
BeyondTouch: Extending the Input Language with Built-in
Sensors on Commodity Smartphones

Cheng Zhang, Anhong Guo, Dingtian Zhang, Caleb Southern, Rosa Arriaga, Gregory Abowd
Georgia Institute of Technology

85 Fifth Street NW, Atlanta GA 30332, USA
{chengzhang, guoanhong, dingtianzhang, caleb.southern,

abowd}@gatech.edu, arriaga@cc.gatech.edu

Figure 1: BeyondTouch interaction techniques.

ABSTRACT
While most smartphones today have a rich set of sensors
that could be used to infer input (e.g., accelerometer,
gyroscope, microphone), the primary mode of interaction is
still limited to the front-facing touchscreen and several
physical buttons on the case. To investigate the potential
opportunities for interactions supported by built-in sensors,
we present the implementation and evaluation of
BeyondTouch, a family of interactions to extend and enrich
the input experience of a smartphone. Using only existing
sensing capabilities on a commodity smartphone, we offer
the user a wide variety of additional tapping and sliding
inputs on the case of and the surface adjacent to the
smartphone. We outline the implementation of these
interaction techniques and demonstrate empirical evidence
of their effectiveness and usability. We also discuss the
practicality of BeyondTouch for a variety of application
scenarios.

Author Keywords
Mobile interactions; smartphones; inertial sensors; acoustic
sensors.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
interfaces; Input devices and strategies.

INTRODUCTION
Currently, the primary mode of interaction with a
smartphone is limited to the front-facing touchscreen and a
small number of physical buttons along the sides. However,
there are various scenarios when it is not convenient to
touch the screen or the buttons, such as when the phone is
on the table and the user’s hands are dirty or wet, when
touching the screen occludes the display, or when the user
is holding the phone in one hand while the other hand is
occupied with another task. To address these limitations, we
implemented and evaluated a family of interaction
techniques, called BeyondTouch, that allow a user to
perform additional inputs one-handed, two-handed and on-
table, extending the input language of a smartphone in
several interesting ways (see Figure 1).

Contributions and Overview of Paper
While it is possible to accommodate many of these
interaction scenarios by adding capabilities to the
smartphone through external sensors (e.g., a capacitive
touchscreen on the back of the phone [11, 22]), it is also
possible to augment the input language of a commodity
smartphone through proper leverage of its existing sensing
platform. Current smartphones are equipped with an
increasing number of sensors, specifically accelerometers,
gyroscopes and microphones, all of which can be exploited
to support a wider variety of software-detected input events
without the need for additional hardware.

While previous work has suggested the possibility of
sensing a small set of input events, BeyondTouch is
distinguished by the breadth of input events enabled and the
discussion on practical issues about applying machine
learning on mobile interactions (e.g., personalization on
models) and challenges deploying them in real applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IUI 2015, March 29–April 1, 2015, Atlanta, GA, USA.
Copyright 2015 ACM 978-1-4503-3306-1/15/03…$15.00.
http://dx.doi.org/10.1145/2678025.2701374

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2678025.2701374&domain=pdf&date_stamp=2015-03-18

BeyondTouch (Figure 1) extends the input language of a
smartphone by offering:
 On-case interactions (one-handed and two-handed), to

avoid occluding the limited screen area with the fingers;
 Indirect interaction, by touching the surface (e.g., a table)

on which the phone is placed.

We will provide a review of related work next. We then
describe the technical approach behind the implementation
of BeyondTouch, the machine learning approach to
recognize the various input events. We provide an empirical
evaluation of the performance of BeyondTouch and discuss
the implication of these results for practical use. Our results
suggest a hybrid machine learning approach for some
scenarios in which a little bit of personalized training data
improves performance for some users.

RELATED WORK
We review past work on using sensors to enable novel
interaction techniques, and position our contribution of
providing a broad range of interactions for a smartphone
without having to add any new sensing capabilities to the
device.

Some of the earliest demonstrations of broadening
interactions with mobile devices were presented by
Hinckley et al., who instrumented a PDA with a variety of
extra sensing capabilities to demonstrate a wide variety of
interactions that could augment the user experience [9].
This work inspired much of the related research we have
reviewed. While most of the above work has taken the same
approach of adding sensors to the device to demonstrate
interactions that can be supported, contemporary
smartphone platforms include increasingly sophisticated
sensors, and there is an opportunity to produce many
discrete interactions without adding sensors.

On-case Interactions
One of the main problems with touchscreens is that users’
fingers occlude the screen. Several researchers have
experimented with shifting the interaction away from the
touchscreen to the side and back of devices in order to
eliminate occlusion or increase efficiency and accessibility
of the device. This can be accomplished by adding
additional hardware, such as a keypad [11,14], a touchpad
[1,24,25,26,30] or through computer vision [23,29].

Other research has explored the potential gestures
supported by the built-in sensing capabilities on the phones.
Hinckley et al. explored techniques using only inertial
sensors and touch input for hand-held devices that leverage
the multimodal combination of touch and motion, providing
touch-enhanced motion and motion-enhanced touch
gestures as well as the detection of tap events [10]. Tap
events have been further investigated by recognizing side
taps [15], detecting taps on the back case of a phone using
the microphone as a sensor relying on off-device
computation to process the input [20] or distinguishing
between a single gentle or firm tap on the case [8]. Besides

using tap gestures while holding the phone, there are often
situations in which a simple tap directed to some location
on the device is an easy and often preferred eyes-free way
to interact [21], such as interacting with the phone while it
is inside a pocket. Taking the phone out for interactions
demands a high level of attention, both cognitively and
visually, and is often socially disruptive. Whack Gestures
explored quick access to a device in a pocket through
striking its case forcefully with the palm or heel of the hand
[12]. Goel et al. demonstrated the possibility of inferring
hand postures while holding the phone using only built-in
sensors, but requiring a somewhat undesirable constant
vibration source [5].

