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Figure 1: BeyondTouch interaction techniques. 

ABSTRACT 
While most smartphones today have a rich set of sensors 
that could be used to infer input (e.g., accelerometer, 
gyroscope, microphone), the primary mode of interaction is 
still limited to the front-facing touchscreen and several 
physical buttons on the case. To investigate the potential 
opportunities for interactions supported by built-in sensors, 
we present the implementation and evaluation of 
BeyondTouch, a family of interactions to extend and enrich 
the input experience of a smartphone. Using only existing 
sensing capabilities on a commodity smartphone, we offer 
the user a wide variety of additional tapping and sliding 
inputs on the case of and the surface adjacent to the 
smartphone. We outline the implementation of these 
interaction techniques and demonstrate empirical evidence 
of their effectiveness and usability. We also discuss the 
practicality of BeyondTouch for a variety of application 
scenarios. 
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INTRODUCTION 
Currently, the primary mode of interaction with a 
smartphone is limited to the front-facing touchscreen and a 
small number of physical buttons along the sides. However, 
there are various scenarios when it is not convenient to 
touch the screen or the buttons, such as when the phone is 
on the table and the user’s hands are dirty or wet, when 
touching the screen occludes the display, or when the user 
is holding the phone in one hand while the other hand is 
occupied with another task. To address these limitations, we 
implemented and evaluated a family of interaction 
techniques, called BeyondTouch, that allow a user to 
perform additional inputs one-handed, two-handed and on-
table, extending the input language of a smartphone in 
several interesting ways (see Figure 1). 

Contributions and Overview of Paper 
While it is possible to accommodate many of these 
interaction scenarios by adding capabilities to the 
smartphone through external sensors (e.g., a capacitive 
touchscreen on the back of the phone [11, 22]), it is also 
possible to augment the input language of a commodity 
smartphone through proper leverage of its existing sensing 
platform. Current smartphones are equipped with an 
increasing number of sensors, specifically accelerometers, 
gyroscopes and microphones, all of which can be exploited 
to support a wider variety of software-detected input events 
without the need for additional hardware.  

While previous work has suggested the possibility of 
sensing a small set of input events, BeyondTouch is 
distinguished by the breadth of input events enabled and the 
discussion on practical issues about applying machine 
learning on mobile interactions (e.g., personalization on 
models) and challenges deploying them in real applications.  
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BeyondTouch (Figure 1) extends the input language of a 
smartphone by offering: 
 On-case interactions (one-handed and two-handed), to 

avoid occluding the limited screen area with the fingers; 
 Indirect interaction, by touching the surface (e.g., a table) 

on which the phone is placed. 

We will provide a review of related work next. We then 
describe the technical approach behind the implementation 
of BeyondTouch, the machine learning approach to 
recognize the various input events. We provide an empirical 
evaluation of the performance of BeyondTouch and discuss 
the implication of these results for practical use. Our results 
suggest a hybrid machine learning approach for some 
scenarios in which a little bit of personalized training data 
improves performance for some users. 

RELATED WORK 
We review past work on using sensors to enable novel 
interaction techniques, and position our contribution of 
providing a broad range of interactions for a smartphone 
without having to add any new sensing capabilities to the 
device. 

Some of the earliest demonstrations of broadening 
interactions with mobile devices were presented by 
Hinckley et al., who instrumented a PDA with a variety of 
extra sensing capabilities to demonstrate a wide variety of 
interactions that could augment the user experience [9]. 
This work inspired much of the related research we have 
reviewed. While most of the above work has taken the same 
approach of adding sensors to the device to demonstrate 
interactions that can be supported, contemporary 
smartphone platforms include increasingly sophisticated 
sensors, and there is an opportunity to produce many 
discrete interactions without adding sensors. 

On-case Interactions 
One of the main problems with touchscreens is that users’ 
fingers occlude the screen. Several researchers have 
experimented with shifting the interaction away from the 
touchscreen to the side and back of devices in order to 
eliminate occlusion or increase efficiency and accessibility 
of the device. This can be accomplished by adding 
additional hardware, such as a keypad [11,14], a touchpad 
[1,24,25,26,30] or through computer vision [23,29]. 

Other research has explored the potential gestures 
supported by the built-in sensing capabilities on the phones. 
Hinckley et al. explored techniques using only inertial 
sensors and touch input for hand-held devices that leverage 
the multimodal combination of touch and motion, providing 
touch-enhanced motion and motion-enhanced touch 
gestures as well as the detection of tap events [10]. Tap 
events have been further investigated by recognizing side 
taps [15], detecting taps on the back case of a phone using 
the microphone as a sensor relying on off-device 
computation to process the input [20] or distinguishing 
between a single gentle or firm tap on the case [8]. Besides 

using tap gestures while holding the phone, there are often 
situations in which a simple tap directed to some location 
on the device is an easy and often preferred eyes-free way 
to interact [21], such as interacting with the phone while it 
is inside a pocket. Taking the phone out for interactions 
demands a high level of attention, both cognitively and 
visually, and is often socially disruptive. Whack Gestures 
explored quick access to a device in a pocket through 
striking its case forcefully with the palm or heel of the hand 
[12]. Goel et al. demonstrated the possibility of inferring 
hand postures while holding the phone using only built-in 
sensors, but requiring a somewhat undesirable constant 
vibration source [5].  

