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Abstract

Panorama images have a much larger field-of-view thus
naturally encode enriched scene context information com-
pared to standard perspective images, which however is not
well exploited in the previous scene understanding methods.
In this paper, we propose a novel method for panoramic
3D scene understanding which recovers the 3D room lay-
out and the shape, pose, position, and semantic category
for each object from a single full-view panorama image. In
order to fully utilize the rich context information, we design
a novel graph neural network based context model to pre-
dict the relationship among objects and room layout, and
a differentiable relationship-based optimization module to
optimize object arrangement with well-designed objective
functions on-the-fly. Realizing the existing data are either
with incomplete ground truth or overly-simplified scene, we
present a new synthetic dataset with good diversity in room
layout and furniture placement, and realistic image quality
for total panoramic 3D scene understanding. Experiments
demonstrate that our method outperforms existing methods
on panoramic scene understanding in terms of both geome-
try accuracy and object arrangement. Code is available at
https://chengzhag.github.io/publication/dpc.

1. Introduction

Image-based holistic 3D indoor scene understanding is
a long-lasting challenging problem in computer vision, due
to scene clutter and 3D ambiguity in perspective geometry.
Over decades, the scene context, which encodes high-order
relations across multiple objects following certain design
rules, has been widely utilized to improve the scene under-
standing [49, 6]. However, it is still arguable and unclear if
the top-down context is more or less important than bottom-
up local appearance-based approaches for the scene pars-
ing task, especially with the rapidly emerging deep learning
methods that have achieved great success on object classi-
fication and detection. One possible reason could be that
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Figure 1: From a single panorama image as input, our pro-
posed pipeline estimates layout and object poses, then re-
constructs the scene with object reconstruction, to achieve
total scene understanding.

the field of view of a standard camera photo is normally
less than 60°, and thus only limited context can be utilized
among a small number of objects co-existing in the image.
Zhang et al. [49] proposed a 3D scene parsing method that
takes a 360° full-view panorama as the input, where almost
all major objects are visible. They showed that the con-
text became significantly stronger with more objects in the
same image, which enables accurate 3D scene understand-
ing even with less engineered local features.

In this paper, we empower the panoramic scene under-
standing task with stronger 3D perception capability and
aim to predict the objects’ shapes, 3D poses, and seman-
tic categories as well as the room layout by taking a single
color full-view panorama image as the input. To fulfill this
goal, we propose a novel deep learning based framework
that leverages both local image information and global con-
text for panoramic 3D scene understanding. Specifically,
we first extract room layout and object hypothesis from
local image regions with the algorithms customized for
panorama images, and rely on a global graph-based context
model to effectively refine the initial estimations. Overall,
our method achieves phenomenal performance on both ge-
ometry accuracy and object arrangement for 3D panoramic
scene understanding.

Besides renovating the predecessor [49] with a more ad-
vanced deep learning algorithm, the key to the significant



performance gain is a novel context model that predicts
relations across objects and room layout including sup-
porting, attaching, relative orientation, efc., which are
then fed into an optimization to adjust the object ar-
rangement. This is inspired by the common sense that we,
humans, tend to place objects tightly against the wall, e.g.,
beds, or side-by-side with consistent orientation, e.g., night-
stands, and these relations could provide critical informa-
tion to fix the object arrangement errors that may be minor
in traditional metrics but obviously wrong judged by human
perception. To leverage the predicted relations, we propose
a novel differentiable optimization with carefully designed
objective functions to adjust the initial object arrangement
w.r.t. the predicted relations, which further enables joint
training of relation prediction and object arrangement. The
optimization is fully differentiable, which can be attached
with our graph based context model, and conceptually any
neural network, for joint training.

Unfortunately, the panoramic scene datasets for holistic
3D scene parsing are still missing in the literature. Existing
panorama datasets are either with overly simplified scenes
[49], purely 2D-based [40], or missing important 3D ground
truth such as object poses [1, 5]. Since annotating real data
with accurate 3D shapes is extremely challenging, we re-
sort to synthetic data and create a new dataset for holistic
panoramic 3D scene understanding. The dataset provides
high-quality ground truth for object location, pose, shape,
and pairwise relations, and serves well for training and rig-
orous evaluation. Though purely synthetic, we find the
learned context model, which relies mainly on indoor scene
context but not heavily on the image appearance, can be
naturally generalized to real images by retraining bottom-
up models that provide the initialization.

In summary, our contributions are as follows. We pro-
pose the first deep learning based pipeline for holistic 3D
scene understanding that recovers 3D room layout and de-
tailed shape, pose, location for objects in the scene from
a single color full-view panorama image. To fully exploit
context, we design a novel context model that predicts the
relationship among objects and room layout, followed by a
new differentiable relationship-based optimization module
to refine the initial results. To learn and evaluate our model,
a new dataset is created for total panoramic 3D scene un-
derstanding. Our model achieves the state-of-the-art perfor-
mance on both geometry accuracy and 3D object arrange-
ment.

2. Related Work

3D Scene Understanding Scene understanding in 3D
world is a trending topic in the vision community. The task
includes a volley of interesting sub-tasks including layout
estimation, 3D object detection and pose estimation, and
shape reconstruction. Various methods estimate the layout

by adopting Manhattan World assumption [33, 8, 35, 51, 44]
or cuboid assumption [9, 29, 25, 17]. 3D bounding boxes
and object poses can be predicted from 2D representation
with CNN-based methods [6, 19, 12, 38, 36, 4]. Object
shapes can also be recovered by matching similar models,
with geometrical or implicit representations [14, 26, 28, 39,
15, 23, 21, 20].

Total3D [31] is the first work to jointly solve multiple
scene understanding tasks, including estimating the scene
layout, object poses, and shapes. Recently, Zhang et al. [47]
improves the performance of all three tasks via the implicit
function and scene graph neural network. However, they
still suffer from the insufficient exploitation of relationships
among objects in the scene. In this work, we study the prob-
lem using panorama images which contain rich context in-
formation compared with the perspective ones with limited
field of views.

