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Abstract
Sketching is a simple and efficient way for humans to express their perceptions of the world. Sketch semantic segmentation
plays a key role in sketch understanding and is widely used in sketch recognition, sketch-based image retrieval, or editing.
Due to modality difference between images and sketches, existing image segmentation methods may not perform best, which
overlook the sparse nature and stroke-based representation in sketches. The existing sketch semantic segmentation methods
are mainly designed for single-instance sketches. In this paper, we present a new stroke-based sequential-spatial neural
network (S3NN) for scene-level free-hand sketch semantic segmentation, which leverages a bidirectional LSTM and graph
convolutional network to capture the sequential and spatial features of sketches. In order to address the data lacking issue, we
propose the first scene-level free-hand sketch dataset (SFSD). SFSD is composed of 12K sketch-photo pairs over 40 object
categories, where the sketches were completely hand-drawn and each contains 7 objects on average. We conduct comparative
and ablative experiments on SFSD to evaluate the effectiveness of our method. The experimental results demonstrate that our
method outperforms state-of-the-art methods. The code, models, and dataset will be made public after acceptance.
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1 Introduction

Sketching is one of the most important ways for humans to
depict intents. Compared to images and text, sketches are
more concise and can convey richer information. Thanks to
the rapid development and popularity of stylus and touch
screen devices, people can get access to free-hand sketch
with more convenience. Sketch-based interactive applica-
tions have also emerged, such as daily tools (flowcharts and
mind maps drawing) and software for more specialized work
(industrial and mechanical design). These applications bring
more fine-grained requirements on sketch operations.

Sketch semantic segmentation (SSS) is a fundamental
problem in sketch understanding. SSS aims to assign strokes
in sketch with certain semantic labels. According to the seg-
mentation granularity and types of semantic labels, SSS can
be divided into scene and object levels (Fig. 1). In scene-
level segmentation, prior artmethods [1]migrated themodels
in image domain to sketch domain for feature extraction.
However, directly using image semantic segmentation for
sketch ignores the strong temporal sequential context among
strokes in hand-drawn sketch, because strokes belonging
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to the same object are likely to be drawn in close prox-
imity (see visualization of stroke IDs in Fig. 7). Besides,
sketch has the characteristic of sparsity, and an ideal visual
feature encoder is expected to leverage the sparsity charac-
teristic. In order to address the above two issues, we utilize a
stroke-based method for scene-level semantic segmentation.
The input of our method is stroke sequences that are stored
in a vector format. Although there are a few single-object
sketch datasets annotated with drawing strokes, no scene-
level sketch datasets are available so far.

The past decade has witnessed the construction of many
sketch datasets. Early efforts [2,3] collected hand-drawn
sketches of single objects. With tasks such as cross-modal
retrieval and generation being proposed, subsequent work
improved the construction of sketch datasets from two
aspects. (1) Transition from unimodal to multi-modal. Other
modalities such as real photos were adopted to establish
inter-modal correspondences. (2) Lifting from single objects
to multiple objects (scene-level). Scene-level sketches can
describe rich scene details and this is consistent with the
fact that realistic pictures usually contain multiple objects.
Due to the time-consuming efforts of sketching multiple
objects, existing work [1,4] mainly achieves the goal by
combining existing single-object sketches. Compared to
fully hand-drawn sketches, the sketches obtained by the
above combination approach may lack certain scene context
and variety. Moreover, the simple drag-and-drop operation
disables the collection of stroke order. Therefore, in this
paper, we construct the first scene-level free-hand sketch
dataset (SFSD), which integrates multiple objects, free-hand
sketches, sketch-photo pairs, and vector format storage in
one sketch dataset.

