
PanoContext: A Whole-room 3D Context Model
for Panoramic Scene Understanding

Yinda Zhang Shuran Song Ping Tan† Jianxiong Xiao

Princeton University †Simon Fraser University
http://panocontext.cs.princeton.edu

Abstract. The field-of-view of standard cameras is very small, which is one
of the main reasons that contextual information is not as useful as it should be
for object detection. To overcome this limitation, we advocate the use of 360◦

full-view panoramas in scene understanding, and propose a whole-room context
model in 3D. For an input panorama, our method outputs 3D bounding boxes of
the room and all major objects inside, together with their semantic categories. Our
method generates 3D hypotheses based on contextual constraints and ranks the
hypotheses holistically, combining both bottom-up and top-down context infor-
mation. To train our model, we construct an annotated panorama dataset and re-
construct the 3D model from single-view using manual annotation. Experiments
show that solely based on 3D context without any image-based object detector,
we can achieve a comparable performance with the state-of-the-art object detec-
tor. This demonstrates that when the FOV is large, context is as powerful as object
appearance. All data and source code are available online.

1 Introduction

Recognizing 3D objects from an image has been a central research topic since the com-
puter vision field was established [1]. While witnessing the rapid progress on bottom-
up object detection methods [2–6] in the past decade, the improvement brought by the
top-down context cue is rather limited, as demonstrated in standard benchmarks (e.g.
PASCAL VOC[3]). In contrast, there are strong psychophysical evidences that context
plays a crucial role in scene understanding for humans [7, 8].

We believe that one of the main reasons for this gap is because the field of view
(FOV) for a typical camera is only about 15% of that of the human vision system1.
This problem is exemplified in Fig. 1. The narrow FOV hinders the context information
in several ways. Firstly, a limited FOV sees only a small fraction of all scene objects,
and therefore, observes little interplay among them. For example, on average, there is
only 1.5 object classes and 2.7 object instances per image in PASCAL VOC. Secondly,
the occurrence of an object becomes unpredictable with a small FOV. For example, a
typically bedroom should have at least one bed, which can serve as a strong context
cue. But in a bedroom picture of small FOV (Fig. 1), there might or might not be a bed,

1 The approximate FOV of a single human eye is about 95◦. Two eyes give us almost 180◦ FOV. Considering the move-
ment of eyeballs (head rotation excluded, peripheral vision included), the horizontal FOV of the human vision system is
as high as 270◦. However, the FOV of a typical camera is much smaller. For example, on standard full-frame cameras,
the horizontal FOV is only 39.6◦ (or 54.4◦) with a standard 50mm lens (or with a 35mm wide-angle lens).
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Fig. 1. Comparison of field-of-view. A camera with narrow FOV might not see a bed in a bed-
room which complicates the context model.

depending on the direction the camera looks at. Given a much limited FOV, it is unfair to
ask computer vision algorithms to match the performance of human vision. Therefore,
we advocate the use of panoramic images for scene understanding, which nowadays
can be easily obtained by camera arrays (e.g. Google Streetview), special lenses (e.g.
0-360.com), smartphones (e.g. cycloramic.com) or automatic image stitching
algorithms (e.g. [9–11]).

In this paper, we present a whole-room 3D context model to address the indoor
scene understanding problem from a single panorama. The output is a 3D cuboid room
layout with recognized scene objects represented by their 3D bounding boxes. An ex-
ample of input and output are provided in Fig. 2. Our method consists of two steps:
bottom-up hypotheses generation and holistic hypotheses ranking. It starts by generat-
ing hypotheses for the room layout and object bounding boxes in a bottom-up fashion
using a variety of image evidences, e.g. edge, segmentation, and normal direction es-
timation. 3D scene hypotheses are formed from these hypotheses guided by context.
A trained Support Vector Machine (SVM) [12] ranks these 3D scene hypotheses and
chooses the best one. Finally, we locally refine good scene hypotheses by further max-
imizing their SVM scores. The SVM is trained utilizing both image information and
room structure knowledge from our training data, which consists of high-resolution
panorama images with detailed object annotations and the 3D ground truth recon-
structed using the 2D annotations.