Off-the-phone Interaction
In some contexts, it is desirable to interact with the phone
without directly touching it. The space around the phone
can be used to interact with the phone. Airlink exploits the
Doppler effect to detect the gestures above the phone [3].
Others have explored off-the-phone interactions while a
phone is placed on a flat surface (e.g., table), requiring
customized pickups attached on the surface to capture the
acoustic signals on the surface, such as a modified
stethoscope [6] or contact piezoelectric sensors [19]. Goel
et al. used both the customized sensors on the surface as
well as the phone sensors (e.g., inertial sensors) to support a
wider set of around-phone gestures [4]. However, what kind
of off-the-phone gestures can be detected without using any
additional hardware other than the built-in sensors is still
unclear. In addition, we introduce the use of dual
microphones available in most modern smartphones for
recognizing gestures. Although previous work has explored
recognizing gestures by differentiating sounds generated by
gestures [7], the on-table interaction in BeyondTouch can
detect both sliding and tapping gestures with only built-in
sensors.

Snooping Users Input on Smartphones
Interestingly, several researchers outside the HCI
community have explored nefarious uses of sensing mobile
device interaction, uncovering information security risks
afforded by easy access to smartphone sensors such as the
accelerometer to detect users input on touchscreen
[2,16,18,31]. However, most of these techniques rely on
off-line inference; it is unclear how they will work for real-
time interaction tasks.

MOTIVATION AND APPLICATIONS
BeyondTouch was motivated by many common smartphone
usage scenarios, where the touchscreen or on-case buttons
limit convenient interactions. For example, when the user is
cooking, he may need to clean or dry his hands before using
the touchscreen. In other scenarios, such as gaming, the
user’s fingers occlude the already limited viewing area of
the touchscreen. To address these limitations, we
implemented three classes of interaction scenarios: one-
handed, two-handed, and on-table.

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

68

One-Handed
When the user is interacting with the phone with a single
hand, it is not easy to move the thumb across the entire
touchscreen area, especially as screen sizes increase. In
addition, the other hand may be occupied doing something
else. BeyondTouch allows the user to tap on the side of the
phone with the thumb, and to tap or slide on the back of the
phone with the index finger (Figure 1a).

The one-handed tapping interactions can be used for
applications such as browsing through images and
webpages. They can also be used for camera functions, like
taking selfies, zooming in and out, and so forth. Other
applications include accessing functions with coarse input
gestures. For example, the user can simply turn on and off
the flashlight by tapping on the back of the phone. The one-
handed sliding interactions are naturally matched with
applications that require scrolling operations, such as
proceeding to the next/previous voicemail, or song on a
playlist.

Two-Handed
The two-handed interactions address usage scenarios where
the touchscreen is available, but the users’ hands may
occlude the small screen area of the phone while holding it
in two hands. We implemented the two-handed interaction
to address this problem, employing a similar user
experience to a traditional game controller on a laptop or a
game console. The user can hold the phone in landscape
orientation with two hands and tap on soft buttons on the
back of the case (Figure 1b).

In the current implementation, we offer six soft buttons on
the back and side of the case. Applications include games
and navigation, with the advantage of exposing the entire
screen area because the fingers are touching the back case
rather than covering the touchscreen.

On-Table
On-table interaction explores possible interactions around
the phone by using only built-in sensors on commodity
smartphones. When the user is cooking and a phone call
comes in, his phone is on a table and his hands may be dirty
or wet. How would he answer the phone call without
polluting the screen by touching it? BeyondTouch allows
the user to tap and slide on the table around the phone to
interact with the device indirectly (Figure 1c). Furthermore,
the on-table interactions can be extended for many
applications that demand straightforward interactions, such
as responding to a phone call or controlling the music
player.

IMPLEMENTION OF BEYONDTOUCH
Table 1 describes the complete set of input events and
related sensors that BeyondTouch supports. We
implemented the BeyondTouch interactions on commodity
smartphones by interpreting data from a combination of
three common built-in sensors: the accelerometer,
gyroscope, and microphones. We applied machine-learning
techniques in order to identify the characteristic signature of

each input event. The machine learning techniques were
implemented using Weka [27], a publicly available tool that
provides implementations of various machine-learning
algorithms that can be run in real-time on a smartphone.

Table 1: Interaction techniques.

Scenario Interaction Input Events Sensors

One-
Handed

Tap back-single-tap, back-
double-tap, side-tap

Gyroscope,
accelerometer,
the microphone at
bottom

Tap-Slide back-single-tap, back-
double-tap, back-slide-up,
back-slide-down

Gyroscope,
accelerometer,
the microphone at
bottom

Two-
Handed

6-point-tap up-left, up-right,
top-left, top-right,
bottom-left, bottom-right

Gyroscope,
accelerometer,
the microphone at
bottom

On-Table Slide, Tap Slide, tap on the surface
around a phone

Gyroscope,
accelerometer,
two microphones

Choice of Detection Technique
In the early exploration of this project, we applied a rule-
based method to recognize the four corner taps for on-case
interactions. Based on our observation, the rotation of the
phone case presents distinct quantitative signatures when
tapping on each of the four corners of the phone case. We
implemented a straightforward rule-based solution to detect
the four corners, which worked well. The advantages of the
rule-based approach are: 1) a lightweight software
implementation (given the limited processing power of a
smartphone); 2) ease of implementation; and 3) no
requirement for training and personalization. However,
machine learning, by contrast, is appropriate for
interactions that are more complex, where the difference
between input events are not obvious from observation of
the sensor input streams. Therefore, we decided to employ
machine-learning based methods to explore other
interactions potentially supported by the built-in sensors on
a smartphone.

