
To appear in IEEE Transactions on Visualization and Computer Graphics

Manifold: A Model-Agnostic Framework for Interpretation
and Diagnosis of Machine Learning Models

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li and David S. Ebert, Fellow, IEEE

(1) (2) (3)

c

b
M11 M11 M11

M3 M3 M3

M11 M11 M11

M10 M10 M10

M11 M11 M11

M2 M2 M2

M11 M11 M11

M0 M0 M0

* A larger coordinate indicates higher prediction confidence

a

Fig. 1. Manifold consists of two interactive dialogs: a model comparison overview (1) that provides a visual comparison between model
pairs using a small multiple design, and a local feature interpreter view (2) that reveals a feature-wise comparison between user-defined
subsets (c) and provides a similarity measure (b) of feature distributions. The user can sort based on multiple metrics (a) to identify the
most discriminative features among different subsets, i.e., sort based on the selected subset in red (2) or a specific class such as C1 (3).

Abstract— Interpretation and diagnosis of machine learning models have gained renewed interest in recent years with breakthroughs
in new approaches. We present Manifold, a framework that utilizes visual analysis techniques to support interpretation, debugging,
and comparison of machine learning models in a more transparent and interactive manner. Conventional techniques usually focus
on visualizing the internal logic of a specific model type (i.e., deep neural networks), lacking the ability to extend to a more complex
scenario where different model types are integrated. To this end, Manifold is designed as a generic framework that does not rely on or
access the internal logic of the model and solely observes the input (i.e., instances or features) and the output (i.e., the predicted result
and probability distribution). We describe the workflow of Manifold as an iterative process consisting of three major phases that are
commonly involved in the model development and diagnosis process: inspection (hypothesis), explanation (reasoning), and refinement
(verification). The visual components supporting these tasks include a scatterplot-based visual summary that overviews the models’
outcome and a customizable tabular view that reveals feature discrimination. We demonstrate current applications of the framework on
the classification and regression tasks and discuss other potential machine learning use scenarios where Manifold can be applied.

Index Terms—Interactive machine learning, performance analysis, model comparison, model debugging

1 INTRODUCTION

Recent technical breakthroughs in the machine learning field have
led to highly improved accuracies and utilization in many scenarios,
including sophisticated pattern recognition tasks [2,19]. However, these
technical advances pose two major challenges. First, the complexity
of the models being designed and adopted has significantly increased
to the point that is difficult for model developers to explain why and

• Jiawei Zhang and David S. Ebert are with Purdue University, E-mail:
{zhan1486|ebertd}@purdue.edu. This work was done while the first author
was at Uber Technologies, Inc.

• Yang Wang and Lezhi Li are with Uber Technologies, Inc, E-mail:
{gnavvy|lezhi.li}@uber.com.

• Piero Molino is with Uber AI Labs, E-mail: piero@uber.com.

how the model works. Second, model developers often lack solid
reasoning or evidence to guide their development and debugging due
to the hidden mechanisms of the models, making this iterative process
more time-consuming and error-prone. Both of these challenges require
more effective approaches that enable interpretation and explanation of
machine learning processes [15, 16, 34].

Visual and interactive interfaces have proved to be effective in terms
of enabling users to integrate domain knowledge in the process of
interpreting and diagnosing these complex models [4, 10, 27, 39]. Typ-
ical solutions include visualizing the internal structure or intermedi-
ate states of the model to enhance the understanding and interpreta-
tion [12,25,41], evaluating and analyzing the performance of models or
algorithms [5, 22, 33], and interactively improving the models at differ-
ent development stages such as feature engineering or hyperparameter
tuning through integration of domain knowledge [6, 29, 43]. Never-

1

ar
X

iv
:1

80
8.

00
19

6v
1

 [
cs

.L
G

]
 1

 A
ug

 2
01

8

theless, the focus of these approaches has been mostly restricted to a
specific model type or task type (i.e., classification tasks), lacking the
ability to extend to more complex industry-level use scenarios where
the size and the complexity of both the model and the task increase.

In this paper, we present an interactive framework called Manifold
to address these problems of integrating, evaluating and debugging
multiple machine learning models. The design process of the frame-
work has been guided by three major phases that are typically involved
in diagnosing and comparing machine learning models: inspection
(hypothesis), explanation (reasoning), and refinement (verification).
The Manifold interface supports these phases through two main visual
components. First, we design a novel scatterplot-based visual tech-
nique that provides a comparative visual summary of the diversity and
complementarity of the model pairs, and allows the users to effectively
inspect symptom data instances and make hypotheses accordingly. The
technique consists of multiple encoding schemes that are flexible and
adaptable to various task types such as classification or regression. Sec-
ond, we design a tabular view for the users to visually discriminate
features extracted from symptom instances and identify which features
are more influential in the models’ outcome, thus providing explana-
tions for the hypotheses generated earlier on. These explanations can
then be incorporated into a new iteration of the model development in
order to validate and refine the model.

Comparing to state-of-the-art solutions in this area, we focus on
generality as the primary property of the framework. Manifold is
model-agnostic, in the sense that it does not need access to the internal
logic of the model and only relies on the input instances and the output
results, allowing the framework to support a broad range of model
types, as long as they target the same machine learning task and have a
consistent format of input and output. Furthermore, Manifold is built
upon scalable WebGL-based rendering frameworks [1, 40] and consists
of several visual summarization and interaction designs, making it
possible to handle large-scale input instances while reducing potential
computational and cognitive overload. In this paper, we describe the
usage of the framework on two typical supervised learning tasks, multi-
class text classification and regression, and discuss ideas for extending
Manifold to a broader range of machine learning tasks.

2 RELATED WORK

Most research on visually interpreting deep learning models requires
access to the internal working mechanism of the model itself, for
example, visualizing and understanding the intermediate calculation
or the internal structures of the model [12, 20, 21, 25, 32, 37, 41, 42].
Since our work aims to support the diagnosis of a broader range of
models without relying on their internal logics, in this section we do
not discuss in detail the work within this category. Instead, we review
these more relevant directions: model diagnosis and debugging, model
performance analysis and interactive model refinement.

2.1 Model Debugging and Performance Analysis
Summary statistics (i.e., accuracy, F-measure, confusion matrices) for
performance analysis are usually representative of a coarse-grained
perspective of the performance especially when evaluating multiple
models, and can potentially lead to a biased cognition. Research has ex-
plored providing an exploratory environment of model performance at
a fine-grained level. Alsallakh et al. [3] propose Confusion Wheel that
arranges different classes based on a radial layout and use histograms
to show the statistics of the true/false positive/negative associated with
each class and their prediction confidence. However, the technique
lacks the ability to support effective comparison of multiple models.
Amershi et al. [5] propose ModelTracker that directly encodes the
model’s prediction score for each instance using its Cartesian coor-
dinates in the 2D space such that the instances of similar prediction
scores have spatial proximity. Similarly, the efficiency of this technique
remains unknown when applied to multiple models or multi-class classi-
fication tasks. To solve these challenges, Ren et al. [33] present Squares,
a performance analysis system that juxtaposes a set of histograms to
present the prediction scores in a multi-class classification task and
allows the user to investigate different models by visually comparing

multiple histograms. However, since the results generated by multiple
models are presented separately in the visual space and there does not
exist a visual indication of how different the models behave on the
same instance, the technique lacks the ability to characterize the model
diversity at the instance level. In contrast, our technique supports more
fine-grained functionality to drill down to specific symptom instances on
which different models agree or disagree. Furthermore, our technique
can be applied to both classification and regression tasks.