Context for Scene Understanding Context priors can
be employed for the scene understanding, e.g., a bed is
placed on the floor and aligned with the wall. For per-
spective images, some methods [10, 11] adopt explicit
constraints to avoid object overlaps. Zhang et al. [48]
proposes to exploit scene context with a 3D context net-
work. Recently, panoramic images have been exploited by
optimization-based methods [32, 13, 41, 42, 46] designed
over geometric or semantic cues, and learning-based meth-
ods [51, 24, 44, 35] with drastically advantageous represen-
tation of local context. Zhang et al. [49] achieves several
tasks of 3D scene understanding by generating 3D hypothe-
ses based on contextual constraints to exploit rich context
information provided from large field of view (FOV). How-
ever, none of them provides a complete understanding of
the scene. Instead, we propose a learning-based framework
to jointly predict object shapes, 3D poses, semantic cate-
gories, and the room layout from a single panorama image,
which takes full advantages of the scene context.

Panoramic Dataset For real-world scenes, the first
panorama dataset is published by Xiao et al. [40], namely
SUN360, and is later annotated for indoor scene under-
standing by Zhang et al. [49]. It contains high-resolution
color panoramas with diverse objects, layout, and axis-
aligned object boxes. However, it lacks object poses as well
as shapes and only includes 700 images which is not ad-
equate for the neural network training. 2D-3D-S [1] and
Matterport3D [5] are also real-world datasets with more
data and richer annotations, but poses are absent. Some
datasets [7, 45] with the bounding FOV annotations are pub-
lished for the purpose of panoramic object detection. Re-
cently, a large photo-realistic dataset is proposed for struc-
tured 3D modeling, namely Structured3D [50], but mesh
ground truths are not published. A panoramic scene dataset
contains complete ground truth, including shape, object ar-
rangement, and room layout is still missing.
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Figure 2: Our proposed pipeline. We first do a bottom-up initialization with several SOTA methods [47, 31, 16, 35] and
provide various features, including geometric, semantic, and appearance features of objects and layout. These are then fed
into our proposed RGCN network to refine the initial object pose and estimate the relation among objects and layout. A
relation optimization is adopted afterward to further adjust the 3D object arrangement to align with the 2D observation,
conform with the predicted relation, and resolve physical collision.

3. Method

In this section, we introduce our method for 3D
panoramic scene understanding. As shown in Fig. 2, we
first extract the whole-room layout under Manhattan World
assumption and the initial object estimates including loca-
tions, sizes, poses, semantic categories, and latent shape
codes. These, along with extracted features, are then
fed into the Relation-based Graph Convolutional Network
(RGCN) for refinement and to estimate relations among ob-
jects and layout simultaneously. Then, a differentiable Re-
lation Optimization (RO) based on physical violation, ob-
servation, and relation is proposed to resolve collisions and
adjust object poses. Finally, the 3D shape is recovered
by feeding the latent shape code into Local Implicit Deep
Function (LDIF) [14], and combined with object pose and
room layout to achieve total scene understanding.

3.1. Bottom-up Initialization

We first estimate the room layout, initial objects’ poses
and shape codes for the panoramic scene from local image
appearance. Similar to Zhang et al. [47], we run a Mask
R-CNN to detect 2D objects, an Object Detection Network
(ODN) [31] to generate initial pose, and a Local Implicit
Embedding Network (LIEN) [47] to embed implicit 3D rep-
resentation for each object. All the networks are retrained
or customized for equirectangular panorama images.

Specifically, we first fine-tune the Mask R-CNN on our
data such that it learns to handle the distortion and runs di-
rectly on panorama. We then fit a bounding box for each de-
tected object mask represented as a Bounding FoV (BFoV)
[7, 45], which is defined with the latitude and longitude
of the center and the horizontal and vertical field of view.

Since the left and right borders of full-view panorama im-
ages are actually connected, we extend the panorama by
half of the width (concatenating the left half to the right)
before feeding into the detector, then offset the detections
of the extended part back to the left, following a standard
non-maximum suppression (NMS) to merge overlapped or
cross-border object detection. Images in each BFoV are
then projected to the perspective view and fed into ODN
and LIEN for 3D pose and latent shape representation. Note
that for simplicity we assume that the object only rotates
around y axis and ODN predicts the yaw angle of the object
in the cropped perspective image coordinate as the object
rotation. We empirically found this representation benefit
the pose estimation performance, and the result can easily
be converted to panorama (i.e., world) coordinates. Regard-
ing the room layout, we use the SOTA HorizonNet [35].

3.2. Relation-based Graph Convolutional Network

After having the initial estimation, similar to Zhang et al.
[47], we model the whole scene with a graph and refine the
results via a Graph R-CNN [43]. Thanks to the full-view
panorama, our GCN can now model all the objects in the
room, which is able to encode and leverage stronger context
than that in a perspective view [47]. Different than Zhang
et al. [47], our model not only refines object poses but also
predicts relations between objects and room layouts. There-
fore we call our model Relation-based Graph Convolutional
Network (RGCN).

Graph Construction Besides modeling each object as a
node as in Zhang et al. [47], we further represent each wall
in the estimated room layout via HorizonNet into a cuboid
with a certain thickness and model them as separate nodes.
This facilitates the learning of the relation between objects
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Figure 3: Object-object collision term defined with Sepa-
rating Axis Theorem. We calculate separation distance d on
all the separation axis x of object A and B.

to each wall without additional complexity. For each pair
of wall/object nodes, we connect them with an undirected
edge to form a complete graph with self circles. Then two
relation nodes with directed edges are added to connect the
wall/object nodes. Each node, including wall, object, and
relation, is embedded with a latent vector, which is updated
by GCN through message passing [47, 43].