Off-the-phone Interaction 
In some contexts, it is desirable to interact with the phone 
without directly touching it. The space around the phone 
can be used to interact with the phone. Airlink exploits the 
Doppler effect to detect the gestures above the phone [3]. 
Others have explored off-the-phone interactions while a 
phone is placed on a flat surface (e.g., table), requiring 
customized pickups attached on the surface to capture the 
acoustic signals on the surface, such as a modified 
stethoscope [6] or contact piezoelectric sensors [19]. Goel 
et al. used both the customized sensors on the surface as 
well as the phone sensors (e.g., inertial sensors) to support a 
wider set of around-phone gestures [4]. However, what kind 
of off-the-phone gestures can be detected without using any 
additional hardware other than the built-in sensors is still 
unclear. In addition, we introduce the use of dual 
microphones available in most modern smartphones for 
recognizing gestures. Although previous work has explored 
recognizing gestures by differentiating sounds generated by 
gestures [7], the on-table interaction in BeyondTouch can 
detect both sliding and tapping gestures with only built-in 
sensors. 

Snooping Users Input on Smartphones 
Interestingly, several researchers outside the HCI 
community have explored nefarious uses of sensing mobile 
device interaction, uncovering information security risks 
afforded by easy access to smartphone sensors such as the 
accelerometer to detect users input on touchscreen 
[2,16,18,31]. However, most of these techniques rely on 
off-line inference; it is unclear how they will work for real-
time interaction tasks.  

MOTIVATION AND APPLICATIONS 
BeyondTouch was motivated by many common smartphone 
usage scenarios, where the touchscreen or on-case buttons 
limit convenient interactions. For example, when the user is 
cooking, he may need to clean or dry his hands before using 
the touchscreen. In other scenarios, such as gaming, the 
user’s fingers occlude the already limited viewing area of 
the touchscreen. To address these limitations, we 
implemented three classes of interaction scenarios: one-
handed, two-handed, and on-table. 
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One-Handed 
When the user is interacting with the phone with a single 
hand, it is not easy to move the thumb across the entire 
touchscreen area, especially as screen sizes increase. In 
addition, the other hand may be occupied doing something 
else. BeyondTouch allows the user to tap on the side of the 
phone with the thumb, and to tap or slide on the back of the 
phone with the index finger (Figure 1a).  

The one-handed tapping interactions can be used for 
applications such as browsing through images and 
webpages. They can also be used for camera functions, like 
taking selfies, zooming in and out, and so forth. Other 
applications include accessing functions with coarse input 
gestures. For example, the user can simply turn on and off 
the flashlight by tapping on the back of the phone. The one-
handed sliding interactions are naturally matched with 
applications that require scrolling operations, such as 
proceeding to the next/previous voicemail, or song on a 
playlist. 

Two-Handed 
The two-handed interactions address usage scenarios where 
the touchscreen is available, but the users’ hands may 
occlude the small screen area of the phone while holding it 
in two hands. We implemented the two-handed interaction 
to address this problem, employing a similar user 
experience to a traditional game controller on a laptop or a 
game console. The user can hold the phone in landscape 
orientation with two hands and tap on soft buttons on the 
back of the case (Figure 1b). 

In the current implementation, we offer six soft buttons on 
the back and side of the case. Applications include games 
and navigation, with the advantage of exposing the entire 
screen area because the fingers are touching the back case 
rather than covering the touchscreen. 

On-Table 
On-table interaction explores possible interactions around 
the phone by using only built-in sensors on commodity 
smartphones. When the user is cooking and a phone call 
comes in, his phone is on a table and his hands may be dirty 
or wet. How would he answer the phone call without 
polluting the screen by touching it? BeyondTouch allows 
the user to tap and slide on the table around the phone to 
interact with the device indirectly (Figure 1c). Furthermore, 
the on-table interactions can be extended for many 
applications that demand straightforward interactions, such 
as responding to a phone call or controlling the music 
player. 

IMPLEMENTION OF BEYONDTOUCH 
Table 1 describes the complete set of input events and 
related sensors that BeyondTouch supports. We 
implemented the BeyondTouch interactions on commodity 
smartphones by interpreting data from a combination of 
three common built-in sensors: the accelerometer, 
gyroscope, and microphones. We applied machine-learning 
techniques in order to identify the characteristic signature of 

each input event. The machine learning techniques were 
implemented using Weka [27], a publicly available tool that 
provides implementations of various machine-learning 
algorithms that can be run in real-time on a smartphone. 

Table 1: Interaction techniques. 

