirtualCube consists of the abstract geometric cube associated with the
physical cubicle and the user’s 3D geometry and texture as captured by
the RGBD cameras.

The VirtualCube system only captures and renders the 3D geometry
and color texture of the seated user’s upper body, defined as the body
part above the table. Our reason for focusing on upper body is mainly
for efficiency. The upper body of a seated person is easier to capture
than the full body with unconstrained movements. Yet, it provides
facial and hand gestures which are among the most important visual
cues for communication. In practice, only rendering the upper body
also provides a sense of privacy for the user who knows the lower body
is safely off the limits and hence any lower garment can be worn.

We use VirtualCube as the basic building block of the virtual environ-
ment of our online meetings. This virtual environment is constructed as
an assembly of multiple adjacent VirtualCubes on a common floor. We
call this assembly the V-Cube Assembly. Figure 2(b)-(d) show a few
V-Cube Assemblies in different configurations: one for a face-to-face
meeting with two participants, one for a side-by-side meeting with two
participants, and one for a round table meeting with multiple partici-
pants. Note that the side-by-side configuration has a special advantage
of supporting not only the interaction between the participants but also
the sharing of their screen content as part of the interaction.

People have different senses of personal spaces. We support this
by allowing different VirtualCubes in a V-Cube Assembly to overlap.
Intuitively, the overlap allows participants to sit more closely together
when desired. The amount of overlap is a user-controlled parameter,
which can be set by the conference organizer. As a rule of thumb, in our
implementation we require the meeting participant in each VirtualCube
to be outside of the other VirtualCubes in the V-Cube Assembly so that
we can correctly project the remote participants on the surrounding
display from the view of each participant.

The V-Cube Assembly is the basis of the global coordinate system,

3

Z
X

Y

(a) (b)

Fig. 3. (a) The hardware setup of our VirtualCube implementation, which
consists of three large screens on the front and two side walls and
six Azure Kinect cameras mounted around the front display. We also
show the VirtualCube’s local coordinate system. (b) Color images of the
participant captured by the six cameras.

which is defined as the coordinate system of the V-Cube Assembly
and hence the overall virtual environment. This global coordinate
system is in contrast to the local coordinate system of each individual
VirtualCube. The correct 3D geometric transformations between the
global and local coordinate systems (which take into consideration
the physical size of VirtualCube and its display screens) is important
because it is essential for correct rendering of remote participants on
the video display of each meeting participant. In particular, this correct
rendering is needed for achieving mutual eye gaze. Specifically, the 3D
geometry transformations proceed as follows. First, when capturing
the user’s 3D geometry and texture inside a VirtualCube, we use the
VirtualCube’s local coordinate system. Then, after forming the V-
Cube Assembly, we transform the captured 3D geometry data of all
constituent VirtualCubes from their respective local coordinate systems
into the global coordinate system so that all VirtualCubes’ 3D geometry
data are correctly positioned in the global virtual environment to create
the global 3D geometry content of the V-Cube Assembly. This global
3D geometry is what every participant sees. Finally, to render remote
participants on a VirtualCube’s display, we first transform the global
3D geometry into the VirtualCube’s local coordinate system and then
project the transformed global geometry onto the VitualCube’s display.

3.2 Implementation Details
We now present our hardware setup and calibration and the resulting
coordinate transformations for the video display of each VirtualCube.

Hardware setup As shown in Figure 2, our VirtualCube prototype
is a cubicle enclosed by the front and two side walls painted solid
white, and a back wall covered by a curtain of solid grey color for
easy segmentation of the user from the background. The floor plane
dimension of VirtualCube is 1.6×2.0 meters. In face-to-face meetings
and round-table meetings, the user faces the front display and a semi-
circular table is placed between the user and the front wall. In side-
by-side meetings, the user faces a side display and an L-shaped long
table is placed between the user and the front wall and one side wall, as
shown in Fig. 2(d).

For the surrounding display of a VirtualCube, we mount three 65-
inch 4K flat LCD screens on the front and two side walls. The height
from the bottoms of these screens to the floor is 0.7 meter, which is
designed to support life-size display of the upper bodies of remote
participants. For capturing the 3D video of the user, we install six
AzureKinect RGBD cameras around the front screen, with four at the
corners and two at the mid-points of the upper and lower boundaries.
The viewing directions of the six cameras are set towards the user
seated in the center of the VirtualCube. The six cameras capture RGBD
video sequences in synchronized mode, each recording 2560×1440
RGB frames and 640×576 depth frames at 30fps. The RGB and depth
frames are aligned and scaled to 1280×960 resolution for later use.

Within VirtualCube, the front and two side screens and six RGBD
cameras are connected to a PC workstation with GPUs for 3D video
capturing, rendering, and display. VirtualCube instances at different
sites are connected by a network.

Hardware calibration For the hardware calibration of a Virtual-
Cube, we need to define the local coordinate system of the VirtualCube

Global Virtual Environment G

VirtualCube C1 VirtualCube C2

𝐌𝐂𝟏→𝐆 𝐌𝐂𝟐→𝐆

𝐌𝐂𝟐→𝐆
−𝟏 𝐌𝐂𝟏→𝐆

Fig. 4. Coordinate transformations in the VirtrualCube system. Concep-
tually we map every constituent VirtualCube into the global coordinate
system defined by the V-Cube assembly, which is the global virtual envi-
ronment. In the above example, the global virtual environment consists of
two VirtualCubes. In practice, we transform the viewpoint of the receiver
site participant (orange point in VirtualCube C1) into the local coordinate
system of the sender site VirtualCube C2 for rendering the participant in
C2 on the display in VirtualCube C1.

and calibrate the intrinsic/extrinsic parameters of all six RGBD cameras.
We also need to compute the positions and orientations of the front and
side screens in the VirtualCube’s local coordinate system.

We start by defining the VirtualCube’s local coordinate system. As
shown in Fig. 3(a), we carefully adjust the orientation of the screen
on the front wall so that the horizontal direction of the screen (i.e.,
the direction of the pixel rows) is parallel to the floor and the screen
plane is perpendicular to the floor. Based on this setup, we define the
X direction of the local coordinate system as the horizontal direction
of the front screen and the Y direction as the upwards direction that is
perpendicular to the floor plane. The Z direction is determined by the
cross product of the X and Y directions accordingly. The XZ plane is
the floor plane, and the origin of the local coordinate system is defined
as the intersection point between the central vertical line of the front
screen and the floor plane. The scale of this local coordinate system is
set to be the same as the scale of the physical world.

Next we calibrate the positions and orientations of the three display
screens in the local coordinate system. We measure size of each screen
and adjust the the two side screens so that they are perpendicular to
the front screen with their side edges seamlessly aligned with the side
edges of the front screen. In this way, the two side screens are parallel
to the Y Z plane and their positions can be easily computed.

For camera calibration, we use the intrinsic parameters of RGB and
depth cameras provided by AzureKinect SDK and calibrate the extrinsic
parameters (i.e., camera poses). We first calibrate the poses of the
six cameras in a local coordinate system using the camera calibration
toolkit in OpenCV and a checkerboard pattern. To transform the camera
poses from this local coordinate system to the VirtualCube’s local
coordinate system, we manually measure the distance of the camera to
the surface and boundaries of the front screen and use these distances
to calculate the transformation.