Based on SFSD, we design a stroke-based sequential–
spatial neural network (S3NN) for scene-level SSS. Com-
pared to images, sketches are highly sparse, and their
appearance is dominated by outlines and edges. The key
challenges of SSS lie in the sparseness and diversity of
sketches. Thanks to the vector format of SFSD, we can easily
extract each stroke and drawing order of a sketch. The stroke
sequence representation of scene sketch reduces the spar-
sity issue of sketch. In order to extract the diverse feature of
sketch, we integrate visual, sequential, and spatial informa-
tion in S3NN. Specifically, a pre-trained convolutional neural
network (CNN) is utilized to extract the overall visual fea-
ture of each stroke. The sequential relationship of strokes and
the spatial connection between neighboring strokes are then
learned by a recurrent neural network (RNN) and a graph
convolutional network (GCN).

Our main contributions can be summarized as follows:

• We built the first scene-level free-hand sketch dataset
(i.e., SFSD) in vector format, which contains more than

12 thousand sketch-photo pairs. SFSD can facilitate the
research and evaluation of stroke-based neural models.

• To the best of our knowledge, we are the first to conduct
scene-level stroke-based sketch semantic segmentation.
To tackle the challenges of sparseness and diversity
in sketches, the proposed model incorporates visual,
sequential, and spatial features of stroke sequences.

• Experiments onSFSDdemonstrate that our segmentation
model outperforms the state of the art (SOTA).

2 Related work

2.1 Sketch datasets

Several sketchdatasets havebeenpresented in the past decade
to promote various sketch applications. Table 1 summarizes
the representative datasets and our SFSD dataset. TU-Berlin
[2] is the first large-scale sketch dataset, which consists
of 20K sketches over 250 categories. QuickDraw [3] is a
large dataset that includes 50M sketches across 345 cate-
gories. Both TU-Berlin and QuickDraw are single-modal
free-hand sketch datasets, which are collected with vector
storage formats and facilitate sketch editing. They are widely
used in sketch recognition and text-sketch retrieval. Sketchy
[5] and QMUL-Shoe-V2 [6] are two multi-modal single-
object sketch datasets with sketch-photo pairs. SketchyScene
[1] and SketchyCOCO [4] contribute scene-level sketch
datasets with multiple foreground or background objects.
However, these scene sketches are obtained by composit-
ing single-instance sketches and are stored in image format.
The category ‘Person’ is very common for many computer
vision researches and applications. However, previous sketch
datasets hardly included ‘Person’ as one of the categories due
to the diversity of human, especially, varied poses, shapes,
and actions of different subjects. SketchyScene [1] is the
only dataset that also contains the category ‘Person’ of car-
toon characters which are different to hand-drawn sketches
in stroke and appearance style. In this work, we present
the SFSD dataset featuring vector storage format, free-hand
drawing, scene-level objects, sketch-photo pairs, and human
categories, which can benefit sketch retrieval or editing
researches.

2.2 Sketch semantic segmentation

Early efforts often use low-level geometric features [7,8] and
traditional machine learning methods [9–12] to predict the
categories that strokes in a sketch belong to. While some
results could be achieved, these methods highly rely on spe-
cific input format and are time-consuming. Following the
flourishing of deep learning, various neural network archi-
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Fig. 1 Illustration of
object-level and scene-level
sketch semantic segmentation.
Scene-level sketch segmentation
aims to predict class label of
each stroke in scene sketch,
which outperforms object-level
segmentation of a large margin
in the aspect of semantic context
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Table 1 Summary of
representative sketch datasets
and our SFSD dataset

Dataset Sketch amount Vector Free-hand Sketch-photo pair Scene Person

TU-Berlin [2] 20K � �
QuickDraw [3] 50M+ � �
Sketchy [5] 75K � � �
QMUL-Shoe-V2 [6] 700 � � �
SketchyScene [1] 7K+ � � �
SketchyCOCO [4] 14K+ � �
SFSD (Ours) 12K+ � � � � �

tectures are used for SSS, including CNN-based methods
[13–16], and RNN-based methods [17–21].