Scenario Interaction Input Events Sensors 

One-
Handed 

Tap back-single-tap, back-
double-tap, side-tap 

Gyroscope, 
accelerometer, 
the microphone at 
bottom 

Tap-Slide back-single-tap, back-
double-tap, back-slide-up, 
back-slide-down 

Gyroscope, 
accelerometer, 
the microphone at 
bottom 

Two-
Handed 

6-point-tap up-left, up-right, 
top-left, top-right,  
bottom-left, bottom-right 

Gyroscope, 
accelerometer, 
the microphone at 
bottom 

On-Table Slide, Tap Slide, tap on the surface 
around a phone 

Gyroscope, 
accelerometer, 
two microphones 

Choice of Detection Technique 
In the early exploration of this project, we applied a rule-
based method to recognize the four corner taps for on-case 
interactions. Based on our observation, the rotation of the 
phone case presents distinct quantitative signatures when 
tapping on each of the four corners of the phone case. We 
implemented a straightforward rule-based solution to detect 
the four corners, which worked well. The advantages of the 
rule-based approach are: 1) a lightweight software 
implementation (given the limited processing power of a 
smartphone); 2) ease of implementation; and 3) no 
requirement for training and personalization. However, 
machine learning, by contrast, is appropriate for 
interactions that are more complex, where the difference 
between input events are not obvious from observation of 
the sensor input streams. Therefore, we decided to employ 
machine-learning based methods to explore other 
interactions potentially supported by the built-in sensors on 
a smartphone. 

Choice of Built-in Sensors 
In our initial investigation, we examined data from the 
accelerometer to determine if a tap occurred anywhere on 
the case of a phone, inspired by work such as Whack 
Gestures [12]. In order to detect where the user tapped on 
the case, we then added the gyroscope, which better reflects 
the difference on the tapping events on four corners. 

In pilot testing we observed that when the user held the 
phone with a tight grip, these two motion sensors often 
failed to detect the tap event, even with a strong tap on the 
back case. To address this problem, we added the 
microphones as a third input stream. We only consider 
loudness from the microphone buffer, measured in decibels 
(dB). To calculate the decibel level, we first normalize each 
audio sample and calculate the average root mean square 
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(Prms) of the samples in the buffer. We then calculate the 
decibel value (Equation 1), where Pref is equal to the 
standard reference sound pressure level of 20 micropascals.  

௉ܮ ൌ 20 ൈ ଵ଴݃݋݈ ቆ
௥ܲ௠௦

௥ܲ௘௙
ቇ  ሺ1ሻ					ܤ݀	

In addition, a sensor fusion of microphone and inertial 
sensors are complementary to filter out most of the noise, 
which works well.  

Implementation of On-case Interactions 
We implemented the one-handed (Tap, Tap-Slide) 
interactions and two-handed interactions using a 
combination of rule-based (segmentation) and machine 
learning approaches (classification).  

We use a traditional sliding window method, with a 
window size of 0.64 seconds. Since a tap or slide event 
usually last 0.5 seconds, we round it up to 0.64 seconds for 
the convenience of computation in the Fourier transform. 
Since the sample rate of gyroscope and accelerometer in the 
phones we used are 100 Hz, each frame contains 64 
samples with 50% overlap with adjacent frames. For each 
frame, the system will extract features to determine whether 
an event happens (segmentation) and which event it is 
(classification). 

To detect the occurrence of an input event, we use a rule-
based approach to detect whether an input event (either tap 
or slide) has occurred by examining the combination of 
thresholds for sensors, including the difference between the 
maximum and minimum value from x-axis/z-axis of the 
accelerometer and y-axis/z-axis of gyroscope. 

For classification, we extract three sets of features for each 
0.64-second length buffer from data of three axes of 
gyroscope and accelerometer. The features we selected 
were based on our observation and understanding of the 
data and gestures, which are also common statistical 
features used in related works. We plotted out the data in 
both time and frequency domains and decided on which 
features to use and estimated the time each gesture took and 
chose the appropriate window size. The first set is the time-
domain features. For each axis of the data from gyroscope 
and accelerometer, we calculated the seven features over 
each frame, including root-mean-square, the derivative of 
root-mean-square, maximum and minimum value, mean, 
variance, and median. We also calculate the ratio between 
maximum and minimum for the three axes of the gyroscope 
and the total energy for both the gyroscope and 
accelerometer, which indicates the magnitude of the whole 
event. In addition, the maximum decibel value and the 
derivative of neighboring decibel values are also computed 
as features. Therefore, we have 7×6+3+2+2 = 49 features 
related to amplitude.  

The second set of the features includes frequency and 
energy, which are calculated for each axis of both the 
accelerometer and gyroscope. We compute the Fast Fourier 

Transform (FFT) using JTransform [13] to calculate the 
frequency energy on each frequency band. We build 31 bins 
over the frequency 100 Hz for each axis as well as the 
standard deviation of frequency energy over 31 bins, since 
we observe that our input events are equally distributed in 
terms of energy over frequencies. In total, we have 31×6+6 
= 192 features.  

As a result, we compute 241 features for each frame to 
detect the one-handed and two-handed interaction gestures. 
We pass these features to a support vector machine (SVM), 
provided by the Weka machine-learning library [27], and 
then use this model to classify gestures.  

Implementation of On-table Interaction 
The on-table interaction is also implemented using a 
combination of rule-based and machine learning approach.  

In the segmentation stage of our implementation, we use a 
rule-based approach to detect whether an input event (either 
tap or slide) has occurred by examining the combination of 
thresholds for the three sensors, including the loudness 
level of bottom microphone and the maximum and 
minimum value from z-axis of the accelerometer or y-axis 
of the gyroscope. 

