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Figure 1: Image manipulation by text instruction. The input is multimodal consisting of a reference image and a text instruc-

tion. The results are synthesized images by our model.
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cations to the image. We propose a GAN-based method to tackle

this problem. The key idea is to treat text as neural operators to 1 INTRODUCTION

locally modify the image feature. We show that the proposed model
performs favorably against recent strong baselines on three public in the multimedia and computer vision community. This task is
datasets. Specifically, it generates images of greater fidelity and typically set up as a conditional image generation problem where
semantic relevance, and when used as a image query, leads to better a Generative Adversarial Network (GAN) [15] is learned to gen-
retrieval performance. erate realistic looking images according to the text description in

the format of natural languages [37, 39, 52, 71, 74, 84] or scene

Image synthesis from text has been a highly active research area

CCS CONCEPTS graphs [26, 42, 65, 72], etc.

« Information systems — Multimedia content creation; Mul- In this paper, we study how to manipulate image content through
timedia and multimodal retrieval; - Computing methodolo- complex text instruction. In this multimodal task, a user is able
gies — Computer vision. to apply various changes to a reference image by sending text

instructions. For example, Figure 1 shows the generated images by
the model for three types of instructions: 1) adding a new object
at a location, 2) removing an object, and 3) changing the object’s
attributes (size, shape, color, etc). This concept was first raised in
Schmandt and Hulteen’s paper [61] and was extended to industrial
applications such as PhotoShop through voice commands [59].
The task studied in this paper is inspired by cross-modal image
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formed of an image plus some text that describes complex modi-
fications to the input image. This retrieval problem is essentially
the same as ours except we aim at generating as opposed to retriev-
ing the target image. Notably, as will be shown in Section 4.2, the
generated image can be used to as a query to retrieve the target im-
ages with competitive recall, thereby providing a more explainable
search experience that allows users to inspect the search results
before the retrieval.

The closest related problem to ours is text-guided image manip-
ulation (e.g., [37, 52]). However, text instructions in existing works
are limited in complexity and diversity as they mainly comprise
descriptive attributes, lacking specific actions such as “add” or “re-
move” an object. In contrast, the considered text instructions in
our paper cover three representative operations “add”, “modify”,
and “remove” and involve adjectives (attributes), verbs (actions)
and adverbs (locations) describing the intricate change to one of
the objects in the reference image. Sequential image generation
methods [4, 9, 12]) are also related. For example, GeNeVA [12] gen-
erates an image by adding objects to a blank canvas following the
step-by-step instructions. Different from ours, these works tackle a
different challenge, i.e., temporal modeling of the sequential image
generation process.

The main challenge in our problem is how to model the com-
plex text instructions for conditional image manipulation. To this
end, we propose a simple yet highly effective approach called Text-
Instructed Manipulation GAN or TIM-GAN. The key idea is to treat
language as neural operators to locally modify the image feature
for synthesizing the target image. The text neural operator decom-
poses the feature modification procedure into two stages: where
and how to edit the image feature. For “where to edit”, we use
attention mechanisms to ground words to a spatial region in the
image. For “how to edit”, we introduce a text-adaptive network to
generate different transformation for varying instructions. Since
similar instructions perform similar operations, this design allows
certain neurons to be shared among similar instructions, while still
being able to distinguish among different operations.

We conduct extensive experiments on public datasets to demon-
strate the three merits of the proposed method. First, it generates
high-fidelity images, outperforming recent competitive baselines by
a large margin. Second, the user studies confirm that the generated
images are more semantically relevant to the target images. Third,
the generated image, when used as the query for image-to-image re-
trieval, leads to not only promising retrieval recalls but also a more
explainable search experience that allows users to inspect the re-
sults before the search. In addition, the ablation studies substantiate
the performance gain stems from the proposed text operators. Code
and models are released at https://github.com/google/tim-gan.