In a panorama, characteristic scene objects such as beds and sofas are usually visi-
ble despite occlusion, so that we can jointly optimize the detection of room layout and
object to exploit the contextual information in full strength. The whole-room contextual
information is critical in many key steps of our system. During hypothesis generation,
the object categories are predicted based on its relative location in the room. We sample
the number of object instances in a room according to the typical distribution of each
object category, guided by the pairwise position relationship among objects. During hy-
pothesis ranking, we firstly align each hypothesis with the 3D rooms from the training
set to tell if it is valid. This non-parametric room alignment captures high order rela-
tionship among all objects, which cannot be represented well by pairwise constraints.
Secondly, we also build a room model for each hypothesis. This room model includes
color and texture statistics for the foreground and background. Since we know all the
objects and room layout in 3D, we can calculate these statistics easily from image re-
gions unoccluded by objects.We use this model to judge how well a hypothesis explains
the image evidences. Thirdly, we reconstruct each room layout and object hypothesis
to 3D space by assuming no floating object. A wrong room layout hypothesis is typi-
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Fig. 2. Input and output. Taken a full-view panorama as input, our algorithm detects all the
objects inside the panorama and represents them as bounding boxes in 3D, which also enables
3D reconstruction from a single-view.

cally ranked low by the SVM, since it often produces unreasonable 3D bounding boxes
of objects. This implicit 3D interaction between objects and room layout enables us to
identify many bad hypotheses. During final adjustment, we also use the object number
distribution and pairwise context model to guide the search.

As demonstrated in our experiments, we can recognize objects using only 3D con-
textual information (without a classifier to discriminate object categories based on im-
age feature), and still achieve a comparable performance with the state-of-the-art object
detector [2], which learns a mapping from image region feature to object category. This
shows that context is as powerful as object appearance and much more useful than we
previously thought. The root of context model being under-utilized is partially because
the regular FOVs are too small.

In the following section, we will describe our algorithm in greater details. We will
also talk about the construction of a 3D panorama data set and present experiments to
evaluate the algorithm in Sec. 3. In Sec. 5, we will discuss the relation of our proposed
method with existing ones.

2 PanoContext: A whole-room 3D context model

As shown in Fig. 2, our input is a panorama covering 360◦ horizontal and 180◦ vertical
FOV represented in equirectangular projection. Our output is a 3D box representation of
the scene. We adopt the Manhattan world assumption, assuming that the scene consists
of 3D cuboids aligned with three principle directions2.

Our method first generates whole-room hypotheses and then ranks them holistically.
The challenge for hypotheses generation is to maintain high recall using a manageable
number of hypotheses, while the challenge for holistic ranking is to have high precision.
To generate hypotheses, we first estimate vanishing points by Hough Transform based
on the detected line segments (Sec. 2.1). We then generate 3D room layout hypotheses
from line segments and verify them with the computed geometric context and orienta-
tion map on the panorama (Sec. 2.2). For objects, we generate 3D cuboid hypotheses
using rectangle detection and image segmentation (Sec. 2.3). Next, we use sampling to
generate whole-room hypotheses, each of which has a 3D room and multiple 3D objects

2 We focus on indoor scenes only, although our algorithm may be generalized to outdoor scenes as well. We assume an
object can either stand on the ground, sit on another object, or hang on a wall (i.e. no object floats in space). We also
assume that the height of camera center is 1.6 meters away from the floor to obtain a metric 3D reconstruction.
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Fig. 3. Hough transform for vanishing point detection. The left image shows the detected
edges and vanishing points. The colors indicate the edge directions. The right image shows the
votes on each bin of the half sphere. The sizes and colors both indicate the number of votes.

inside (Sec. 2.4). To choose the best hypothesis that is coherent with image evidence
and structurally meaningful (i.e. satisfying all context constraints), we extract various
features and train a SVM to rank these hypotheses holistically (Sec. 2.5). Finally, we lo-
cally adjust the top hypothesis and search for a solution that maximizes the SVM score
by adding, deleting and swapping an object.

2.1 Vanishing point estimation for panoramas

We detect line segments on the panorama and use them to vote for the vanishing di-
rections (Fig. 3). To take full advantage of previous line segment detection working
on standard camera photo, we convert a panorama image to a set of perspective im-
ages, and run the state-of-the-art Line Segment Detection (LSD) algorithm [13] in each
perspective image, and warp all detected line segments back to the panorama.