Choice of Built-in Sensors
In our initial investigation, we examined data from the
accelerometer to determine if a tap occurred anywhere on
the case of a phone, inspired by work such as Whack
Gestures [12]. In order to detect where the user tapped on
the case, we then added the gyroscope, which better reflects
the difference on the tapping events on four corners.

In pilot testing we observed that when the user held the
phone with a tight grip, these two motion sensors often
failed to detect the tap event, even with a strong tap on the
back case. To address this problem, we added the
microphones as a third input stream. We only consider
loudness from the microphone buffer, measured in decibels
(dB). To calculate the decibel level, we first normalize each
audio sample and calculate the average root mean square

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

69

(Prms) of the samples in the buffer. We then calculate the
decibel value (Equation 1), where Pref is equal to the
standard reference sound pressure level of 20 micropascals.

௉ܮ ൌ 20 ൈ ଵ଴݃݋݈ ቆ
௥ܲ௠௦

௥ܲ௘௙
ቇ ሺ1ሻ					ܤ݀	

In addition, a sensor fusion of microphone and inertial
sensors are complementary to filter out most of the noise,
which works well.

Implementation of On-case Interactions
We implemented the one-handed (Tap, Tap-Slide)
interactions and two-handed interactions using a
combination of rule-based (segmentation) and machine
learning approaches (classification).

We use a traditional sliding window method, with a
window size of 0.64 seconds. Since a tap or slide event
usually last 0.5 seconds, we round it up to 0.64 seconds for
the convenience of computation in the Fourier transform.
Since the sample rate of gyroscope and accelerometer in the
phones we used are 100 Hz, each frame contains 64
samples with 50% overlap with adjacent frames. For each
frame, the system will extract features to determine whether
an event happens (segmentation) and which event it is
(classification).

To detect the occurrence of an input event, we use a rule-
based approach to detect whether an input event (either tap
or slide) has occurred by examining the combination of
thresholds for sensors, including the difference between the
maximum and minimum value from x-axis/z-axis of the
accelerometer and y-axis/z-axis of gyroscope.

For classification, we extract three sets of features for each
0.64-second length buffer from data of three axes of
gyroscope and accelerometer. The features we selected
were based on our observation and understanding of the
data and gestures, which are also common statistical
features used in related works. We plotted out the data in
both time and frequency domains and decided on which
features to use and estimated the time each gesture took and
chose the appropriate window size. The first set is the time-
domain features. For each axis of the data from gyroscope
and accelerometer, we calculated the seven features over
each frame, including root-mean-square, the derivative of
root-mean-square, maximum and minimum value, mean,
variance, and median. We also calculate the ratio between
maximum and minimum for the three axes of the gyroscope
and the total energy for both the gyroscope and
accelerometer, which indicates the magnitude of the whole
event. In addition, the maximum decibel value and the
derivative of neighboring decibel values are also computed
as features. Therefore, we have 7×6+3+2+2 = 49 features
related to amplitude.

The second set of the features includes frequency and
energy, which are calculated for each axis of both the
accelerometer and gyroscope. We compute the Fast Fourier

Transform (FFT) using JTransform [13] to calculate the
frequency energy on each frequency band. We build 31 bins
over the frequency 100 Hz for each axis as well as the
standard deviation of frequency energy over 31 bins, since
we observe that our input events are equally distributed in
terms of energy over frequencies. In total, we have 31×6+6
= 192 features.

As a result, we compute 241 features for each frame to
detect the one-handed and two-handed interaction gestures.
We pass these features to a support vector machine (SVM),
provided by the Weka machine-learning library [27], and
then use this model to classify gestures.

Implementation of On-table Interaction
The on-table interaction is also implemented using a
combination of rule-based and machine learning approach.

In the segmentation stage of our implementation, we use a
rule-based approach to detect whether an input event (either
tap or slide) has occurred by examining the combination of
thresholds for the three sensors, including the loudness
level of bottom microphone and the maximum and
minimum value from z-axis of the accelerometer or y-axis
of the gyroscope.

To classify the input event, we extract features from
microphones, the gyroscope, and the accelerometer. To
capture the full duration of a slide event, we used a sliding
window of one second. Then we divide the one-second
window into ten frames. For each frame, we extract the
following basic time-domain features for all sensors: 1)
level; 2) derivative of level1; 3) maximum and minimum
level; and 4) energy2. A feature vector of each window is
the combination of the feature vector of the ten frames. We
put the feature vector of a window into the pre-trained
model for classification.

We compared the performance of different machine
learning algorithms on our collected training data using ten-
fold-cross validation provided by Weka. Both SVM and K
Nearest Neighbor (KNN) provided above 97.5% for
precision and recall. We elected to use KNN in our
implementation.

Building Training Model
Usually, a trained machine-learning model can be
categorized based on whether it is session-dependent or
user-dependent. A session-dependent model requires
recollecting training data before using the model each time.
A user-dependent model demands collecting training data
from each user. Both of them would increase the barrier of
applying them in real-world usage. Therefore, we adopted a

1 We approximate the derivative of sensor data as the
change in value divided by the change in time.
2 Energy is the square root of the sum of squares for all
samples in the frame.

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

70

user-independent model in our implementation, which
applies a pre-collected training data set and does not require
any data collection from each user. Based on our pilot study
result, we found that the performance of one-handed and
two-handed interactions were dependent on how the user
holds the phone and performs the gestures. However, the
phone’s position was not changed when performing
gestures for on-table interaction. Therefore, we collected a
larger set of data for building the model for one-handed and
two-handed interactions.

For on-table interaction, we first conducted a small pilot
study with the authors. A classifier was trained with the
training samples only from one author. We tested that
model with other authors and the accuracy was very high.
We thought that was because the gestures for on-table
interaction did not require any direct contact with the
phone, which greatly reduced the variance between
gestures. As a result, we collected training data from only
one of the researchers, who performed approximately 600
gestures for each slide event and the tap event on a table.
We varied the tapping position and strength in order to
approximate the behavior of different users.