2 RELATED WORK

Conditional generative adversarial networks. Generative ad-
versarial networks GANSs [1, 2, 15, 50, 64] have made significant
progress in recent years. Built on the basis of GANS, the conditional
GAN aims to synthesize the image according to some input con-
text. The input context can be images [22, 24, 34, 40, 51, 82], audio
sequences [35], human poses [48], semantic segmentations [38, 54,
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69], etc. Among them, text-to-image synthesis [4, 26, 36, 39, 41, 71—
74, 84] learns a mapping from textual descriptions to images. Re-
cently, GeNeVA [12] extended the mapping for iterative image
generation in which new objects are added one-by-one to a blank
canvas following textual descriptions. Different from text-to-image
synthesis, the proposed problem takes multimodal inputs, aiming
at learning to manipulate image content through text instructions.
Conditional image manipulation. The research in this area aims
to manipulate image content in a controlled manner. To enable
user-guided manipulation, a variety of frameworks [3, 9, 21, 23, 33,
37, 43, 47, 52, 57, 62, 63, 70, 75, 77, 78, 81] have been proposed to
study different control signals. For instance, Zhang et al. [78] and
Zou et al. [86] used sparse dots and text respectively to guide the
image colorization process. There are additional works on image
manipulation by bounding boxes subsequently refined as seman-
tic masks [20] or code [49]. Numerous image stylization [21, 43]
and blending [23, 70] approaches augment the images by referenc-
ing an exemplar image. Other works include text-guided image
inpainting [45, 76, 79] which use image caption to inpaint incom-
plete images. Closest to ours is the TA-GAN [52] scheme that takes
the image caption as input to describe attributes for conditional
image manipulation, followed by [37] and improved by [47]. In
this work, we propose to manipulate the images according to the
complex text instructions. Different from the image caption used
by the TA-GAN, our instruction is more complex includes 1) three
types of operations (“add”, “remove”, and “change”); 2) the explicit
region information of the modification.

Multimodal Feature Composition. Another related area is mul-
timodal feature composition which has been studied more exten-
sively in other problems such as visual question answering [8, 30, 44,
53], visual reasoning [28, 60], image-to-image translation [34, 83],
etc. Specifically, our method is related to feature-wise modulation,
a technique to modulate the features of one source by referenc-
ing those from the other. Examples of recent contributions are:
text image residual gating (TIRG) [68], feature-wise linear modula-
tion (FILM) [56], and feature-wise gating [14]. Among numerous
works on multimodal feature composition, this paper compares
the closely related methods including a strong feature composition
method for image retrieval [68] and three competitive methods for
conditional image generation [12, 52, 84].

3 METHODOLOGY

Our goal is to manipulate a given reference image according to the
modification specified in the input text instruction from one of the
three operations: “add”, “modify”, and “remove”. We approach this
problem by modeling instructions as neural operators to modify the
input image in the feature space. The text operator decomposes this
process into two stages: where and how to edit the image feature.
Thereafter, the edited feature is used to synthesize the target image
by the generator of the GAN model.

An overview of the proposed TIM-GAN method is illustrated
in Figure 2. Given the multimodal input: an image x and a text
instruction t, our goal is to synthesize an image ¢ that is close to
the ground-truth target image y. First, we extract the image feature
¢ and the text features ¢; where the text encoding comprises two
heads producing @”here and ¢?°W that encodes the where and how
information about the text instruction, respectively. To indicate the
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Figure 2: Method overview. Given an input image x and a text instruction ¢, the proposed TIM-GAN first predicts a spatial
attention mask M (where to edit, Section 3.1) and a text operator f;,,,, (how to edit, Section 3.2). The image feature ¢, is then
modified by the text operator f;,,,, on the predicted mask M. Finally, the edited image j is synthesized from the manipulated

image feature ¢;.

region on the image x to be edited, we predict a spatial attention
mask M from ¢;"’here. Then, we design a text-adaptive network
that embodies a transformation (fi,) for a text embedding (¢lt"°w).
Finally, using both the mask M and the embodied function f}yy,
the input image feature ¢y is modified into ¢4, using which the
resulting image 7 is generated by the generator G.