CNN-based models treat SSS as an image segmentation
task and pay more attention to the edge and outline fea-
tures. Since a sketch is drawn by stroke sequences, sequence
modeling of sketch strokes is a promising solution for SSS.
RNN-based models extract the sequential features of stroke
points. Besides the above visual and sequential features, the
spatial relationship between strokes is also useful for SSS.
Since graph-based networks can learn structural relation-
ships effectively, some efforts use graph neural networks for
single-object SSS [22,23]. In this paper, we adopt a hybrid
architecture of CNN, RNN, and GCN to capture multi-scale
sketch features, and conduct stroke-based multi-object SSS.

3 The SFSD dataset

SFSD has the characteristics of scene-level, completely free-
hand,multi-modal, and vector storage data format. It includes
more than 12 thousand pairs of photo and sketch over 40 cate-
gories. The reference photos were selected from MS COCO
[24]. Figure 2 shows 44 sketch-photo pairs from the pro-
posed SFSD, where the annotation of sketches is instance
level. All the 40 categories are included in the figure. Since

MS COCO provides the textual description of each photo,
we can even carry out cross-modal research upon SFSD.
In addition to the semantic segmentation addressed in this
paper, SFSD can also support retrieval, generation, and other
sketch-related tasks as well. In this section, we introduce the
process of dataset construction, which can be summarized
into three phases, i.e., image preparation, sketch collection,
and sketch annotation. Next, we report some statistics and
analysis on SFSD.

3.1 Dataset construction

3.1.1 Image preparation

MS COCO dataset [24] includes 328K photos with 2.5M
labeled instances. Considering the large volume of MS
COCO, it is not realistic to sketch all the photos in the dataset.
Besides, not all pictures are suitable for sketching. For exam-
ple, a photo of a man feeding hundreds of pigeons has too
many objects and it takes lots of effort to sketch the scene. To
filter the photos, we first excluded those with more than 10
objects. Then,wemanually selected the photos by the follow-
ing criteria. (1) The scenes are restricted to wildlife, outdoor
sports, and out-of-town streets. Other indoor and urban street
scenes may contain too many trivial objects (some objects

123



Z. Zhang et al.

Fig. 2 Example sketch-photo pairs in SFSD which contain objects of all 40 categories. The sketches shown were annotated at the instance level.
We can observe that the dataset is diverse in terms of object categories, sketch complexity, and drawing quality
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Fig. 3 Samples of qualified and
disqualified photos during image
selection process. These photos
are taken from MS COCO

are difficult to identify even for humans after conversion
to sketches) and the background may be hardly complete.
(2) The photos have high integrity, moderate background
complexity, and objects that are relatively easy to identify
and draw. We recruited some participants to conduct a pre-
experiment and then came to the above conclusion. In this
way, we finally selected 12,115 pictures from MS COCO as
reference photos for our SFSD. Figure 3 displays samples of
selected qualified and disqualified images.

3.1.2 Sketch collection

We recruited 40 participants with different levels of painting
skill. 1600 hours were spent in total to accomplish 12 thou-
sand sketches. In order to standardize the process of drawing,
we established an online sketching system to collect stroke
sequences. We mainly collected the absolute coordinates of
drawing track with a sampling rate of 120 Hz. Each stroke is
represented by a sequence of two-dimensional coordinates,
and each sketch is composed of a stroke sequence. Consid-
ering the multi-object characteristic of sketches in SFSD, we
paid more attention to the overall layout and coordination
between different parts of scene sketches. Instead of overlap-

ping the panels of sketch and reference photo and allowing
for direct tracing of the outlines as prior work [6], we placed
the reference image on the left side of the drawing board and
asked participants to give full play to their drawing ability.
This setting enhanced the diversity of sketches for each indi-
vidual object. In order to ensure the dataset to follow uniform
standards, we adopt manual verification to discard sketches
if the main objects cannot be identified by more than one
person.

