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Abstract

Indoor scene understanding is central to applications

such as robot navigation and human companion assistance.

Over the last years, data-driven deep neural networks have

outperformed many traditional approaches thanks to their

representation learning capabilities. One of the bottlenecks

in training for better representations is the amount of avail-

able per-pixel ground truth data that is required for core

scene understanding tasks such as semantic segmentation,

normal prediction, and object boundary detection. To ad-

dress this problem, a number of works proposed using syn-

thetic data. However, a systematic study of how such syn-

thetic data is generated is missing. In this work, we intro-

duce a large-scale synthetic dataset with 500K physically-

based rendered images from 45K realistic 3D indoor scenes.

We study the effects of rendering methods and scene lighting

on training for three computer vision tasks: surface normal

prediction, semantic segmentation, and object boundary de-

tection. This study provides insights into the best practices

for training with synthetic data (more realistic rendering is

worth it) and shows that pretraining with our new synthetic

dataset can improve results beyond the current state of the

art on all three tasks.

1. Introduction

Indoor scene understanding is crucial to many applica-

tions including but not limited to robotic agent path plan-

ning, assistive human companions, and monitoring systems.

One of the most promising approaches to tackle these is-

sues is using a data-driven method, where the representa-

tion is learned from large amount of data. However, real

world data is very limited for most of these tasks, such as

the widely used indoor RGBD dataset for normal predic-

tion introduced by Silberman et al. [21], which contains

merely 1449 images. Such datasets are not trivial to col-

lect due to various requirements such as depth sensing tech-
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Figure 1. Real data (top) vs. synthetic data (bottom). For the real

data, note the noise in normal map and the diminishing accuracy

at object boundaries in the semantic labels.

nology [21, 23] and excessive human effort for semantic

segmentation [14, 8]. Moreover, current datasets lack pixel

level accuracy due to sensor noise or labeling error (Fig. 1).

This has recently led to utilizing synthetic data in the

form of 2D render pairs (RGB image and per-pixel label

map) from digital 3D models [2, 6, 11, 30, 24, 17]. How-

ever, there are two major problems that have not been ad-

dressed: (1) studies of how indoor scene context affect

training have not been possible due to the lack of large

scene datasets, so training is performed mostly on reposi-

tories with independent 3D objects [4]; and (2) systematic

studies have not been done on how such data should be ren-

dered; unrealistic rendering methods often are used in the

interest of efficiency.

To address these problems, we introduce a large scale

(500K images) synthetic dataset that is created from 45K

3D houses designed by humans [20]. Using such realis-

tic indoor 3D environments enable us to create 2D images

for training in realistic context settings where support con-

structs (e.g. such as walls, ceilings, windows) as well as

light sources exist together with common household ob-

jects. Since we have access to the source 3D models, we

can generate dense per-pixel training data for all tasks, vir-

tually with no cost.

Complete control over the 3D scenes enables us to sys-

tematically manipulate both outdoor and indoor lighting,
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Figure 2. Render output examples with OPENGL-DL, OPENGL-IL, and MLT-IL/OL. The physically based rendering with proper

illumination provides the best rendering quality with soft shadow and realistic material, highlighted in the zoomed in view. First two rows

show four typical examples in our dataset, last two rows show two examples with zoomed in views.

sample as many camera viewpoints as required, use the

shapes in-context or out-of-context, and render with either

simple shading methods, or physically based based render-

ing. For three indoor scene understanding tasks, namely

normal prediction, semantic segmentation, and object edge

detection, we study how different lighting conditions, ren-

dering methods, and object context effects performance.

We use our data to train deep convolutional neural net-

works for per-pixel prediction of semantic segmentation,

normal prediction, and object boundary prediction, fol-

lowed by finetuning on real data. Our experiments show

that for all three indoor scene understanding tasks, we im-

prove over the state of the art performance. We also demon-

strate that physically based rendering with realistic lighting

and soft shadows (which is not possible without context) is

superior to other rendering methods.

In summary, our main contributions are as follows:
• We introduce a dataset with 500K synthetic image in-

stances where each instance consists of three image

renders with varying render quality, per-pixel accurate

normal map, semantic labels and object boundaries.

The dataset will be released.

• We demonstrate how different rendering methods ef-

fect normal, segmentation, and edge prediction tasks.

We study the effect of object context, lighting and ren-

dering methodology on performance.

• We provide pretrained networks that achieve the state

of the art on all of the three indoor scene understanding

tasks after fine-tuning.