Formally, the image feature ¢, is edited by the text operator by:

¢Q = Optext(¢x; t) (1)
= (1= M) O px + MO firow (8, 42V Opo (1), (2)

where M = fynhere (Pxs ¢}”here) is the learned spatial mask. © is
element-wise dot product. The first term is a gated identity es-
tablishing the input image feature as a reference to the intended
modified feature. Although the spatial attention or mask may not
be a novel idea in image synthesis [5, 13, 46], we show that disen-
tangling how and where in modification is essential for learning
text operators that can be applied at various spatial locations. Our
experimental results in Section 4.4 substantiate this claim.

The second term f;,,, embodies the specific computation to
obtain the delta modification in the feature space. We introduce
a text-adaptive network to execute different transformations for
varying text inputs, where each text instruction is identified by a
private set of parameters Oy, (), generated from ¢£‘°W, and the
remaining parameters are shared across all text instructions.

For training, we use the standard conditional GAN objective in
the pix2pix [24] model, which consists of an adversarial loss Lgan
and an ¢ reconstruction loss called L. The weights to Lgan and
L1 are set to 1 and 10, receptively. In the rest of this section, we
will detail the computation of M and f},ow-

3.1 Where to Edit: Spatial Mask

We use the scaled dot-product self-attention [67] to summarize
the location-indicative, or locational words, in an instruction. Let
S=1[wy, - ,w] € R4 denote the instruction where w; € R%
is the word embedding [11] for the i-th word. The query, key and
value in the attention are computed by:
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Q0= SWQ, K = SWg, V =5SWy 3)
where Wo, Wk, Wy € R9%Xd are linear weight matrices to learn,
and d is the output dimension. After reducing matrix Q to a column
vector ¢ by average pooling along its first dimension, we obtain the
attended text embedding by:

kg,
)

in which the softmax function encourages higher attention weights

¢;}vhere — VT 4)

softmax(

over locational words. Likewise, we obtain the text feature ¢?°W for
salient operational words in the instruction (cf. Figure 6b), computed
by a separate self-attention head.

We pass the image feature @5 to a convolution block (i.e., a
ResBlock [18]) to get the output o € RF*WXC The spatial mask is
then computed from ¢;"'here using image features as the context:

M = fwhere(¢x’ ¢¥vhere)
= a(Wim * (Ap($117°) © 0)) € [0, 1]

()

where o is the sigmoid function, * represents the 2d-convolution
product with kernel W, (cf. Figure 3a). We use two layers of the
MLP with the ReLU activation.

During training, we compute an #; loss to penalize the distance
between the predicted mask M and the noisy true mask, and assign
it the same weight as the L reconstruction loss. Note that com-
puting this loss needs no additional supervision as the noisy mask
is automatically computed by comparing the difference between
the input and ground-truth training images.

3.2 How to Edit: Text-Adaptive Transformation

Text instructions are not independent. Similar instructions perform
similar operations. For instance, “add a large cylinder” and “add
ared cylinder” should perform virtually the same transformation
except for the attribute part. Motivated by this idea, we design a
text-adaptive network where each text instruction is instantiated by
a few private parameters while the rest of the network parameters
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Figure 3: Where and how to edit. (a) The calculation of spatial mask M from text feature ¢;"here and image feature ¢. (b) The
proposed text-adaptive transformation network, parameterized by («, §, y) generated from text feature gzﬁ?ow.

are being shared across all text instructions. Below, we discuss two
types of text-adaptive strategies.

Sharing-Neurons. In this strategy, every neuron in the network
is shared among all the text instructions. An individual text is
identified as a private set of parameters, i.e., Oy, (¢) in Equation 1,
calculated from:

Ohow () = Aurp (B17®) = {(Bi,vi)lys i € RP i€ [L1]},  (6)

where [ is the total number layers of the text-adaptive network
illustrated in Figure 3b. Each block consists of a conv layer fol-
lowed by an instance normalization layer [66]. p is the number of
feature channels of each block. From the input feature ¢?°W, an
MLP layer is used to generate f and y to perform text-specific batch
normalization after the ResNet block. Our idea is partially inspired
by the style transfer method [21].