Input Features For each type of node, we collect different
features from various sources, concatenate, and embed them
with Multi-Layer Perceptron (MLP) into initial node latent
vectors. Following [47], we take bounding box parameters
for object/wall nodes, category/analytic code and blob cen-
ters of LDIF in the world frame [47, 14] for object nodes,
and geometry feature of 2D bounding boxes [18, 37] for
relation nodes. Besides, we propose to further take geomet-
ric features from the room layout and the initial 3D object
pose estimations to favor the relation estimation. Specifi-
cally speaking, on relation nodes, we add rotation (same
definition as object-object rotation) and separation distance
(to be further discussed in Sec. 3.3) between each pair of
object/wall 3D bounding boxes. On object nodes, we add
height differences between object 3D box corners and the
floor/ceiling plane, and the 2D distances from bounding box
corners to the layout polygon.

Relation Estimation Besides refining initial object pose
objects’ poses, our RGCN also outputs the relations be-
tween objects and the layout. The purpose of the relation
estimation is to learn valuable context information which
may have not been captured by the pose refinement branch.
Specifically, we design two categories of relations between
a pair of elements: object-object and object-layout. For
object-object (including walls since they are also repre-
sented as nodes) relation, we define 1) the relative rotation
between the front face of two objects; 2) whether the two
3D bounding boxes contact with a certain tolerance; and 3)
if the center of one object’s 3D bounding box is further than
that of the other w.r.t. the camera center. For object-layout
relation, we define 1) whether the object is supported by
the floor or contacts with ceiling; and 2) if the 3D bound-
ing box is fully inside the room. The later one is required

to disable certain terms in relation optimization (to be fur-
ther discussed in Sec. 3.3) for objects visible but outside the
room. Motivated by [2], we design relation estimation as
binary classification tasks for binary relations. For the an-
gular differences, we formulate it into multi-class classifi-
cation by making a decision on one of the 8 discretized bins
in 360° considering that most furniture in the room is well
arranged. All the relations are estimated by an additional
MLP that takes the node representation as inputs.

3.3. Relation Optimization

While RGCN refines object poses, some numerically
tiny errors may severely violate the context and thus be ob-
vious in human perception, such as physical collision, flying
objects, or small gaps to the wall. To fix these, we propose a
differentiable optimization to update the refined poses w.r.t.
the predicted relation as introduced in Fig. 3.2. Specifically,
we use a gradient descend to minimize a loss function in-
cluding three major components measuring physical colli-
sion, conformity to relation, and consistency with bottom-
up observations.

3.3.1 Collision Term

At first, we define collision terms, which measures the
amount of collision between objects, walls, ceiling, and
floor. Two types of collision terms are defined according
to the node types.

Object-Object Collision Since the object pose is repre-
sented by a cuboid, we use Separating Axis Theorem (SAT)
[27, 22], which measures the collision between convex
polygons to penalize the collision between two objects. As
explained in Fig. 3, two oriented bounding boxes A and B
collide with each other if their projections overlap along all
separating axes (directions perpendicular to edges). Specif-
ically, the projection of bounding box A on separating axis
x can be defined as a,;, = min{c - z|c € Ca} and
Amaz = maz{c- xz|c € Cp}, where Cy, is the set of cor-
ners of the bounding box A and x is represented as vector.
Thus the sum of overlaps d on every separating axis of A
and B can be treated as a measurement for their collision. It
is also true in 3D space for convex polyhedrons with sepa-
rating axes defined as the directions perpendicular to faces.
Based on this, we define the object-object collision term be-
tween object ¢ and j as:

o {ers, dy, if i, j have collision
e.;. = v

" 0, otherwise @
where S;; is the set of separating axes, and d, =
min(|@maz — bmin|, |@min — bmaz|) is the separation dis-
tance along axis z.

Object-Layout Collision Since the room layout is under
Manhattan World assumption, we define 1) object-wall col-

lision €™ of each object as the sum of the distances between



its bounding box corners and the layout floor map; and 2)
object-floor/ceiling collision, ef¢ and e, as the distance
between the lower/upper surface of the bounding box and
the floor/ceiling. All of these terms are zero if no collision
happens. As mentioned in Sec. 3.2, some objects may still
be visible even they are outside the room, which should not
be considered for our task. Therefore, we weight e’¢ with
in-room likelihood I’™ to avoid pulling out-room objects in-
side.

The scene collision term with objects O can be defined
as:

E¢ — Z )\ocegjc + Z(}\wcljne;ﬂc +)\fcezfc + ACC€§C)7
4,€0,i4j €0
2)

where \* are preset weights.
3.3.2 Relation Term

We then define relation terms to measure the conformity
of object poses with regard to the predicted relations from
RGCN in Sec. 3.2.

For the relative rotation, we define the term e’" as the
absolute error between the observed and predicted relative
angle. For the object attachment relation (i.e., contact), we
define the term e°® similar to e°“ but only penalize sum of
separation distances when there is no collision. The terms
ef® and e® are defined as the distance from the lower/upper
surface of the bounding box to the floor/ceiling, and are re-
spectively set to zero if the object is already attaching with
the floor/ceiling. For relative distance, we calculate a view
distance for each object as the distance from camera center
to object center, and define the term "¢ as the difference
between view distance if their relative order disobeys with
the prediction and zero otherwise. Overall, the relation term

is defined as:
T rr _rr oajoa oa
E" = E Ael” 4+ E A% e
ic0 i€0,jE0UW, ij

+ Y X

ze{ft,ct,rd} i€O

3)

where W is the set of walls, [* are the relation labels pre-
dicted by RGCN, and \* are weights for each term.

3.3.3 Observation Term

Not only abide to the predicted relation and physics, the
object pose refinement should also respect the initial pre-
dictions observed from the input image.

We first define a loss term that measures the consistency
with the raw image observation. For each object, we fita 2D
bounding box to the projection of the 3D cuboid on the tan-
gent plane centered at cuboid center, and compare it with
the results from Mask-RCNN. We define ¢ as the inter-
section over union between two boxes. We then define a

loss term to measure the consistency between the optimized
cuboid with the initial estimation, which is the L1 loss of the
cuboid parameters, including the offset from the 2D detec-
tion center to the cuboid center projection ¢, distance from
camera center to the cuboid center d, size s, and orienta-
tion @ as defined in previous work [31, 20]. The total scene
observation term is then defined as:

o _ A
EC= ZA € )
z€{bp,d,d,s,0} i€cO
3.3.4 Optimization

‘We minimize the sum of the three terms:
min E(d,d, s,0) = E°+ E" + E°. 5)

are chosen according to the confidence of estimated relation
and bottom-up observations. More details can be found in
Supp. Materials. Note that the optimization can be achieved
via gradient decent such that is differentiable and can be
added to the RGCN for joint training.