2. Background

Using synthetic data to increase the data density and di-

versity for deep neural network training has shown promis-

ing results. To date, synthetic data have been utilized to

generate training data for predicting object pose [24, 17, 9],

optical flow [6], semantic segmentation [12, 11, 30, 18], and

investigating object features [2, 13].

Su et al. [24] used individual objects rendered in front

of arbitrary backgrounds with prescribed angles relative to

the camera to generate data for learning to predict object

pose. Similarly, Dosovitskiy et al. [6] used individual ob-

jects rendered with arbitrary motion to generate synthetic

motion data for learning to predict optical flow. Both works

used unrealistic OpenGL rendering with fixed lights, where

physically based effects such as shadows, reflections were

not taken into account. Movshovitz et al. [17] used envi-

ronment map lighting and showed that it benefits pose esti-

mation. However, since individual objects are rendered in

front of arbitrary 2D backgrounds, the data generated for

these approaches lack correct 3D illumination effects due

to their surroundings such as shadows and reflections from

nearby objects with different materials. Moreover, they also

lack realistic context for the object under consideration.

Handa et al. [12, 11] introduced a laboriously created 3D

scene dataset and demonstrated the usage on semantic seg-

mentation training. However, their data consisted rooms on

the order of tens, which has significantly limited variation

in context compared to our dataset with 45K realistic house
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layouts. Moreover, their dataset has no RGB images due to

lack of colors and surface materials in their scene descrip-

tions, hence they were only able to generate depth channels.

Zhang et al. [30] proposed to replace objects in depth im-

ages with 3D models from ShapeNet [4]. However, there

is no guarantee whether replacements will be oriented cor-

rectly with respect to surrounding objects or be stylistically

in context. In contrast, we take advantage of a large repos-

itory of indoor scenes created by human, which guarantees

the data diversity, quality, and context relevance.

Xiang et al. [27] introduced a 3D object-2D image

database, where 3D objects are manually aligned to 2D im-

ages. The image provides context, however the 3D data

contains only the object without room structures, it is not

possible to extract per-pixel ground truth for the full scene.

The dataset is also limited with the number of images pro-

vided (90K). In contrast, we can provide as many (rendered

image, per-pixel ground truth) pairs as one wants.

Recently, Richter et al. [18] demonstrated collecting syn-

thetic data from realistic game engine by intercepting the

communication between game and the graphics hardware.

They showed that the data collected can be used for seman-

tic segmentation task. Their method ensures as much con-

text as there is in the game (Although it is limited to only

outdoor context, similar to the SYNTHIA [19] dataset).

However they largely reduced the human labor in annota-

tion by tracing geometric entities across frames, the ground

truth (i.e. per-pixel semantic label) collection process is

not completely automated and error prone due to the hu-

man interaction: even though they track geometry through

frames and propagate most of the labels, a person needs to

label new objects emerging in the recorded synthetic video.

Moreover, it is not trivial to alter camera view, light posi-

tions and intensity, or rendering method due to lack of ac-

cess to low level constructs in the scene. On the other hand,

our data and label generation process is automated, and we

have full control over how the scene is lit and rendered.

3. Data

We modify the 3D scene models from the SUNCG

dataset [20] to generate synthetic data. In SUNCG, there

are 45,622 scenes with over 5M instances of 2644 unique

objects in 84 object categories. The object models provide

surface materials, including reflectance, texture, and trans-

parency, which are used to obtain photo-realistic renderings.

One of the important aspects of this dataset is the fact that

the indoor layouts, furniture/object alignment, and surface

materials are designed by people to replicate existing set-

tings. However, these raw 3D models lack sufficiently accu-

rate geometry (e.g. solid walls) and materials (e.g. emissive

surfaces for lighting) for physically based rendering. We

fix these problems, and release the accurate full 3D scene

models ready for rendering on our project webpage.

Figure 3. Typical camera samples in our dataset, and correspond-

ing images rendered from these viewpoints.

3.1. Camera Sampling

For each scene, we select a set of cameras with a pro-

cess that seeks a diverse set of views seeing many objects

in context. Our process starts by selecting the “best” cam-

era for each of six horizontal view direction sectors in every

room. For each of the six views, we sample a dense set of

cameras on a 2D grid with 0.25 resolution, choosing a ran-

dom viewpoint within each grid cell, a random horizontal

view direction within the 60 degree sector, a random height

1.5-1.6m above the floor, and a downward tilt angle of 11

degrees, while excluding viewpoints within 10cm of any ob-

stacle to simulate typical human viewing conditions. For

each of these cameras, we render an item buffer and count

the number of pixels covered by each visible “object” in the

image (everything except wall, ceiling, and floor). For each

view direction in each room, we select the view with the

highest pixel coverage, as long it has at least three different

visible objects each covering at least 1% of the pixels. This

process yields 6N candidate cameras for N rooms. Figure 3

shows the cameras sampled from an example house.