Routing-Neurons. We find the above strategy works well in prac-
tice but is computationally expensive to scale up. We discuss an
alternative strategy to apply text-adaptive transformation inside a
routing network [58] where the text feature is used to dynamically
select and execute a sequence of neural blocks (or a path). As a
result, we call it routing-neurons strategy.

It is worth noting that our intention is not to compete the routing-
neurons strategy with the sharing-neurons strategy because the
former often does not lead to further performance gains. Yet, our
goal is to show a scalable approach that efficiently increases the
learning capacity of text operators, while still allowing certain
neurons to be shared among similar instructions.

The text-adaptive network is shown in Figure 3b which has [
layers of m blocks of identical structures. The routing parameter «;
decides to connect or disconnect a block in a layer. A text instruction
is hence parameterized by an additional series of a:

Ohow (1) = {(ai, fiyi)lai € [0,1]™,yi, pi e R™P i e [1,1]}, (7)

where a;, Bi, yi are all generated by the MLPs from qﬁ?"w.
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For efficiency, the path selector @ needs to take only discrete
values. We employ the Gumbel-Softmax trick [25] to sample a block
from a categorical distribution. Let 7 € R} be the categorical
variable with probabilities P(a = i) « ;, i.e., the probability for

selecting block i. We have:
®)

argmax[P(a = i)] = arg max|[g; + log ;] = arg max[7;],
A 1 1

where g; = —log(—log(u;)) is a re-parameterization term, and
u; ~ Uniform(0, 1). To make it differentiable, the softmax operation
is used to compute a = softmax(7/7), where the temperature 7 is
set small to encourage « being unimodal.

Feature Modification. Finally. the f; ., function in the text oper-
ator (cf. Equation 2) is then calculated from:

Jhow($x) = a(l+1),
2+ = i i (i 2= yi(0ij)
- 13 j=— </ N
= 7 5(0i))

o) = Pxs

©)

+ ﬁij) Vie[Ll], (10)

(11)

where o;; is the output of the j-th conv block in layer i. a'® s the
activation of the i-th layer. § and y compute channel-wise mean
and variance across spatial dimensions, and are applied at test time
unchanged. Equation 9 details the feature modification step for
both strategies. In particular, for the sharing-neurons strategy, we
fix jto 1 and a;; = 1,Vi € [1,1] since there is only one path to
choose from the network.

4 EXPERIMENTAL RESULTS
4.1 Setups

Datasets. Clevr: CSS dataset [68] was created for multimodal im-
age retrieval using the Clevr toolkit [27]. The dataset contains 3-D
synthesized images with multiple objects of varying colors, shapes,
and sizes. Each training sample includes a reference image, a target
image and a text specifying the modification from three types “add”,



Poster Session 2

“remove”, “change” an object. The dataset includes 17K training
and 17K test examples. Abstract scene: CoDraw [29] is a dataset
built upon Abstract Scene [85] to illustrate a sequence of images of
children playing in the park. For each sequence, there is a conver-
sation between a Teller and a Drawer. The teller gives step-by-step
instructions on how to add new content to the current image. Note
its text is limited to the “add” operation. To adapt it to our problem,
we extract the image and text of a single step. The dataset consists
of 30K training and 8K test examples. Cityscapes. We create a new
dataset of semantic segmentation from the Cityscapes dataset [10].
There are four types of text modifications: “add”, “remove”, “pull
an object closer”, and “push an object away”. The ground-truth
images are manually generated, according to the text instruction,
by pasting desired objects onto the image at appropriate positions.
The dataset consists of 20K training and 3K test examples.

Limited by suitable datasets, related works [12, 41] were only able

to test on synthetic images (cf. more discussions in the supplemen-
tary material). In this paper, we extend our method to manipulate
semantic segmentation in Cityscapes, and demonstrate the poten-
tial of our method for synthesizing RGB images from the modified
segmentation mask.