3.4. Loss Function
We adopt the loss from Nie ef al. [31] to train the ODN:

Lopn = Z

ze{é,d,s,0}

ALy, (6)

where L, are the classification and regression loss for the
object pose parameters. To train RGCN, we first train pose
refinement branch with Lo py, then add the losses for the
relation branch:

Lrcen =Lopn+ >

z€{rr,oa,fa,ca,rd}

where L, is 8-class cross-entropy loss of rotation classifi-
cation, and L,z € oa, fa, ca,rd are binary cross-entropy
loss. When training ODN, RGCN with RO end-to-end, we
define the joint loss as:

L=LopNn + Lrcon+

> XL ®

ze{d,d,s,0}
where £ is the L; loss of the optimized pose parameters.

3.5. Panoramic Datasets

As there is no panorama dataset with complete ground
truth for room layout, object poses, and object shapes, we
propose to synthesize a panoramic dataset that provides the
detailed 3D shapes, poses, positions, semantics of objects
as well as the room layout by utilizing the latest simulation
environment iGibson [34]. iGibson contains 500+ objects
of 57 categories, and 15 fully interactive scenes with 100+



Method chair | sofa | table | fridge | sink | door | floor lamp | bottom cabinet | top cabinet | sofa chair | dryer | mAP
Total3D-Pers 13.71 | 68.06 | 30.55 | 36.02 | 69.84 | 11.88 12.57 35.56 19.19 64.29 41.36 | 36.64
Total3D-Pano 20.84 | 69.65 | 31.79 | 43.13 | 68.42 | 10.27 16.42 34.42 20.83 62.38 33.78 | 37.45
Im3D-Pers 30.23 | 75.23 | 44.16 | 52.56 | 76.46 | 14.91 9.99 45.51 23.37 80.11 53.28 | 45.98
Im3D-Pano 33.08 | 72.15 | 37.43 | 70.45 | 75.20 | 11.58 6.06 43.28 18.99 78.46 41.02 | 44.34
Ours (w/o. RO) | 33.57 | 75.18 | 38.65 | 71.97 | 80.66 | 19.94 18.29 50.67 29.05 79.42 60.07 | 50.68
Ours (Full) 27.78 | 73.96 | 46.85 | 74.22 | 7529 | 21.43 20.69 52.03 50.39 77.09 5991 | 52.69

Table 1: 3D object detection. Following [31, 19], we evaluate on common object categories and use mean average precision
(mAP) with the threshold of 3D bounding box IoU set at 0.15 as the evaluation metric. Please refer to supplementary material
for evaluation on full 57 categories.

Method background | bed | painting | window | mirror | desk | wardrobe tv door | chair | sofa | cabinet | mloU
PanoContext 86.90 78.58 | 38.70 35.58 38.15 | 29.55 27.44 34.81 | 19.40 | 9.61 | 11.10 | 5.46 31.38
Ours (Full) 87.48 62.99 | 56.33 65.36 40.48 | 52.86 53.50 46.88 | 49.70 | 34.21 | 48.59 | 10.36 | 50.73

Table 2: Semantic segmentation IoU. Following [49] we calculate IoU with uniformly sampled points on sphere surface.

rooms in total, and 75 objects on average. Before rendering,
we run a physical simulation [34] to resolve bad placement
(e.g., floating objects) and randomly replace objects with
models from the same semantic category for each scene.
Then we set the cameras with height of 1.6m looking at
random directions in the horizontal plane. By building a
2D occupation map of objects, we avoid setting cameras
inside, over, or too close to objects. Finally, we render
1,500 panorama images with semantic/instance segmenta-
tion, depth images, room layout, and the oriented 3D object
bounding boxes from the physical simulator. Among 15
provided scenes, we use 10 for training and 5 for testing,
generating 100 images per scene.

We crop each object separately to train LIEN and LDIF.
In total, we collect 19,245 object crops from the training
set and 7,753 from the test set. Besides these, we also ren-
der extra object-centric images, which contain 51,285 for
training and 5,715 for testing. To generate implicit signed
distance field ground truth, we process the 3D object CAD
model [30, 14] to make sure the objects are watertight.
Please refer to supplementary material for examples of our
synthesized dataset.

4. Experiments

To our best knowledge, we are the first to achieve to-
tal 3D scene understanding on panorama images with scene
level reconstruction. Thus to make comparisons with the
SoTA methods Total3D [31] and Im3D [47] which work
with perspective cameras, we divide the panorama camera
into a set of cameras with horizontal FoV of 60°. We then
retrieve the detection results on panorama from our 2D de-
tector and group them by camera splits then feed them into
Total3D and Im3D. The results of object pose and shape are
transformed from camera coordinates to world coordinates
to make the final results (Total3D-Pers and Im3D-Pers). Be-
sides the perspective version, we also extend Total3D and
Im3D to work directly on panorama images (Total3D-Pano
and Im3D-Pano). Specifically, we change the representa-
tion of 2D bounding box into BFoV and input object de-
tection results as a whole to provide richer scene context

information. Since Total3D and Im3D are designed to do
cuboid layout estimation, for a fair comparison, we replaced
their layout estimation network with HorizonNet and only
compare with them on 3D object detection and scene re-
construction. All the models are fine-tuned on our proposed
dataset following the same process. Please refer to supple-
mentary material for more details.

4.1. Comparison with SoTA

3D object detection We evaluate our method with mean
average precision (mAP) on 3D object detection and scene
understanding. Following [47, 31, 19], we consider a pre-
dicted 3D bounding box with IoU (with ground truth) more
than 0.15 as a true detection. As shown in Tab. 1, our
method has a great improvement over the SOTA even with-
out relation optimization, which mainly benefits from the
novel geometric features extracted from initial estimates
as well as the constraints between more objects. To show
the generalization ability of our model, we compare it with
PanoContext [49] on their proposed dataset in Tab. 2. Since
the PanoContext dataset has no object orientation label, we
fine-tune our Full model only up to 2D detector. The results
show that our context model can also generalize to real data
with only bottom-up models fine-tuned. We also show cor-
responding qualitative results in Fig. 4 and Fig. 5.