To build the training set for two-handed and one-handed
interactions, we collected training data from 10 users,
including two authors. Four of them provided examples for
both two interactions, while others provided examples for
only one of the interaction. As a result, each interaction has
10 trainers and approximately 1000 instance for each input
event. During the training process, we asked each user to
repeat each input event 100 times on a Galaxy S3, with
approximately a one-second gap between each gesture. The
data collection program did not provide any feedback to
users. Therefore, the users performed the input gestures in
the manner most comfortable and natural to them.

After collecting all the data, we manually labeled each input
event in the training set. If the researcher was not sure about
the label of an instance, we discarded it to avoid polluting
the training set. Around 85% of the gestures ended up in the
training set.

EVALUATION METHOD
We evaluated the accuracy and usability of BeyondTouch
for the interactions listed in Table 1. We presented users
with a series of stimuli for the interactions, and recorded the
responses interpreted by the pre-trained machine-learning
models. All interactions were performed in a lab
environment.

Participants and Apparatus
We recruited 12 participants (1 female) for two-handed and
one-handed interaction using a Samsung Galaxy S3 phone,
and another 11 participants (6 female) for on-table
interaction using a Samsung Galaxy S3 (7 participants) and
a Samsung Nexus phone (4 participants).

Study Procedure
In the practice phase of the study, we first explained the
interactions to the participants and allowed them to practice
the gestures, receive feedback after performing each
gesture, and ask questions. Then each participant performed
practice sessions, responding to stimuli for each gesture in
the assigned interaction technique ten times in a row.

In the evaluation phase, we presented the participant with
blue-colored visual stimuli on the smartphone screen
indicating which gesture to make. The user also received
visual feedback after responding to the stimuli. When
classification result matched the stimuli, the feedback was
given in green, otherwise red. Each participant responded to
40 stimuli (2 sessions × 20 stimuli) for each gesture with
random order in one-handed and two-handed interactions.
For the on-table interaction, each participant responded to
90 stimuli (3 sessions × 30 stimuli), randomly chosen
between tap and slide gestures. For each interaction, we
asked the users to report any self-made errors in this phase.
It took less than one hour for each participant in the user
study, and there was no compensation.

RESULTS
We report accuracy for each interaction as the percentage of
responses where the gesture classification matched the
stimulus, and the user impressions of each interaction based
on a questionnaire administered at the end of the evaluation
phase.

Accuracy
For one-handed and two-handed interactions, there were
480 examples (20×2×12) for each gesture, and 990 inputs
(30×3×11) for on-table interaction. Table 2 presents the
overall accuracy and standard deviation for each interaction.

Table 2: Accuracy of each interaction technique.

Interaction Two-Handed One-
Handed-Tap

One-Handed-
Tap-Slide

On-Table

Accuracy 71.28%
(SD=12.89%)

88.47%
(SD=3.55%)

72.92%
(SD=6.53%)

93.74%
(SD=4.64%)

One-handed Interaction
For one-handed-Tap interaction, the overall accuracy is
88.47%. The confusion matrix is reported in Table 3. Side-
tap was the most accurate (98.54%), and double-tap was the
least accurate (73.96%). There is a lot of confusion between
double-tap and back-tap, due to the variation of strength
and interval of taps between different users.

Table 3: One-handed-Tap confusion matrix.

User
Input

Classification

BackSingleTap BackDoubleTap SideTap

BackSingleTap 92.92% 4.79% 2.29%

BackDoubleTap 24.17% 73.96% 1.88%

SideTap 0.83% 0.63% 98.54%

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

71

If we collapse back-tap and double-tap into one gesture,
higher accuracy can be achieved (97.92%) (Table 4).

Table 4: One-handed-Tap (back tap combined + side)
confusion matrix.

User
Input

Classification

BackTap(Combined) SideTap

BackTap(Combined) 97.92% 2.08%

SideTap 1.46% 98.54%

For one-handed-tap-slide interaction, the overall accuracy is
72.92%. The confusion matrix is reported in Table 5. Back-
slide-up was the most accurate (92.08%), and back-slide-
down was the least accurate (41.25%). There is a lot of
confusion from back-slide-down to back-slide-up. There is
also a lot of confusion from double-tap to back-tap.

Table 5: One-handed-Tap-Slide confusion matrix.

User
Input

Classification

BackSingleTap BackDoubleTap BackSlideDown BackSlideUp

BackSingleTap 84.38% 4.38% 2.71% 8.54%

BackDoubleTap 20.00% 73.96% 0.63% 5.42%

BackSlideDown 4.58% 0.21% 41.25% 53.96%

BackSlideUp 2.50% 0% 5.42% 92.08%

Collapsing back-tap and double-tap into one gesture, and
back-slide-down and back-slide-up into another gesture,
improves accuracy to 91.35% for taps and 96.35% for
slides (Table 6).

Table 6: One-handed-Tap-Slide (backtap combined) and slide
(combined) confusion matrix.

User
Input

Classification

BackTap(Combined) Slide(Combined)

BackTap(Combined) 91.35% 8.65%

Slide(Combined) 3.65% 96.35%

Two-handed Interaction
For two-handed interaction, the overall accuracy is 71.28%.
The confusion matrix is reported in Table 7. The up-right
corner was the most accurate (83.33%), and the bottom-
right corner was the least accurate (50.83%).

Some users reported that up and top points are much easier
to perform than bottom points. Some users also reported
that the test sessions were so long (240 taps in two
sessions), making them feel tired. This also led to 12 user
self-made errors.

Table 7: Two-handed-6-point confusion matrix.