Baselines. We compare with four baseline approaches. All methods
are trained and tested on the same datasets, implemented using
their official code or adapted official code. More details about the
baseline comparison are discussed in the supplementary material.

o DM-GAN: The DM-GAN [84] model is a recent text-to-image
synthesis framework. To adapt it to our task, we use our image
encoder to extract the image feature and concatenate it with
its original text feature as its input signal.

e TIRG-GAN: TIRG [68] is a competitive method for the cross-
modal image retrieval task. It takes the same input as ours but
only produces the image feature for retrieval. We build a base-
line TIRG-GAN based on TIRG by using our image generator
G to synthesize the image from the feature produced by the
TIRG model.

o TA-GAN: TA-GAN [52] learns the mapping between the cap-
tions and images. The image manipulation is conducted by
changing the text caption of the image. Since there is no image
caption in our task, we concatenate the pre-trained features
of the input image and text instruction as the input caption
feature for the TA-GAN model.

e GeNeVA: GeNeVA [12] learns to generate the image step-by-
step according to the text description. Its main focus is model-
ing the sequential image generation process. Nevertheless, to
adapt it to take the same input as all the other methods, we
use it for single-step generation over the real input image.

We select the above baseline methods because each of them repre-
sents the recent approach for the related problems of (a) text-to-
image synthesis (DM-GAN), (b) multimodal retrieval (TIRG), (c)
caption-based image manipulation (TA-GAN), and (d) sequential
image generation (GeNeVA).

Evaluation Metrics. We employ two common metrics: Fréchet
Inception Distance score (FID) [19] and retrieval recall. The for-
mer is used to measure the realism of the generated images, and
the retrieval recall assesses the semantic relevance between the
generated and the true target image.
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To compute the retrieval recall, following [68, 71], we use the
generated image as a query to retrieve the target images in the test
set. For simplicity, we compute the cosine similarity between the
features of the query and target images where the feature embed-
dings are obtained by an autoencoder pre-trained on each dataset.
Implementation Details. We implement our model in Pytorch [55].
For the image encoder Ej, we use three down-sampling convolu-
tional layers followed by Instance Normalization with ReLU. We
construct the generator G by using two residual blocks followed by
three transposed-convolutional layers with Instance Normalization.
For both E; and G, we use 3x3 kernels and a stride of 2. For the text
encoder E;, we use the BERT [11] model. The encoded image has
256 feature channels and the attended text embedding dimension
is d = 512. By default we use the routing-neurons strategy where
the routing network has [ = 2 layers and m = 3 blocks for each
layer. The parameters in the image encoder E; and decoder G are
initialized by training an image autoencoder for 30 epochs. Then,
we fix E;’s parameters and optimize the other parts of the network
in the end-to-end training for 60 epochs. For training, we use the
Adam optimizer [31] with a batch size of 16, a learning rate of 0.002,
and exponential rates of (f1, f2) = (0.5,0.999).

4.2 Main Results

The main results are shown in Table 1, where the Recall@N column
indicates the recall (x100) of the true target image in the top-N
retrieved images. The proposed method performs favorably against
all baseline approaches across datasets. Although DM-GAN appears
to generate more realistic images on the Clevr dataset, its retrieval
scores are very poor (< 2%). This result indicates that it is deceiving
to make comparisons only using FID because lower FIDs can be
trivially obtained by merely copying the input image without any
modifications.

Qualitative results are shown in Figure 4. As shown, TA-GAN and
TIRG-GAN tend to copy the input images. DM-GAN often generates
random objects following similar input layouts. GeNeVA can make
local modifications to images, but often does not follow the text
instructions. In contrast, our model generates images guided by the
text instructions with greater fidelity and semantic relevance to the
true target image.