Physical violation To highlight the improvement benefit
from relation optimization, i.e., collision avoidance, we
calculate average collision times per scene and the aver-
age number of objects with collision. We also report the
number of collision of each kind between object to ob-
ject/ceiling/floor/wall. The results shown in Tab. 3 indi-
cate that our method outperforms SoTA methods from all
perspectives in preventing physical collision, while the gap
from the ablated version further illustrating the importance
of relation optimization. The analysis in ablation study
(Sec. 4.2) further demonstrates the importance of relation
optimization in delivering context plausible results.
Holistic Scene Reconstruction We compare the recon-
struction results qualitatively with the Total3D-Pano and
Im3D-Pano in Fig. 4. Our method shows overall the best
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Figure 4: Qualitative comparison on 3D object detection and scene reconstruction. We compare object detection and compare
scene reconstruction results with Total3D-Pers and Im3D-Pers in both bird’s eye view and panorama format.

performance on object pose estimation and shape recon- fail with considerable error.
struction. We also achieve more reasonable object-wall re- .

lations looking from the bird’s eye view. For example in the 4.2. Ablation Study
third column, our method places the bed in the bottom-left To evaluate the proposed relation and object features and
corner right next to the wall, while Im3D and Total3D all different parts of the proposed relation optimization, we



Figure 5: Generalization examples on PanoContext dataset.

collision times | objects having collision with
Method . . -

among objects | object ceil floor wall
Total3D-Pers 345 496 0.09 270 2.68
Total3D-Pano 341 487 0.14 281 2.66
Im3D-Pers 3.16 454 0.03 179 242
Im3D-Pano 2.62 398 0.02 236 226
Ours (w/o. RO) 2.68 408 0.01 176 2.23
Ours (Full) 0.86 1.50 004 045 1.33

Table 3: Physical violation. We compare our methods with
average collision times per scene to verify the effect of the
proposed relation optimization. The collision detection is
done with a toleration of 0.1m.

conduct ablation studies by removing different parts of our
method and make comparisons on 3D object detection, col-
lision, and relation estimation. For binary relations, e.g.,
contact and relative distance, we compare Truth Positive
Rate (TPR) and Truth Negative Rate (TNR). For rotation
relation, we compare mean absolute error in degrees.

Do the Proposed Features Matter? As described in
Sec. 3.2, we propose separate features for relation nodes
and object nodes to encode explicit collision information
and 3D geometry priors to RGCN. To show the necessity
and effectiveness of these features, we remove the relation
features (w/o. Fr) and the object features (w/o. Fo) respec-
tively. As shown in Tab. 4, removing any feature will cause
a drop in object detection mAP, as well as attachment clas-
sification. This is as expected as both relation feature and
object feature provides critical information to measure the
distance/collision among objects and layouts.

Does Relation Optimization Matter and How Each Loss
Term Contributes? Our proposed relation optimization
provides an end-to-end solution to hard code collision, con-
tact, and rotation constraints into RGCN, with the purpose
of obtaining more physically plausible and accurate detec-
tion results. By removing it (w/o. RO), we observe a great
drop on mAP and average collision times per scene. We
found our RO also improves Total3D and Im3D with pre-
dicted relation, and see supp. materials for more details.
We also conduct study (w/o. E°, w/o. E", w/o. E°) on
different terms to see how they contributes to the final im-
provement. The missing of collision term hurts the average
collision times most, which further illustrates its importance
on collision avoidance. We also observe even greater drops

Method | obj attach | wall attach | objrot (°) | wallrot (°) | mAP | avg col
w/o. Fr 0.30 0.71 64.21 52.03 3322 | 0.74
w/o. Fo 0.46 0.74 62.83 43.46 3332 | 0.83
w/o. RO - - - - 30.91 2.68
w/o. E¢ - - - - 30.42 2.05
w/o. E" - - - - 29.88 0.46
wlo. E° - - - - 25.30 0.09
Full 047 0.76 62.97 43.72 3359 | 0.86

Table 4: Ablation study. We compare F1 on binary-
classified object-object attachment and object-wall attach-
ment relations. For rotation relation classification, we com-
pare mean absolute error in degrees. We evaluate 3D object
detection with mAP of all 57 categories and physical viola-
tion with average collision times per scene.

FoV(°) 360 180 120 90 60 30
w/o. RO | 3091 | 274 | 2477 | 2590 | 26.16 | 25.51
Full 3392 | 26.09 | 24.34 | 23.01 | 21.72 | 18.52

Table 5: mAP vs FoV. By narrowing the FoV of our model,
the performance drops greatly, especially for our full model.

on mAP when removing E” and E° independently, which
shows that our proposed terms collaborate together to im-
prove 3D detection.

Is Panorama 360°FoV Helping RGCN and RO? Follow-
ing the same procedure of splitting detection results by hor-
izontal FoVs when making Total3D and Im3D working on
panorama, we conduct ablation experiments on our pro-
posed method by narrowing the FoV of each split. We
compare our Full model, with or without RO, with different
FoVs with mAP on full 57 categories in Tab. 5. The results
show that limiting the message flow within small FoVs hurts
the performance, which means that our RGCN and RO are
really taking advantage of the whole scene context to esti-
mate relations and optimize object detection.