3.1.3 Sketch annotation

We deployed a sketch annotation system to annotate SFSD.
Another group of participants were employed to finish the
sketch annotation. Each stroke was assigned with certain
background or foreground categories.Attributes like drawing
completeness and similarity of all objects are also recorded
for futurework. The quality inspection of sketch includes two
aspects, the drawing quality of sketches and the correctness
of annotation. The quality metric of sketch includes overall
legibility, sketch-photo matching degree, and object details.
The annotation quality inspection aims to correct labeling
errors of sketch strokes.
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Table 2 Comparison and statistics of scene sketch datasets

Dataset Categories Sketches per category Categories per sketch Objects per sketch Strokes per sketches
Max Min Mean Max Min Mean Max Min Mean Max Min Mean

SketchyScene [1] 46 5723 31 1087.02 19 3 6.88 94 3 16.71 – – –

SketchyCOCO [4] 17 9051 33 1825.06 6 1 2.33 35 2 10.93 – – –

SFSD (Ours) 40 6429 141 1351.95 11 1 4.46 43 2 7.76 699 9 146.64

Fig. 4 Diagram of instance frequency distribution

3.2 Statistics and analysis

Table 2 shows comparison of different sketch components
with existing scene sketch datasets, ranging from strokes,
objects to categories. Our dataset contains 40 categories,
more than twice the number of categories in SketchyCOCO,
which also referenced real images. In our dataset, sketches
contain an average of 146 strokes, which is much higher than
previous single-object sketch dataset and can describe more
details of the objects. Moreover, to the best of our knowl-
edge, previous scene sketch datasets do not contain stroke
order information.

The number of annotated instances in each background
and foreground category can be found in Table 4. There are
12 background classes, 27 foreground classes, and 1 miscel-
laneous class (other). The total number of objects is 94,037.
In other words, we contributed a large number of single-

object sketches since the annotation is instance level. Due to
the frequent occlusion problems in real photos, the dataset
contains a large number of incomplete sketches, which can
be used for tasks like sketch completion. During the image
selection process, we did not prefer any specific category.
Naturally, an obvious long-tail distribution can be observed
on the instance frequency (Fig. 4). As the focus of segmen-
tation, foreground categories are mainly concentrated in the
long-tail section, which increases the difficulty of SSS but is
more in line with practical applications.

4 Methodology

The overviewof proposed S3NN is illustrated in Fig. 5.Given
an input scene sketch, we first compute statistical parameters
(i.e., length, drawing duration, and bounding box) for each
stroke as its global features. Then, we feed the image patch
corresponding to the bounding box of each stroke into a pre-
trained CNN to extract the primary visual features of the
stroke. The above two stroke features are concatenated and
fed to subsequent modules, sequential encoder (SeqE) and
spatial encoder (SpaE). SeqE utilizes bidirectional LSTM
(BiLSTM) to extract temporal features, and SpaE leverages
the spatial context modeling ability of graph convolutional
network (GCN) to extract spatial features. Finally, we feed
the extracted temporal/spatial features into a fully connected
layer with softmax to predict the class label of each stroke.
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Fig. 5 The framework of S3NN. For a sketch sample, the preprocess-
ing includes computing statistic features and capturing visual features of
each stroke via ResNet50. The concatenated sequence feature is cascad-
ingly fed into the sequential encoder (SeqE) for temporal relationship

extraction and spatial encoder (SpaE) for spatial connection learning.
Finally, the fusion of spatial and global sequential features is mapped to
40 categories. Classification is conducted by the softmax probabilities
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4.1 Input representation

A scene-level sketch contains a certain number of strokes.
Each stroke S can be represented by a point sequence
[(x1, y1), (x2, y2), . . . , (xn, yn)],where (xk, yk) are the coor-
dinates of the kth point and n is the number of points in
a stroke. The feature of the i th stroke fi = concat( f leni ,

f duri , fboxi , fcnni ) can be obtained by concatenating four types
of features. (1) A scalar of stroke length f len, i.e., the sum
of Euclidean distances between each pair of adjacent points.
(2) A scalar of drawing duration f dur, which indicates the
time spent to draw a particular stroke. (3) 4D vector of stroke
bounding box fbox. (4) 256D visual feature fcnn obtained by
feeding image crop of stroke into a pre-trained CNN for fea-
ture extraction. We obtained the image region of each stroke
by converting a sketch from vector format into image format
and cropping the bounding box area of the corresponding
stroke in the image. Finally, the sketch features F can be
obtained by F = [f1, f2, . . . , fm], where m is the number of
strokes in the scene sketch.