3.2. Image Rendering

We render images from these selected cameras using

four combinations of rendering algorithms and lighting con-

ditions, ranging from fast/unrealistic rendering with direc-

tional lights using the OpenGL pipeline to physically-based

rendering with local lights using Mitsuba.

OpenGL with Directional Lights (OPENGL-DL). Our

first method renders images with the OpenGL pipeline. The

scene is illuminated with three lights: a single directional

headlight pointing along the camera view direction and two

directional lights pointing in nearly opposite diagonal di-

rections with respect to the scene. No local illumination,

shadows, or indirect illumination is included.

OpenGL with Indoor Lights (OPENGL-IL). Our sec-

ond method also uses the OpenGL pipeline. However,
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Figure 4. Quality and running time of different rendering tech-

niques. Path tracing does not converge well and introduces white

dot artifacts. Bidirectional path tracing works well but is very

slow. Metropolis Light Transport (MLT) with low sampler rate for

direct illumination still occasionally introduces white dot artifacts.

We take MLT with high sampler rate for direct illumination.

the scene is augmented with local lights approximating the

emission of indoor lighting appliances. For each object

emitting light, we create a set of OpenGL point lights and

spot lights approximating its emission patterns. We then

render the scene with these lights enabled (choosing the best

8 lights sources for each object based on illumination inten-

sity), and no shadows or indirect illumination is included.

Physically Based Rendering with Outdoor Lights

(MLT-OL). Our third method replicates the physics of

correct lighting as much as possible to generate photo-

realistic rendering. In order to do so, we setup outdoor

illumination which is in the form of an environment map-

ping with real high-definition spherical sky panoramas. The

environment map that replicates outdoor lighting is cast

through windows and contributes to the indoor lighting nat-

urally. All windows are set as fully transparent to prevent

artifacts on glasses and facilitate the outdoor lights to pass

through. Person and plant are removed from the scene as

the models are not realistic. The default wall texture is set

as purely white. We use Mitsuba [1] for physically based

rendering. We use Path Space Metropolis Light Transport

(MLT) integrator [26] since it handles complicate structure

and materials more efficiently. A comparison of rendering

quality versus time with different integrators is shown in

Figure 4. We can see that MLT integrator with direct il-

lumination sampler rate 512 produces almost artifact-free

renderings with affordable computation time. All the mate-

rials are set as two-sided to prevent flipped surface normal.

The images rendered using raw models from SUNCG

show severe light leakage in room corners. The reason is

that the walls, floors, and ceilings are represented by sin-

gle planar surfaces so light rays can pass through at bound-

aries. We fix this problem by assigning walls with thick-

ness (10cm in our experiments) such that each wall is repre-

sented by two surfaces. We also force the connecting walls

to solidly intersect with each other to prevent light leakage

caused by floating number accuracy problems during the

rendering.

Physically Based Rendering with Indoor Lights (MLT-

IL/OL). We also setup indoor illumination for light re-

sulting from lighting appliances in the scene. However, the

3D dataset is labeled at the object level (e.g. lamp), and

the specific light generating parts (e.g. bulb) is unknown.

Therefore, we manually labeled all light generating parts

of objects in order to generate correct indoor lighting. For

light appliances that do not have a bulb, representing geom-

etry in cases where bulb is deemed to be not seen, we manu-

ally added a spherical bulb geometry at the proper location.

The bulb geometries of the lighting appliances are set as

area emitter to work as indoor lights. Similar to the outdoor

lighting, we use Mitsuba and MLT integrator for physically

based indoor lights. Figure 2 shows several examples of im-

ages generated by different rendering techniques under the

same camera. We can see, especially from the zoomed in

view, that MLT-IL/OL produces soft shadow and natural

looking materials.

3.3. Image Selection

The final step of our image synthesis pipeline is to se-

lect a subset of images to use for training. Ideally, each of

the images in our synthetic training set will be similar to

ones found in a test set (e.g., NYUv2). However not all of

them are good due to insufficient lighting or atypical dis-

tributions of depths (e.g., occlusion by a close-up object).