To classify the input event, we extract features from 
microphones, the gyroscope, and the accelerometer. To 
capture the full duration of a slide event, we used a sliding 
window of one second. Then we divide the one-second 
window into ten frames. For each frame, we extract the 
following basic time-domain features for all sensors: 1) 
level; 2) derivative of level1; 3) maximum and minimum 
level; and 4) energy2. A feature vector of each window is 
the combination of the feature vector of the ten frames. We 
put the feature vector of a window into the pre-trained 
model for classification. 

We compared the performance of different machine 
learning algorithms on our collected training data using ten-
fold-cross validation provided by Weka. Both SVM and K 
Nearest Neighbor (KNN) provided above 97.5% for 
precision and recall. We elected to use KNN in our 
implementation. 

Building Training Model 
Usually, a trained machine-learning model can be 
categorized based on whether it is session-dependent or 
user-dependent. A session-dependent model requires 
recollecting training data before using the model each time. 
A user-dependent model demands collecting training data 
from each user. Both of them would increase the barrier of 
applying them in real-world usage. Therefore, we adopted a 

                                                           
1  We approximate the derivative of sensor data as the 
change in value divided by the change in time. 
2 Energy is the square root of the sum of squares for all 
samples in the frame. 
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user-independent model in our implementation, which 
applies a pre-collected training data set and does not require 
any data collection from each user. Based on our pilot study 
result, we found that the performance of one-handed and 
two-handed interactions were dependent on how the user 
holds the phone and performs the gestures. However, the 
phone’s position was not changed when performing 
gestures for on-table interaction. Therefore, we collected a 
larger set of data for building the model for one-handed and 
two-handed interactions.  

For on-table interaction, we first conducted a small pilot 
study with the authors. A classifier was trained with the 
training samples only from one author. We tested that 
model with other authors and the accuracy was very high. 
We thought that was because the gestures for on-table 
interaction did not require any direct contact with the 
phone, which greatly reduced the variance between 
gestures. As a result, we collected training data from only 
one of the researchers, who performed approximately 600 
gestures for each slide event and the tap event on a table. 
We varied the tapping position and strength in order to 
approximate the behavior of different users. 

To build the training set for two-handed and one-handed 
interactions, we collected training data from 10 users, 
including two authors. Four of them provided examples for 
both two interactions, while others provided examples for 
only one of the interaction. As a result, each interaction has 
10 trainers and approximately 1000 instance for each input 
event. During the training process, we asked each user to 
repeat each input event 100 times on a Galaxy S3, with 
approximately a one-second gap between each gesture. The 
data collection program did not provide any feedback to 
users. Therefore, the users performed the input gestures in 
the manner most comfortable and natural to them.  

After collecting all the data, we manually labeled each input 
event in the training set. If the researcher was not sure about 
the label of an instance, we discarded it to avoid polluting 
the training set. Around 85% of the gestures ended up in the 
training set.  

EVALUATION METHOD 
We evaluated the accuracy and usability of BeyondTouch 
for the interactions listed in Table 1. We presented users 
with a series of stimuli for the interactions, and recorded the 
responses interpreted by the pre-trained machine-learning 
models. All interactions were performed in a lab 
environment. 

Participants and Apparatus 
We recruited 12 participants (1 female) for two-handed and 
one-handed interaction using a Samsung Galaxy S3 phone, 
and another 11 participants (6 female) for on-table 
interaction using a Samsung Galaxy S3 (7 participants) and 
a Samsung Nexus phone (4 participants).  

Study Procedure 
In the practice phase of the study, we first explained the 
interactions to the participants and allowed them to practice 
the gestures, receive feedback after performing each 
gesture, and ask questions. Then each participant performed 
practice sessions, responding to stimuli for each gesture in 
the assigned interaction technique ten times in a row. 

In the evaluation phase, we presented the participant with 
blue-colored visual stimuli on the smartphone screen 
indicating which gesture to make. The user also received 
visual feedback after responding to the stimuli. When 
classification result matched the stimuli, the feedback was 
given in green, otherwise red. Each participant responded to 
40 stimuli (2 sessions × 20 stimuli) for each gesture with 
random order in one-handed and two-handed interactions. 
For the on-table interaction, each participant responded to 
90 stimuli (3 sessions × 30 stimuli), randomly chosen 
between tap and slide gestures. For each interaction, we 
asked the users to report any self-made errors in this phase. 
It took less than one hour for each participant in the user 
study, and there was no compensation. 

RESULTS 
We report accuracy for each interaction as the percentage of 
responses where the gesture classification matched the 
stimulus, and the user impressions of each interaction based 
on a questionnaire administered at the end of the evaluation 
phase.  

Accuracy 
For one-handed and two-handed interactions, there were 
480 examples (20×2×12) for each gesture, and 990 inputs 
(30×3×11) for on-table interaction. Table 2 presents the 
overall accuracy and standard deviation for each interaction. 

Table 2: Accuracy of each interaction technique. 