View positioning To compute the viewpoint of the participant in a
VirtualCube, a real-time viewpoint tracker is implemented. We define
the participant’s viewpoint as the middle point of the line segment
joining the eye centers. To obtain the viewpoint for each frame, we
first detect the 2D eye centers on the multiview RGB images using a
fast facial landmark detector [11] and then lift them to 3D using linear
triangulation [33]. Images with no landmark detected due to occlusion
are simply discarded. With six cameras installed in a VirtualCube, the
implemented method can robustly track the participant’s 3D viewpoint
in real-time during video communication.

Transformation to global coordinate system When we assem-
ble a set of VirtualCubes into a V-Cube Assembly, we define both a 3D
virtual environment and a global coordinate system. Once this global

4

Local User (Receiver)Remote User (Sender)

V-Cube View

Portrait
Image

Final
Rendering

Network

RGBD
Images View Positioning

RGBD Video Acquisition RGBD Video Acquisition

View Positioning
RGBD

Images

V-Cube View

Final
Rendering

View
Position

Portrait
Image

View
Position

3D Background
Scene

3D Background
Scene

Fig. 5. Data and workflow of the VirtualCube system, where the sender’s
portrait image is rendered from the receiver’s view position and then
transmitted to the receiver side to composite with the rendered 3D scene
for final display. The portrait image includes RGB and alpha channels to
facilitate composition in the final rendering.

virtual environment is defined, we need to transform every constituent
VirtualCube into the global coordinate system. To do this, we first
obtain the position and orientation of each VirtualCube Ci in the global
coordinate system and then compute the transformation MCi→G that
maps the VirtualCube Ci into the global virtual environment, where
G refers to the global virtual environment defined by the V-Cube As-
sembly (as shown in Fig. 4). We assume the scale of the global virtual
environment to be the same as the scale of the physical world. With this
transformation, we map all local entities defined in the local coordinate
system of VirtualCube Ci, including the user’s 3D geometry and tex-
ture, the surrounding display screens, and the user’s viewpoint, into the
global coordinate system. Now for each meeting participant, we can
render the remote participants and the background virtual environment
with the view frustums determined by this participant’s viewpoint and
three display screens in the global coordinate system. For the partic-
ipant in VirtualCube Ci, the life-size image so rendered provides the
correct positions, orientations, sizes, and perspectives of the remote
participants and thus gives rise to the illusion that they are in the same
room. In this way, the mutual eye gaze between participants is naturally
preserved.

Workflow of the VirtualCube system As shown in Fig. 5, every
VirtualCube is simultaneously a sender and receiver of rendered im-
ages. Every VirtualCube also knows the global coordinate system of
the V-Cube Assembly, the local coordinate systems of all constituent
VirtualCubes, and the viewpoints of all meeting participants. At the
sender site, our V-Cube View rendering algorithm generates the por-
trait image and alpha mask of the sender site’s participant using the
receiver site’s viewpoint and sends the rendered RGBA image to the
receiver site. During rendering, proper coordinate transformations are
performed to ensure correct rendering and mutual eye gaze: the sender
VirtualCube’s 3D geometry content is first transformed into the global
coordinate system for correct positioning in the global virtual envi-
ronment and then transformed into the receiver VirtualCube’s local
coordinate system for rendering.

In practice, we render the image of the sender site participant in
VirtualCube Ci for the receiver site VirtualCube C j by transforming
the viewpoint of the receiver site participant into the local coordi-
nate system of the sender site VirtualCube Ci via a transformation
M−1

Ci→GMC j→G. We then use the RGBD frames of four cameras that
are close to the transformed viewpoint for rendering the image of the
sender site participant. To this end, our V-Cube View algorithm ren-
ders the participant from the segmented RGBD frames and sends the
rendered color image and alpha mask to receiver VirtualCube C j (as
shown in Fig. 4). After receiving the portrait RGBA images from all

other VirtualCubes, the receiver site generates its final rendering display
by compositing all of the incoming portrait images against a common
background, which is the rendering of a 3D virtual conference room
enclosing the V-Cube Assembly.

The above work flow is designed to improve the rendering quality
of the sender’s video. Conceptually, an alternative work flow would
be to send all VirtualCubes’ 3D geometry and texture content to the
receiver site and assemble the global 3D geometry of the entire virtual
environment and then render this global 3D geometry. However, when
a global 3D geometry model is reconstructed at the receiver site, the
common practice is to build a view-independent 3D geometry model
and this reconstruction often leads to the loss of geometry details. We
do not perform such a 3D reconstruction, but instead we only perform
the depth estimation for the receiver site’s viewpoint using the raw depth
data acquired at the sender site. By doing so we maximize the utilization
of the captured raw 3D geometry data, minimize unnecessary geometry
detail loss usually associated with a full 3D geometry reconstruction,
and thus improve the rendering quality.

V-Cube View input segmentation Our system segments the par-
ticipant from the input frames and feeds the segmented images into
the V-Cube View algorithm. Different from the conventional video
conferencing where the segmented frames are directly used for display,
our algorithm takes the segmented input for improving the speed and
robustness of novel view synthesis. So the segmentation results need
not be accurate. For this purpose, we roughly segment the foreground
region (i.e., the portrait of the participant) from each input frame by
a simple algorithm based on background color and depth comparison.
Specifically, we capture background RGBD images from six cameras
before the user enters the cubicle. At run-time, we compute the differ-
ences of pixels’ depth and color to the background image values and
subtract foreground pixels whose depth or color difference is larger than
a pre-defined threshold (10cm/30 gray level in our implementation).

4 V-CUBE VIEW FOR REAL-TIME RENDERING

When designing a rendering algorithm for VirtualCube we face three
challenging issues. The first is real-time performance. The VirtualCube
acquires and segments RGBD images in real time. The rendering
algorithm must also run at real-time rates for the whole VirtualCube
system to function well. The second is high rendering quality. Our
VirtualCube displays life-size human portrait videos on large screens
where rendering flaws can be easily noticed by users. However, we
are not aware of any novel view synthesis method that can perform
high quality rendering in real time. Most existing methods cannot
achieve online capturing and rendering, while other real-time solutions
suffer from severe artifacts, producing incomplete regions or only
generating low-resolution mesh textures. Finally, we have to deal with
wide baselines in rendering. Due to our large screen sizes, the view
difference between the cameras mounted around the screen are large
and the rendering must cover a wide range of virtual viewpoints.

To address these issues we develop the V-Cube View algorithm
based on a few key insights. First, we leverage depth cameras to ease
the burden of virtual view geometry estimation. The acquired depth
maps, although quite noisy and cannot be directly used, can provide
reasonable depth initializations of the virtual view for a lightweight
refinement process. Second, we observe that several computation
intensive procedures can run at low resolutions to save cost. Thus the
main body of our algorithm, including depth estimation and texture
blending weight prediction, runs at low image resolution (quarter size),
after which we blend the warped textures and apply a lightweight
post-processing CNN at the full resolution. Third, we propose a novel
Lumi-Net rendering weight prediction scheme. Inspired by traditional
image-based rendering techniques, we incorporate view direction and
depth difference priors to predict geometry-aware blending weight
maps, which lead to improved rendering quality especially for our wide-
baseline scenario. Finally, we observe that the fidelity of human faces
are critical in video conferencing, as people are much more attuned
to perceiving facial details than other content. Thus we introduce a
perceptual loss on the face region during training, which significantly
improved the face quality in rendering.