We perform a selection procedure to keep only the images

that are similar to those in NYUv2 dataset in terms of color

and depth distribution. Specifically, we first compute a nor-

malized color histogram for each real image in the NYUv2

dataset. For each image rendered by MLT-IL/OL, we also

get the normalized color histograms and calculate the his-

togram similarity with those from NYUv2 as the sum of

minimal value of each bin (Figure 5). Then for each syn-

thesized image, we assign it the largest similarity compared

with all NYUv2 images as the score and do the same for the

depth channel. Finally, we select all the images with color

score and depth score both larger than 0.70. This process

selects 568,793 images from the original 779,342 rendered

images. Those images form our synthetic training set, and

is referred as MLT in the latter part of this paper.

3.4. Ground Truth Generation

We generate per-pixel ground truth images encoding sur-

face normal, semantic segmentation, and object boundary

for each image. Since we have the full 3D model and cam-

era viewpoints, generating these ground images can be done

via rendering with OpenGL (e.g., with an item buffer).

4. Indoor Scene Understanding Tasks

We investigate three fundamental scene understanding

tasks: (1) surface normal estimation, (2) semantic segmen-

tation, and (3) object boundary detection. For all tasks we

show how our method and synthetic data compares with
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Figure 5. Histogram similarity between synthetic data and real

data from NYUv2, based on which we do the image selection.

state of the art works in the literature. Specifically, we

compare with Eigen et al. [7] for normal estimation, with

Long et al. [15] and Yu et al. [29] for semantic segmen-

tation, and with Xie et al. [28] for object boundary detec-

tion. We perform these comparisons systematically using

different rendering conditions introduced in Section 3. In

addition, for normal estimation, we also add object without

context rendering, which allows us to investigate the impor-

tance of context when using synthetic data as well.

4.1. Normal Estimation

Method. We utilize a fully convolutional network [15]

(FCN) with skip-layers for normal estimation, by combin-

ing multi-scale feature maps in VGG-16 network [22] to

perform normal estimation. Specifically, the front-end en-

coder remains the same as conv1-conv5 in VGG-16, and

the decoder is symmetric to the encoder with convolution

and unpooling layers. To generate high resolution results

and alleviate the vanishing gradient problems, we use skip

links between each pair of corresponding convolution lay-

ers in downstream and upstream parts of the network. To

further compensate the loss of spatial information with max

pooling, the network remembers pooling switches in down-

stream, and uses them as unpooling switches at upstream

in the corresponding layer. We use the inverse of the dot

product between the ground truth and the estimation as loss

function similar to Eigen et al. [7]

Object without Context. To facilitate a systematic com-

parison with object-centric synthetic data, where correct

context is missing, we use shapes from ShapeNet[4],

in addition to the rendering methodologies introduced in

Sec. 3.2. We randomly pick 3500 models from furniture

related categories (e.g. bed, chair, cabinet, etc.) and set

up 20 cameras from randomly chosen distances and view-

ing directions. More specifically, we place the model at the

center of a 3D sphere and uniformly sample 162 points on

the sphere by subdividing it into faces of an icosahedron.

For each camera a random vertex of the icosachedron is se-

lected. This point defines a vector together with the sphere

center. The camera is placed at a random distance from the

center between 1.5× to 4.5× of object bounding box diag-

onal, and points towards the center.

Training. We directly pretrain on our synthetic data, fol-

lowed by finetuning on NYUv2 similar to Bansa et al. [3].

We use RMSprop [25] to train our network. The learning

rate is set as 1 × 10−3, reducing to half every 300K iter-

ations for the pretraining; and 1 × 10−4 reducing to half

every 10K iterations for finetuning. The color image is

zero-centered by subtracting 128. We use the procedure

provided by [21] to generate the ground truth surface nor-

mals on NYUv2 as it provides more local details resulting in

more realistic shape representation compared to others [16].

The ground truth also provides a score for each pixel indi-

cating if the normal converted from local depth is reliable.

We use only reliable pixels during the training.

Experiments. We conduct normal estimation experi-

ments on NYUv2 with different training protocols. First,

we directly train on NYUv2. Then we pretrain on various

of MLT and OpenGL render settings respectively and fine-

tune on NYUv2. Table 1 shows the performance. We can

see that:

• The model pretrained on MLT and finetuned on

NYUv2 (the last row) achieves the best performance,

which outperforms the state of the art.

• Without finetuning, pretrained model on MLT sig-

nificantly outperforms model pretrained on OpenGL

based rendering and achieves similar performance with

the model directly trained on NYUv2. This shows that

physically based rendering with correct illumination is

essential to encode useful information for normal pre-

diction task.