Other research directions aim to identify important features and
instances that are relevant to an issue within the model [7, 14–17].
Cadamuro et al. [7] present a conceptual analysis and diagnosis loop
that allows end users to iteratively detect bugs, identify root cause (the
training instances that contribute to the bug the most) and resolve the
issue. Liu et al. [22] suggest a diagnosis system for the training process
of tree boosting methods. Krause et al. [15] design a system called
Prospector for understanding how a specific feature contributes to the
prediction by adjusting the feature value and examine the corresponding
change of the predicted result. Krause et al. [14] propose a model diag-
nosis workflow that identifies a set of features that tend to influence the
model outcome on a single instance the most. The instances that have
the same set of influential features are then aggregated and summarized
in a tabular display for effective inspection. Since our work primarily
focuses on the comparison of multiple models, our approach slices
data and creates visual summaries based on model-level properties (i.e.,
model agreement or disagreement) instead of the feature-level proper-
ties (i.e., influential or sensitive features) that are commonly adopted
in the aforementioned techniques. Once the user selects specific data
slices (symptom instances), our approach provides summary statistics
and visual comparison at the feature level, allowing them to identify
the most discriminative features and generate explanations accordingly.

2.2 Interactive Model Refinement and Ensemble
Human-in-the-loop approaches facilitate the integration of the end
users’ knowledge in the process of supervising and refining models.
The knowledge being integrated in the model is usually acquired by
the end users either through prior experience or by interactively ex-
amining model outcome and intermediate states during the analysis
process. Typical solutions include improving hyperparameters [9, 13],
features [6,26,43], or training instances [29] and investigating multiple
models in order to acquire an optimal model ensemble [35, 38, 43].

Paiva et al. [29] suggest an incremental classification scheme that
allows the users to observe training instances using a similar-based
layout method and specify which samples to use for the learning pro-
cess, hence improving the overall quality of the training set. Brooks
et al. [6] propose FeatureInsight for improving the feature engineering
through interactive visual summaries. The system allows a feature-level
comparison between the wrongly predicted instances (errors) and the
correctly predicted instances (contrasts), recommending features that
could potentially be used to reduce erroneous predictions. While Fea-
tureInsight is mainly applied to binary classification tasks, our system
can be applied to a large range of use cases including multi-class clas-
sification and regression. Talbot et al. [38] propose EnsembleMatrix
that juxtaposes the confusion matrix of multiple classifiers for visual
comparison and supports linear combinations of these classifiers for
more effective model ensemble. Zhao et al. [43] propose LoVis that
partitions instances into segmentations and analyzes which models
or features produce better predictions for each local data segment at
multiple levels of granularity. Schneider et al. [35] juxtapose the model
space and the data space in the visual interface and allows the end user
to filter on these two orthogonal spaces. Compared to this approach, our
system combines the model and data space in the same visualization
through a compact small multiple based visual design, thus reducing
the interaction overload and easing the selection of erroneous instances.

3 DOMAIN CHARACTERIZATION

The iterative design process of Manifold has been a collaborative effort
between machine learning researchers and engineers and visualization
researchers from a ride-sharing company. In this section, we first dis-
cuss the background of this work based on iterative conversations with

2

To appear in IEEE Transactions on Visualization and Computer Graphics

High-level phases Low-level design goals

Inspection (Hypothesis) T1.1 Provide an overall summary of results generated by multiple models.
T1.2 Enable an effective comparative analysis on model pairs (Mi vs M j):

T1.2.1 Which model between Mi, M j has a higher accuracy among all test instances?
T1.2.2 On which instances does Mi (or M j) make a correct prediction but M j (or Mi) fail?
T1.2.3 On which instances does Mi and M j make an agreement (both correct or both incorrect)? If both of them are correct,

which model generates higher prediction scores (more confident)?
T1.3 Enable an effective comparative analysis on a model and others (Mi vs the rest):

T1.3.1 On which instances does Mi make an agreement (disagreement) with the rest of the models?
T1.3.2 Which models overall have a similar (different) behavior as Mi in terms of the model outcome?

Explanation (Reasoning) T2.1 Provide a visual summary for the feature distribution of the user-defined instance subset.
T2.2 Enable an effective visual comparison of two different instance subsets regarding the feature distribution:

T2.2.1 Allow comparison of individual features.
T2.2.2 Enable a quick Identification of the most discriminative features.
T2.2.3 Provide a quantitative measure of the overall distribution similarity.

Refinement (Verification) T3 Generate feature (or model architecture) encoding strategies and iterate model refinement.

Table 1. A high-level domain characterization including inspection (hypothesis), explanation (reasoning), and refinement (verification), and
corresponding low-level task designs for the Manifold framework.

the domain experts. Then we characterize abstractions of the tasks that
the framework should support using visual analysis vocabularies [28].

3.1 Motivation
The challenges that machine learning researchers and developers face
when developing new machine learning models are characterized into
the following aspects.

Debugging coding errors in the model: Many model failures can
be caused by coding errors that lie in several different aspects: errors in
the code implementation, errors in the mathematical foundation the im-
plementation is based upon, and errors in the data preprocessing stage.
Although relatively difficult to figure out in the code, those errors usu-
ally have catastrophic implications for the model performance. Hence,
it is relatively easy to identify them when the results and performance
measures are presented to the user.

Understanding strengths and weaknesses of one model both in
isolation and in comparison with other models: This is usually car-
ried out by identifying under which scenario a model performs poorly
(i.e., returns erroneous prediction results or results that are far from
the targeted value, or returns results that are inconsistent with other
models). Inspecting those scenarios can be difficult especially when the
size and complexity of the instance and feature space become signifi-
cant (i.e., instances that contain a large amount of text, a large number
of numerical features, or a combination of several different types of
features). Thus, the domain experts require techniques that can not only
summarize relevant information at a high level, but also allow drilling
down to a subset of data points based on user-defined conditions.

Model comparison and ensembling: Effective comparative analy-
sis of multiple models not only helps assess which model works better
in specific scenarios, but also provides insights into model ensembling,
a practical strategy that combines complementarity models in order to
achieve higher accuracy than any individual one. Typical statistical
measures for performance analysis provide an overall understanding
of the quality of the prediction. However, they do not characterize the
differences in terms of the types of error the models make (i.e., in the
case of a multi-class classification task, on which class does a model
work better than another and why?). Gathering these insights becomes
more challenging as the number of models to compare increases, in
which case a visual analysis environment can be extremely helpful
since end users can interactively supervise each step of the analysis
process in order to reduce the complexity.

Incorporating insights gathered through inspection and perfor-
mance analysis into model iterations: Although the limitations of the
model have been identified, addressing these issues may not be straight-
forward and requires a comprehensive understanding and creativity in
terms of both the model’s working logic and the domain knowledge
on the input dataset. Visual analysis techniques can be helpful in both
aspects. End users can apply appropriate visualizations to decouple
complex structure within the model and enhance the understanding. An

exploratory analysis environment can help users explore the large-scale
and complex input data in order to gain additional insight into the data
and hence uncover relationships between the data and model output.

3.2 Task Characterization and Design Goals
We characterize three high-level analysis phases that are commonly
involved in the model diagnosis and comparison process. We note that
in practical scenarios, these phases are not easily separable and can
occur concurrently at some point during the analysis process. However,
we summarize them individually for the sake of better characterization
and illustration. We then detail the low-level task design goals which
Manifold has to fulfill in each phase [28] in Table 1.