5. Conclusion

This paper presents a novel method for holistic 3D scene
understanding from a single full-view panorama image,
which recovers the 3D room layout and the shape, pose, po-
sition, and semantic category of each object in the scene.
To exploit the rich context information in the panorama
image, we employ the graph neural network and design a
novel context model to predict the relationship among ob-
jects and room layout, which will be further utilized by a
novel differentiable relationship-based optimization mod-
ule to refine the initial estimation. Due to the limitation
of existing datasets for holistic 3D scene understanding, we
present a new synthetic dataset. Experiments validate the
effectiveness of each module in our method, and show that
our method reaches the SoTA performance. Future direc-
tions could include simplifying the terms of RO and unify-
ing different modules into a single framework.
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Supplementary Material

In this supplementary material, we provide synthetic
dataset examples, network architecture details, and imple-
mentation details. We also provide visualization of relation
optimization, 3D detection performance on all categories,
more qualitative results, more comparison on Structured3D,
and discussion of failure cases.

A. Dataset Examples

Our synthetic dataset provides various ground truth
along with the RGB panorama images, including 2D object
bounding boxes/BFoVs, watertight scene/object meshes,
oriented 3D object bounding boxes, and 3D room layout.
Our synthetic panorama scene understanding dataset also
provides depth maps and semantic/instance segmentation
images, which can be used by others. Some examples of
our panorama dataset are shown in Fig. C. We also show
object crops collected from the panorama images and extra
object-centric images rendered from object models used for
single image object reconstruction in Fig. D. The data gen-
eration code is built upon iGibson [34] and fully customized
for panorama images.

B. Implementation Details

Dealing with Panorama Image As mentioned in the main
paper, to deal with the continuity of panorama images, we
parameterize the 2D bounding box with Bounding FoV
(BFoV) [7, 45], and extend the panorama boundary before
running 2D detector. Moreover, we change the object ori-
entation 6 to be the yaw angle of the object in the cropped
perspective image coordinate. Compared to directly esti-
mating the orientation in the world frame as in Im3D [47]
and Total3D [31], our representation is more intuitive be-
cause it explicitly codes the transformation from the cam-
era coordinates to the world coordinates. When calculating
bounding box projection term e in relation optimization,
we rotate the camera to each detected bounding box center
then do the projection of 3D bounding boxes, which avoids
cross-border situations.

RGCN relation branch We design a relation branch for our
RGCN to facilitate the relation estimation from the 512-dim
representation vectors of object/relation nodes. We design
the relation branch of RGCN as two-layer MLPs for each
relation, which consist of a 256-dim FC layer, followed by
a ReLU and Dropout layer with a drop factor of 0.5, and an
output layer. The output layer is 1-dim for binary relations
(i.e., object-object/wall/floor/ceiling contact, inside or out-
side room, closer and farther to camera center between a
pair of objects), and 8-dim for multi-class relations (i.e., the
angular difference between object and object/wall).

Hyper parameters For the weights of Lopy, we refer to
Total3D [31] for detailed settings. For the loss weights of

RGCN Output Loss Weight
Symbol | Description Symbol | Value

rr Object-object/wall relative rotation relation Arr 10
oa Object-object/wall attachment relation Aoa 10
fa Object-floor attachment relation Afa 10
ca Object-ceiling attachment relation Aca 10
rd Object-object relative distance relation Ard 10
0 3D bounding box center offset S 10
d 3D bounding box distance N 10
s 3D bounding box size N, 10
0 Object orientation Ap 10

Table A: RGCN outputs and loss weights of Lrcon and L.

Term Weight
Symbol | Description Symbol | Value
oc Object-object collision Ao¢ 1
we Object-wall collision Awe 1
fe Object-floor collision e 1
cc Object-ceiling collision A 1
rr Object-object/wall relative rotation relation AT 0.1
oa Object-object/wall attachment relation Ao 1
fa Object-floor attachment relation e 1
ca Object-ceiling attachment relation A 1
rd Object-object relative distance relation Ard 0.01
) 3D bounding box center offset A 0.0001
d 3D bounding box distance A 0.01
s 3D bounding box size A® 1
0 Object orientation 0 0.001
bp 3D bounding box projection bp 10

Table B: Terms in relation optimization and the weight of
each term.

Lrcon and the joint loss £, we show the description of
each output and its corresponding loss weight in Tab. A.
For relation optimization, we weight each term by its con-
fidence and importance. For example, 2D observations
should be more confident, and collision terms should be
weighted more if we consider physically plausible object
poses important. We show the description of each term and
its corresponding weight in Tab. B. In optimization, we use
a gradient descend optimizer and set the learning rate to 1,
steps to 100, and momentum to 0.9.

Training All the borrowed networks (i.e., Mask-RCNN,
HorizonNet, ODN, LIEN, LDIF) are fine-tuned individu-
ally on our proposed dataset. Specifically, Mask-RCNN is
fine-tuned from the weights pre-trained on COCO dataset,
with batch size of 8 and learning rate of 2e-3 for 1e5 steps.
HorizonNet is fine-tuned from the weights pre-trained on
Structured3D dataset, with batch size of 6 and learning
rate of le-4 for 50 epochs. ODN is fine-tuned from the
weights pre-trained on SUN RGB-D, with batch size of 6
and learning rate of le-4 for 15 epochs. LIEN and LDIF
are fine-tuned from the weights pre-trained on Pix3D, with
batch size of 24 and learning rate of 2e-4 for 100 epochs.
To make a fair comparison, all variation of Total3D [31]
and Im3D [47] including the perspective and panorama ver-
sion are also fine-tuned on our proposed dataset following
the above process. For Total3D-Pers and Im3D-Pers, the



Figure A: Visualization of our proposed relation opti-
mization. A PDF reader like Adobe Acrobat Reader /
KDE Okular might be needed for displaying animated se-
quences. We also include more animation as a video along
with this pdf file. The ground truth object bounding boxes
are visualized with gray color for reference, while the cur-
rent states are colorized. The attachment relations among
objects, walls, floor, and ceiling are indicated by thick white
lines, while the collisions are in red.

ODN and Scene Graph Convolutional Network (SGCN) are
fine-tuned and tested with detection results obtained from
split views. In addition, MGNet used by Total3D is fine-
tuned from the weights pre-trained on Pix3D, with batch
size of 16 and learning rate of 1e-4 for 100 epochs. To train
our proposed RGCN, we generate the attachment relation
ground truth by doing collision detection with a tolerance of
0.1m (i.e., before collision detection, we expand the bound-
ing box by 0.05m) on the ground-truth 3D object bounding
boxes and the estimated layout walls. The other relations
are calculated according to their definition directly. We first
train our RGCN with only the pose refinement branch, with
batch size of 16 and learning rate of le-4 for 35 epochs.
Then we fine-tune it with relation estimation branch for 20
epochs using the same settings. Finally, we do an end-to-
end training of ODN and RGCN with RO, with batch size
of 1 and learning rate of le-5 for 10 epochs.