Interaction Two-Handed One-
Handed-Tap 

One-Handed-
Tap-Slide 

On-Table 

Accuracy 71.28% 
(SD=12.89%) 

88.47% 
(SD=3.55%) 

72.92% 
(SD=6.53%) 

93.74% 
(SD=4.64%) 

One-handed Interaction 
For one-handed-Tap interaction, the overall accuracy is 
88.47%. The confusion matrix is reported in Table 3. Side-
tap was the most accurate (98.54%), and double-tap was the 
least accurate (73.96%). There is a lot of confusion between 
double-tap and back-tap, due to the variation of strength 
and interval of taps between different users. 

Table 3: One-handed-Tap confusion matrix. 

User 
Input 

Classification 

BackSingleTap BackDoubleTap SideTap 

BackSingleTap 92.92% 4.79% 2.29% 

BackDoubleTap 24.17% 73.96% 1.88% 

SideTap 0.83% 0.63% 98.54% 
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If we collapse back-tap and double-tap into one gesture, 
higher accuracy can be achieved (97.92%) (Table 4). 

Table 4: One-handed-Tap (back tap combined + side) 
confusion matrix. 

User 
Input 

Classification 

BackTap(Combined) SideTap 

BackTap(Combined) 97.92% 2.08% 

SideTap 1.46% 98.54% 

 

For one-handed-tap-slide interaction, the overall accuracy is 
72.92%. The confusion matrix is reported in Table 5. Back-
slide-up was the most accurate (92.08%), and back-slide-
down was the least accurate (41.25%). There is a lot of 
confusion from back-slide-down to back-slide-up. There is 
also a lot of confusion from double-tap to back-tap. 

Table 5: One-handed-Tap-Slide confusion matrix. 

User 
Input 

Classification 

BackSingleTap BackDoubleTap BackSlideDown BackSlideUp 

BackSingleTap 84.38% 4.38% 2.71% 8.54% 

BackDoubleTap 20.00% 73.96% 0.63% 5.42% 

BackSlideDown 4.58% 0.21% 41.25% 53.96% 

BackSlideUp 2.50% 0% 5.42% 92.08% 

 

Collapsing back-tap and double-tap into one gesture, and 
back-slide-down and back-slide-up into another gesture, 
improves accuracy to 91.35% for taps and 96.35% for 
slides (Table 6). 

Table 6: One-handed-Tap-Slide (backtap combined) and slide 
(combined) confusion matrix. 

User 
Input 

Classification 

BackTap(Combined) Slide(Combined) 

BackTap(Combined) 91.35% 8.65% 

Slide(Combined) 3.65% 96.35% 

 

Two-handed Interaction 
For two-handed interaction, the overall accuracy is 71.28%. 
The confusion matrix is reported in Table 7. The up-right 
corner was the most accurate (83.33%), and the bottom-
right corner was the least accurate (50.83%).  

Some users reported that up and top points are much easier 
to perform than bottom points. Some users also reported 
that the test sessions were so long (240 taps in two 
sessions), making them feel tired. This also led to 12 user 
self-made errors. 

Table 7: Two-handed-6-point confusion matrix. 

User 
Input 

Classification 

UpLeft UpRight TopLeft TopRight BottomLeft BottomRight 

UpLeft 77.92% 14.58% 3.96% 2.92% 0% 0.63% 

UpRight 5.63% 83.33% 3.13% 6.46% 0% 1.46% 

TopLeft 2.50% 8.75% 70.83% 15.42% 1.04% 1.46% 

TopRight 0% 10.21% 8.75% 79.17% 0% 1.88% 

BottomLeft 0% 7.29% 21.46% 2.92% 65.63% 2.71% 

BottomRight 0.21% 17.29% 9.38% 19.38% 2.92% 50.83% 

On-Table Interaction 
For the on-table interaction, eleven participants averaged 
93.74% accuracy (S.D. = 4.64%) over 990 input events 
total. Tap gestures were recognized with 95.68% accuracy, 
and slide gestures were recognized with 91.11% accuracy.  

DISCUSSIONS 
Like any recognition technique, BeyondTouch is not 
perfect. Here we discuss the results to uncover a better 
understanding of how and when BeyondTouch is suitable. 

Accuracy and User Impressions 
Some users reported that tapping continuously for so long 
(tap and slide for over 500 times) made them feel less 
natural and comfortable. While the experimental procedure 
allowed us to gather much data under different situations, 
we recognize that it put unrealistic demands on the users 
that would not be the case in everyday life. 

Similar to real applications, we provided real-time feedback 
while participants were testing our technique. But we 
observed some users adjusted their gestures according to 
the feedback given by the system, especially if they saw 
misclassified instances. We take this as a self-learning 
process and may potentially have positive influence in the 
user study result.  

We discuss other observations for each scenario that 
impacted results. 

One-handed Interaction 
When the users tried to perform back-slide-down, they 
would first wave their index fingers up. Although there is 
no contact with the phone, the shake of the phone is very 
similar to back-slide-up, resulting in many false 
classifications. 

Two-handed Interaction 
We observed that the variations in the way users hold the 
phone, the positions they tap, and the strengths of the taps 
affected individual results a lot. When the users adjust 
hands positions while holding the phone, some false-
positives were introduced. 