4.2 Sequential encoder

In free-hand sketching, the sequence of strokes can convey
clues of human sketchingmechanism, and plays a crucial role
in the understanding of sketches. Strokes belonging to the
same object are found likely to be drawn in close proximity,
so it is a key problem to effectively incorporate this sequential
context into feature learning of strokes. BiLSTM [25] built
upon LSTM can effectively model temporal sequential con-
text of the past or future in sketching by learning long-term
memory and short-term memory. In this paper, we utilize
BiLSTM for the sequential encoder of strokes. Although
other RNNs can be alternatives, experiments demonstrate
that BiLSTM is more effective. The forward and backward
modules of BiLSTM can be formulated as follows

Lf([f1, f2, . . . , fm]) = [−→h1 ,−→h2 , . . . ,−→hm] ∈ R
dh×m (1)

Lb([fm, fm−1, . . . , f1]) = [←−h1 ,←−h2 , . . . ,←−hm] ∈ R
dh×m (2)

where Lf and Lb denote the forward and backward LSTM
operations, and dh is the hidden unit dimension. The out-
put of BiLSTM is Ht = [h1,h2, . . . ,hm], where hi =
concat(

−→
hi ,

←−−−−
hm−i+1). The hidden states will be used as the

feature vector of nodes in the subsequent modules for spatial
encoder and temporal features for stroke segmentation.

4.3 Spatial encoder

A complete sketch can be seen as the integration of multi-
ple strokes. The combination of stroke position and shape
conveys semantic information. There is uncertainty in the

Table 3 Sketch semantic segmentation accuracy (%) on SFSD

Model C-metric P-metric MIoU

FPN 75.84 74.06 40.01

DeepLabv3+ 76.04 74.89 40.61

LDP 78.34 76.40 42.79

Sketch-RNN 68.56 66.70 28.62

SketchGNN 57.04 56.56 21.37

Ours w/o SeqE 78.74 75.73 41.77

Ours w/o SpaE (BiLSTM) 76.62 73.26 40.04

71.08� 64.86� 30.99�

Ours w/o SpaE (LSTM) 74.37 70.40 38.95

Ours w/o fusion 80.14 77.35 44.39

Ours w/o wc 80.61 77.37 44.61

Ours 80.72 77.65 45.34

78.38� 73.85� 39.70�

The results marked with � are evaluated based on the test set with
shuffled strokes
Bold values indicate a method achieves the best performance compared
with other methods in a certain evaluation metric

reliability of sequential features, e.g., two temporally adja-
cent strokes may belong to the end of one object and the
start of another object, respectively. In order to compensate
for the probably of wrong classification caused by SeqE, we
further consider spatial information in this module. Taking
each stroke as a node, SpaE mainly learns the correlations
between different strokes at spatial level by GCN. Given a
scene sketch, we construct a scene sketch graph G = (V , E)

to extract spatial features of strokes, where V = {vi } and
E = {ei j } are vertices and edges of graph G, respectively.
Vertex vi denotes stroke Si , and an edge ei j links each pair of
vertices and denotes the spatial correlation between strokes
Si and S j .

Given two vertices vi and v j of the graph, we define an
edge ei j ∈ {0, 1} according to their spatial proximity, i.e.,
ei j = 1 if the bounding box B(Si ) of stroke Si contains part
of stroke S j or vice versa

ei j =
{
1 B(Si ) ∩ b(S j ) �= ∅ or B(S j ) ∩ b(Si ) �= ∅

0 otherwise
(3)

where B(·) is the bounding box of a stroke, and b(·) is the set
of points in a stroke. E is the matrix that represents edges.