Inspection (Hypothesis) is the entry of the analysis process when
the user designs a model and attempts to investigate and compare
the model outcome with other existing ones. During this phase, the
user compares typical performance metrics, such as accuracy, preci-
sion/recall, and receiver operating characteristic curve (ROC), to have
coarse-grained information of whether the new model outperforms the
existing ones. Then the user focuses on a specific instance subset of
interest in order to narrow down her analysis space [12, 14]. Typical
approaches to sampling an instance subset include:

• The user has reasonable knowledge of the instances (i.e., feature
distribution, ground truth) prior to the analysis process. This
type of subset makes it easier for the user to make sense of the
model outcome and correlate it with the input (described in the
explanation phase).

• The user filters a subset of instances that have some features in
common, which is typically done through a faceted search on
the input features or the meta data information. Similarly, this
approach samples a subset where feature distributions are in a
simpler form and explicit to the user, thus easing the interpretation
of the instances.

• The user identifies a subset where the results generated by the
model are erroneous or suspicious, for example, the instances
where the new model has low accuracy while others have high
accuracy. We define this type of subset as a symptom set since it is
representative of a potential fault within the model. The symptom
set is of particular interest to the user during the diagnosis process.

Once the user finalizes the selection, she can make hypotheses of
potential issues within the model that may lead to the erroneous result
and proceed to the explanation phase.

Explanation (Reasoning): After selecting a symptom set, in this
phase, the user attempts to explain her hypotheses. The user may access
the detailed information at the instance level or the feature level that can
potentially explain the symptom. Comparative analysis is intensively
involved in this phase. For example, after selecting a subset of false
positive instances (the ground truth class is A while the result predicted
by the model is B), the user may want to investigate what features or

3

local structures of the selected subset are more similar to the set which
ground truth class is B and less similar to the set which ground truth
class is A. These features could be influential to the false positive results
and hence are regarded as an explanation of the symptom. We note that
an explanation may not necessarily have a causal relationship with the
symptom. The user can generate multiple explanations relevant to a
symptom. A verification phase is required to validate the explanation.

Refinement (Verification): In this phase, the user attempts to verify
the explanations generated from the previous phase through encoding
the knowledge extracted from the explanation into the model and testing
the performance. This verification process may be both expensive and
challenging. First, depending on the model type, the user can either
apply feature engineering strategies or adjust the internal architecture
of the model (typically for deep neural networks). Hence, the user
needs to have a comprehensive understanding of the model’s internal
mechanism. Otherwise, it becomes hard for her to derive a reasonable
encoding strategy based on the explanation. Second, since another
training and testing session is required to test the model, the phase can
be tedious and time-consuming.

4 THE MANIFOLD FRAMEWORK

The interface of Manifold mainly consists of two visual dialogs: a
model comparison overview shown in Figure 1(1) for visually inspect-
ing potential issues within the model and identifying symptom instances,
and a feature interpretation view shown in Figure 1(2) for comparing
feature distributions and generating explanations for the issue. In this
section, we discuss how these two components are designed and coordi-
nated in order to enable iterative diagnostic and comparative analysis.

4.1 Model Comparison Overview
In a particular machine learning task, the prediction results generated by
multiple models on a set of instances usually form a high-dimensional
information space that contains heterogeneous data types (boolean,
categorical, numerical). For example, in the context of multi-class
classification, each model predicts a class (categorical) for an instance.
The prediction is associated with a probability score (numerical) that
describes the confidence of the decision. The predicted class can either
be consistent with the ground truth (GT) class of the instance or not,
indicating the prediction is correct or incorrect (boolean). Manifold
visualizes this multi-dimensional space with an emphasis on the visual
comparison of model pairs as pair-wise comparison is an intuitive form
of comparison and requires relatively little cognitive workload. The
knowledge gathered from multiple model pairs can then be composed
to generate a holistic understanding of the entire model space.

Inspired by the table-based approaches for multi-dimensional data
exploration [36], we propose a small multiple visualization that sup-
ports an effective visual comparison of model pairs. By encoding two
orthogonal information dimensions using the row and the column of
the small multiple matrix, the entire information space is naturally
decomposed into subsets that are arranged in each matrix cell. In Mani-
fold, we use the row to encode the model pair and use the column to
encode an orthogonal dimension depending on the use scenario and the
user’s preference. Without loss of generality, we describe the encod-
ing schemes corresponding to two common supervised learning tasks:
multi-class classification and regression as follows.

4.1.1 Multi-Class Classification
In multi-class classification, the end user is usually interested in di-
agnosing the model’s performance on different classes. It is intuitive
to represent each class by a column in the small multiple matrix. As
Figure 2 shows, a single matrix cell encodes the prediction results
relevant to the model pair (Mi,M j) and the class Ci. Since we focus on
not only the correctness of each model (T1.1), but also whether the two
models agree or disagree on specific instances and how confident they
are about the prediction (T1.2, T1.3), we adopt a Cartesian coordinate
system within the 2D space of the cell in which the X axis represents
Mi and the Y axis represents M j. Each point in the coordinate system
represents one input instance and the coordinate on the X (Y) axis
indicates the prediction score generated by the model Mi (M j) on the

class Ci. Hence, the points that are close to the origin indicate lower
prediction confidence than those far from the origin. Since the predic-
tion score is non-negative, we use the positive half and the negative
half of the coordinate system to encode whether the prediction result
on the instance is Ci or not. For example, instances in the positive half
of the X axis (Q1 and Q4 in Figure 2) indicates that they are predicted
by Mi as Ci. In contrast, instances in the negative half of the X axis (Q2
and Q3 in Figure 2) indicates that they are predicted by Mi as another
class rather than Ci. Moreover, instances in the fourth quadrant (Q4 in
Figure 2) indicates that they are predicted by Mi as Ci, but predicted
by M j as another class instead (since Q4 is within the negative half of
the Y axis). The instances are color-coded according to their ground
truth (GT) class. If the GT class of the instance is Ci, it is rendered
in blue. Otherwise, it is rendered in red. Other color schemes can be
applied as well, for example, using a qualitative color scheme to dis-
tinguish between different classes [33]. However, this could generate
cognitive overload when the number of classes increases. Hence, we
use a red-blue color scheme by default.

As Figure 2(right) shows, adopting the Cartesian system spanned
by two models essentially slices the instances according to the model
correctness including true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). Meanwhile, this encoding scheme
explicitly expresses on which instances the two models agree (Q1 and
Q3) or disagree (Q2 and Q4) and how confident they are about the pre-
diction. Figure 3 provides several examples for interpreting the visual
encodings for the matrix cell. The interface of Manifold provides a
filter panel for the user to narrow down to an instance subset of interest,
for example, the instances of which the GT class is (blue) or is not
(red) Ci; The instances that are correctly predicted by one model but
wrongly predicted by the other. In addition, when the number of model
pairs, classes or instances involved in the classification task become
large, the user can filter a subset of them in order to reduce the size of
the small multiple matrix. The filtering operations are implemented in
the following three dimensions: column-wise (class), row-wise (model
pair), and cell-wise (instance). The user can filter to only view several
classes among which the between-class confusion is relatively high
(column-wise). The use can also filter to show the comparison between
a specific model Mi and other models (row-wise), in which case the
number of model pairs to display is reduced from a square scale to a
linear scale. The user can also choose to show a subset of instances
in each cell (cell-wise). Based on our conversation with the domain
experts, we found the following three filtering options are particularly
useful when the user examines the cell corresponding to the model
pair (Mi and M j) and the class Ci. Therefore, these three modes are
displayed in the control panel by default.