5

Ⅰ. Virtual View Depth Prediction Ⅱ. Lumi-Net Rendering

…Feature
CNN

Cost
Volume

Cost
Volume

Blending
CNN

Post-
process

CNN

Texture
Blending

MVS
CNN

Do
w

ns
am

pl
e

4x

Up
sa

m
pl

e
4x

Fig. 6. Overview of the V-Cube View algorithm. The inputs are four 1280×960 RGBD images and a virtual viewpoint. The output is a 1280×960
RGBα image at the virtual viewpoint synthesized in real time on a modern GPU card.

Warping &
Variance Comp.

Feature
CNN

MVS
CNN

Depth CandidatesInitial Depth

Projection &
Averaging

∑

Depth Probability

W

Cost Volume

Estimated Depth

Weighted
Averaging

Multiview FeaturesMultiview ColorMultiview Depth

Fig. 7. Detailed virtual-view depth prediction pipeline.

Figure 6 provides an overview of the V-Cube View algorithm. The
input are 4 background-subtracted RGBD images of 1280×960 reso-
lution and their associated camera poses, and a target virtual camera
pose. The input camera poses are readily available because all cameras
in VirtualCube are pre-calibrated to obtain the intrinsic and extrinsic
parameters. The output is a 1280×960 RGBα portrait image for the
given virtual viewpoint. We only activate 4 cameras out of the 6 in the
VirtualCube to run our rendering algorithm. This choice is made based
on practical considerations; the V-Cube View algorithm can naturally
handle any number of input views.

The algorithm has two main components: i) virtual view depth
prediction and ii) Lumi-Net rendering. The whole pipeline is made
differentiable and is trained in an end-to-end fashion.

4.1 Virtual View Depth Prediction

The first step of our method is to predict a depth map at the given
virtual viewpoint, which will be used later to synthesize the texture. For
efficiency, the depth prediction module runs at 1/4 resolution, which
we found to be sufficient for our image synthesis. The input contains
depth maps measured at four different camera viewpoints, which can
be leveraged to determine the virtual view’s depth map. However, these
depth measurements are rather noisy. Figure 8 (a) shows the depth
prediction by warping the four input depth maps to the virtual viewpoint
and taking the average of the warped depth values at each pixel. As we
can see, the resulting depth map is deficient and it leads to very poor
images when texture is applied.

Our method estimates an accurate virtual-view depth image using
multiview stereo matching methodology (MVS) leveraging color im-
ages. Thee input depth maps are only used to compute an initial depth
map. Figure 7 depicts the detailed algorithm pipeline. Let {Ii,Di} be
the input multiview color and depth images. We first use the depth
images {Di} to derive a set of depth maps at the virtual view, denoted as
{D′i}, which are obtained by projecting the per-view meshes constructed
from {Di} onto the virtual view image plane followed by rasterization.

Then we compute an averaged depth map via D = ∑i M′i ·D
′
i

∑i M′i
, where M′

i

is the visibility mask of D′i and the calculation is done pixel-wise. This
averaged depth is inaccurate and cannot be directly used for image
synthesis. Instead, we use D as an initial, coarse estimation and apply a
convolutional neural network to regress an accurate depth map. Specif-
ically, we define a depth correction range [−∆d,∆d] and generate N
spatially-varying depth hypotheses {D̂k} by uniformly sampling depth
corrections {σk} within this range and adding them to the initial depth,
i.e., D̂k = D+σk, k = 0, . . . ,N− 1. To construct a cost volume for
depth estimation, we apply a 2D CNN on the color images {Ii} to
extract features, denoted as {Fi}. Then we warp the per-view feature
map Fi to the virtual view with each depth hypothesis D̂k and compute
the feature variance across views, resulting in a cost volume V of size
H×W ×N×C, where C is the feature channel. A 3D CNN is applied
to V to predict a depth probability volume P of size H×W ×N. The
final depth estimation is computed as D = ∑

N
k=1 Pk · D̂k.

The careful reader will notice that our depth prediction is different
from traditional deep MVS depth estimation techniques in computer
vision such as [49, 83]. We derive this different technique for several
reasons. First, we have to predict depth for a virtual view without a
color image. Second, we have the initial depth map calculated from
the input data and we do not need to use predefined sweeping planes
as depth hypotheses. Instead, our depth hypotheses are dynamic and
spatially varying with dependence on the initial depth map. In addition,
we do not have ground truth depth in our training data and to resolve
this issue we apply a weakly-supervised learning scheme that exploits
photometric discrepancy of color images for supervision.

We can visualize the quality of our depth prediction by applying
texture to the depth map. Given estimated virtual-view depth D, we
can warp the input-view color images {Ii} to the virtual view as
{Iw

i = warp(Ii|D)}. The warping function is differentiable with a
differentiable mesh rasterizer applied. A naive multiview texture fu-
sion can be obtained by averaging the warped images as Ia = ∑i Mw

i ·Iw
i

∑i Mw
i

,
where Mw

i is the visibility mask of Iw
i and again the calculation is done

pixel-wise. As shown in Fig. 8 (a) and (b), the depth map so-obtained
is significantly improved when compared with the initial depth, demon-
strating the efficacy of our depth prediction module.

Training loss To train our method, we capture RGBD images of
novel views as the training target (details can be found in Section 4.3).
Since the captured depth maps are inaccurate, we discard them and
never use them in training. In the absence of ground-truth depth, we
train the depth prediction module in a weakly-supervised fashion by
exploiting photometric discrepancy.

Concretely, our training losses are the differences between the fused
texture Ia and the warped multiview images {I′i} as well as the tar-
get image I∗: L d

color-mv = ∑i ∑x Mw
i (x) · ‖Ia(x)− I′i(x)‖1, L d

color-gt =

∑x M(x) · ‖Ia(x)− I∗(x)‖1 where x denotes image pixel, M = ∪iM
′
i

is the valid pixel mask of Ia, and ‖ · ‖1 indicates the l1 norm. We
also impose a smoothness prior by adding a second-order smoothness

6

(c) Output RGBα Image (d) Ground-truth(a) Initial Depth (b) Estimated Depth

Fig. 8. Results of the depth estimation and Lumi-Net rendering modules of the V-Cube View algorithm. (a) The initial virtual-view depth map obtained
by fusing the input depth maps. The initial geometry is clearly deficient. In the lower right corner we visualize the quality of the geometry in the
face region using a simple texturing scheme that averages the textures of input images. (b) Our depth estimation module significantly improves the
geometry. Again, we visualize the quality of the facial region geometry using the same simple texturing scheme as in (a). (c) This is the RGBα image
output by the Lumi-Net rendering module, which compares favorably with the ground-truth shown in (d). The sample is taken from our captured
training dataset (validation subset) for illustration.

loss L d
smooth = ∑x |∇2D(x)| where ∇2 is the Laplacian operator. Note

that since the whole pipeline of our V-Cube View method is differen-
tiable and end-to-end trained, the depth prediction module also receives
additional supervision signals from the later modules during training.