For each vertex, we get a fused feature hi by concatenat-
ing forward and backward sequential features of stroke Si . To
extract spatial features among strokes, we adopt four graph
convolution layers similar to [26] to learn spatial features
P(l+1) by propagating features between adjacent vertices,
where we input the feature P(l) of the previous layer and
the adjacency matrix. Formally,

P(0) = {hi }mi=1 (4)

P(l+1) = ReLU(ÃP(l)W(l)) (5)
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Fig. 6 Visualization of representative segmentation results by the SOTA methods and our model

where Ã = E + I is the adjacency matrix, I is an identity
matrix, and W(l) is a learnable weight matrix.

4.4 Stroke segmentation

Afterwe conduct the above two encoders, we fuse the learned
sequential and spatial features of strokes, which can be used
to predict the class label of each stroke. Specifically, we first
get the fused featureRi by concatenating the output feature of
theGCN’s last layer and twoglobal features ofBiLSTMsince
the transformation of GCN may lead to loss of sequential
information. Then, Ri is further fed into a fully connected
layer and softmax for stroke classification. Formally,

Ŷi = softmax( f c(Ri )) (6)

Ri = concat(P,
−→
hm,

←−
hm) (7)

where f c(·) is the fully connected layer.

4.5 Loss function

We adopt a cross-entropy loss function for sketch stroke seg-
mentation as follows

Loss = − 1

m

m∑
i=1

wc · Yi · log(Ŷi ) (8)
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where Yi is the ground truth label, and Ŷi denotes the prob-
ability of the stroke segmentation prediction. In order to
address the long-tailed distribution of each class, we adopted
a weight wc for each class c, computed as the ratio of the
median of class frequencies and class frequency of c. There-
fore, less frequent categories have higher weight.

5 Experiments

5.1 Baselines and implementation details

We use five SOTA baselines for comparison, including
FPN [27], DeepLabv3+ [28], LDP [29], Sketch-RNN [3],
SketchGNN[22].DeepLabv3+ andFPNare commonly used
image semantic segmentation baselines. DeepLabv3+ is the
extension of DeepLabv3 [30]. FPN is a feature pyramid net-
work for semantic segmentation, which was the winning
entry of COCO stuff 2017 competition. LDP is a scene sketch
segmentation method by enhancing local detail perception.
Sketch-RNN was originally designed for sketch generation.
We utilized its encoder to perform SSS. SketchGNN uses
a well-designed GCN for object-level sketch semantic seg-
mentation.

We evaluated the baselines and our models on the pro-
posed SFSD. Experiments were not done on other datasets
since SFSD is the first scene-level sketch dataset in vec-
tor format and our model is stroke-based. We split 12,115
sketches into 9115 for training and the remaining 3000 for
testing. We converted the sketches into images and gener-
ated masks according to the semantic annotations as input
for FPN, DeepLabv3+, and LDP. ResNext50 and ResNet50
are used as the backbone networks of FPN andDeepLabv3+,
respectively. For Sketch-RNN, we followed the input format
proposed by [3] and transformed each stroke point into a
5D vector, i.e., [�xi ,�yi , p1, p2, p3]. For SketchGNN, we
resampled the points to 2048 for each sketch as input. For
sketches with less than 2048 points, we randomly interpo-
lated the stroke points to 2048 points. For sketches withmore
than 2048 points, we searched for the strokes with the highest
number of points at a time, and then deleted the point whose
curvature is closest to 180 degrees to the adjacent points. In
our method, SpaE’s vertex feature of all layers is 256D. We
apply the Adam optimizer for optimization and set the learn-
ing rate to 0.001. All models are trained on a single GeForce
RTX 3090 for 150 epochs.

5.2 Evaluationmetrics

Weevaluate the performance of differentmethods using three
standard metrics as [11,17,29].
Pixel-based accuracy (P-metric) indicates the percentage
of correctly classified pixels to pixels of all sketches. Ta
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Component-based accuracy (C-metric) evaluates the per-
centage of correctly classified strokes to total strokes. A
stroke label is determined by its most frequent pixel label.
Mean Intersection over Union (MIoU) evaluates the aver-
age of the ratios between the intersection and the union of
ground truth and predicted labels over all classes.