ALL The entire input instances including TP, TN, FP, and FN.

UNION The instances which satisfy at least one of the three conditions:
(1) the GT class is Ci; (2) the class predicted by Mi is Ci; (3)
the class predicted by M j is Ci. Compared to the ALL mode,
the TN instances for both models are excluded in this mode.

GT The instances of which the GT class is Ci (including TP and
FN instances).

This comparison overview supports two point selection methods: a
quadrant selection that allows selecting all instances within a quadrant,
and a lasso selection that allows selecting instances within a user-
defined polygon. When the user selects a set of instances in a matrix cell,
the same instances in other cells are highlighted accordingly. Moreover,
the background of the quadrants that contain the highlighted instances
is rendered based on a linear interpolation between red and blue to
indicate the portion of red and blue instances within the selection, as
shown in Figure 1(1). When the number of points rendered in the
matrix cell becomes larger, the scatterplot visualization can potentially
suffer an overplotting issue and generate visual confusion. As a design
alternative, we integrate a contour visualization that provides a visual
abstraction of the scatterplot in order to support scalability in data size
and complexity. The contours are generated by detecting dense clusters
of the points in each quadrant and then computing the concave hulls
for each cluster. As Figure 3(6,7) shows, the contour visualization

4

To appear in IEEE Transactions on Visualization and Computer Graphics

Instances in blue (GT class = 𝑪𝒊) Instances in red (GT class != 𝑪𝒊) Agreement

Q1 Class predicted by 𝑀𝑖 = 𝐶𝑖 (𝑀𝑖 correct)
Class predicted by 𝑀𝑗 = 𝐶𝑖 (𝑀𝑗 correct)

TP for 𝑀𝑖 and 𝑀𝑗

Class predicted by 𝑀𝑖 = 𝐶𝑖 (𝑀𝑖 wrong)
Class predicted by 𝑀𝑗 = 𝐶𝑖 (𝑀𝑗 wrong)

FP for 𝑀𝑖 and 𝑀𝑗

Agree

Q2 Class predicted by 𝑀𝑖 != 𝐶𝑖 (𝑀𝑖 wrong)
Class predicted by 𝑀𝑗 = 𝐶𝑖 (𝑀𝑗 correct)

FN for 𝑀𝑖, TP for 𝑀𝑗

Class predicted by 𝑀𝑖 != 𝐶𝑖 (𝑀𝑖 correct)
Class predicted by 𝑀𝑗 = 𝐶𝑖 (𝑀𝑗 wrong)

TN for 𝑀𝑖, FP for 𝑀𝑗

Disagree

Q3 Class predicted by 𝑀𝑖 != 𝐶𝑖 (𝑀𝑖 wrong)
Class predicted by 𝑀𝑗 != 𝐶𝑖 (𝑀𝑗 wrong)

FN for 𝑀𝑖 and 𝑀𝑗

Class predicted by 𝑀𝑖 != 𝐶𝑖 (𝑀𝑖 correct)
Class predicted by 𝑀𝑗 != 𝐶𝑖 (𝑀𝑗 correct)

TN for 𝑀𝑖 and 𝑀𝑗

Agree

Q4 Class predicted by 𝑀𝑖 = 𝐶𝑖 (𝑀𝑖 correct)
Class predicted by 𝑀𝑗 != 𝐶𝑖 (𝑀𝑗 wrong)

TP for 𝑀𝑖, FN for 𝑀𝑗

Class predicted by 𝑀𝑖 = 𝐶𝑖 (𝑀𝑖 wrong)
Class predicted by 𝑀𝑗 != 𝐶𝑖 (𝑀𝑗 correct)

FP for 𝑀𝑖, TN for 𝑀𝑗

Disagree

Prob by 𝑴𝒊

Prob by 𝑴𝒋

𝐶𝑖

Q1Q2

Q3 Q4

Ground truth
class != 𝑪𝒊

Ground truth
class = 𝑪𝒊

𝑀𝑖

𝑀𝑗

Fig. 2. Left: The visual encoding strategy of the prediction results for the model pair Mi and M j on the class Ci. Right: the interpretation of instances
in each quadrant in the matrix cell (TP: true positive; TN: true negative; FP: false positive; FN: false negative). The instances in the first (Q1) and
third (Q3) quadrants indicate that Mi and M j agree on the predictions while those in the second (Q2) and fourth (Q4) quadrants indicate the two
models disagree on the predictions.

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

𝑀𝑖

𝑀𝑗

(1) (2) (3) (4) (5) (6) (7)

Fig. 3. (1): Instances in Q1 and Q3 indicate Mi and M j produce consistent predictions (The two models agree). (2) Instances in Q2 and Q4 indicate
Mi and M j produce inconsistent predictions (The two models disagree). (3): Instances on Mi is correct while M j is incorrect. (4): Instances on which
Mi is incorrect while M j is correct. (5): Although the two models agree and both of them are correct, M j has a higher overall prediction probability
than Mi, indicating M j is more confident about the prediction. (6) and (7): Comparison between the scatterplot-based visualization (6) and the
contour-based visualization (7). The contour visualization reduces the overplotting issue when rendering a large set of points in the limited space
(i.e., a cluster of red points in the right top corner in Q1 is clearly revealed in the contour view, however, was not shown in the scatterplot view).

clearly reveals the distribution of the instances in red and blue, which
is difficult to read in the scatterplot since the points overlap each other.

4.1.2 Regression
In a typical regression task, the model usually outputs a continuous
variable instead of a discrete label as in the classification task. Hence,
residual analysis is typically used to evaluate model performance, which
is defined as the difference ε between the predicted value ŷ and the
observed value y (GT value) of the output variable (ε = ŷ - y). As
shown in Figure 5, for each instance we encode this residual value
to its coordinate in the Cartesian system. The positive and negative
half of the axis naturally depicts whether the predicted value is higher
(over-predict) or lower (under-predict) than the GT value. Hence, in
this encoding scheme the points that are close to the origin indicate a
lower error compared to those that are far from the origin. We note that
this interpretation is different from the case of the classification task,
where the points near the origin indicate a lower prediction score.

As regression tasks usually do not have discrete output labels, the
user can customize the data slicing based on other dimensions he is
interested in, such as a specific metadata attribute associated with the
input instances, and encode that dimension using the column of the
matrix. This is especially helpful when diagnosing a complex regres-
sion task that is composed of several subtasks of smaller scales. For
example, the estimated time of arrival (ETA) of a food delivery service
can consist of individual components include food preparation, food
transportation and customer pick up. Decomposing the ETA prediction
tasks into these subtasks and investigating them individually can help
reduce the complexity of the overall task and enable an inspection of
performance and comparison at a fine-grained level.

4.2 Feature Interpretation View
We describe the feature interpretation view within the context of multi-
class text classification. We assume that trigrams (n-grams when n

equals 3) [23] are used as text features and several common linguistic
analysis methods such as term frequency (TF) or term frequency-inverse
document frequency (TF-IDF) are used to generate the feature value.
This component also accommodates other feature types, i.e., numerical
and categorical features in Figure 5(right).

Once the user selects a symptom set in the model comparison
overview, for example, the selected instances in red in Figure 1(1),
the feature interpretation view provides a visual comparison of feature
distributions between the selected instances and instances belonging
to each class. As Figure 1(2) shows, this view presents a tabular view
where each row represents a feature (a trigram in this case) and each
column represents a class, as is consistent with the model comparison
overview (T2.2.1). The length of the red (blue) bar in the grid cell en-
codes the aggregated value of the features from the red (blue) instances
within the selection, revealing the prominence of features of selected in-
stances. The length of the gray bar encodes the aggregated value of the
features from the instances belonging to the class of the corresponding
column, representing the feature distribution of the individual class.