• The model trained with images after image selection

achieves better performance than using all rendered

images, which demonstrates that good quality of train-

ing image is important for the pretraining.

• The MLT with both indoor and outdoor lighting signif-

icantly outperforms the case with only outdoor light-

ing, which suggests the importance of indoor lighting.

Figure 6 shows visual results for normal estimation on

NYUv2 test split. We can see that the result from the model

pretrained on MLT rendering provides sharper edges and

more local details compared to the one from the model fur-

ther finetuned on NYUv2, which is presumably because of

the overly smoothed and noisy ground truth. Figure 6 last-

column visualizes the angular error of our result compared

to the ground truth, and we can see that a significant por-

tion of the error concentrates on the walls, where our purely

flat prediction is a better representation of wall normals. On

the other hand, the ground truth shows significant deviation

from the correct normal map. Based on this observation, we

highlight the importance of high quality of ground truth. It

is clear that training on synthetic data helps our model out-

perform and correct the NYUv2 ground truth data at certain

regions such as large flat areas.
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Pre-Train Finetune Selection Mean (◦) ↓ Median(◦) ↓ 11.25◦ (%) ↑ 22.5◦ (%) ↑ 30◦(%) ↑

Eigen et al. [7] 22.2 15.3 38.6 64.0 73.9

NYUv2 27.30 21.12 27.21 52.61 64.72

MLT Object - - 48.78 47.49 3.56 12.79 21.35

MLT-OL - No 49.33 42.30 7.47 23.24 34.09

MLT-IL/OL - No 28.82 22.66 24.08 49.70 61.52

MLT-IL/OL - Yes 27.90 21.29 26.76 52.21 63.75

OPENGL-DL - Yes 34.02 28.00 18.56 41.14 52.90

OPENGL-IL - Yes 33.06 26.68 20.89 43.46 54.66

OPENGL-IL NYUv2 Yes 23.38 16.12 35.98 62.93 73.17

MLT-IL/OL NYUv2 Yes 21.74 14.75 39.37 66.25 76.06

Table 1. Performance of Normal Estimation on NYUv2 with different training protocols. The first three column lists the dataset for

pretraining and finetuning, and if image selection is done. The evaluation metrics are mean and median of angular error, and percentage of

pixels with error smaller than 11.25
◦, 22.5◦, and 30

◦.

Testing Image NYUv2 MLT MLT+NYUv2Ground Truth Error Map

Figure 6. Normal estimation results. The pretrained model on MLT provides more local details, and model further finetuned on NYUv2

provides the best performance. The last column shows color image overlaid with angular error map. We can see a considerable amount of

error happens on wall where ground truth is noisy.

4.2. Semantic Segmentation

Method. We use the network model proposed in [29] for

semantic segmentation. The network structure is adopted

from the VGG-16 network [22], however using dilated

convolution layers to encode context information, which

achieves better performance than [15] on NYUv2 in our

experiments. We initialize the weights using the VGG-16

network [22] trained on ImageNet classification task using

the procedure described in [29]. We evaluate on the same

40 semantic classes as [10].

Training. To use synthetic data for pretraining, we map

our synthetic ground truth labels to the appropriate class

name in these 40 classes (note that some categories do not

present in our synthetic data). We first initialize the net-

work with pretrained weights from ImageNet. We then fol-

low with pretraining on our synthetic dataset, and finally

finetune on NYUv2. We also replicate the corresponding

state of the art training schedules by pretraining on Ima-

geNet, followed directly by finetuning on NYUv2, for com-

parison. We use stochastic gradient descent with learning

rate of 1× 10−5 for training on synthetic data and NYUv2.

Experiments. We use the average pixel-level intersection

over union (IoU) to evaluate performance on semantic seg-

mentation. We pretrained the model on our synthetic data
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Figure 7. Semantic Segmentation results. The model pretrained on synthetic rendering data gives more accurate segmentation result. For

example the model trained only with NYU data mis-labeled the chair, whereas the model pretrained on the synthetic data predicts correctly.
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Figure 8. Distribution of classes in our data.

with different rendering method: depth, OpenGL color ren-

dering, and MLT color rendering. For the depth based

model we encode the depth using HHA same as [9]. Over-

all, pretraining on synthetic data helps improve the per-

formance in semantic segmentation, compared to directly

training on NYUv2 as seen in Figure 7, and Table 4.2. This

shows that the synthetic data helps the network learn richer

high level context information than limited real data.