On-table Interaction 
Both slide and tap gestures in on-table interaction required 
the user to touch the surface around the phone. Since we 
used microphones to recognize the gestures, if users did not 

IUI 2015 • Multimodal / Touch / Gesture March 29–April 1, 2015, Atlanta, GA, USA

72



generate loud enough sound it would increase the difficulty 
of detecting the occurrence of an event. From our 
observation, most users can learn very fast during the 
practice to use their fingertips and nails together to perform 
the gestures, which were well recognized by the system. 
However, user fatigue resulted in false negatives in the 
latter stages of the experiment.  

Personalization  
In the user study, the one-handed and two-handed machine 
learning based interactions showed an obvious drop in 
terms of accuracies compared with the result we computed 
on the training data set using 10-fold cross validation and 
leave-one-participant-out method. This gap is mostly 
caused by individual differences, such as a user’s finger 
length, tap position, and strength of tap. Recall that there 
were 16 total trainers and we collected training data for 
each scenario from a different subset of 10 of the overall 
16. We further tried to encourage each trainer to perform 
the input events in whatever way he or she felt most 
comfortable, thus introducing lots of opportunities for these 
individual differences to be revealed in the models 
generated. A personalization procedure, should improve the 
results of the machine-learning model for any given user. 

Our approach to personalization is a revision on the leave-
one-participant-out method. Instead of leaving one 
trainer’s 3  complete training set out, we methodically 
incorporated a stratified and randomly selected subset of 
that person’s training data into the model that was then used 
to test the remainder of that trainer’s input data. We refer to 
this as “leave-one-participant-partially-out”, to reflect that 
some of an individual’s data is incorporated into the learned 
model that is used for classification.  

Specifically, for one-handed and two-handed interactions, 
we have collected approximately 100 training instances for 
each event from 10 different trainers. Instead of using 9 
trainers’ data to build the model to evaluate the 10th 
trainer’s data, we gradually added a portion of instances 
from the 10th trainer’s data into the training set to build a 
new model. Then we used this new model to evaluate the 
rest of the 10th trainer’s data set. To avoid bias, we ran the 
sample selection process 10 times, then built and evaluated 
the model for each of them. Then we averaged results from 
the 10 sample runs and report those below. Note that 
though the ratio of test data to training data changes based 
on the amount of training events extracted from the 10th 
trainer, the difference in those ratios is negligible for 
purposes of comparison. 

To evaluate this method, we compare the accuracy results 
for different sizes of the trainers’ input set (randomly 
selected subsets of size 10, 20, 30, 40, 50 of the 
approximately 100 overall events) against the baseline of 

                                                           
3 We refer to these individuals as “trainers” in the following 
discussion, distinct from user study participants. 

using none of that person’s training set to build the model 
(i.e., using 0 of the overall events).  

In Figure 2, we show the personalization results for the 
three usage scenarios. For each graph, the red/bolder line 
represents the averaged result for the “leave-one-
participant-partially-out” method across all trainers in our 
training set. The x-axis indicates how many of the trainer’s 
input events were added to build the personalized ML 
model. For example, the one-handed-tap interaction 
scenario provides three input events: back-tap, back-
double-tap, and side-tap. Each user provided around 100 
instances for each input event. An x-axis value of 10 
represents random selection of 10 instances for each input 
event from the 10th user’s data set. Since the one-handed-
tap-slide scenario has three distinct input events, a total of 
10×3=30 instances were incorporated into the personalized 
training set.  

 

a. One-handed-Tap  

 

b. One-handed-Tap-Slide  

 

c. Two-handed-6-point 

            Figure 2: Personalization results 

Figure 2 reveals an interesting insight. There is a pretty 
significant spread of accuracy results across the trainers, 
with each scenario having at least one trainer whose 
classification accuracy is much poorer than the rest of the 
trainers with no personalization (x-axis value of 0). That 
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classification gap decreases when personalization is 
introduced. Without personalization, the average accuracy 
across all 10 trainers is 80.00% (one-handed-tap-slide), 
88.42% (one-handed-tap), and 85.06% (two-handed) with 
standard deviations of 0.13, 0.08, and 0.12, respectively. 
Using 30 personal training events (per input type), the 
average accuracies increase to 88.17%, 93.89%, and 
92.06% while the standard deviations decrease to 0.09, 
0.04, and 0.06. Figure 2 demonstrates these positive trends 
for all three of the machine learning scenarios.  

Furthermore, beyond using 30 examples of each event from 
the trainer’s, there is no appreciable improvement of the 
personalization. This is also good, as it means we need 
collect only a small set of an individual BeyondTouch user 
training data to sufficiently personalize that user’s model.  

A closer examination of the results in Figure 2 shows that 
what personalization is doing is more about improving the 
classification for the poorest performers in the “leave-one-
participant-out” results. The better performing trainer’s do 
not improve that much. This suggests that it might be 
worthwhile in practice determining on the fly how well 
classification accuracy is for a given user. If that accuracy 
is below some acceptable threshold, BeyondTouch can 
recommend additional training from that user to personalize 
and improve his results.  