The area of the line chart on top of each column (Figure 1b) encodes
the Kullback-Leibler divergence (KL-divergence) [18] of the two distri-
butions within the column, indicating which class has a similar feature
distribution to the selected instances (T2.2.3). For example, Figure 1c
clearly shows that the distribution of the red bars is more similar to
C0 (the first column) than C1 (the second column) and C2 (the third
column), with the KL-divergence chart showing a consistent result.
The user can sort in descending order and show top K features (T2.2.2)
using a button group (Figure 1a). Clicking on one button sorts based
on the corresponding bar in the column (C: gray bar – class related; G:
blue bar – GT instances; N: red bar – non-GT instances). This sorting
operation allows the user to identify prominent features of the selected
subset. For example, in Figure 1(3), sorting features based on Class
C1 clearly shows highly frequent keywords such as old, like, and night.
A visual comparison in the same row indicates they are less frequent

5

Model Feature Algorithm Log Loss

M0 TF-IDF Linear Regression 0.648
M1 TF Linear Regression 0.547
M2 TF-IDF Nave Bayesian 0.595
M3 TF Nave Bayesian 0.489*
M4 TF-IDF SVM (rbf kernel) 0.737
M5 TF SVM (rbf kernel) 0.737
M6 TF-IDF XGBoost 0.789
M7 TF XGBoost 0.783
M8 Word Embedding (GloVe) XGBoost 0.703
M9 Word Embedding (GloVe) MLP 1.174

M10 Word Embedding (GloVe) LSTM 0.587
M11 Word Embedding (GloVe) Bidirectional LSTM 0.479*

Table 2. Models used in the spooky author identification task.

in the other two classes. Clicking on two buttons sorts based on the
difference of the two bars, allowing the user to identify which features
are the most discriminative features between the two subsets.

5 CASE STUDY

We present two case studies to showcase how Manifold can facilitate
reasoning in different usage scenarios. Due to data sensitivity, in both
studies we used publicly available datasets instead of the company-
specific datasets for illustration. To further demonstrate the efficacy
of the system, we interviewed the machine learning researchers and
engineers who were involved in the project and used the system for
company-specific use cases and present their feedback.

5.1 Multi-Class Classification
We use the spooky author identification dataset from Kaggle [11] to
showcase the use of Manifold in the multi-class classification. The
dataset contains a set of excerpts from horror stories written by three au-
thors (Edgar Allan Poe (EAP), Mary Shelley (MWS), and HP Lovecraft
(HPL). The task is to predict the author given a specific excerpt. Our
data scientist developed 12 classification models as shown in Table 2.
Global Vectors for Word Representation (GloVe [31]) was used together
with the input excerpts to derive the word embeddings as input for M8
to M11. She was interested in diagnosing and comparing these mod-
els. By quickly calculating the accuracy of all models, she found that
M3 and M11 had the lowest log loss (0.489 and 0.479, respectively),
indicating overall good performance compared to others. Hence, she
decided to mainly focus on these two models during her analysis.

5.1.1 Model Comparison and Performance Inspection
The user loaded all models and created a mapping between columns and
classes (C0: EAP, C1: HPL, C2: MWS). She chose to use the X axis to
encode M11 and the Y axis to encode other models for comparison, and
filtered to show instances where both models generated correct results
(true positive and true negative instances) as shown in Figure 4(1). From
a high-level perspective, she identified that overall the instances in Q1
had a higher prediction score than those in Q3. This fact was consistent
with her prior knowledge: the model predicts the class that has the
highest probability among all classes. Through visual inspections on
the individual cells, she identified that although both models predicted
correctly, their prediction scores varied. In Figure 4(1), the first (M11,
M3) and second row (M11, M10) show a dense horizontal line close
to the top right corner of Q1 and Q3 (rectangle a and b), indicating
that although the overall accuracy of M11 was higher than M3 and
M10, those two models generated a higher prediction score than M11.
In comparison, the third (M11, M2), fourth (M11, M0) and fifth row
(M11, M4) show a dense vertical line (rectangle c and d), indicating
M2, M0, and M4 were less confident than M11.

She continued to examine M3 and identified that the model pair
(M3, M11) presented a distribution of a rectangular shape (rectangle
e), shown in Figure 4(2). This reflected the fact that the number of
instances on which M3 outperformed M11 and on which M11 out-
performed M3 were relatively comparable, indicating the two models
could potentially be combined as a model ensemble to improve the

(1) (2)

M11 M11 M11 M3 M3 M3

M11 M11 M11 M3 M3 M3

M11 M11 M11 M3 M3 M3

M11 M11 M11 M3 M3 M3

M11 M11 M11 M3 M3 M3

M3 M3 M3 M11 M11 M11

M10 M10 M10 M10 M10 M10

M2 M2 M2 M2 M2 M2

M0 M0 M0 M0 M0 M0

M4 M4 M4 M1 M1 M1

a

b

c

d

e

f

Fig. 4. (1): Model performance comparison between M11 and others.
The density distributions of the correctly predicted instances indicate that
M3 and M10 are more confident than M11 (a, b), which is more confident
than M1 and M2 (c, d). (2): Model performance comparison between M3
and other models. M3 has a higher degree of model complementarity
with M10 and M11 (e). In contrast, M3 outperforms M0, M1 and M2 on a
majority of instances, indicating a lower degree of complementarity (f).

overall confidence. Since M3 was a Naive Bayes model and M11 was
a deep neural network model (LSTM), this was also resonant with her
domain knowledge that models of different working mechanisms have
a higher degree of complementarity and are more likely to be used to
create a model ensemble. In contrast, model pairs between M3 and M0,
M1, M2 showed a distribution of a triangular shape (rectangle f) below
the diagonal line (y = x), indicating that M3 outperformed M0, M1,
and M2 on a majority of instances. Combining these models with M3
for model ensemble may yield little improvement.

5.1.2 Identification and Explanation of Erroneous Instances

After a high-level comparison of M11 and M3, the scientist was in-
terested in which instances one model was erroneous while the other
was correct. She configured the model comparison overview so that
the X axis represented M11 and the Y axis represented other models
(i.e., the first row represented model pair M11 and M3). Furthermore,
she filtered to show instances where model X was wrong while model
Y was correct. The small multiple view showed two separate sets of
data: instances (blue) in the second quadrant (false negative for M11)
and instances (red) in the fourth quadrant (false positive for M11). The
false positive instances that had relatively high prediction score, which
is defined as a symptom set, were of particular interest to her since the
model was very confident about its erroneous decision. She applied a
lasso selection to the corresponding instances in the cell corresponding
to the model pair (M11, M3) and class C1, with the same instances
highlighted in adjacent cells (blue) corresponding to C0 and C2. This
indicated that the wrongly predicted instances belonged to both C0
and C2. Furthermore, the background color of the quadrant in the first
column was darker than the one in the third column, suggesting that a
majority of instances belonged to C0. Hence, the brushing and linking
interaction in Manifold allows the user to not only have a better under-
standing of between-class confusion, but also examine the confidence
of these decisions at a fine-grained level.