4.2 Lumi-Net Rendering
A naive way to render is texture averaging, which computes the shading
of every surface point by simply averaging this point’s colors among
the warped input images in which it is visible. Unfortunately, the
warped textures exhibit different levels of details at different regions,
depending on their visibility in the original views and their viewpoint
difference to the target. Moreover, the target-view depth map cannot
be estimated perfectly. The depth error will lead to different degrees
of texture distortion in the warped images, especially for our wide-
baseline case where viewpoint changes are large. To achieve better
texture fusion quality, our Lumi-Net rendering seeks for a viewpoint
and geometry-aware texture blending strategy built on two principles of
Unstructured Lumigraph Rendering: resolution sensitivity and minimal
angular deviation [5]. We derive a shared CNN for the warped images
Iw

i to predict the blending weight for each pixel in the image while
taking viewpoints and geometry into account.

We start with the resolution sensitivity principle [5], which is essen-
tially a depth difference prior: textures of object surfaces closer to the
camera center are of higher resolution and should be given more weight
in blending to ensure sharpness. The depth difference prior is useful for
unstructured cameras, especially for our wide-baseline case with large
viewpoint differences. Following this principle, we compute for each
pixel the depth difference to its corresponding point on an input view
given the estimated virtual-view depth map D. We do this by creating a
new virtual-view depth map Dw

i as follows. For each pixel p in Dw
i , we

look up the corresponding 3D surface point using virtual-view depth
map D and project the resulting point to the input view and obtain its
input-view depth value, which is assigned to the pixel p. With Dw

i so
computed, we obtain the depth difference as ∆Di = Dw

i −D.
Next, we examine the minimal angular deviation principle [5],

which suggests that the input textures of object surfaces with smaller
viewing angle difference to the target view direction should be given
greater blending weights. This principle is especially important for
non-Lambertian surfaces, such as human faces in video conferencing,
because for such surfaces the appearance of a surface point changes
significantly with respect to the viewing direction. Following the mini-
mal angular deviation principle, we first compute normalized direction
vector maps N and Nw

i based on D and Dw
i respectively. Specifically,

for each pixel p of N, we find the corresponding surface point using
depth map D and compute the direction vector as the vector from the
surface point to the virtual viewpoint. This direction vector is normal-
ized and assigned to pixel p as its value. The computation of Nw

i is
done similarly using Dw

i and the input viewpoint. We then compute the

angle map between directions Nw
i and N, denoted as ∆Ni. Adding ∆Ni

to the CNN motivates it to increase blending weights for input textures
with smaller direction angle deviations.

Besides the warped images and difference maps, we also feed the
per-view visibility mask Mw

i to the CNN for blending weight predic-
tion. In summary, the input to the CNN is the concatenation of (Iw

i ,
Mw

i , ∆Di, ∆Ni) and the output is a blending weight map Wi. This
CNN continues to work on the 4× downsampled image resolution for
efficiency. After generating all the weight maps, we apply a pixel-
wise softmax operator across input views to normalize the blending
weights as W̃i =

exp(Wi)
∑ j exp(W j)

. Then we bilinearly upsample the weight
maps by 4× to the raw resolution, and obtain the blended image as
Ib = ∑i W̃i · Iw

i .
Finally, we use a CNN to post-process the blended texture and

predict a transparency map. It takes Ib as input and produces a four
channel output consisting of the final color image I and the transparency
map α . The post-processing runs at the full resolution of the image
and the CNN has the image processing functions that clean up the
blended texture and create the final image. These image processing
functions include refining the silhouette boundaries and filling small
holes. We also aim to improve the quality of the face region during post-
processing because human faces are particularly important in video
conferencing. We do this by adding a special penalty for perceptual
loss of the face region. Finally, we improve the overall sharpness of
the final image by adding an adversarial learning scheme [35] that is
widely used for image processing and synthesis, as described below.

Training loss We employ a collection of carefully designed losses
to train our Lumi-Net rendering module. The training loss for the
blending weight prediction CNN is simple. We add direct supervision
to the blended texture Ib by minimizing its difference to the ground-
truth color image: L l

color = ∑x M(x) · ‖Ib(x)− I∗(x)‖1, where M is the
pixel visibility mask.

The training loss of the post-processing CNN is a bit more complex
because of its variety of image processing functions, including refining
the silhouette boundaries, filling small holes, improving the face region,
and image sharpening. We first minimize the discrepancy between the
output RGBα image and the ground truth by using the loss function
L r

rgba-gt = ∑x ‖α(x) · I(x)−α∗(x) · I∗(x)‖1. To stabilize the result and
avoid overfitting, we also encourage the output image to preserve the
input colors via L r

color-input = ∑x α(x) ·M(x) ·‖I(x)−Ib(x)‖1. For bet-
ter transparency prediction, we add an α-map loss as L r

α = ∑x ‖α(x)−
α∗(x)‖1. To improve the fidelity of the face region, we introduce a per-
ceptual loss [36] as L r

f ace = ∑l ‖φl(crop(I))−φl(crop(I∗))‖1, where
crop(·) is the face bounding box cropping operation and φl(·) denotes
the multi-layer features from a VGG-19 network [70] pretrained on Im-
ageNet [66]. Finally, for image sharpening we incorporate adversarial

7

learning with a PatchGAN as in [35] and use the least squares GAN loss
from [52] as L r

adv = ‖D(I)−1‖2, where D is the discriminator network.
The adversarial loss for D is L r

adv-D = 1
2‖D(I)−0‖2 + 1

2‖D(I∗)−1‖2.

4.3 Training Data
To capture training data for our method, we setup six RGBD cameras
with similar spatial arrangement to the VirtualCube. We place two
additional cameras to capture the target-view images for training. We
add perturbations to the camera poses during the data capture campaign
to introduce view variations. Modest perturbations are added to the
six cameras, whereas the target camera poses are flexibly adjusted
to cover a wide range of viewpoints. To train the method, we use
the left four camera as the input views and synthesize the left target
view. Similarly, the right four cameras are used to generate the target
view on the right. During data capture, we ask actors to sit in front
of the cameras and make natural actions as in a face-to-face meeting,
including face expression, body movements, and some hand gestures.
We also captured side-view images by asking actors to sit towards the
side screens.

We captured multiview RGBD data of 18 subjects in total. For
each subject, multiple video clips are recorded at 15fps. Each subject
wears 3-5 personal garments during capture. The dataset contains
920K frames in total, with 51K frames per person on average. The
background matting method of [68] is used to obtain alpha map labels
of the target view images. We detect face regions by the method of [10].