C. Visualization of Relation Optimization

To visualize the process of our proposed relation opti-
mization, we present an animation in Fig. A. For demon-
stration, we add random noises to the ground truth object
poses as the initial state, which simulates the inaccuracy of
the initial pose estimation. We then use the relation gen-
erated from the ground truth poses to optimize the current
poses (colorized) using our proposed method. We observe
that as the optimization goes on, the position and orienta-
tion of the objects become closer to the ground truth, while
the collisions are gradually resolved.

Total3D Im3D
w/o. RO  w.RO | w/o. RO w.RO
mAP (57 categories, 1) 25.79 32.46 27.25 33.54
avg col () 341 0.89 2.62 0.90

Metric

Table C: The improvement of RO on different methods. The
improvement of 3D object detection is evaluated with mAP
of all 57 categories and physical violation is evaluated with
average collision times per scene.

Methods | 1 o1 Estimation Object GCN RO | Total
(Pano) Reconstruction

Total3D 0.66 0.23 (MGN) - - 0.89

Im3D (Mask R-CNN, 592 0.03 (Scene GCN) - 6.62

Ours HorizonNet, ODN) | (LIEN+LDIF) | 0.06 (Relation-based GCN) | 4.74 | 11.38

Table D: Efficiency comparison. We use average time per
scene in seconds to compare efficiency of different methods
and modules (tested on a single GTX 1080T1).

D. 3D Detection mAP on all 57 categories

In Tab. 1 of the main paper, we show 3D object detection
results for 11 common categories. Here we show a com-
plete quantitative evaluation on all 57 categories in Tab. G.
Same as the conclusion made in the main paper, our method
outperforms the SoTA with a large margin.

E. More Qualitative Comparison on 3D Detec-
tion and Scene Reconstruction

In Sec. 4.1 of the paper, we show qualitative compar-
isons on 3D detection and reconstruction. Here we provide
more results in Fig. E. Compared to the SoTA methods
[31, 47], our method produces significantly better 3D detec-
tion and reconstruction results. From the 3D detection and
reconstruction results in panorama view, we observe that
our method generates more accurate projections of recon-
structed objects (e.g., the mirror of (a), the sofa of (b) and
(d), the door of (¢)). From the 3D detection results in Bird’s
Eye View, we can see that our method generates more rea-
sonable and physically plausible object poses (e.g., (c), (e)
have less object-wall collision and better rotation relations
with walls).

F. Would RO Improve Other Methods?

In order to further evaluate the proposed relation opti-
mization, we apply our RO on Total3D and Im3D using our
predicted relation and their final results, and show the re-
sults in Tab. C. We can see that both methods still signifi-
cantly benefit from the RO, which demonstrates that our RO
is effective and robust to different initial estimates.

G. Run-time Efficiency

The efficiency comparison is shown in Tab. D. It is worth
mentioning that implicit representation LDIF and RO are all



Method (Pano) door | picture table sofa chair | window bed bottom cabinet | chest
Total3D 28.65 0.06 38.83 | 31.64 | 23.71 4.78 74.09 37.08 62.07
Im3D 3759 | 0.14 4947 | 37.24 | 29.34 6.35 77.66 45.18 70.03
Ours (w/o. RO) | 54.74 | 0.69 48.39 | 36.05 | 29.85 13.49 81.13 48.33 72.08
Ours (Full) 57.73 1.24 49.10 | 37.02 | 29.95 12.28 81.15 48.76 74.26
Method (Pano) sink | fridge | bathtub | shelf | mirror toilet counter standing tv mean
Total3D 28.24 | 68.82 69.36 | 10.36 | 0.04 19.88 19.17 2.12 30.52
Im3D 28.57 | 71.39 73.93 9.78 0.92 15.04 19.17 2.52 33.78
Ours (w/o. RO) | 27.43 | 73.35 7393 | 1584 | 147 32.87 19.17 9.61 37.55
Ours (Full) 2793 | 73.35 7393 | 1576 | 3.19 65.54 19.17 13.20 40.21

Table E: 3D object detection comparison on Structured3D. We evaluate on the 17 iGibson categories mapped from 20 Struc-
tured3D categories and use mean average precision (mAP) with the threshold of 3D bounding box IoU set at 0.15 as the

evaluation metric.

(b) 3D Detection

(a) Input (c) Reconstruction

Figure B: Qualitative results of our model on Structured3D.

implemented with PyTorch, and can be further optimized,
e.g., using CUDA, to improve the efficiency.

H. Experiment on Structured3D

Since Structured3D provides the ground truth of object
pose and layout, we can train our model up to RGCN. Due
to the lack of mesh ground truth, we load the object recon-
struction model with weights trained on iGibson. Further-
more, since the object reconstruction model requires cat-
egory label as input, we map the object categories from
Structured3D to iGibson. We found overlapping categories
between two datasets, which ends up with 20 structure3D
categories mapped to 17 iGibson categories. Specifically,
“cabinet”, “bookshelf”, “desk”, “shelves”, “dresser”, “floor
mat”, “television”, “box”, “nightstand” in Structure3D are
mapped to “bottom cabinet”, “shelf”, “table”, “shelf”, “bot-
tom cabinet”, “carpet”, “standing tv”’, “chest”, “chest” in
iGibson, and others are mapped with the same category
name. It is also worth mentioning that the bounding box GT
of objects in Structured3D is not accurate or physical plausi-
ble, which makes it difficult to produce rich relation GT and
to better refine the object poses with observation and colli-
sion terms. So the weights of relation optimization terms
need to be tuned to match the condition. Specifically, we
fix the weights of relation terms and auto-search the learn-
ing rate of gradient descend optimizer and other weights
of relation optimization terms around the original settings