A line segment in 3D space corresponds to a section of a great circle on the panorama
sphere and displays as a curve in panorama image. For each line l, we use n to denote
the normal direction of the plane where its great circle lies in. The vanishing direction v
associated with the line l should be perpendicular to n. We use a Hough Transform [14]
to find all vanishing directions. We uniformly divide the unit sphere into bins by recur-
sively dividing triangles of a icosahedron. A line segment l will vote for all bins whose
center nb satisfies nb ·n = 0. We then find three mutually orthogonal bins with maximal
sum of votes as three vanishing directions. After that, we snap all line segments to align
with their vanishing directions.

2.2 Room layout hypothesis generation

Because the room layout is essential to generate good object hypotheses in 3D, we first
obtain some good room layouts to reduce the burden of 3D object detection in the next
step. We randomly generate many room layout hypotheses and keep those consistent
with a pixel-wise surface normal direction estimation on panorama.

A 3D room layout can be generated by sampling line segments as room corners
[15]. Geometrically, five lines determine a cuboid in 3D space except some degenerative
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Orientation Map (OM) Geometric Context (GC)OM is better GC is better

Fig. 4. OM vs. GC. Here shows the OM and GC for the panorama image in Fig. 1. The curve
at the center shows the accuracy comparison between OM and GC as the vertical view angle
changes (data is from all training images). We can clearly see that OM is better at the upper part
while GC is better at the lower part, and there is a clear threshold to combine them.

cases. We classify each line segment with two labels from top/bottom, front/back, and
right/left according to its association to the vanishing directions, and randomly sample
five non-degenerative lines to form a room layout hypothesis. To reduce the number of
hypotheses while keeping the good ones, we use the surface normal consistency with
a pixel-wise surface direction estimation from panorama to rank these hypotheses and
choose the top 50 (since the recall starts to saturate around 50 in Fig. 11).

Orientation Map (OM) [16] and Geometric Context (GC) [15] provide pixel-wise
surface normal estimation for ordinary perspective images. We convert a panorama into
several overlapping perspective images, and apply OM and GC on these images respec-
tively and project results back to the panorama. From our training data with manually
marked ground truth wall orientations, we observe that GC provides better normal es-
timation at the bottom (probably because the model was trained using images looking
slightly downwards), and OM works better at the top half of an image (probably less
cluttered.), as shown in Fig. 4. Therefore, we combine the top part of OM and the bot-
tom part of GC to evaluate the room layout. As can be seen from Fig. 11(left), the recall
rate is significantly improved by combining OM and GC. Fig. 7 shows some good room
layout hypotheses, which are generally very close to the ground truth.

2.3 3D object hypotheses generation

After generating a set of good 3D room layout hypotheses, the next step is to generate
3D cuboid hypotheses for major objects in the room. To obtain high recall for hypothe-
ses generation, we use two complementary approaches: a detection-based method to
build cuboid from detected rectangular surface and a segmentation-based method by
fitting cuboid to 2D projections.

Detection-based cuboid generation: We project the input panorama orthographically
to six axis-aligned views, and run a rectangle detector in each projection respectively
(Fig. 5(top)). Our rectangle detector is similar as Deformable Part Model [2] but without
spring-like constraints. We define a part at each corner and the middle of each edge of
the rectangle. We use the SUN primitive dataset [17] containing 382 annotated cuboid
images, and transform each cuboid surface to an axis aligned rectangle to train each part
detector independently. During testing, we first compute the response maps of all part



6 Yinda Zhang, Shuran Song, Ping Tan and Jianxiong Xiao

Segmentation Fitted cuboid projection

Rectangle detectionProjected views Rectangle detector

  RANSAC fitting

Se
gm

en
ta

tio
n-

ba
se

d
D

et
ec

tio
n-

ba
se

d

Fig. 5. Two ways to generate object hypotheses: detection and segmentation.

detectors, and sum up them according to the models. We set a low threshold to ensure
high recall. We then generate cuboid hypotheses from the 3D rectangles.

Segmentation-based cuboid generation: Some objects, such beds and sofas, do not
have strong edges, and cannot be reliably detected by the rectangle detection. Therefore,
we generate additional cuboid hypotheses from image segmentation (Fig. 5(bottom)) by
selective search [4]. Specifically, for each segment, we evaluate how well its shape can
be explained by the projection of a cuboid. We create many cuboids by randomly sam-
pling 6 rays at the segment boundary passing through the three vanishing points. Among
these cuboids, we choose the best one whose projection has the largest intersection over
union score with the segment.