For example, it may be possible to infer incorrect real-time 
classifications by BeyondTouch by sensing the user 
repeating an interaction or developing some other situation-
specific heuristic. A running count of these errors can help 
determine if a threshold of error tolerance is met. If so, 
training can be suggested to the user. With this approach, 
BeyondTouch could be used “out of the box” and, for a 
smaller percentage of users, and only after having some 
experience with BeyondTouch, a user could decide whether 
it would be worthwhile to improve accuracy by taking some 
time out to give personalized training data. 

Challenges for Practical Deployment 
There are a number of issues beyond recognition rates that 
impact the practical utility of BeyondTouch.  

Calibration on Different Phones  
Smartphones vary in terms of form factor and sensor 
capabilities, which calls into question how our results work 
across devices. In our user study, we did not test our 
technique on a large variety of phones. However, since the 
sensors we used are most common ones and we applied 
machine learning technique in the implementation, 
calibration across phones is a matter of collecting enough 
training data prior to installation on a given phone, and then 
allowing for personalization as described above. While this 
data collection may be time-consuming, it does not directly 
impact the user of the device, until and unless 
personalization is warranted.  

Rule-based Methods vs. Machine-learning Methods 
BeyondTouch employed a combination rule-based 
(segmentation) and machine learning (classification) 
techniques for detecting input events. However, in our early 
exploration, we found that rule-based techniques are also 
appropriate for classifying less complex input gestures with 
easy implementation (e.g., tap events on the four corners). 
Machine-learning methods can recognize more complicated 
gestures at the price of collecting training data and 
personalization as well as a higher requirement for 
computation. A potential mixture between these two 
methods can be an effective practical method.  

Usage of Multiple Microphones 
Most smartphones now have more than one microphone. 
Usually, the manufacturer positions one of the microphones 
at the bottom to receive the user’s voice input and the other 
at the top to detect the ambient sound (to improve the call 
quality by reducing the environment noise). These two 
microphones can also be leveraged for interaction purposes, 
as demonstrated in our on-table interaction. According to 
basic physical principles, if the distances between a sound 
source and two audio receivers are different, the loudness 
level of the audio received by the two receivers should be 
different. We found that to be true when the physical touch 
event was close to or on the phone case. We imagine richer 
potential interaction events can be detected by combing the 
data from multiple microphones and inertial sensors. 

Interactions by Contexts  
In practice, many of the interactions we developed are 
designed to work in specific contexts. For example, the 
one-handed interaction is designed for the scenario when 
the user prefers to hold and interact with the phone in one 
hand, while two-handed interaction is tuned for a user 
holding the phone in two hands. If the phone runs two-
handed interaction while holding it in one hand, would 
increase the false-positives and false-negatives. Hence, an 
automatic detection of context about the position and 
orientation of the phone [28] is a necessary step for 
applying BeyondTouch in real life.  

Energy Consumption 
BeyondTouch interactions are largely dependent on 
sensors. However, recent released smartphones (e.g., Moto 
X, iPhone 5S/6) are beginning to feature a low-power, 
always-on coprocessor for managing the sensors. With this 
kind of new hardware, we expect the energy consumption 
of the sensor usage will be greatly reduced going forward 
and would not be a concern while using these sensor-based 
techniques. 

CRITIQUE OF APPLICATIONS OF BEYONDTOUCH 
In addition to the applications we proposed in the 
introduction, the study participants also suggested 
interesting usage scenarios for BeyondTouch. In this 
section, we will discuss how we can apply our techniques to 
these scenarios by exploring the limitations of 
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BeyondTouch and the opportunities to address these 
constraints in future work.  

One-handed 
One-handed interactions can support up to five input 
events. In our evaluation, some gestures were detected with 
high accuracy while others were confused with other 
gestures. However, not all the applications require all of the 
five events. As reported in the results, we can achieve 
higher accuracy by combining the single and double back 
taps into a single gesture, and by combining the up and 
down swipes into a single gesture. However, how would 
new combination of input events influence the usability still 
needs to be further evaluated.  

Applications 
While a user is holding the phone in one hand on a phone 
call, a common task is to mute the microphone. Instead of 
moving the phone from the ear and finding the mute button 
on the screen, the user can directly use the index/thumb to 
tap on the phone to activate the mute function. Vibration 
feedback can be provided for this eyes-free interaction. 
Participants suggested many other applications which only 
need a single input event from one-handed gestures, such as 
taking selfies with the front-camera, playing flappy bird 
(requires high speed), quick check of the time, and so forth.  

The most common scenarios for one-handed interaction 
with phones are reading websites/books/emails or playing 
videos. These usually require two or three input gestures, 
such as forward/backward. From the evaluation, we can see 
there is little confusion between tap and slide events or tap 
on back and tap on side events. Therefore, we can map 
these pairs to backward/forward functions (e.g., map tap 
with forward and slide with backward). Unfortunately, this 
mapping is arbitrary and unnatural [17]. The natural 
mapping should be slide up and down, which exhibited 
some confusion of classification in the evaluation and may 
require personalization in actual application. These simple 
tap events can also be used as shortcut to certain 
functions/menus, for example, mapping tap events to open 
the task managers, and then using the slide up/down or side 
tap for switching applications.  