User
Input

Classification

UpLeft UpRight TopLeft TopRight BottomLeft BottomRight

UpLeft 77.92% 14.58% 3.96% 2.92% 0% 0.63%

UpRight 5.63% 83.33% 3.13% 6.46% 0% 1.46%

TopLeft 2.50% 8.75% 70.83% 15.42% 1.04% 1.46%

TopRight 0% 10.21% 8.75% 79.17% 0% 1.88%

BottomLeft 0% 7.29% 21.46% 2.92% 65.63% 2.71%

BottomRight 0.21% 17.29% 9.38% 19.38% 2.92% 50.83%

On-Table Interaction
For the on-table interaction, eleven participants averaged
93.74% accuracy (S.D. = 4.64%) over 990 input events
total. Tap gestures were recognized with 95.68% accuracy,
and slide gestures were recognized with 91.11% accuracy.

DISCUSSIONS
Like any recognition technique, BeyondTouch is not
perfect. Here we discuss the results to uncover a better
understanding of how and when BeyondTouch is suitable.

Accuracy and User Impressions
Some users reported that tapping continuously for so long
(tap and slide for over 500 times) made them feel less
natural and comfortable. While the experimental procedure
allowed us to gather much data under different situations,
we recognize that it put unrealistic demands on the users
that would not be the case in everyday life.

Similar to real applications, we provided real-time feedback
while participants were testing our technique. But we
observed some users adjusted their gestures according to
the feedback given by the system, especially if they saw
misclassified instances. We take this as a self-learning
process and may potentially have positive influence in the
user study result.

We discuss other observations for each scenario that
impacted results.

One-handed Interaction
When the users tried to perform back-slide-down, they
would first wave their index fingers up. Although there is
no contact with the phone, the shake of the phone is very
similar to back-slide-up, resulting in many false
classifications.

Two-handed Interaction
We observed that the variations in the way users hold the
phone, the positions they tap, and the strengths of the taps
affected individual results a lot. When the users adjust
hands positions while holding the phone, some false-
positives were introduced.

On-table Interaction
Both slide and tap gestures in on-table interaction required
the user to touch the surface around the phone. Since we
used microphones to recognize the gestures, if users did not

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

72

generate loud enough sound it would increase the difficulty
of detecting the occurrence of an event. From our
observation, most users can learn very fast during the
practice to use their fingertips and nails together to perform
the gestures, which were well recognized by the system.
However, user fatigue resulted in false negatives in the
latter stages of the experiment.

Personalization
In the user study, the one-handed and two-handed machine
learning based interactions showed an obvious drop in
terms of accuracies compared with the result we computed
on the training data set using 10-fold cross validation and
leave-one-participant-out method. This gap is mostly
caused by individual differences, such as a user’s finger
length, tap position, and strength of tap. Recall that there
were 16 total trainers and we collected training data for
each scenario from a different subset of 10 of the overall
16. We further tried to encourage each trainer to perform
the input events in whatever way he or she felt most
comfortable, thus introducing lots of opportunities for these
individual differences to be revealed in the models
generated. A personalization procedure, should improve the
results of the machine-learning model for any given user.

Our approach to personalization is a revision on the leave-
one-participant-out method. Instead of leaving one
trainer’s 3 complete training set out, we methodically
incorporated a stratified and randomly selected subset of
that person’s training data into the model that was then used
to test the remainder of that trainer’s input data. We refer to
this as “leave-one-participant-partially-out”, to reflect that
some of an individual’s data is incorporated into the learned
model that is used for classification.

Specifically, for one-handed and two-handed interactions,
we have collected approximately 100 training instances for
each event from 10 different trainers. Instead of using 9
trainers’ data to build the model to evaluate the 10th
trainer’s data, we gradually added a portion of instances
from the 10th trainer’s data into the training set to build a
new model. Then we used this new model to evaluate the
rest of the 10th trainer’s data set. To avoid bias, we ran the
sample selection process 10 times, then built and evaluated
the model for each of them. Then we averaged results from
the 10 sample runs and report those below. Note that
though the ratio of test data to training data changes based
on the amount of training events extracted from the 10th
trainer, the difference in those ratios is negligible for
purposes of comparison.

To evaluate this method, we compare the accuracy results
for different sizes of the trainers’ input set (randomly
selected subsets of size 10, 20, 30, 40, 50 of the
approximately 100 overall events) against the baseline of

3 We refer to these individuals as “trainers” in the following
discussion, distinct from user study participants.

using none of that person’s training set to build the model
(i.e., using 0 of the overall events).

In Figure 2, we show the personalization results for the
three usage scenarios. For each graph, the red/bolder line
represents the averaged result for the “leave-one-
participant-partially-out” method across all trainers in our
training set. The x-axis indicates how many of the trainer’s
input events were added to build the personalized ML
model. For example, the one-handed-tap interaction
scenario provides three input events: back-tap, back-
double-tap, and side-tap. Each user provided around 100
instances for each input event. An x-axis value of 10
represents random selection of 10 instances for each input
event from the 10th user’s data set. Since the one-handed-
tap-slide scenario has three distinct input events, a total of
10×3=30 instances were incorporated into the personalized
training set.

a. One-handed-Tap

b. One-handed-Tap-Slide

c. Two-handed-6-point

 Figure 2: Personalization results

Figure 2 reveals an interesting insight. There is a pretty
significant spread of accuracy results across the trainers,
with each scenario having at least one trainer whose
classification accuracy is much poorer than the rest of the
trainers with no personalization (x-axis value of 0). That

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

73

classification gap decreases when personalization is
introduced. Without personalization, the average accuracy
across all 10 trainers is 80.00% (one-handed-tap-slide),
88.42% (one-handed-tap), and 85.06% (two-handed) with
standard deviations of 0.13, 0.08, and 0.12, respectively.
Using 30 personal training events (per input type), the
average accuracies increase to 88.17%, 93.89%, and
92.06% while the standard deviations decrease to 0.09,
0.04, and 0.06. Figure 2 demonstrates these positive trends
for all three of the machine learning scenarios.