2.4 Whole-room scene hypotheses generation

After obtaining a hypothesis pool for room layout and objects, we generate a pool of
whole-room hypotheses, each consisting of a room layout with several cuboid objects
inside. To achieve high recall with a manageable number of hypotheses, we classify
the semantic type of each cuboid and use pairwise context constraints to guide our
sampling.

Semantic label: Intuitively, the semantic object type is strongly correlated with the
cuboid shape and its 3D locations in the room. We train a random forest classifier to
estimate the semantic type of a cuboid according to its size, aspect ratio and relative po-
sition in the room. And we achieve the multiple-label classification accuracy at around
70%. This shows that the context between room and objects is very strong.

Pairwise constraint: There are strong pairwise context constraints between scene ob-
jects, e.g. nightstands are usually nearby a bed, and a TV set often faces a bed. For two
object types, we collect all instances of the object pair, one for each type, coexisting in
a room from our training database. We then take the displacement between two objects
in a pair as a sample, and capture the pairwise location constraint by all collected sam-
ples. Such a set of samples are plotted in Fig. 6(b). When testing the validity of a pair
of objects, we compute their displacement and search for the K nearest neighbors in
the sample set. The mean distance to the K nearest neighbors will be transferred to a
probability by a sigmoid function.
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Fig. 6. Example sampling pipeline. Here we show an example of sampling a painting guided
by context, given that a bed is already sampled in previous steps. (a) the bottom-up scores of
painting hypotheses, (b) pairwise context statistics to show how objects of different categories
locates around a bed, (c) the pairwise context constraint from the sampled bed, (d) the scores for
merging bottom-up scores and pairwise context.

Whole-room sampling: We generate a complete scene hypothesis as following,

1. Randomly select a room layout according to their consistency with GC and OM
(higher consistency with higher probability).

2. Decide the number of instances for each type and the sampling order for instances
according to statistic prior. Fig. 6 shows an example of order list on left side.

3. Start from the first object, randomly choose a cuboid according to the bottom up
score, e.g. rectangle detection score, semantic classifier score. Hypothesis with
higher score would be sampled with higher probability.

4. Go to the next object, we evaluate the pairwise context constraint for all the cuboid
hypotheses with all the previously selected objects, and merge it the bottom-up
scores. A new object will be randomly selected according to merged scores. For
example, the unary bottom-up score is effective in pruning invalid hypotheses (Fig.
6(a)), and pairwise score can further enhance it (Fig. 6(c)). As shown in Fig. 6(d),
the rectangles on head of the bed are further highlighted, and those on windows
are depressed. We can see the hypotheses around the true painting are all with high
score, and thus we have a higher chance to get a correct object.

5. Given all the sampled object so far, repeat the previous step until all the instances
have been sampled.

Comparing with completely random sampling, our method can avoid obviously un-
reasonable scene hypotheses, and thus ensure high recall with a manageable number of
samples. Fig. 7 shows some sampling results.

2.5 Data-driven holistic ranking

After generating a long list of whole-room hypotheses, we train a SVM model to rank
them and choose the best hypothesis, holistically for the whole-room.
Linear SVM: Our goal is to learn a mapping from a panorama x to a scene parsing re-
sult y. Because y is a structural output, we formulate the problem as a 0-1 loss structural
SVM [18], i.e. a binary linear SVM3. We define a feature vector f(x,y) for a panorama

3 We use a 0-1 loss structural SVM because the ranking among the bad hypotheses is unimportant, and we only want to
find the best one. Our experiment also shows that it is very slow to train a general structural SVM using the standard
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Fig. 7. Whole-room hypotheses. On the left we show some good hypotheses selected based on
matching cost. At the center we show some random hypotheses to visualize the hypothesis space.

x and its hypothesis y. The binary label l indicates whether y is close enough to the
manually annotated ground truth y∗, i.e. l = [∆(y,y∗) < ε]. During training, for each
panorama xn, we sample M hypotheses {ym

n }m=1,··· ,M . We use all N panorama from
our training set to train the binary SVM by MN pairs of {〈f(xn,y

m
n ), lmn 〉}

m=1,··· ,M
n=1,··· ,N .