She then investigated the features contained within the selected
symptom set in Figure 1(2). The KL-divergence graph clearly showed
that the selected instances had a more similar distribution with class
C0 since the area of the line chart corresponding to C0 was the largest
(Figure 1b). This was resonant with the fact that most of the selected
instances belonged to C0. She was curious about why M11 wrongly

6

To appear in IEEE Transactions on Visualization and Computer Graphics

Feature Type Description

datetime datetime hourly date + time stamp
season categorical spring, summer, fall, winter

weather categorical clear, mist + cloudy, light snow, heavy rain
holiday boolean whether the day is considered a holiday

workingday boolean whether the day is non weekend nor holiday
temp numerical temperature in Celsius

atemp numerical ”feels like” temperature in Celsius
humidity numerical relative humidity

windspeed numerical wind speed
casual numerical number of on-registered user rentals initiated

registered numerical number of registered user rentals initiated
count numerical number of total rentals

Table 3. Feature table of the bike sharing demand prediction dataset.

Model Algorithm RMSLE (lower is better)

M0 Linear Regression 0.968
M1 K-Nearest Neighbor 0.731
M2 Random Forest 0.364
M3 Gradient Boost Tree 0.357
M4 Neural Network (Multilayer Perceptron) 1.159

M5 Ensembled model + derived features 0.341

Table 4. Models used in the bike sharing prediction task.

predicted the instances as C1. By sorting the features based on the
term frequency within the selected set, she identified that the word
old was the most frequent word. She further sorted based on class
C1 and noticed that old was intensively used within that class, shown
in Figure 1(3). This indicated that although old was a representative
term within C1, it may not be a discriminative feature among all three
classes. This result recommended to her to potentially remove the
feature old or reduce its weight during the learning process. In essence,
the feature interpretation view enables the users to dive into feature-
wise comparison and generate potential explanations for the symptom
set of interest. These explanations can then be integrated to improve
the feature set in order to validate the hypothesis and refine the model.

5.2 Regression

In this section, we showcase how users can leverage Manifold for
regression model analysis. We use the Bike Sharing Demand dataset
from Kaggle, which consists of 11000 training and 6500 test data points
and features listed in Table 3. We asked the user to build models to
predict the demand, i.e., the total number of bikes rented with the Root
Mean Squared Logarithmic Error (RMSLE) as the evaluation metric.
Early exploratory data analysis revealed a strong correlation between
features casual, registered and the prediction target count (corr = 0.67,
0.98, respectively). The user hence first removed these two features
to prevent data leakage. Then, she iterated with five commonly used
regression models with the default hyperparameters in Scikit-learn [30]
to start with, yielding an initial set of results as depicted in Table 4.

5.2.1 Model Comparison and Performance Inspection

Looking at the RMSLE scores, the user realized model M2 and M3
performed significantly better than the other three models. She thus
chose M2 and M3 as the candidate models, and encoded the data co-
ordinates with the residual error ε = predict − actual in the model
comparison view. As such, data instances with better predictions are
projected closer to the origin of the cell, and the four quadrants corre-
spond to [++,−+,−−,+−], where + and − depict over-prediction
and under-prediction of the model, respectively.

From the comparison overview in Figure 5, she confirmed both M2
and M3 had narrower distributions near the origin. She also noticed
that data instances were more widely spread in the third quadrant than
the other three, indicating the models tended to under-predict.

5.2.2 Reasoning via Feature Attribution
Based on the above observations, the user sliced out two subsets where
M2 and M3 both over-predicted (red) and under-predicted (blue) in
Figure 5. She then derived the contributing features to the difference
of the two subsets. At a glance, she identified that most categorical
and binary features, such as month, weather, and season (rectangle b),
had low divergence scores (shown under the feature name), indicating
they were not the differentiating factors of the two subsets. In contrast,
features such as hour, temp, and windspeed (rectangle a) had relatively
large divergence, indicating they are potentially useful for deriving new
features that capture the residuals.

5.2.3 Feature Engineering for Model Improvement
In order to incorporate the derived feature attribution for model iteration,
the user proposed to build a stacking model that learned to reduce the
residual errors. She utilized the distributions of the two subsets selected
earlier, and defined feature encoders {Fi} as functions corresponding
to the original features { fi} with divergence larger than a user-defined
threshold. Fi maps an input value to the difference of the two distribu-
tions draw from fi. Using the feature hour as an example, the feature
encoder generates the mapping {17 : 103,2 : 94, ...,22 :−60,6 :−69},
respectively. The intuition behind such encoding was Gradient Boost-
ing: given the user-defined data slices of interest, the user explicitly
encoded their discrepancies as new features, and created a new stacking
model to learn and eliminate the residuals. As a result, the RMSLE
value was reduced from 0.357 to 0.341.

While Gradient Boosting is one of the various ways of incorporating
such user-generated features, it demonstrates a complete human-in-the-
loop workflow that is actionable for model improvement.

5.3 Domain Expert Feedback
Manifold was assessed by several machine learning practitioners from
a ride-sharing company, including two AI researchers focusing on text
classification, three data scientists from multiple divisions (regression,
risk analysis, and forecasting), and five engineers working on the ma-
chine learning platform and infrastructure. They participated in the
machine learning development pipeline for different company-specific
purposes and iterated and debugged their models on a daily basis.

These domain experts pointed out that the entry point of their de-
bugging process was identifying the erroneous instances on which the
model performance degraded the most. Commonly adopted perfor-
mance measures such as F-measure, ROC (or AUC), and confusion
matrices are usually oriented towards a single model at a coarse-grained
level. When multiple models were involved in the analysis, they often
had to investigate different models independently and then combine
or compare the results to form a comprehensive understanding. They
admitted that this process could be tedious and inefficient even with a
small number of models (i.e., 4 or 5) due to two reasons. First, the users
required complex logical operations to navigate in the high-dimensional
space formed by multiple models and to slice the subset of interest.
Second and more importantly, these coarse-grained summaries lacked
the ability to provide more fine-grained suggestions for data slicing and
filtering (i.e., the slicing threshold of the prediction score). Therefore,
the users had to either rely on empirical experience or manually inves-
tigate a small number of instances to gain more concrete knowledge.
Hence, they all agreed that combining the results of the model pairs
into the same visual display and slicing the instance space based on
pair-wise correctness and confidence helped overview the model com-
parison and identify suspicious instances and their density distributions
more efficiently. As one data scientist commented, “this visual map-
ping strategy allows me to use different models as different lenses to
examine data, and see how differently these lenses perform on different
subsets”. An AI researcher commented: “the visual design provides a
unique and useful way to organize and separate information, and can
be applied to a variety of use scenarios.”

Two data scientists noted that the Cartesian-based mapping strategy
generated visual confusion when initially presented to them without
training. For example, they found it difficult to understand the proba-
bility score in the negative half of the coordinate system, which was

7

a b

Fig. 5. Left: Model performance comparison between model pairs for the bike sharing regression problem. Two instance subsets where both top
two performing models (M2 & M3) generated over-predicted (pink) and under-predicted (blue) values were selected for further study. Right: the
contributing features sorted by the divergence between the value distributions of the two instance subsets.

used to encode the Boolean prediction result (relevant or irrelevant)
rather than a “negative probability” in our encoding scheme. However,
once they became familiar with the coordinate encoding, they found
that this design was more effective than other alternatives (Section 6.3)
in terms of interactively selecting instances of interest (i.e., selecting
all instances in four quadrants that are close to the origin). We acknowl-
edge that these new visual encodings can potentially have a relatively
long learning curve for novice users. However, we note that there is
not a one-size-fits-all solution and training is required to familiarize the
novice users with the framework and the visual design.