Furthermore, beyond using 30 examples of each event from
the trainer’s, there is no appreciable improvement of the
personalization. This is also good, as it means we need
collect only a small set of an individual BeyondTouch user
training data to sufficiently personalize that user’s model.

A closer examination of the results in Figure 2 shows that
what personalization is doing is more about improving the
classification for the poorest performers in the “leave-one-
participant-out” results. The better performing trainer’s do
not improve that much. This suggests that it might be
worthwhile in practice determining on the fly how well
classification accuracy is for a given user. If that accuracy
is below some acceptable threshold, BeyondTouch can
recommend additional training from that user to personalize
and improve his results.

For example, it may be possible to infer incorrect real-time
classifications by BeyondTouch by sensing the user
repeating an interaction or developing some other situation-
specific heuristic. A running count of these errors can help
determine if a threshold of error tolerance is met. If so,
training can be suggested to the user. With this approach,
BeyondTouch could be used “out of the box” and, for a
smaller percentage of users, and only after having some
experience with BeyondTouch, a user could decide whether
it would be worthwhile to improve accuracy by taking some
time out to give personalized training data.

Challenges for Practical Deployment
There are a number of issues beyond recognition rates that
impact the practical utility of BeyondTouch.

Calibration on Different Phones
Smartphones vary in terms of form factor and sensor
capabilities, which calls into question how our results work
across devices. In our user study, we did not test our
technique on a large variety of phones. However, since the
sensors we used are most common ones and we applied
machine learning technique in the implementation,
calibration across phones is a matter of collecting enough
training data prior to installation on a given phone, and then
allowing for personalization as described above. While this
data collection may be time-consuming, it does not directly
impact the user of the device, until and unless
personalization is warranted.

Rule-based Methods vs. Machine-learning Methods
BeyondTouch employed a combination rule-based
(segmentation) and machine learning (classification)
techniques for detecting input events. However, in our early
exploration, we found that rule-based techniques are also
appropriate for classifying less complex input gestures with
easy implementation (e.g., tap events on the four corners).
Machine-learning methods can recognize more complicated
gestures at the price of collecting training data and
personalization as well as a higher requirement for
computation. A potential mixture between these two
methods can be an effective practical method.

Usage of Multiple Microphones
Most smartphones now have more than one microphone.
Usually, the manufacturer positions one of the microphones
at the bottom to receive the user’s voice input and the other
at the top to detect the ambient sound (to improve the call
quality by reducing the environment noise). These two
microphones can also be leveraged for interaction purposes,
as demonstrated in our on-table interaction. According to
basic physical principles, if the distances between a sound
source and two audio receivers are different, the loudness
level of the audio received by the two receivers should be
different. We found that to be true when the physical touch
event was close to or on the phone case. We imagine richer
potential interaction events can be detected by combing the
data from multiple microphones and inertial sensors.

Interactions by Contexts
In practice, many of the interactions we developed are
designed to work in specific contexts. For example, the
one-handed interaction is designed for the scenario when
the user prefers to hold and interact with the phone in one
hand, while two-handed interaction is tuned for a user
holding the phone in two hands. If the phone runs two-
handed interaction while holding it in one hand, would
increase the false-positives and false-negatives. Hence, an
automatic detection of context about the position and
orientation of the phone [28] is a necessary step for
applying BeyondTouch in real life.

Energy Consumption
BeyondTouch interactions are largely dependent on
sensors. However, recent released smartphones (e.g., Moto
X, iPhone 5S/6) are beginning to feature a low-power,
always-on coprocessor for managing the sensors. With this
kind of new hardware, we expect the energy consumption
of the sensor usage will be greatly reduced going forward
and would not be a concern while using these sensor-based
techniques.

CRITIQUE OF APPLICATIONS OF BEYONDTOUCH
In addition to the applications we proposed in the
introduction, the study participants also suggested
interesting usage scenarios for BeyondTouch. In this
section, we will discuss how we can apply our techniques to
these scenarios by exploring the limitations of

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

74

BeyondTouch and the opportunities to address these
constraints in future work.

One-handed
One-handed interactions can support up to five input
events. In our evaluation, some gestures were detected with
high accuracy while others were confused with other
gestures. However, not all the applications require all of the
five events. As reported in the results, we can achieve
higher accuracy by combining the single and double back
taps into a single gesture, and by combining the up and
down swipes into a single gesture. However, how would
new combination of input events influence the usability still
needs to be further evaluated.

Applications
While a user is holding the phone in one hand on a phone
call, a common task is to mute the microphone. Instead of
moving the phone from the ear and finding the mute button
on the screen, the user can directly use the index/thumb to
tap on the phone to activate the mute function. Vibration
feedback can be provided for this eyes-free interaction.
Participants suggested many other applications which only
need a single input event from one-handed gestures, such as
taking selfies with the front-camera, playing flappy bird
(requires high speed), quick check of the time, and so forth.

The most common scenarios for one-handed interaction
with phones are reading websites/books/emails or playing
videos. These usually require two or three input gestures,
such as forward/backward. From the evaluation, we can see
there is little confusion between tap and slide events or tap
on back and tap on side events. Therefore, we can map
these pairs to backward/forward functions (e.g., map tap
with forward and slide with backward). Unfortunately, this
mapping is arbitrary and unnatural [17]. The natural
mapping should be slide up and down, which exhibited
some confusion of classification in the evaluation and may
require personalization in actual application. These simple
tap events can also be used as shortcut to certain
functions/menus, for example, mapping tap events to open
the task managers, and then using the slide up/down or side
tap for switching applications.

Limitations
One limitation of one-handed interaction is the potential for
false positives while users are adjusting their hands. Based
on our observation, even if a user performs gestures while
walking around, as long as he is holding the phone steadily,
there will be a lower chance of triggering false-positives.
But if a user shakes the phone and generate sound noise at
the same time (e.g., scratching the case), there will be a
higher chance of triggering false-positives.