5.3 Comparison to state-of-the-art methods

As shown in Table 3, our model outperforms the com-
pared baselines. Our full model achieves performance gain
by 2.38% on C-metric, 1.25% on P-metric, and 2.55% on
MIoU than LDP, which is the best performing model in
all baselines. Even our model without the SpaE or SeqE
module achieves higher accuracy than DeepLabv3+. FPN
and DeepLabv3+ perform closely with accuracy of around
75%,which indicates that they are saturated using only visual
features.Our network also performsmuchbetter thanSketch-
RNN. Sketch-RNNwas originally designed for single-object
sketches. When it is applied to a scene-level sketch with
multiple objects, the patterns of input stroke sequences
may be too complex for Sketch-RNN to learn. Similarly,
SketchGNNwas originally designed for single-object sketch
segmentation, which is much simpler than scene-level sketch
segmentation.However, the scene-level sketch containsmore
complex semantic and structural information, which makes
the single-object approach SketchGNNhard to performwell.

Figure 6 shows the qualitative comparison of segmen-
tation results of sketch examples. We can observe that our
model performs better, especially in the cases of occlusive,
overlapping regions. In the third sketch, the bus and the build-
ing are overlapped. FPN, DeepLabv3+ and LDP label part of
the building as bus. In the forth sketch, the person in the mid-
dle has a small frisbee attached to his hands, which is easily
classified into the person category. Only our model identifies
the frisbee. By checking the stroke sequence, we found that
although these objects (the building and the bus, or the fris-
bee and the person) are spatially close, they are far away in
temporal sequential orders. Conceptually, the performance
gain of our method could be due to stroke representation of
sketch and the temporal context of stroke sequences.

Table 4 shows the detailed segmentation performance of
our method on all the 40 categories. Our method achieves
competitive segmentation performance for object categories
with large numbers of instances, and provides a baseline
model for scene-level stroke-based SSS.Although promising
results are achieved, we observe two types of categories with
poor segmentation performance for future improvement: (1)
objects with few occurrences, such as dogs and kites; (2)
small objects attached to large objects (i.e., human), such
as backpacks and baseball gloves. However, these are also
common issues for image semantic segmentation.

5.4 Ablation study

Effect of SeqE As shown in Table 3, after removing SeqE,
the performance drops by 1.98% on C-metric, 1.92% on P-
metric, and 3.57% on MIoU. SeqE introduces the pattern
of stroke drawing orders and enables S3NN to cope with
some otherwise intractable cases, e.g., occlusion, overlap.
To further validate the effectiveness of BiLSTM in SeqE, we
replaced BiLSTM with LSTM and observed a decrease of
2.25% on C-metric and 2.86% on P-metric. As shown in the
second row of Fig. 7, the strokes of skateboard are spatially
separated but temporally close due to continuous stroke ID of
skateboard. Ourmodel without SeqEwrongly labels the right
part of the skateboard as a frisbee. After incorporating SeqE,
the temporal correlation of these two parts of skateboard is
utilized, and the skateboard can be segmented correctly. We
can also observe, due to the similarity of stripe patterns of the
boy’s shoes and zebra, ourmodelwithout SeqE is confused to
recognize the boy’s shoes as zebra. However, by leveraging
sequential correlation of strokes with SeqE, our full model
can achieve correct segmentation results. Therefore, SeqE is
effective for stroke-based scene-level SSS.
Effect of SpaEAs shown in Table 3, without SpaE, the accu-
racydrops 4.10%onC-metric, 4.39%onP-metric, and5.30%
on MIoU, which indicates the importance of this module.
During the prediction, SpaE tends to group spatially close
strokes and can correct part of the segmentation error due to
stroke temporal order. As shown in Fig. 7, we can observe
that there are temporal gaps in drawing order between the
strokes of elephants’ body and leg, and the strokes of the
each elephant. SeqE tends to label the temporal separated
strokes as another object. However, SpaE exploits the spa-
tial correlation of stroke and can enhance the segmentation
results.
Effect of feature fusionTo validate the effects of global tem-
poral feature in Eq. 7, we built a degraded model by feeding
the output feature of GCN’s last layer into the fully con-
nected layer for prediction. As shown in Table 3, our full
model achieves 0.58% higher on C-metric, 0.30% higher on
P-metric, and 0.95% higher on MIoU. Therefore, the feature
fusion has positive impacts on the stroke-based semantic seg-
mentation task.
Effect of class-aware loss weight wc The long-tail distri-
bution of SFSD’s instance frequency results in the difficulty
of making a balanced learning between different categories.
In order to tackle the above issue, we introduce a different
weight w for each category in Eq. 8. The effect of them was
tested by removing w from the loss function. From Table 5,
we can see that the overall effect is limited, but the improve-
ment on some low-frequency categories is promising.
Robustness to stroke orders We shuffle the strokes of
sketches in the testset for 10 times, perform the semantic
segmentation, and compute the average evaluation metrics
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Fig. 7 Visualization of drawing orders and segmentation results for
ablation study. The legends represent color encoding for stroke ID and
object categories, andm is the stroke amount in a sketch. The red boxes