4.4 Temporal Smoothing
Since our method synthesizes images frame-by-frame, we apply tem-
poral smoothing to the output RGBα sequences to improve temporal
consistency especially for boundary regions. Specifically, for the trans-
parency map estimates, we maintain a history buffer αh and blend the
current-frame output α with αh via α ′ = wα +(1−w)αh, where scalar
w is the blending weight (w = 0.5 in our implementation). The history
buffer is updated at each frame as αh = α ′. We apply a similar temporal
smoothing strategy for color images, except that we only process border
pixels. Let Ih be the image history buffer, we first shrink the processed
transparency map α ′ by n pixels (n = 10 in our implementation) to
obtain α ′interior, which is achieved by a spatial min-pooling operation
with (2n+1)× (2n+1) kernel size. Let α ′border = α ′−α ′interior be the
border region transparency map, we blend the current-frame color im-
age I with Ih via I′ =

(
(α ′− (1−w)α ′border)I+(1−w)α ′borderIh

)
/α ′.

The history buffer Ih is then updated as Ih = wαI+(1−wα)Ih. The
(I′,α ′) pair will be the final RGBα output of our system to be streamed
to the remote users.

5 EXPERIMENTS

We implemented three physical VirtualCube instances to evaluate our
system in different video communication scenarios. The three Virtu-
alCubes are located in one building and connected in a LAN network
with 1Gbps bandwidth. For each VirtualCube, we deploy our software
system on a PC with Intel Core i9-10980XE CPU, 64GB memory, and
three GPU cards: two Nvidia GeForce RTX 3090 for input RGBD
video processing and rendering and one Nvidia GeForce RTX 2080
for displaying the system UI and rendering results onto three screens.
After the RGBA video frames are captured by six cameras and trans-
mitted to the main memory from USB ports, our system copies all
video frames to GPU. The following video segmentation, V-Cube View
algorithm and smoothing algorithm are all implemented by Direct3D
shaders and executed on the two 3090 GPU cards. For V-Cube View,
the neural networks are converted by the NNFusion framework [50],
and the 3D warping and rasterization operations are implemented as
dedicated HLSL shaders. Each of the two 3090 GPUs is responsible
for rendering the portrait images of the local participant for one view
of the remote participants. After rendering, the generated frames are
copied from GPU to CPU. We compress RGB and alpha frames into
JPEG images separately and transmit them via the TCP/IP protocol.
The transmission bitrate is about 7Mbps. The receiver decompresses
the frames, loads them into the 2080 GPU, composes them with the
rendered 3D background, and finally displays them on the screens.

Our system achieves real-time performance for meetings between
either two or three participants. For a round-table meeting between
three participants, the timings of all steps in our system are: 60ms for
RGBD video acquisition, 40ms for rendering a portrait frame on an
Nvidia GeForce RTX 3090 GPU, 30ms for copying and compressing
the portrait images, 100ms for network transmission, and 40ms for
decompressing the portrait images and rendering them on screen. Thus
the end-to-end delay between two sites is about 300ms. Since all these
steps can be executed in parallel, our system can achieve 23fps for
round-table meetings among three participants and 30fps (alternative-
frame processing on two GPUs) for one-one meetings between two
participants. The viewpoint tracker uses 6 threads to track eye posi-
tions and an additional thread for transmission. The viewpoint can be
updated at 30HZ and the network delay is 100ms. The overall delay is
admissible for our meeting scenario without noticeable discomfort.

Our current system focuses on realistic portrait video rendering to
establish visual attention and eye contact. For audio transmission,
we use a commercial teleconference software (Microsoft Teams). In
practice, we found that the video delay of our system is almost the same
as the audio transmission delay so no special processing is applied.

5.1 VirtualCube Meeting
We apply our V-Cube system for several video communication scenar-
ios, including face-to-face meetings between two participants, round-
table meetings with three participants, and side-by-side meetings be-
tween two participants, as shown in Figure 1. Please refer to the
accompanying video for video clips recorded live from a camera behind
the participant in each meeting setup.

Face-to-face meeting As shown in the accompanying video
(0′13′′− 1′10′′), our system faithfully preserves the gaze contact be-
tween two participants in a face-to-face meeting. In this video clip,
both of the two actors are new subjects not present in the training
dataset of our V-Cube View method. For comparison, we also demon-
strate the same video conference using the original view of one camera
(1′11′′− 1′26′′) as done in commercial teleconference software. As
the cameras are mounted around the boundary of the large screen to
avoid occluding the displayed content, the camera views are far away
from the participant’s view. We choose the bottom camera which is
closest to the participant view in this comparison. It is clear that in this
case the mutual eye gaze between participants is not preserved and the
participants cannot establish eye contact.

Round-table meeting We also evaluate the performance of our
system in a round-table meeting among three participants at three dif-
ferent locations. As shown in the accompanying video (1′32′′−3′20′′),
our system successfully delivers an immersive meeting experience for
all three participants as if they were in the same room. Note that when
one participant speaks (around 1′50′′), the other two visually pay atten-
tion to the speaker and the participants naturally switch their attention
to others as the speaker changes. This visual attention is important in
real-world meetings for the participants to not only receive vivid visual
feedback from others but also achieve smooth turn taking and floor
control. We also demonstrate that a participant makes side glances and
side comments to a remote participant as if they were in the same room
(2′30′′− 2′40′′), which cannot be achieved by existing video-based
teleconference systems. In this video clip, the male actor in yellow
appeared in the training dataset of V-Cube View, while the other two
actors are unseen. For comparison, we show the same video conference
with commercial teleconference software in the supplementary video.
Again, the participants are not able to establish eye contact, nor can the
visual attention to the speaker be correctly displayed.

Side-by-side meeting Thanks to the flexibility of our V-Cube
assembly, our system also supports side-by-side meetings between two
participants at different locations (3′26′′−4′45′′), where the working
items on the participants’ computer screens are visible and shared by
both participants. During the meeting, a participant can see whether the
remote participant is visually paying attention to a specific work item
as desired and naturally switches his attention between his own screen
and the other participant, as well as the remote participant’s screen as in

8

Table 1. Quantitative evaluation of our V-Cube View method and compar-
ison with different configurations. The train set contains video clips of 14
subjects. The validation set includes the same 14 subjects but with new
video clips which do not appear in the train set. The test set contains
another 4 subjects unseen during training. Results are averaged on
evenly-sampled 19K, 6K, and 6K frames for the three sets, respectively.

Image PSNR (↑) α MSE ×10−3 (↓) Face per. error (↓)
train val. test train val. test train val. test

w/o depth estimation 26.01 25.73 27.01 4.37 4.78 4.60 0.54 0.54 0.58
Lumi-Net w/o diff. maps 27.84 27.57 28.09 3.41 3.71 4.26 0.50 0.49 0.54
Lumi-Net w/o image 28.77 28.52 28.90 2.38 2.60 3.26 0.46 0.45 0.51
Our full model 29.87 29.69 29.97 1.36 1.51 2.11 0.39 0.38 0.45

a real working environment. In this side-by-side meeting video, both of
the two actors appeared in the training data of V-Cube View. Note that
although side-by-side meetings are fairly common in real workplaces,
there is no existing video conference system that can reproduce this
scenario for remote users.

We have received feedback from dozens of volunteers who have
used our system for both face-to-face meetings and round-table group
meetings. All these participants felt that our system provides correct
eye gaze and eye contact, which leads to a natural and realistic visual
communication experience that they have never seen with existing
video conferencing software. For round-table group meetings, several
participants commented that “the two remote participants on the screen
are in the same room” even though these two participants were actually
in different locations. They also enjoyed using our system: “I love
that the system allows one to view their partners via several angles”
and “as though your partners were sitting right across your table”.
Some participants commented that the VirtualCube system is “game
changing” and “mind blowing”.