We use the generated image by our model as a query to retrieve
the target image. Figure 7 shows the top-5 returned images re-
trieved by our generated image on the Clevr dataset including two
successful cases (the first 2 rows in Figure 7) and two failure cases.
There is tangible resemblance between the generated query image
and the true target image. This observation is consistent with the
quantitative results presented in Table 1.

Figure 6 illustrates our intermediate results for where and how
to edit, where the learned attention weights for the text and spa-
tial mask are visualized. Generally, the attentions agree with our
perception about the task as the self-attentions focus on locational
and operational words in the text instruction, respectively, and the
spatial attentions capture the intended area for modification.

The above quantitative results, in terms of both FID and retrieval
score, substantiate that our method’s efficacy in generating high-
fidelity and semantically relevant images.
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Figure 4: Selected generation results. We show the manipulation results by different approaches on the Clevr (top), Abstract
scene (middle), and Cityscapes (bottom) datasets.

Table 1: Quantitative comparisons. We use the FID scores to measure the realism of the generated images, and the retrieval
score (RS) to estimate the correspondence to text instructions.

Method Clevr Abstract scene Cityscape
FID | Recall@1 T Recall@57 FID | Recall@1T Recall@5T FID| Recall@1T Recall@5 T
DM-GAN 27.9 1.6+0.1 5.6+0.1 53.8 2.1x0.1 6.6+0.1 18.7 4.6+0.2 15.7x0.2

TIRG-GAN  34.0 48.5+0.2 68.2+0.1 52.7 23.520.1 38.8+0.1 6.1 25.0<0.3 88.9+03
TA-GAN 58.8 40.8=+0.1 64.1+0.1 44.0 26.9+0.2 46.3+0.1 6.7 36.8+0.4 79.8+0.3

GeNeVA 46.1 34.0+0.1 57.3+0.1 72.2 17.3+0.2 31.6+0.2 10.5 14.5+0.4 46.1+0.3
Ours 33.0 95.9+0.1 97.8+0.1 35.1 35.4+0.2 58.7+0.1 5.9 77.2+0.4 99.9+0.1
Real images 17.0 100 100 14.0 100 100 4.4 100 100
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Figure 5: User preference studies. We present manipulated images on the Clevr and abstract scene datasets and ask the users
to select the one which (a) is more realistic and (b) is more semantically relevant to the ground-truth image.
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Figure 6: Where and how to edit. (a) Predicted self-attention weights and spatial attention masks. The self-attention weights are
labeled above each word, and highlighted if the weights are greater than 0.2. (b) T-SNE visualization of the routing parameters

a for various types of text instructions on the Clevr dataset.

4.3 User preference study

We conduct two user studies to verify the visual quality and se-
mantic relevance of the generated content. Given a pair of images
generated by two compared methods, users are asked to choose
(1) which one looks more realistic while ignoring the input image
and text; (2) which one is more relevant to the text instruction by
comparing the content of the generated and the ground-truth image.
In total, we collected 960 answers from 30 users.

As shown in Figure 5, the proposed TIM-GAN outperforms other
methods in both metrics with a statistically significant margin. The
above results are consistent with the quantitative results in Table 1,
which validate our method’s superior performance in generating
not only realistic but also semantically relevant images.

4.4 Ablation studies

We test various ablations of our model to validate our design de-
cisions by either leaving the module out from the full model or
replacing it with an alternative module.

Necessity of disentangling how and where to edit. Our method
is built upon a key idea to disentangle how and where to edit. To
validate this design, we compare with two entangled text operators

1899

in Table 2. The first removes the “where” information from the full
model by replacing the spatial mask with an identity matrix. The
second keeps the spatial mask but discards the “how” information
by dropping the text-adaptive parameters from the f;,, function.
The inferior performance validates the necessity of disentangling
how and where to edit. Note that replacing either module leads to
worse performance than the baseline methods in Table 1, which
indicates the performance gain is primarily from the proposed text
operator as opposed to circumferential factors such as the network
backbone or word embedding.

Table 2: Ablation on the disentangled text operator.