Since we typically have hundreds of panoramas and thousands of hypotheses, there are
about a million training data for the SVM During testing, the hypothesis with maximal
SVM score is chosen as the result.
Matching cost: ∆(y,y∗) measures the difference between a whole-room hypothesis
y and its ground truth y∗. We first register the two scenes by matching their vanish-
ing directions and room centers. For all pair of cuboids of the same semantic type, one
from each scene, we compute their distance as the the average 3D distance between
corresponding vertices. We then search for the bipartite matching minimizing the dis-
tance for each semantic label. ∆(y,y∗) is the sum of all bipartite matching cost plus
the constant penalty for unmatched cuboids in both scenes. We use this score to decide
the labels for the training data. Because it is hard to find a good threshold, we choose
two conservative thresholds to make sure all positives are good and all negatives are
bad. We drop all other data in between as we cannot tell their quality reliably.
Holistic features: The feature vector f(x,y) is a concatenation of object level feature
f object and room level feature f room. Thus, it encodes both bottom-up image evidence and
top-down contextual constraints. The relative importance between all the information
is learned by the SVM in a data-driven way using the training data. f object measures the
reliability of each single object. On each object hypothesis, rectangle detector score,
segmentation IOU score, sum/mean/std on each channel of OM and GC, entropy of
color distribution, and 2D projected size will be extracted and concatenated into a col-
umn vector. We concatenate the sum/mean/max/min of features of all instances in a
category as the feature for the category. For categories with no object, we set the fea-
tures zeros. We concatenate the features for all object categories to a single vector as
f object. Since the number of categories is fixed, the total dimension is also fixed.
Non-parametric room alignment: The room level feature f room checks whether the
hypothesized structure, i.e. the room layout and the arrangement of all objects, can be

cutting plane algorithm, and the general structural SVM is very sensitive to the loss function. A 0-1 loss structural SVM
is basically a binary linear SVM that can be trained efficiently and is robust to the loss-function.
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found in reality. We propose a non-parametric data-driven brute-force context model by
aligning a hypothesis y with all manual 3D annotations {y∗1,y∗2, · · · ,y∗N} in the train-
ing set. After registering two scenes, we can efficiently compute the distances between
all pairs of cuboids in the two scenes. The distance is defined as a combination of cen-
ter distance, volume intersection over union, and semantic type consistency. Since our
training data has limited size, we apply various transformations T on the ground truth
rooms to increase the database diversity. Specifically, we increase/decrease the size of
the room, while keep the relative positions of all objects in room unchanged, or keep
their absolute distance to a wall fixed. We further allow a universal scaling on the whole
scene. The room level feature f room is defined as the accumulated sums and products
of the 10 smallest matching costs between a hypothesis with all rooms in training data
under these transformation.

Room-only color model: To consider all the objects together, we divide image re-
gion to foreground (pixels covered by objects) and background (other pixels). In each
regions, we extract the similar feature as defined in f object. This provides context infor-
mation integrating both bottom-up and top-down information, and it is part of f room.

Local adjustment: The top hypothesis returned by the SVM could be limited by
the size of our hypothesis pool. So we apply a local refinement to some high score
hypotheses for a result with higher SVM score. Specifically, we delete, add, or swap
an object using the pairwise context constraints, or completely re-sample some new
rooms. If this generates a result with higher SVM score, we will accept this new one
and perform another local refinement around it.

3 Experiments

3.1 Annotated 3D panorama dataset

We collected 700 full-view panoramas for home environments from SUN360 database
[19], including 418 bedrooms and 282 living rooms. We split our dataset into two halves
for training and testing respectively. The data is manually annotated in house by five
persons. After that, an author went through each image to correct mistakes and ensure
consistency among the annotation.

To annotate panorama, we designed a WebGL annotation tool in browser, which
renders a 360◦ panorama as a texture warped inside a sphere with the camera located
at the center (Fig. 8). To annotate an object, the user first chooses one of the nine pre-
defined viewpoints of a cuboid (shown in the black box in Fig. 8), because a different
viewpoint requires a different set of vertices to be specified. When the user is mark-
ing these vertices, the interface will highlight the corresponding vertex on a 3D cuboid
on the right. We ask the annotator to mark the 3D bounding box as tight as possible
and align it with major orientations of the object. A key novelty of our tool is to first
let the user to choose one of the nine predefined viewpoints for each cuboid object,
and click each visible vertices guided by the instruction. We found that this interface is
much easier to use than [17], where the viewpoint is implicit. For rectangular objects,
we annotate its four corners using a polygon tool. To label the room layout, we design a
specialized primitive which requires the user to click on the eight corners of the room.
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Fig. 8. Panoramic annotation tool. To annotate a 3D cuboid, the user picks a viewpoint from
[Tools], and clicks on the vertices of the boxes on the panorama. The screen displays an indication
about what is the next corner to click on, as shown on the right.