Limitations 
One limitation of one-handed interaction is the potential for 
false positives while users are adjusting their hands. Based 
on our observation, even if a user performs gestures while 
walking around, as long as he is holding the phone steadily, 
there will be a lower chance of triggering false-positives. 
But if a user shakes the phone and generate sound noise at 
the same time (e.g., scratching the case), there will be a 
higher chance of triggering false-positives. 

Future work 
We are mostly using rule-based method for segmentation 
now. However, a machine learning plus rule-based method 
can be built to provide much better results to minimize 
false-positive errors. One way is to systematically collect 
noise input from various users and add them into the 

machine learning classifier. Another possible way is to 
apply more signal processing method and look at the 
frequency domain of the data. For example, when the user 
is moving the hands, the relative sound is different from a 
tap event, which can be separated by a band-pass filter. In 
addition, we can explore a higher resolution of input events, 
such as which position of the back case is tapped, and 
sliding up/down on the side case. Our preliminary 
investigation indicates a high likelihood of detecting these 
events for one-handed gestures. However, considering the 
dexterity of fingers while holding a phone in one hand, too 
many input events may be unnatural and unnecessary. 
Therefore, identifying a natural mapping is prudent before 
applying these gestures to any applications. 

Two-handed 
With the two-handed interaction techniques, even one or 
two input events on the back of the phone can be useful. 
For example, we may hold the phone in two hands to take a 
picture in landscape orientation. With BeyondTouch, the 
user can tap the side case with the thumb (up-left/right 
gesture) to take a picture, which is a very natural mapping.  

The two-handed interactions may also support other 
common scenarios where users hold the phone in two 
hands, such as gaming, watching videos, browsing 
websites, or reading books. For example, it is very natural 
to map the top-left and top-right event to backward/forward 
events to navigate a video or website, mapping the 
remaining events to other functions like stop/start. One of 
the most common two-handed usage scenarios is gaming, 
such as playing car-racing games or Whac-a-mole. For car 
racing, we can map top-left to brake and top-right to gas, 
and up-left/right for directions, which avoids the fingers 
occluding the screen.  

Limitations 
One limitation of the two-handed interaction is the input 
detection speed, as one input event usually lasts more than 
0.5 seconds. Any event that occurs too fast may influence 
the classification result. Another limitation is similar to the 
one-handed one, that is, the user’s additional hand 
movement may introduce false positives. 

Future work 
The solutions to the false-positive problems are similar to 
what we propose for the one-handed interactions: collecting 
more noise data and applying other signal processing 
method. The variance of user’s tap positions requires 
personalization. And another possible solution is to add 
simple physical tactile feedback on the back of phone (e.g., 
a plastic button), such that each user can tap on the same 
position.  

On-table 
The on-table interaction can help with many scenarios that 
require simple and quick response without touching the 
phone, when the phone is placed on a surface. 
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Applications 
Because on-table only recognizes two-input events (slide 
and tap), it is best suited for applications using simple input 
events. The best applications are the one where a user has to 
interact with the phone without touching it, such as 
controlling a music player or a phone call. One motivation 
of the on-table interaction is to provide interaction gestures, 
which can be performed when your hands are dirty (e.g., 
while cooking). Applying on-table to a music player, we 
can use the tap events to play/pause a song and the slide 
event to switch to another song. This is also a very natural 
mapping between on-table gestures and the touchscreen 
gestures. Similarly, we can map the tap and slide event to 
answer or reject a phone call. 

Limitations 
In the study, if the nail of the participants’ finger were too 
long, they felt uncomfortable to use their fingers and nails 
to conduct the slide gesture. Also some users spent longer 
time to learn how to perform these gestures, especially if 
their initial tap gestures were light. In the study, the surface 
below the phone was either wood or plastic, making 
detection simpler. Although we have not tested yet, we 
expect the on-table interaction may not work well on other 
surfaces that do not conduct sound well. Another limitation 
for the current implementation of on-table is that the 
classifier may be influenced when there is a significant 
noise source nearby.  

Future work 
To address the ambient noise issue, one obvious next step is 
to introduce frequency-domain features in order to 
distinguish different sound sources. We can apply a band-
pass filter in the segmentation part to filter out noise. The 
system must also be tuned for the varying sound 
propagation properties of different surface materials. In 
addition, by utilizing the frequency difference of the sound 
generated from performing gestures, we expect to further 
increase the variety of input events [7]. 

CONCLUSION 
We presented the implementation and evaluation of 
BeyondTouch, a family of interaction techniques that 
extend the input language to areas off the touchscreen of a 
smartphone while using only built-in sensors. 
BeyondTouch can be used in contexts when the touchscreen 
is not readily available, such as when touching the screen 
occludes the display, when the user is holding the phone in 
one hand and performing another task with the other hand, 
or when the user’s hand is dirty or wet. Our evaluation 
shows that user-independent recognition results for various 
events range from just over 70% to over 90%, with 
significant improvements possible with extra 
personalization. We explored the space of practical 
applications of BeyondTouch, given its current recognition 
rates, which we plan to review in the future. 
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