Handa et al. [11] use only rendered depth to train their

11 class semantic segmentation model due to the lack of

realistic texture and material in their dataset (see HHA re-

sults in Table 4.2). However, our results demonstrate that

color information is critical for more fine gained semantic

segmentation task: in the 40 class task Model trained with

color information achieves significantly better performance.

For the color based models, pretraining on physically based

rendering images helps to achieve better performance than

pretraining on OpenGL rendering. This finding is consistent

with normal estimation experiments.

Input Pre-train Mean IoU

HHA
ImageNet 27.6

ImageNet+OpenGL 30.2

RGB

Long et al. [15] 31.6

Yu et al. [29] 31.7

ImageNet + OPENGL 32.8

ImageNet + MLT 33.2

Table 2. Performance of Semantic Segmentation on NYUv2 with

different training setting. All models are fine-tuned on NYUv2.

4.3. Object Boundary Detection

Method. We adopt Xie et al.’s [28] network architecture

for object boundary detection task as they reported perfor-

mance on NYUv2. The network starts with the front end

of VGG-16, followed by a set of auxiliary-output layers,

which produce boundary maps in multiple scales from fine

to coarse. A weighted-fusion layer then learns the weights

to combine boundary outputs in multi-scale to produce the

final result. To evaluate the network, we follow the setting

in [10], where the boundary ground truth is defined as the

boundary of instance level segmentation.

Training. Similar to the semantic segmentation, we first

initialize the network with pretrained weights on ImageNet.

We then pretrain on our synthetic dataset, and finetune on

NYUv2. We also replicate the state of the art training pro-

cedure by pretraining on ImageNet, and directly finetune

on NYUv2, for comparison. To highlight the difference be-

tween multiple rendering techniques, we only train on color

image without using depth. We follow the same procedure
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Figure 9. Boundary estimation results. The last row shows ground truth overlaid with the difference between model without (NYUv2)

and with (MLT+NYUv2) synthetic data pretraining. Red and green indicates pixels enhanced and suppressed by MLT+NYUv2. The model

with synthetic data pretraining successfully suppresses texture and background edges compared to the model without.

Pre-train Finetune OSD↑ OIS↑ AP↑ R50↑

NYUv2[28] - 0.713 0.725 0.711 0.267

OPENGL-IL - 0.523 0.555 0.511 0.504

MLT-IL/OL - 0.604 0.621 0.587 0.749

OPENGL-IL NYUv2 0.716 0.729 0.715 0.893

MLT-IL/OL NYUv2 0.725 0.736 0.720 0.887
Table 3. Performance of boundary detection on NYUv2

introduced in [28]. The standard stochastic gradient de-

scend is used for optimization. The learning rate is initially

set to be smaller (2 × 10−7) to deal with larger image res-

olution of NYUv2, and is reduced even more, to 1/10 after

each 10K iterations on NYUv2. For synthetic data, similar

to our procedure in like normal estimation task, the learning

rate is reduced every 300k iterations.

Experiments. We train the model proposed in Xie et

al.’s [28] with multiple different protocols and show our

comparison and evaluation on NYUv2 in Table 3. Follow-

ing the setting of [28], we take the average of the output

from 2nd to 4th multiscale layers as the final result and per-

form non-maximum suppression and edge thinning. We use

the ground truth in [10], and evaluation metrics in [5].

We train with the code released by [28] and achieve the

performance shown in the first row of Table 3. We could not

replicate the exact number in the paper but we were fairly

close, which might be due to the randomized nature of train-

ing procedure. We first finetune the model based on the

ImageNet initialization on the synthetic dataset and further

finetune on NYUv2. Table 3 shows that the synthetic data

pretraining provides consistent improvement on all evalua-

tion metrics. Consistently, we see the model pretrained with

MLT rendering achieves the best performance.

Figure 9 shows a comparison between results from dif-

ferent models. Pretrained model on synthetic data, prior to

finetuning on real data produces sharper results but is more

sensitive to noise. The last column highlights the difference

between model with and without pretraining on our syn-

thetic data. We can see that edges within objects themselves

as well as the ones in the background (green) are suppressed

and true object boundary (red) are enhanced by the model

with pretraining on synthetic.

5. Conclusion

We introduce a large-scale synthetic dataset with 500K

rendered images of contextually meaningful 3D indoor

scenes with different lighting and rendering settings, as well

as indoor scenes models they were rendered from. We show

that pretraining on our physically based rendering with re-

alistic lighting boosts the performance of indoor scene un-

derstanding tasks upon the state of the art methods.
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