5.2 V-Cube View Evaluation
In this section, we further evaluate our V-Cube View method, one of
the core underpinnings of the VirtualCube system.

Quantitative evaluation For quantitative evaluation, we split our
captured dataset of 18 subjects into three sets: train, validation, and
test. The training and validation sets contain the same subset of 14
subjects, but differ in the video clips used for each subject. The other
4 subjects are included in the test set as unseen persons to verify the
generalization of our trained model to new users. These 4 testing
subjects have different skin colors (black, brown, white, and yellow)
and contain both male and female. We train our method on the training
set, and evaluate the results on all three subsets. We report three metrics:
PSNR of the generated images, mean square error (MSE) of the alpha
maps, and the perceptual error of the synthesized faces (see Section 4.2
for more details regarding the face perceptual error).

The evaluation results are presented in Table 1. As we can see, our
method is able to generate high quality images with PSNR as high as
29.2–29.8db. It also shows that our trained model generalizes well to
unseen persons: the image PSNRs are similar to the train and validation
sets, while the alpha map and face perceptual errors are slightly higher.

We also conduct ablation studies to verify the effectiveness of differ-
ent components. As shown in Table 1, the performance drops signifi-
cantly if we remove the depth estimation module and simply use the
initial depth. Table 1 also demonstrates the efficacy of our Lumi-Net
design: the depth and normal difference priors lead to significantly
improved rendering results.

Qualitative evaluation In Fig. 9 we show some sample input and
output from our method. We also show the results from other alternative
solutions, including single-view image warping (best input view used
here) and a multiview depth and texture fusion scheme similar to [75].
Visually inspected, our method produces realistic rendering results
significantly better than the compared solutions. We also present the
results of our method trained without the perceptual loss on face region,
where the degraded face fidelity can be clearly observed.

We also asked randomly selected users of our system to visually
inspect the rendered still images and video clips randomly drawn from

In
pu

t 4
 v
ie
w
s

Sy
nt
he

siz
ed

 v
irt
ua

l v
ie
w
s

Single‐view warping
(with input depth)

Multiview fusion
(angle‐based texture selection)

Our method Ground truthOur method
(without face perceptual loss)

Fig. 9. Rendering results of our method compared to other alternatives.
See text for details. (Best viewed on screen with zoom-in)

our validation and test sets and compare them against the ground truth.
Most of them commented that our rendering results look “very realistic”
and they could not easily distinguish them from the ground truth images.

Running time The V-Cube View method takes about 40ms to
render one image. The depth estimation module and blending weight
prediction CNN take 5ms and 2ms, respectively. The post-processing
CNN takes about 20ms, which is the most time-consuming compo-
nent as it runs at 1280× 960 resolution. We have tried running all
components at 1280×960 resolution, with which the whole method
is 5× slower. The warping operations and temporal smoothing are all
extremely fast (∼ 1ms), thanks to our HLSL shader implementation.
Other parts such as IO between CPU and GPU takes about 9ms.

6 CONCLUSION AND FUTURE WORK

The VirtualCube system advances the state-of-art of large-format video
conferencing and shows early promise of the possibility of bringing
remote parties together and letting them interact as if they were in the
same room. Furthermore, we show that VirtualCube can be used as
the basic building blocks of video conferences. This is a viable and
versatile way to model video conferences – indeed this is a new way to
think about video conferencing as well. We believe there is much more
to be discovered along this direction. The fact that the VirtualCube
system can be built completely with off-the-shelf hardware will inspire
more people to join this research direction and build the next generation
video conferencing technologies on top of our work.

One possible future work is to make VirtualCube more flexible. In
this work we assume that each VirtualCube is used by one meeting par-
ticipant. This assumption is made mainly for simplification and for the
fact that this is one of the most common application scenarios. There
is no fundamental reason to prevent more users from sharing a Virtu-
alCube. Incorporating spatial audio into our system will also enhance
the immersive meeting experience. Our current work focuses only on
the visual attention aspect of video conferencing, and a commercial
software is used for audio recording and transmission. Much excellent
research has been done in spatial audio [23,41] and we leave it as future
work. Another promising avenue for future research is to increase the
ability to support complicated hand gestures. The VirtualCube currently
supports common simple gestures. Handling arbitrary hand gestures
is a challenging task. In particular, the Azure Kinect camera we use
cannot acquire high-quality depth data for moving hands. In addition,
RGB videos of fast hand gestures can be blurry. For these reasons,
advances in dealing with hand gestures will require both progress in
camera hardware and innovations in software algorithms.

9

REFERENCES

[1] O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and P. Debevec. The
digital emily project: Photoreal facial modeling and animation. In ACM
SIGGRAPH 2009 Courses. ACM, 2009.

[2] T. Bagautdinov, C. Wu, T. Simon, F. Prada, T. Shiratori, S.-E. Wei, W. Xu,
Y. Sheikh, and J. Saragih. Driving-signal aware full-body avatars. ACM
Trans. Graph., 40(4), 2021.

[3] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. E. Goss, W. B. Culbertson,
and T. Malzbender. The coliseum immersive teleconferencing system. In
International Workshop on Immersive Telepresence, vol. 6, 2002.

[4] S. Beck, A. Kunert, A. Kulik, and B. Froehlich. Immersive group-to-group
telepresence. IEEE TVCG, 19(4):616–625, 2013.

[5] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Cohen. Unstruc-
tured lumigraph rendering. In SIGGRAPH, pp. 425–432. ACM, 2001.

[6] E. Burkov, I. Pasechnik, A. Grigorev, and V. Lempitsky. Neural head
reenactment with latent pose descriptors. In CVPR, pp. 13786–13795,
2020.

[7] W. A. Buxton, A. J. Sellen, and M. C. Sheasby. Interfaces for multiparty
videoconferences. Video-mediated communication, pp. 385–400, 1997.

[8] G. Chaurasia, S. Duchene, O. Sorkine-Hornung, and G. Drettakis. Depth
synthesis and local warps for plausible image-based navigation. ACM
Trans. on Graphics, 32(3):1–12, 2013.

[9] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su. Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo. In
ICCV, 2021.

[10] D. Chen, G. Hua, F. Wen, and J. Sun. Supervised transformer network for
efficient face detection. In ECCV, pp. 122–138, 2016.

[11] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade face detection
and alignment. In ECCV, pp. 109–122, 2014.

[12] L. Chen, R. K. Maddox, Z. Duan, and C. Xu. Hierarchical cross-modal
talking face generation with dynamic pixel-wise loss. In CVPR, pp. 7832–
7841, 2019.

[13] M. Chen. Leveraging the asymmetric sensitivity of eye contact for video-
conference. In SIGCHI, p. 49–56, 2002.

[14] I. Choi, O. Gallo, A. Troccoli, M. H. Kim, and J. Kautz. Extreme view
synthesis. In ICCV, pp. 7781–7790, 2019.

[15] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese,
H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-
viewpoint video. ACM Trans. on Graphics, 34(4):1–13, 2015.