highlight the wrongly labeled segmentation results with the degraded
models and fixed by our full model

Table 5 Segmentation accuracy of each categories for ablation study of weight wc in loss function

Category C-m P-m Category C-m P-m Category C-m P-m Category C-m P-m

Tree∗ 0.92 0.94 Fence∗ 0.47 0.49 Tennis racket 0.70 0.69 Snowboard 0.08 0.07

Person 0.97 0.97 Cow 0.64 0.63 Horse 0.52 0.52 Truck 0.37 0.36

Cloud∗ 0.93 0.94 Stone∗ 0.57 0.50 Bus 0.81 0.84 Motorcycle 0.92 0.92

Grass∗ 0.94 0.95 Sheep 0.76 0.74 Bird 0.50 0.48 Frisbee 0.26 0.36

Others# 0.35 0.38 Elephant 0.85 0.83 Skis 0.40 0.42 Dog 0.09 0.11

Boundary∗ 0.41 0.43 Airplane 0.85 0.86 River∗ 0.77 0.80 Bear 0.25 0.26

Zebra 0.98 0.98 Playground∗ 0.27 0.31 Skateboard 0.67 0.62 Backpack 0.02 0.02

Road∗ 0.46 0.54 Car 0.37 0.37 Sports ball 0.45 0.45 Surfboard 0.14 0.17

Giraffe 0.97 0.96 Mountain∗ 0.33 0.45 Baseball bat 0.34 0.38 Kite 0.19 0.16

House∗ 0.58 0.55 Snowfield∗ 0.82 0.80 Baseball glove 0.19 0.18 Bicycle 0.49 0.50

C-m and P-m are obtained by the degraded model without the class-aware weight wc

of semantic segmentation. As shown in Table 3, compared
to evaluation with original strokes, the average accuracy of
our S3NN using shuffled strokes drops 2.34%, 3.80%, and
5.64% on the three metrics, and the model without SpaE
drops 5.54%, 8.40%, and 9.05%. These results demonstrate
that the stroke order affects the performance of SeqE, but
SpaE can compensate for the performance drop. Therefore,
S3NN is robust to stroke orders.

6 Conclusion and future work

In this paper, we present SFSD, the first large-scale dataset
of free-hand scene sketches. SFSD provides a large repos-
itory of scene and object sketches. Benefiting from SFSD,
we propose an effective stroke-based model for scene-level

SSS, which models multi-modal features, i.e., visual fea-
ture, sequential information, and spatial features.We conduct
comparative experiments and ablative study on SFSD to eval-
uate the proposed model. Experiments demonstrate that our
model outperforms the SOTAmethods, and it can also handle
challenging cases such as occlusion and overlap well.

Although our method can achieve promising results, it
can be improved in the future work: (1) The stroke-based
segmentationmodel can be further improved to handle corner
cases. (2) SFSD is a multi-modal dataset, so it can enable
more scene sketch researches such as sketch-based image
retrieval and generation, and scene sketch generation.
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