These users had positive feedback for the overall comparison-centric
workflow in Manifold that overviews the prediction results at the model
level, selects suspicious instance subsets, and distills into actionable
information based on the feature-level comparison. They noted that
while investigating and debugging models, gaining feature-level in-
sights were often the ultimate goal as they provided direct guidance for
feature engineering and model iteration. Hence, they liked that Mani-
fold that provided the visual comparison mechanism at two orthogonal
dimensions (the model level and the feature level) and guided the users
to navigate and pinpoint their targeted issues down to the feature level.
One AI researcher who focused on classifying textual data commented
that “Manifold allowed me to identify the most influential n-grams that
led to the discrepancy between data segments. More importantly, the
entire process to gain the insight is explainable and reproducible”.

6 DISCUSSION

We discuss the proposed approach in the following perspectives.

6.1 Visual Analytics Rather Than Automatic Approaches
Manifold partitions instances based on model correctness and perfor-
mance confidence. An alternative approach is to perform automatic
clustering based on per-datum performance metrics in order to sug-
gest users with an initial set of segments instead of having to examine
the distribution in the quadrants. However, these clustering-based ap-
proaches pose new challenges. First, the clustering results are not
always interpretable, especially the per-datum metrics derived from
multiple models. Users had difficulty understanding why certain points
were clustered together when there was no clear separation where one
model performed better than the other. This also makes it difficult
to act in the later ensembling stage. Moreover, preliminary evidence
indicated that feature encoders generated from granular clusters tend to
overfit the training set. While we still believe using semi-supervised
clustering to suggest data segments is a viable approach towards less
user involvement, more observations on how users slice and dice the
segments need to be carefully studied, which we leave as future work.

6.2 Contributions to the State of the Art
As discussed earlier, many existing visual analytics solutions focus
on interpreting the internal working mechanism of a specific model
type [12, 21, 25, 32, 37, 41]. While these approaches enable a compre-
hensive understanding of one model, it is usually not straightforward to
transfer these insights (i.e., training strategies, hyperparameter tuning,
feature/architecture engineering) to other models due to their varied
working mechanisms. We design Manifold at a higher-level scope, in
the sense that we do not attempt to investigate or improve a specific
model to a great extent. In contrast, Manifold regards each model as
a black box and provides comparative analysis for multiple models,
allowing the end users to easily load a model into Manifold to have an

8

To appear in IEEE Transactions on Visualization and Computer Graphics

initial understanding of its performance without needing prior knowl-
edge about the model. Manifold not only enables model diagnosis and
debugging but facilitates the understanding of a complex model as well.
For example, models that generated correlated results usually have com-
monalities in their internal logic. Hence, end users can gain insights
into the model through comparing to familiar models and utilizing prior
knowledge of these well-studied models.

6.3 Design Iterations and Alternatives

We explored several design alternatives to the scatterplot for encoding
model comparison. These design iterations and feedback were mainly
based on the format of interviews with our domain partners. Below we
present representative design alternatives and summarize the insights
gathered from the interviews.

Whether a single and holistic visual summary or a set of indi-
vidual visual slices? From a high-level perspective, a majority of users
agreed that an effective design should not attempt to encode all models
into a single visual summary since this would cause severe information
overload. For example, we came up with one design alternative based
on confusion matrices where the multi-model results were combined
within a single matrix by either displaying the value of the same model
in the same position of the matrix cell or aggregating and showing sum-
mary statistics within each cell using a chart such as a box plot. The
users found these alternatives to be inefficient for visual comparison as
too many values were involved in the process. Instead, they preferred
decomposing the holistic summary into a set of comparison units where
each unit only involves a small set of models, allowing the display of
more fine-grained information such as the prediction score distribution
pertaining to the corresponding set. This motivated the small multiple
scatterplot design in Manifold.

How many models to involve within a comparison unit? We con-
sidered two and three models during initial design stage. A ternary plot
is a natural consideration for encoding the probability distributions of
the triple-class classification since the three probability values sum up
to one. However, when adapted to multiple models, the predictions
generated by three models are usually independent. One design we
came up with was to scale the prediction scores so that they represented
the relative model confidence and summed up to one. However, the
major drawback is that, for example, the instances on which the three
models yielded the same scores were projected to the same position in
the plot no matter whether they were high or low, making the visual
interpretation confusing. Another alternative extended the scatterplot
design to a three-dimensional Cartesian space, which turned out to be
more complicated and not scalable especially when multiple compar-
ison units were presented to the user. Hence, we chose to not study
designs involving more than two models and only focused on model
pair comparison.

Tuning the scatterplot design. In the current scatterplot design,
one difficulty mentioned earlier was to understand the probability score
in the negative half of the coordinate (Section 5.3). We designed an
alternative that adjusted the encoding in four quadrants so that each
quadrant had its origin in the lower left corner. However, several users
noted that compared to the original, this design made it inefficient to
select instances in a continuous range across quadrants. We integrate
this design as an encoding option in Manifold for users to choose
based on their preference. To alleviate the over-plotting issue in the
scatterplot, we apply a contour visualization that detects dense clusters
and renders a concave hull for each cluster. For visual simplicity, we
did not use multiple contour lines to visualize a fine-grained density
distribution, since the data points rendered within one cell usually
contains different classes (i.e., blue, red, gray). Combining fine-grained
contours from multiple distributions may generate visual clutter and
hinder understanding of the individual distribution. Advanced rendering
and sampling methods can be integrated to remove visual confusion
and preserve multi-class distributions [8, 24]. However, this is not the
primary focus of this work, and we leave it as future work.

raw Model 1

Model 0

Model 2

Segment 0

Segment 1

Encoder 0

Encoder 1

Encoder 2

Encoder 3

new

Model 3

Fig. 6. The workflow of Manifold. Users first build a set of models, then
slice out data segments of interest for feature engineering. The resulting
feature encoders transform raw features into a set of new features with
intrinsic structures that were not captured by the original models and
help users to iterate new models and obtain better performance.

6.4 Future Directions and Ongoing Efforts
The scatterplot design encodes the complementarity (or diversity) of
model pairs since Q1 and Q3 contain instances where the models agree
and Q2 and Q4 contain instances where the models disagree. This
further supports model ensemble. For example, models with varied
performance on the same instance subsets can be ensembled to take
advantage of both models and improve the overall performance. In
contrast, models that generate correlated results on the same subsets are
less useful for ensembling as the combined result remains consistent
with the individual models. The model complementarity can further
be quantified using specific metrics. For example, the below formula
calculates a normalized score for the degree of complementarity, where
larger score indicates a more substantial degree of complementarity. In
this formula, N(Qi) represents the number of points in Qi.

score =
N(Q2)+N(Q4)−N(Q1)−N(Q3)
N(Q1)+N(Q2)+N(Q3)+N(Q4)

Since model complementarity can be represented as a numerical value,
we can further extend the small multiple view to a pixel-oriented visu-
alization, where each cell (pixel) encodes the complementarity score of
a model pair, hence accommodating model pairs and data partitions at
an even larger scale.

So far we have demonstrated the cyclic workflow of Manifold as sum-
marized in Figure 6. To further assess the efficacy, we have deployed
Manifold as part of the core machine learning workflow within an enter-
prise setting. Working closely with the domain scientists who develop
and tune models on a daily basis, we observe and solicit feedback on
usage patterns. For instance, once familiarized with the interface, end
users usually slice and compare instance subsets where models gen-
erate either consistent (e.g., the pink and blue clusters in Figure 5) or
converse results (e.g., the selected instances in Figure 1). By collecting
and generalizing these insights, domain experts can further develop
semi-supervised algorithms to partition instances more intelligently
and automate the reasoning process.