We further convert 2D annotations to 3D scene models. We assume each object as
a perfect cuboid which only rotates horizontally around a vertical axis. Furthermore,
we do not allow any floating object, such that each object can only be standing on the
ground, sitting on another object, or attaching to a wall. The task of generating 3D scene
models amounts to find a perfect cuboid for each object by minimizing the reprojection
error between the 3D cuboid and annotations under those constraints. This can be done
by a single non-linear optimization.

3.2 Evaluation

Some results for both bedroom and living room are shown in Fig. 10, where we can see
that the algorithm performs reasonably.

Matching cost to the ground truth: The most straightforward way for evaluation is to
compare the prediction with the ground truth, using the matching cost that we defined
to choose label for the SVM training in Sec. 2.5. The average matching cost is 1.23,
which is much better than the pure bottom-up hypotheses generation (average cost is
1.55). We show the histogram for the distributions of the matching cost in Fig. 9(a).

Semantic image segmentation: We also covert the 3D understanding results into a
semantic segmentation mask on the panoramas and compare the results with the ground
truth as in PASCAL VOC segmentation challenge [3]. During conversion, we use the
3D bounding boxes of the objects to create a mask with occlusion testing. To avoid the
artifact of panorama projection, instead of comparing panorama segmentation results,
we uniformly sample rays of different orientation on the sphere and compare the label
of the prediction and ground truth. Fig. 9(b) shows the accuracy.

4 How important is larger FOV and context?

To justify the importance of FOV for context model, we conduct five types of com-
parison. First, we show that a larger FOV provides stronger context to recover room
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Fig. 9. Evaluation. (a) shows the matching cost distribution for the top hypotheses of our results
(for bedroom). (b) shows the accuracy for semantic segmentation. (c) shows the distribution of
views across different surface orientation prediction accuracy (see the supp. material for more).

layout.Second, we show that whole-room context provides stronger cue for recogniz-
ing objects than an object detector which classifies an image patch (i.e. small FOV).
Third, we decompose our system and disable some key usages of global context infor-
mation, to see the importance of context during sampling and ranking. Fourth, we vary
the effective range of FOV in the context model to demonstrate the larger FOV enables
stronger context. Finally, we combine our context model with standard object detectors,
to demonstrate the complementary natural of context and local object appearance.

Is larger FOV helpful for room layout estimation? We warp the panorama images
into perspective images using 54.4◦ FOV, run [16] and [15] on these images to ob-
tain surface orientation estimation for regular FOV images. Then our result and the
ground truth on panorama are warped to these perspective views for comparison. From
the comparison shown in Fig. 9(c), we can see that by using panorama, our algorithm
significantly outperforms these results on regular FOV images.

Is context as powerful as local image appearance for object detection? Using only
our top 1 prediction for each panorama images, we can compute the precision and recall
for each object category. Therefore, we compare with the state-of-the-art object detec-
tor. We train DPM [2] using the SUN database [20]. To test it on panorama, we warp
a panorama into many regular perspective images and run the trained DPM on it. Fig.
12(a) shows the result of the comparison. We can see that our model performs better
than DPM at many object categories. This demonstrates that by using only 3D contex-
tual information without any image feature for categorization, we can still achieve a
comparable performance with object detectors using only image features.