Parameter | Value | Parameter Value
\rd 0.0040 | \°c 0.0157
pu 0.1404 | \we 0.2625
S 6.0502 | Mfe 0.3182
Y 0.0003 | \ee 0.2036
bp 0.2895 | learning rate | 0.0124

Table F: Auto-searched hyperparameters used on Struc-
tured3D, including weights of relation optimization terms
and learning rate of relation optimization.

used on iGibson. In summary, we train object detection on
overlapping categories and set weights of RO terms with
auto-search [3]. The auto-searched weights are shown in
Tab. F. Qualitative results are shown in Fig. B. We can
see that our method performs well with good layout, pose
and shape estimation although there is no ground truth for
shapes. We compare 3D object detection against existing
methods quantitatively in Tab. E. The results show that our
method still outperforms SoTA methods significantly, and
RO plays a big role in improving the mAP.

I. Failure Cases

We show failure cases in Fig. F. One scenario that our
pipeline fails is when heavy occlusion happens (i.e., one of
the doors on the right in (d), the second door on the left in
(a)), which tends to shrink the size of the object in order to
favor the projection term with the partial 2D observation. A
possible solution might be to understand the occlusion and
learn the mask behind occluder. Another scenario is when
the 2D detector has multiple detection results on a single
object (i.e., the wardrobe on the right in (a), the sofa on the
right in (b), the drawer on the left in (c)), which lead to two
overlapped object reconstructions in the same place but not
sufficient to trigger non-maximum suppression. This might
be solved by refining the category prediction of the 2D de-
tector in the RGCN, which will presumably fix detected ob-
ject categories with mistakes (or set reduplicated object to



void) with a better understanding of the 3D scene context.
The last scenario is when HorizonNet fails to generate lay-
outs for rooms that don’t satisfy the Manhattan-world as-
sumption (i.e., the wall on the left side in (e)), our pipeline
will fail to optimize the object pose based on the wrong wall
orientation. Also when object-wall rotation relation is esti-
mated badly (i.e., the window in (b)), the orientation cannot
be optimized properly.
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Figure D: Samples of dataset used for single image object reconstruction.
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Figure E: More Qualitative comparison on 3D object detection and scene reconstruction.



Method chair sofa table fridge sink door floor bott.0m tqp sof.a dryer

lamp cabinet | cabinet | chair
Total3D-Pers 13.71 68.06 30.55 | 36.02 | 69.84 11.88 12.57 35.56 19.19 | 64.29 41.36
Total3D-Pano 20.84 69.65 31.79 | 43.13 | 68.42 10.27 16.42 34.42 20.83 62.38 33.78
Im3D-Pers 30.23 75.23 44.16 | 52.56 | 76.46 14.91 9.99 45.51 23.37 | 80.11 53.28
Im3D-Pano 33.08 72.15 3743 | 7045 | 75.20 11.58 6.06 43.28 18.99 | 78.46 41.02
Ours (w/o. RO) 33.57 75.18 38.65 | 71.97 | 80.66 19.94 18.29 50.67 29.05 79.42 60.07
Ours (Full) 27.78 73.96 46.85 | 7422 | 75.29 2143 20.69 52.03 50.39 | 77.09 59.91

bottom dish coffee
Method window | carpet | picture | oven | cabinet | counter shelf mirror toilet
no top washer table
Total3D-Pers 2.92 0.05 0.01 31.33 | 34.40 0.78 43.54 10.93 39.72 0.11 90.00
Total3D-Pano 3.07 0.05 0.02 29.81 | 32.48 1.11 48.39 9.57 49.52 0.64 90.00
Im3D-Pers 3.52 0.12 0.00 31.28 | 4745 2.60 51.47 15.01 59.02 0.81 90.00
Im3D-Pano 3.42 0.01 0.01 29.06 | 44.79 1.34 43.80 15.41 56.82 0.16 90.00
Ours (w/o. RO) 6.94 0.12 0.03 32.52 | 46.42 1.83 59.78 15.58 61.17 242 90.00
Ours (Full) 9.56 0.65 0.21 34.50 | 44.17 1.25 63.19 22.65 50.69 6.12 90.00
wall .
Method mounted loud console fence | chest standing | - table | speaker bathtub | plant | treadmill
tv speaker table tv lamp system
Total3D-Pers 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 11.48 0.00
Total3D-Pano 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 3.10 0.00
Im3D-Pers 0.03 0.00 0.00 0.00 0.00 0.00 6.06 0.00 10.26 10.34 0.00
Im3D-Pano 0.08 0.00 0.00 0.00 0.00 0.00 3.17 0.00 10.26 12.69 0.00
Ours (w/o. RO) 0.24 0.00 0.00 0.00 0.00 0.00 10.53 0.00 10.26 8.35 0.00
Ours (Full) 0.14 0.00 0.00 0.00 0.00 0.00 2.79 0.00 41.02 | 16.46 0.00
Method washer stool trash stove bed ofﬁ?e shower towel piano mAP
can chair rack

Total3D-Pers 35.06 29.09 2445 | 4444 | 71.87 0.00 100.00 | 25.00 55.56 | 25.11
Total3D-Pano 32.21 29.09 25.84 | 44.44 | 73.22 0.00 72.73 50.00 75.00 | 25.79
Im3D-Pers 36.50 29.09 22.02 | 4444 | 73.22 0.00 81.82 50.00 83.33 29.86
Im3D-Pano 36.50 29.09 39.13 | 44.44 | 73.22 0.00 80.17 0.00 43.33 27.25
Ours (w/o. RO) 36.50 29.09 31.15 | 44.44 | 71.57 0.00 81.82 0.00 100.00 | 30.91
Ours (Full) 36.50 29.09 66.23 | 44.44 | 71.57 0.00 100.00 0.00 100.00 | 33.59

Table G: 3D object detection comparison on full 57 categories. Some categories existing in training scenes do not exist in
testing scenes, or vice versa, which is the main reason for some of the 0 mAP cases.
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Figure F: Failure cases.