[16] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering archi-
tecture from photographs: A hybrid geometry-and image-based approach.
In SIGGRAPH, pp. 11–20. ACM, 1996.

[17] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle,
S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, et al. Fusion4d: Real-time
performance capture of challenging scenes. ACM Trans. on Graphics,
35(4):1–13, 2016.

[18] M. Elgharib, M. Mendiratta, J. Thies, M. Niessner, H.-P. Seidel, A. Tewari,
V. Golyanik, and C. Theobalt. Egocentric videoconferencing. ACM Trans.
on Graphics, 39(6), 2020.

[19] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker. Deepview: View synthesis with learned
gradient descent. In CVPR, pp. 2367–2376, 2019.

[20] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstereo: Learning
to predict new views from the world’s imagery. In CVPR, pp. 5515–5524,
2016.

[21] O. Fried, A. Tewari, M. Zollhöfer, A. Finkelstein, E. Shechtman, D. B.
Goldman, K. Genova, Z. Jin, C. Theobalt, and M. Agrawala. Text-based
editing of talking-head video. ACM Trans. on Graphics, 38(4), 2019.

[22] H. Fuchs, A. State, and J.-C. Bazin. Immersive 3d telepresence. Computer,
47(7):46–52, 2014.

[23] T. A. Garner. Echoes of Other Worlds: Sound in Virtual Reality: Past,
Present and Future. Springer, 2017.

[24] J. Geng, T. Shao, Y. Zheng, Y. Weng, and K. Zhou. Warp-guided gans for
single-photo facial animation. ACM Trans. on Graphics, 37(6), 2018.

[25] S. J. Gibbs, C. Arapis, and C. J. Breiteneder. Teleport–towards immersive
copresence. Multimedia Systems, 7(3):214–221, 1999.

[26] D. Giger, J.-C. Bazin, C. Kuster, T. Popa, and M. Gross. Gaze correction
with a single webcam. In IEEE International Conference on Multimedia
and Expo (ICME), pp. 1–6, 2014.

[27] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph.
In SIGGRAPH, pp. 43–54. ACM, 1996.

[28] D. Gotsch, X. Zhang, T. Merritt, and R. Vertegaal. Telehuman2: A

cylindrical light field teleconferencing system for life-size 3d human
telepresence. In CHI, vol. 18, p. 552, 2018.

[29] M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. V.
Moere, and O. Staadt. Blue-c: A spatially immersive display and 3d video
portal for telepresence. ACM Trans. on Graphics, 22(3):819–827, 2003.

[30] K. Gu, Y. Zhou, and T. Huang. Flnet: Landmark driven fetching and
learning network for faithful talking facial animation synthesis. In AAAI,
vol. 34, pp. 10861–10868, 2020.

[31] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu. Real-time geometry,
albedo, and motion reconstruction using a single rgb-d camera. ACM
Trans. on Graphics, 36(4), 2017.

[32] S. Ha, M. Kersner, B. Kim, S. Seo, and D. Kim. Marionette: Few-shot
face reenactment preserving identity of unseen targets. In AAAI, vol. 34,
pp. 10893–10900, 2020.

[33] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2003.

[34] C.-F. Hsu, Y.-S. Wang, C.-L. Lei, and K.-T. Chen. Look at me! correcting
eye gaze in live video communication. ACM Trans. Multimedia Comput.
Commun. Appl., 15(2), 2019.

[35] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In CVPR, pp. 1125–1134, 2017.

[36] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In ECCV, pp. 694–711, 2016.

[37] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bolas, and
P. Debevec. Achieving eye contact in a one-to-many 3d video teleconfer-
encing system. ACM Trans. on Graphics, 28(3), 2009.

[38] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi. Learning-based view
synthesis for light field cameras. ACM Trans. on Graphics, 35(6):1–10,
2016.

[39] P. Kauff and O. Schreer. An immersive 3d video-conferencing system
using shared virtual team user environments. In International Conference
on Collaborative Virtual Environments, pp. 105–112, 2002.

[40] H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, M. Nießner, P. Pérez,
C. Richardt, M. Zollöfer, and C. Theobalt. Deep video portraits. ACM
Trans. on Graphics, 37(4):163, 2018.

[41] H. Kim, L. Remaggi, P. J. Jackson, and A. Hilton. Immersive spatial audio
reproduction for vr/ar using room acoustic modelling from 360 images. In
IEEE VR, pp. 120–126, 2019.

[42] M. Kuechler and A. Kunz. Holoport-a device for simultaneous video and
data conferencing featuring gaze awareness. In IEEE VR, pp. 81–88, 2006.

[43] C. Kuster, T. Popa, J.-C. Bazin, C. Gotsman, and M. Gross. Gaze correc-
tion for home video conferencing. ACM Trans. on Graphics, 31(6):1–6,
2012.

[44] C. Kuster, T. Popa, C. Zach, C. Gotsman, M. H. Gross, P. Eisert, J. Horneg-
ger, and K. Polthier. Freecam: A hybrid camera system for interactive
free-viewpoint video. In VMV, pp. 17–24, 2011.

[45] C. Kuster, N. Ranieri, H. Zimmer, J.-C. Bazin, C. Sun, T. Popa, M. Gross,
et al. Towards next generation 3d teleconferencing systems. In 3DTV-
Conference: The True Vision-Capture, Transmission and Display of 3D
Video (3DTV-CON), pp. 1–4, 2012.

[46] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH, pp.
31–42. ACM, 1996.

[47] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. Magnor. Virtual video
camera: Image-based viewpoint navigation through space and time. In
Computer Graphics Forum, vol. 29, pp. 2555–2568, 2010.

[48] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and
Y. Sheikh. Neural volumes: Learning dynamic renderable volumes from
images. ACM Trans. on Graphics, 38(4), 2019.

[49] K. Luo, T. Guan, L. Ju, H. Huang, and Y. Luo. P-mvsnet: Learning
patch-wise matching confidence aggregation for multi-view stereo. In
ICCV, pp. 10452–10461, 2019.

[50] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang, L. Zhang,
and L. Zhou. Rammer: Enabling holistic deep learning compiler optimiza-
tions with rtasks. In USENIX Symposium on Operating Systems Design
and Implementation, pp. 881–897, 2020.

[51] A. Maimone and H. Fuchs. Encumbrance-free telepresence system with
real-time 3d capture and display using commodity depth cameras. In
ISMAR, pp. 137–146, 2011.

[52] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least
squares generative adversarial networks. In ICCV, pp. 2794–2802, 2017.

[53] W. Matusik and H. Pfister. 3d tv: A scalable system for real-time acqui-
sition, transmission, and autostereoscopic display of dynamic scenes. In

10

SIGGRAPH, p. 814–824. ACM, 2004.
[54] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In ECCV, pp. 405–421, 2020.

[55] K. Nagano, J. Seo, J. Xing, L. Wei, Z. Li, S. Saito, A. Agarwal, J. Fursund,
and H. Li. Pagan: Real-time avatars using dynamic textures. ACM Trans.
on Graphics, 37(6), 2018.