Is context important in sampling and ranking? We disable the pairwise context
model for sampling and the room alignment matching cost for ranking respectively and
together to show the power of each one. In Fig. 12(a), the detection performances for
nightstand and tv keep on decreasing when disabling more context model. These objects
are usually in a common size and shape, and thus cannot be discriminated easily with
bottom up image evidence. Context information can be especially useful under this
situation. However, for painting and door, the performance does not change much. The
reason could be that these objects usually have strong relations with the walls, and we
did not turn off the wall-object context, so the pairwise or high level context does not
matter much. Such strong context between wall and objects further shows the advantage
of using panorama, in which all the walls, floor, and ceiling are visible.
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Fig. 10. Example results. The first column is the input panorama and the output object detection
results. The second column contains intermediate steps for generating cuboid hypotheses from
bottom-up sampling as well as the combination of OM and GC. The third column is the results
visualized in 3D. (Best view in color. More results are available in the supplementary material.)
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Fig. 11. Recall. Left: The room recall verse the number of top room hypotheses ranked by the
OM, GC and our combination of OM and GC, which shows that merging OM and GC signifi-
cantly improves the result and justifies that 50 is a good threshold. Right: The object recall w.r.t.
the rectangle detection score (horizontal axes) and random forest score (vertical axes).

Is larger FOV better for context? We narrow down the FOV that is allowed to for
pairwise context model. Pair of cuboids far in term of FOV cannot affect each other by
pairwise context model during the whole-room hypothesis sampling. Fig. 12(b) shows
the F-score (

√
precision× recall) of object detection w.r.t. different FOVs. We can see

that the F-score curves are all in a decreasing tendency when the FOV is getting smaller.
It shows that the big FOV is essential in providing more context information.
Is context complementary with local object appearance? We combine to our model
with object detector to answer this question. We run DPM on each object hypothesis,
and prune those with low score during the scene hypothesis sampling. The result is
shown in Fig. 12(a). We can see that for categories on which both DPM and context
perform well, merging them will achieve higher performance, like bed, tv, painting. It
proves that the context information is complementary to image evidence. For categories
that DPM does not work well, the improvement benefit from merging is very limited as
expected, like mirror, desk. For the objects without much context, e.g. chair, though the
performance is improved, it is still not comparable with DPM, which probably implies
that context could hurt the detection performance for objects with flexible locations.
Note that this is just a simple test to show the effect of merging DPM with our system,
there are actually many parts in our model which can be improved by a strong image
feature based detector. The confidence score from detector can be used as a powerful
bottom up feature of object hypotheses during the sampling and holistic ranking.

5 Related works

There are many exceptional works that inspired the design of our algorithm. The sur-
face orientation and depth estimation from a single image is studied in [21–28]. The
state-of-the-art of single view room layout estimation can be found in [15, 16, 29–51].
Our work extends them to full-view panorama to fully exploit the contextual informa-
tion. There are also many great works that model context and object relations [52–63]
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Fig. 12. Object detection. (a) the performance of our system by partially disable some key usage
of context, and the comparison with DPM. (b) F-score of our system with decreasing field of
view. The performance becomes worse when the FOV is getting smaller.

and parse a scene [64, 65, 30] in a unified way. Although they have some success on
reasoning about 3D, their main focus is still on 2D, while our context model is fully in
3D. For scene parsing grammar, several approaches such as And-Or graph, stochastic
grammar, or probabilistic languages have been proposed [66–73]. Our data-driven sam-
pling and discriminative training provides a simple but powerful way to combine the
bottom-up image evidence and top-down context information. Same with our assump-
tions, 3D cuboids are also a popular representation for scene understanding [15, 17, 34,
47, 48, 74–76]. For object recognition datasets, there are several main-stream datasets
that contain object annotation in regular pictures [3, 19, 77, 20, 78–81]. Our panorama
dataset is the first annotated panorama dataset for scene understanding, and we also
provide ground truth in 3D. For using panoramas in computer vision tasks, there are
several projects focus on scene viewpoint recognition, localization, image extrapolation
and warping [19, 82–84]. Recently, the rapid increase of popularity of RGB-D sensors
enables many seminar works on scene understanding in 3D [85–94, 74]. We expect our
approach can also be naturally extended into RGB-D panoramas or RGB-D scanned 3D
rooms [95].

6 Conclusion

Small field-of-view in standard cameras is one of the main reasons that contextual infor-
mation is not as useful as it should be. To overcome this limitation, we propose a whole-
room 3D context model that takes a 360◦ panorama as input and outputs a 3D bounding
box of the room and detects all major objects inside. Experiments show that our model
can recognize objects using only 3D contextual information, and still achieves a com-
parable performance with the state-of-the-art object detector using image features for
categorization. We showcase that the root of context model being under-utilized is par-
tially because regular FOVs are too small, and that context is more powerful than we
thought. We believe that this is a useful message, because our community is not fully
aware that we make recognition more difficult than it should be.
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