Clevr Abstract scene
Method
FID | Recall@1 1 FID | Recall@1 7
Disentangled text operator 33.0  95.9=z01 35.1  35.4=x02
Entangled (no mask) 34.8 81.7x0.1 48.7 28.7x0.1
Entangled (no text-adaptive) 45.9 29.9=x0.2 37.4 33.1=z0.2

fhow function. This experiment compares different designs of the
fhow function. Three alternative models are considered from sim-
ple text-and-image feature concatenation, feature addition to the
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Input Image Instruction Generated

make bottom-left
gray object red

make middle-center
green rectangle large

add large triangle
to middle-center

make bottom-left small
green rectangle large

Retrieval Results

Figure 7: Top-5 images retrieved by our generated image (used as the query image). Third column shows the generated (fake)
image by our model. Column 4-8 show the top-5 retrieved real images. The true target is highlighted in green.

more recent TIRG fusion [68]. All models use the same #layers, #pa-
rameters, and spatial mask. Figure 8 shows the results. The simple
feature addition performs similarly on Clevr but is about 3% worse
than our method on the Abstract Scene dataset.

100 T
I Ours
90 |
[ Feature concat :
80 He=m Feature addition|- - - f88d- -+ - oo - -

70 o BN .
60} - o NN
50 B -
40 TR PEp
30l

Recall@l x 100(1)

Clevr
Dataset

20
Abstract Scene

Figure 8: Comparison between different f,.,, functions.

With or without routing. By default, we use the routing-neurons
strategy. As discussed in Section 3.2, we do not intent to compete
the routing and non-routing strategies because of their similar
performances. Nevertheless, we fix the remaining network and
study the sharing-neurons (without routing) strategy as well as
another softmax routing strategy that computes the continuous
routing parameter by the vanilla softmax function. All strategies
use two layers and the routing strategies have 3 identical blocks per
layer. Table 3 lists the results, where the FLOPs and Params column
show the number of floating point operations and the number of
network parameters of the text operator. We only count FLOPS
and Params of the text operator since the remaining parts of the
network are shared among strategies.

As discussed in Section 3.2, the routing-neurons strategy leads
to no improvements but demonstrates two benefits. First, it allows
for scaling up the network parameters at a marginal computational
cost. Routing-neurons incurs similar #FLOPs as Sharing-neurons
but inflates #Params by 3 fold. Second, the routing-neurons strategy
enables neural blocks to be shared among similar text operators.

Figure 6b shows the t-SNE plot of its routing parameters a. It is
interesting to find this strategy automatically uncovers the subtle
relationship between instructions. For instance, “add” and “make
size larger” operators are closer and share more neural blocks.

Table 3: Ablation on sharing-neurons and routing-neurons
strategies. Only the FLOPS (in Billion) and Params (in Mil-
lion) of the text operator are compared.

Clevr

Meth: FLOPs P

ethod OPs Params FID | Recal@1 ]
Sharing-Neurons ~ 4.08B  4.46M  33.0 95.8+0.1
Routing-Neurons  4.09B  13.91M  33.0 95.9+0.1
Routing (Softmax) 12.24B 13.91IM  33.0 95.4+0.1

5 CONCLUSION AND FUTURE WORK

In this paper, we studied a conditional image generation task that
allows users to edit an input image using complex text instructions.
We proposed an approach modeling text instructions as neural
operators to locally modify the image feature. Our method decom-
poses “where” from “how” to apply the modification based on the
design of text-adaptive networks. We evaluate our method on one
real-world and two synthetic datasets, and obtain promising results
with respect to three metrics on image quality, semantic relevance,
and retrieval performance.

In the future, we plan to extend our work on more real-world
datasets. Unfortunately, suitable evaluation benchmarks are cur-
rently unavailable for real-world RGB images. Therefore, one has to
establish an evaluation benchmark of parallel triples of the reference
RGB image, target RGB image, and text instruction. Following [47],
we also hope to explore unsupervised training of our model on
unpaired text and image data.
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