Future work
We are mostly using rule-based method for segmentation
now. However, a machine learning plus rule-based method
can be built to provide much better results to minimize
false-positive errors. One way is to systematically collect
noise input from various users and add them into the

machine learning classifier. Another possible way is to
apply more signal processing method and look at the
frequency domain of the data. For example, when the user
is moving the hands, the relative sound is different from a
tap event, which can be separated by a band-pass filter. In
addition, we can explore a higher resolution of input events,
such as which position of the back case is tapped, and
sliding up/down on the side case. Our preliminary
investigation indicates a high likelihood of detecting these
events for one-handed gestures. However, considering the
dexterity of fingers while holding a phone in one hand, too
many input events may be unnatural and unnecessary.
Therefore, identifying a natural mapping is prudent before
applying these gestures to any applications.

Two-handed
With the two-handed interaction techniques, even one or
two input events on the back of the phone can be useful.
For example, we may hold the phone in two hands to take a
picture in landscape orientation. With BeyondTouch, the
user can tap the side case with the thumb (up-left/right
gesture) to take a picture, which is a very natural mapping.

The two-handed interactions may also support other
common scenarios where users hold the phone in two
hands, such as gaming, watching videos, browsing
websites, or reading books. For example, it is very natural
to map the top-left and top-right event to backward/forward
events to navigate a video or website, mapping the
remaining events to other functions like stop/start. One of
the most common two-handed usage scenarios is gaming,
such as playing car-racing games or Whac-a-mole. For car
racing, we can map top-left to brake and top-right to gas,
and up-left/right for directions, which avoids the fingers
occluding the screen.

Limitations
One limitation of the two-handed interaction is the input
detection speed, as one input event usually lasts more than
0.5 seconds. Any event that occurs too fast may influence
the classification result. Another limitation is similar to the
one-handed one, that is, the user’s additional hand
movement may introduce false positives.

Future work
The solutions to the false-positive problems are similar to
what we propose for the one-handed interactions: collecting
more noise data and applying other signal processing
method. The variance of user’s tap positions requires
personalization. And another possible solution is to add
simple physical tactile feedback on the back of phone (e.g.,
a plastic button), such that each user can tap on the same
position.

On-table
The on-table interaction can help with many scenarios that
require simple and quick response without touching the
phone, when the phone is placed on a surface.

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

75

Applications
Because on-table only recognizes two-input events (slide
and tap), it is best suited for applications using simple input
events. The best applications are the one where a user has to
interact with the phone without touching it, such as
controlling a music player or a phone call. One motivation
of the on-table interaction is to provide interaction gestures,
which can be performed when your hands are dirty (e.g.,
while cooking). Applying on-table to a music player, we
can use the tap events to play/pause a song and the slide
event to switch to another song. This is also a very natural
mapping between on-table gestures and the touchscreen
gestures. Similarly, we can map the tap and slide event to
answer or reject a phone call.

Limitations
In the study, if the nail of the participants’ finger were too
long, they felt uncomfortable to use their fingers and nails
to conduct the slide gesture. Also some users spent longer
time to learn how to perform these gestures, especially if
their initial tap gestures were light. In the study, the surface
below the phone was either wood or plastic, making
detection simpler. Although we have not tested yet, we
expect the on-table interaction may not work well on other
surfaces that do not conduct sound well. Another limitation
for the current implementation of on-table is that the
classifier may be influenced when there is a significant
noise source nearby.

Future work
To address the ambient noise issue, one obvious next step is
to introduce frequency-domain features in order to
distinguish different sound sources. We can apply a band-
pass filter in the segmentation part to filter out noise. The
system must also be tuned for the varying sound
propagation properties of different surface materials. In
addition, by utilizing the frequency difference of the sound
generated from performing gestures, we expect to further
increase the variety of input events [7].

CONCLUSION
We presented the implementation and evaluation of
BeyondTouch, a family of interaction techniques that
extend the input language to areas off the touchscreen of a
smartphone while using only built-in sensors.
BeyondTouch can be used in contexts when the touchscreen
is not readily available, such as when touching the screen
occludes the display, when the user is holding the phone in
one hand and performing another task with the other hand,
or when the user’s hand is dirty or wet. Our evaluation
shows that user-independent recognition results for various
events range from just over 70% to over 90%, with
significant improvements possible with extra
personalization. We explored the space of practical
applications of BeyondTouch, given its current recognition
rates, which we plan to review in the future.

ACKOWLEDGEMENT
We would like to thank Thomas Ploetz, Agata Rozga and
the Ubicomp Lab at Georgia Institute of Technology for
their feedback. We also want to thank all reviewers for their
suggestions and the user study participants. This material is
based in part upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No.
DGE-1148903.

REFERENCES
1. Baudisch, P., & Chu, G. (2009, April). Back-of-device

interaction allows creating very small touch devices. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 1923-1932). ACM.

2. Cai, L., & Chen, H. (2011, August). TouchLogger:
Inferring Keystrokes on Touch Screen from Smartphone
Motion. In HotSec.

3. Chen, K. Y., Ashbrook, D., Goel, M., Lee, S. H., &
Patel, S. (2014, September). AirLink: sharing files
between multiple devices using in-air gestures. In
Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(pp. 565-569). ACM.

4. Goel, M., Lee, B., Islam Aumi, M. T., Patel, S.,
Borriello, G., Hibino, S., & Begole, B. (2014, April).
SurfaceLink: using inertial and acoustic sensing to
enable multi-device interaction on a surface. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems (pp. 1387-1396).
ACM.

5. Goel, M., Wobbrock, J., & Patel, S. (2012, October).
GripSense: using built-in sensors to detect hand posture
and pressure on commodity mobile phones. In
Proceedings of the 25th annual ACM symposium on
User interface software and technology (pp. 545-554).
ACM.