7 CONCLUSION

We propose Manifold, a generic environment for comparing and debug-
ging a broad range of machine learning models. Manifold enables end
users to partition instances based on model correctness and confidence,
identify symptom instances that generate erroneous results, explain
potential reasons of the symptom at the feature level, and iteratively
refine the model performance.

Manifold involves collaborations among visualization researchers
and machine learning scientists that face industry-level challenges in
the machine learning field. Manifold advocates a visual exploratory
approach for machine learning model development and we envision
Manifold being established as a generic platform that helps machine
learning scientists manipulate complex models in a transparent and
interpretable manner.

ACKNOWLEDGMENTS

We thank the Data Visualization Group and the AI Labs at Uber Tech-
nologies, Inc for their support and valuable feedback.

9

REFERENCES

[1] Luma.gl: High-performance webgl2 components for gpu-powered data
visualization and computation. https://uber.github.io/luma.gl/.
Accessed: 2018-03-08.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[3] B. Alsallakh, A. Hanbury, H. Hauser, S. Miksch, and A. Rauber. Visual
methods for analyzing probabilistic classification data. IEEE transactions
on visualization and computer graphics, 20(12):1703–1712, 2014.

[4] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the
people: The role of humans in interactive machine learning. AI Magazine,
35(4):105–120, 2014.

[5] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh.
Modeltracker: Redesigning performance analysis tools for machine learn-
ing. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 337–346. ACM, 2015.

[6] M. Brooks, S. Amershi, B. Lee, S. M. Drucker, A. Kapoor, and P. Simard.
Featureinsight: Visual support for error-driven feature ideation in text
classification. In Visual Analytics Science and Technology (VAST), 2015
IEEE Conference on, pages 105–112. IEEE, 2015.

[7] G. Cadamuro, R. Gilad-Bachrach, and X. Zhu. Debugging machine
learning. In ACM CHI Workshop on Human Centered Machine Learning,
2016.

[8] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014.

[9] J. Choo, C. Lee, C. K. Reddy, and H. Park. Utopian: User-driven topic
modeling based on interactive nonnegative matrix factorization. IEEE
transactions on visualization and computer graphics, 19(12):1992–2001,
2013.

[10] J.-D. Fekete. Visual analytics infrastructures: From data management to
exploration. Computer, 46(7):22–29, 2013.

[11] Kaggle. Spooky Author Identification. https://www.kaggle.com/c/
spooky-author-identification, 2017. Online; accessed 29 March
2018.

[12] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. Activis: Visual ex-
ploration of industry-scale deep neural network models. IEEE transactions
on visualization and computer graphics, 24(1):88–97, 2018.

[13] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for
steering machine classification. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1343–1352. ACM, 2010.

[14] J. Krause, A. Dasgupta, J. Swartz, Y. Aphinyanaphongs, and E. Bertini. A
workflow for visual diagnostics of binary classifiers using instance-level
explanations. arXiv preprint arXiv:1705.01968, 2017.

[15] J. Krause, A. Perer, and K. Ng. Interacting with predictions: Visual
inspection of black-box machine learning models. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, pages
5686–5697, 2016.

[16] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf. Principles of explana-
tory debugging to personalize interactive machine learning. In Proceedings
of the 20th International Conference on Intelligent User Interfaces, pages
126–137. ACM, 2015.

[17] T. Kulesza, S. Stumpf, M. Burnett, W.-K. Wong, Y. Riche, T. Moore,
I. Oberst, A. Shinsel, and K. McIntosh. Explanatory debugging: Sup-
porting end-user debugging of machine-learned programs. In Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2010 IEEE Symposium
on, pages 41–48. IEEE, 2010.

[18] S. Kullback and R. A. Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[20] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE transactions on visualization and
computer graphics, 24(1):77–87, 2018.

[21] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[22] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu. Visual diagnosis of
tree boosting methods. IEEE transactions on visualization and computer

graphics, 24(1):163–173, 2018.
[23] C. D. Manning and H. Schütze. Foundations of statistical natural language

processing. MIT press, 1999.
[24] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in

scatter plots. IEEE transactions on visualization and computer graphics,
19(9):1526–1538, 2013.

[25] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Under-
standing hidden memories of recurrent neural networks. arXiv preprint
arXiv:1710.10777, 2017.

[26] T. Mühlbacher and H. Piringer. A partition-based framework for building
and validating regression models. IEEE Transactions on Visualization and
Computer Graphics, 19(12):1962–1971, 2013.

[27] T. Mühlbacher, H. Piringer, S. Gratzl, M. Sedlmair, and M. Streit. Opening
the black box: Strategies for increased user involvement in existing algo-
rithm implementations. IEEE transactions on visualization and computer
graphics, 20(12):1643–1652, 2014.

[28] T. Munzner. A nested model for visualization design and validation. IEEE
transactions on visualization and computer graphics, 15(6), 2009.

[29] J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim. An approach
to supporting incremental visual data classification. IEEE transactions on
visualization and computer graphics, 21(1):4–17, 2015.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[31] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[32] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing
the hidden activity of artificial neural networks. IEEE transactions on
visualization and computer graphics, 23(1):101–110, 2017.

[33] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares: Sup-
porting interactive performance analysis for multiclass classifiers. IEEE
transactions on visualization and computer graphics, 23(1):61–70, 2017.

[34] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1135–1144. ACM, 2016.

[35] B. Schneider, D. Jäckle, F. Stoffel, A. Diehl, J. Fuchs, and D. Keim. Visual
integration of data and model space in ensemble learning. arXiv preprint
arXiv:1710.07322, 2017.

[36] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[37] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.
IEEE transactions on visualization and computer graphics, 24(1):667–676,
2018.

[38] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. Ensemblematrix: interactive
visualization to support machine learning with multiple classifiers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1283–1292. ACM, 2009.

[39] G. K. Tam, V. Kothari, and M. Chen. An analysis of machine-and human-
analytics in classification. IEEE transactions on visualization and com-
puter graphics, 23(1):71–80, 2017.

[40] Y. Wang. Deck.gl: Large-scale web-based visual analytics made easy. In
IEEE Visualization Workshop on Visualization in Practice (VIP), 2017.

[41] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE transactions on visualization
and computer graphics, 24(1):1–12, 2018.

[42] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Under-
standing neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[43] K. Zhao, M. O. Ward, E. A. Rundensteiner, and H. N. Higgins. Lovis:
Local pattern visualization for model refinement. In Computer Graphics
Forum, volume 33, pages 331–340. Wiley Online Library, 2014.

10

https://uber.github.io/luma.gl/
https://www.kaggle.com/c/spooky-author-identification
https://www.kaggle.com/c/spooky-author-identification

	Introduction
	Related Work
	Model Debugging and Performance Analysis
	Interactive Model Refinement and Ensemble

	Domain Characterization
	Motivation
	Task Characterization and Design Goals

	The Manifold Framework
	Model Comparison Overview
	Multi-Class Classification
	Regression

	Feature Interpretation View

	Case Study
	Multi-Class Classification
	Model Comparison and Performance Inspection
	Identification and Explanation of Erroneous Instances

	Regression
	Model Comparison and Performance Inspection
	Reasoning via Feature Attribution
	Feature Engineering for Model Improvement

	Domain Expert Feedback

	Discussion
	Visual Analytics Rather Than Automatic Approaches
	Contributions to the State of the Art
	Design Iterations and Alternatives
	Future Directions and Ongoing Efforts

	Conclusion