[56] H. Nagata, D. Mikami, H. Miyashita, K. Wakayama, and H. Takada.
Virtual reality technologies in telecommunication services. Journal of
Information Processing, 25:142–152, 2017.

[57] D. Nguyen and J. Canny. Multiview: spatially faithful group video confer-
encing. In SIGCHI, pp. 799–808, 2005.

[58] Y. Nirkin, Y. Keller, and T. Hassner. Fsgan: Subject agnostic face swapping
and reenactment. In ICCV, pp. 7184–7193, 2019.

[59] S. Ohl. Tele-immersion concepts. IEEE TVCG, 24(10):2827–2842, 2018.
[60] K. Olszewski, Z. Li, C. Yang, Y. Zhou, R. Yu, Z. Huang, S. Xiang, S. Saito,

P. Kohli, and H. Li. Realistic dynamic facial textures from a single image
using gans. In ICCV, pp. 5439–5448, 2017.

[61] K. Olszewski, J. J. Lim, S. Saito, and H. Li. High-fidelity facial and speech
animation for vr hmds. ACM Trans. Graphics, 35(6), 2016.

[62] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degt-
yarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou, V. Tankovich, C. Loop,
Q. Cai, P. A. Chou, S. Mennicken, J. Valentin, V. Pradeep, S. Wang, S. B.
Kang, P. Kohli, Y. Lutchyn, C. Keskin, and S. Izadi. Holoportation: Virtual
3d teleportation in real-time. In UIST, p. 741–754. ACM, 2016.

[63] E. Penner and L. Zhang. Soft 3d reconstruction for view synthesis. ACM
Trans. on Graphics, 36(6):1–11, 2017.

[64] C. Plüss, N. Ranieri, J.-C. Bazin, T. Martin, P.-Y. Laffont, T. Popa, and
M. Gross. An immersive bidirectional system for life-size 3d communi-
cation. In International Conference on Computer Animation and Social
Agents, p. 89–96. ACM, 2016.

[65] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The
office of the future: A unified approach to image-based modeling and
spatially immersive displays. In SIGGRAPH, p. 179–188. ACM, 1998.

[66] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual
recognition challenge. In IJCV, vol. 115, pp. 211–252, 2015.

[67] A. Sadagic, H. Towles, L. Holden, K. Daniilidis, and B. Zeleznik. Tele-
immersion portal: Towards an ultimate synthesis of computer graphics and
computer vision systems. In Annual International Workshop on Presence,
pp. 21–23, 2001.

[68] S. Sengupta, V. Jayaram, B. Curless, S. M. Seitz, and I. Kemelmacher-
Shlizerman. Background matting: The world is your green screen. In
CVPR, pp. 2291–2300, 2020.

[69] J. Shi, X. Jiang, and C. Guillemot. Learning fused pixel and feature-based
view reconstructions for light fields. In CVPR, pp. 2555–2564, 2020.

[70] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICML, 2015.

[71] M. T. Tausif, R. Weaver, and S. W. Lee. Towards enabling eye contact and
perspective control in video conference. In UIST Adjunct, p. 96–98. ACM,
2020.

[72] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stamminger, and
C. Theobalt. Real-time expression transfer for facial reenactment. ACM
Trans. on Graphics, 34(6), 2015.

[73] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Niessner.
Face2face: Real-time face capture and reenactment of rgb videos. In
CVPR, 2016.

[74] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner.
Facevr: Real-time gaze-aware facial reenactment in virtual reality. ACM
Trans. on Graphics, 37(2), 2018.

[75] E. Tola, C. Zhang, Q. Cai, and Z. Zhang. Virtual view generation with a
hybrid camera array. Technical report, 2009.

[76] H. Towles, W. chao Chen, R. Yang, S. uok Kum, H. F. N. Kelshikar, J. Mul-
ligan, K. Daniilidis, H. Fuchs, C. C. Hill, N. K. J. Mulligan, L. Holden,
B. Zeleznik, A. Sadagic, and J. Lanier. 3d tele-collaboration over internet2.
In International Workshop on Immersive Telepresence, 2002.

[77] Q. Wang, Z. Wang, K. Genova, P. P. Srinivasan, H. Zhou, J. T. Barron,
R. Martin-Brualla, N. Snavely, and T. Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In CVPR, pp. 4690–4699, 2021.

[78] T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, and B. Catanzaro. Few-
shot video-to-video synthesis. In NeurIPS, 2019.

[79] T.-C. Wang, A. Mallya, and M.-Y. Liu. One-shot free-view neural talking-
head synthesis for video conferencing. In CVPR, 2021.

[80] S.-E. Wei, J. Saragih, T. Simon, A. W. Harley, S. Lombardi, M. Perdoch,
A. Hypes, D. Wang, H. Badino, and Y. Sheikh. Vr facial animation via
multiview image translation. ACM Trans. Graph., 38(4), 2019.

[81] W.-C. Wen, H. Towles, L. Nyland, G. Welch, and H. Fuchs. Toward a
compelling sensation of telepresence: demonstrating a portal to a distant
(static) office. In IEEE Conference on Visualization, pp. 327–333, 2000.

[82] S. Xu, J. Yang, D. Chen, F. Wen, Y. Deng, Y. Jia, and X. Tong. Deep 3d
portrait from a single image. In CVPR, pp. 7710–7720, 2020.

[83] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth inference for
unstructured multi-view stereo. In ECCV, pp. 767–783, 2018.

[84] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. Pixelnerf: Neural radiance
fields from one or few images. In CVPR, pp. 4578–4587, 2021.

[85] E. Zakharov, A. Ivakhnenko, A. Shysheya, and V. Lempitsky. Fast bi-layer
neural synthesis of one-shot realistic head avatars. In ECCV, pp. 524–540,
2020.

[86] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky. Few-shot ad-
versarial learning of realistic neural talking head models. In ICCV, pp.
9459–9468, 2019.

[87] C. Zhang, Q. Cai, P. A. Chou, Z. Zhang, and R. Martin-Brualla. Viewport:
A distributed, immersive teleconferencing system with infrared dot pattern.
IEEE MultiMedia, 20(1):17–27, 2013.

[88] H. Zhou, Y. Liu, Z. Liu, P. Luo, and X. Wang. Talking face generation by
adversarially disentangled audio-visual representation. In AAAI, vol. 33,
pp. 9299–9306, 2019.

[89] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely. Stereo magnifi-
cation: learning view synthesis using multiplane images. ACM Trans. on
Graphics, 37(4):1–12, 2018.

[90] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.
High-quality video view interpolation using a layered representation. In
SIGGRAPH, pp. 600–608. ACM, 2004.

[91] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al. Real-time non-rigid
reconstruction using an rgb-d camera. ACM Trans. on Graphics, 33(4):1–
12, 2014.

11

	Introduction
	Related Work
	3D Video Communication
	Gaze Correction for Video Conferencing
	Free Viewpoint Video of Human Characters

	The VirtualCube System
	VirtualCube: A Conceptual Overview
	Implementation Details

	V-Cube View for Real-time Rendering
	Virtual View Depth Prediction
	Lumi-Net Rendering
	Training Data
	Temporal Smoothing

	Experiments
	VirtualCube Meeting
	V-Cube View Evaluation

	Conclusion and Future Work