6. Harrison, C., & Hudson, S. E. (2008, October). Scratch
input: creating large, inexpensive, unpowered and
mobile finger input surfaces. In Proceedings of the 21st
annual ACM symposium on User interface software and
technology (pp. 205-208). ACM.

7. Harrison, C., Schwarz, J., & Hudson, S. E. (2011,
October). TapSense: enhancing finger interaction on
touch surfaces. In Proceedings of the 24th annual ACM
symposium on User interface software and technology
(pp. 627-636). ACM.

8. Heo, S., & Lee, G. (2011, August). Forcetap: extending
the input vocabulary of mobile touch screens by adding
tap gestures. In Proceedings of the 13th International
Conference on Human Computer Interaction with
Mobile Devices and Services (pp. 113-122). ACM.

9. Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E.
(2000, November). Sensing techniques for mobile
interaction. In Proceedings of the 13th annual ACM

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

76

symposium on User interface software and technology
(pp. 91-100). ACM.

10. Hinckley, K., & Song, H. (2011, May). Sensor
synaesthesia: touch in motion, and motion in touch. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 801-810). ACM.

11. Hiraoka, S., Miyamoto, I., & Tomimatsu, K. (2003).
Behind Touch, a Text Input Method for Mobile Phones
by The Back and Tactile Sense Interface.Information
Processing Society of Japan, Interaction 2003, 131-138.

12. Hudson, S. E., Harrison, C., Harrison, B. L., &
LaMarca, A. (2010, January). Whack gestures: inexact
and inattentive interaction with mobile devices. In
Proceedings of the fourth international conference on
Tangible, embedded, and embodied interaction (pp.
109-112). ACM.

13. JTransform:https://sites.google.com/site/piotrwendykier
/software/jtransforms

14. Li, K. A., Baudisch, P., & Hinckley, K. (2008, April).
Blindsight: eyes-free access to mobile phones. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 1389-1398). ACM.

15. McGrath, W., & Li, Y. (2014, October). Detecting
tapping motion on the side of mobile devices by
probabilistically combining hand postures. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology(pp. 215-219).
ACM.

16. Miluzzo, E., Varshavsky, A., Balakrishnan, S., &
Choudhury, R. R. (2012, June). Tapprints: your finger
taps have fingerprints. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services (pp. 323-336). ACM.

17. Norman, D. A. (2002). The design of everyday things.
Basic books.

18. Owusu, E., Han, J., Das, S., Perrig, A., & Zhang, J.
(2012, February). Accessory: password inference using
accelerometers on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems &
Applications (p. 9). ACM.

19. Paradiso, J. A., Leo, C. K., Checka, N., & Hsiao, K.
(2002, April). Passive acoustic knock tracking for
interactive windows. In CHI'02 Extended Abstracts on
Human Factors in Computing Systems (pp. 732-733).
ACM.

20. Robinson, S., Rajput, N., Jones, M., Jain, A., Sahay, S.,
& Nanavati, A. (2011, May). TapBack: towards richer
mobile interfaces in impoverished contexts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (pp. 2733-2736). ACM.

21. Ronkainen, S., Häkkilä, J., Kaleva, S., Colley, A., &
Linjama, J. (2007, February). Tap input as an embedded
interaction method for mobile devices. In Proceedings
of the 1st international conference on Tangible and
embedded interaction (pp. 263-270). ACM.

22. Saponas, T. S., Harrison, C., & Benko, H. (2011,
October). PocketTouch: through-fabric capacitive touch
input. In Proceedings of the 24th annual ACM
symposium on User interface software and
technology (pp. 303-308). ACM.

23. Schmieder, P., Hosking, J., Luxton-Reilly, A., &
Plimmer, B. (2013). Thumbs Up: 3D Gesture Input on
Mobile Phones Using the Front Facing Camera.
InHuman-Computer Interaction–INTERACT 2013 (pp.
318-336). Springer Berlin Heidelberg.

24. Schwesig, C., Poupyrev, I., & Mori, E. (2004, April).
Gummi: a bendable computer. In Proceedings of the
SIGCHI conference on Human factors in computing
systems (pp. 263-270). ACM.

25. Scott, J., Izadi, S., Rezai, L. S., Ruszkowski, D., Bi, X.,
& Balakrishnan, R. (2010, September). RearType: text
entry using keys on the back of a device. In Proceedings
of the 12th international conference on Human
computer interaction with mobile devices and services
(pp. 171-180). ACM.

26. Sugimoto, M., & Hiroki, K. (2006, September).
HybridTouch: an intuitive manipulation technique for
PDAs using their front and rear surfaces. In Proceedings
of the 8th conference on Human-computer interaction
with mobile devices and services (pp. 137-140). ACM.

27. Weka. DOI: http://www.cs.waikato.ac.nz/ml/weka/

28. Wiese, J., Saponas, T. S., & Brush, A. J. (2013, April).
Phoneprioception: enabling mobile phones to infer
where they are kept. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(pp. 2157-2166). ACM.

29. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., &
Shen, C. (2007, October). Lucid touch: a see-through
mobile device. In Proceedings of the 20th annual ACM
symposium on User interface software and technology
(pp. 269-278). ACM.

30. Wobbrock, J. O., Myers, B. A., & Kembel, J. A. (2003,
November). EdgeWrite: a stylus-based text entry
method designed for high accuracy and stability of
motion. In Proceedings of the 16th annual ACM
symposium on User interface software and technology
(pp. 61-70). ACM.

31. Xu, Z., Bai, K., & Zhu, S. (2012, April). Taplogger:
Inferring user inputs on smartphone touchscreens using
on-board motion sensors. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless
and Mobile Networks (pp. 113-124). ACM.

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

77

