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Figure 1: Free viewpoint relighting of neural radiance fields trained on 500−1,000 unstructured photographs per scene captured

with a handheld setup.

ABSTRACT

This paper presents a novel neural implicit radiance representation

for free viewpoint relighting from a small set of unstructured pho-

tographs of an object lit by a moving point light source different

from the view position. We express the shape as a signed distance

function modeled by a multi layer perceptron. In contrast to prior

relightable implicit neural representations, we do not disentangle

the different light transport components, but model both the local

and global light transport at each point by a second multi layer

perceptron that, in addition, to density features, the current posi-

tion, the normal (from the signed distance function), view direction,

and light position, also takes shadow and highlight hints to aid

the network in modeling the corresponding high frequency light

transport effects. These hints are provided as a suggestion, and

we leave it up to the network to decide how to incorporate these

in the final relit result. We demonstrate and validate our neural

implicit representation on synthetic and real scenes exhibiting a
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wide variety of shapes, material properties, and global illumination

light transport.
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1 INTRODUCTION

The appearance of real-world objects is the result of complex light

transport interactions between the lighting and the object’s intricate

geometry and associated material properties. Digitally reproducing

the appearance of real-world objects and scenes has been a long-

standing goal in computer graphics and computer vision. Inverse

rendering methods attempt to undo the complex light transport to

determine a sparse set of model parameters that, together with the

chosen models, replicates the appearance when rendered. However,

teasing apart the different entangled components is ill-posed and

often leads to ambiguities. Furthermore, inaccuracies in one model

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588432.3591482&domain=pdf&date_stamp=2023-07-23
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can adversely affect the accuracy at which other components can be

disentangled, thus requiring strong regularization and assumptions.

In this paper we present a novel, NeRF-inspired [Mildenhall et al.

2020], neural implicit radiance representation for free viewpoint

relighting of general objects and scenes. Instead of using analytical

reflectance models and inverse rendering of the neural implicit rep-

resentations, we follow a data-driven approach and refrain from de-

composing the appearance in different light transport components.

Therefore, unlike the majority of prior work in relighting neural

implicit representations [Boss et al. 2021a, 2022; Kuang et al. 2022;

Srinivasan et al. 2021; Zheng et al. 2021], we relax and enrich the

lighting information embedded in handheld captured photographs

of the object by illuminating each view from a random point light

position. This provides us with a broader unstructured sampling of

the space of appearance changes of an object, while retaining the

convenience of handheld acquisition. Furthermore, to improve the

reproduction quality of difficult to learn components, we provide

shadow and highlight hints to the neural radiance representation.

Critically, we do not impose how these hints are combined with the

estimated radiance (e.g., shadow mapping by multiplying with the

light visibility), but instead leave it up to the neural representation

to decide how to incorporate these hints in the final result.

Our hint-driven implicit neural representation is easy to im-

plement, and it requires an order of magnitude less photographs

than prior relighting methods that have similar capabilities, and an

equal number of photographs compared to state-of-the-art methods

that offer less flexibility in the shape and/or materials that can be

modeled. Compared to fixed lighting implicit representations such

as NeRF [Mildenhall et al. 2020], we only require a factor of five

times more photographs and twice the render cost while gaining

relightability. We demonstrate the effectiveness and validate the

robustness of our representation on a variety of challenging syn-

thetic and real objects (e.g., Figure 1) containing a wide range of

materials (e.g., subsurface scattering, rough specular materials, etc.)

variations in shape complexity (e.g., thin features, ill-defined furry

shapes, etc.) and global light transport effects (e.g., interreflections,
complex shadowing, etc.).

2 RELATEDWORK

We focus the discussion of related work on seminal and recent

work in image-based relighting, inverse rendering, and relight-

ing neural implicit representations. For an in-depth overview we

refer to recent surveys in neural rendering [Tewari et al. 2022],

(re)lighting [Einabadi et al. 2021], and appearance modeling [Dong

2019].

Image-based Relighting. The staggering advances in machine

learning in the last decade have also had a profound effect on image-

based relighting [Debevec et al. 2000], enabling new capabilities

and improving quality [Bemana et al. 2020; Ren et al. 2015; Xu

et al. 2018]. Deep learning has subsequently been applied to more

specialized relighting tasks for portraits [Bi et al. 2021; Meka et al.

2019; Pandey et al. 2021; Sun et al. 2019, 2020], full bodies [Guo

et al. 2019; Kanamori and Endo 2018; Meka et al. 2020; Yeh et al.

2022; Zhang et al. 2021a], and outdoor scenes [Griffiths et al. 2022;

Meshry et al. 2019; Philip et al. 2019]. It is unclear how to extend

these methods to handle scenes that contain objects with ill-defined

shapes (e.g., fur) and translucent and specular materials.

Our method can also be seen as a free-viewpoint relighting

method that leverages highlight and shadow hints to help model

these challenging effects. Philip et al. [2019] follow a deep shad-

ing approach [Nalbach et al. 2017] for relighting, mostly diffuse,

outdoor scenes under a simplified sun+cloud lighting model. Re-

lit images are created in a two stage process, where an input and

output shadow map computed from a proxy geometry is refined,

and subsequently used, together with additional render buffers,

as input to a relighting network. Zhang et al. [2021a] introduce
a semi-parametric model with residual learning that leverages a

diffuse parametric model (i.e., radiance hint) on a rough geometry,

and a learned representation that models non-diffuse and global

light transport embedded in texture space. To accurately model the

non-diffuse effects, Zhang et al. require a large number (∼ 8,000)

of structured photographs captured with a light stage. Deferred

Neural Relighting [Gao et al. 2020] is closest to our method in terms

of capabilities; it can perform free-viewpoint relighting on objects

with ill-defined shape with full global illumination effects and com-

plex light-matter interactions (including subsurface scattering and

fur). Similar to Zhang et al. [2021a], Gao et al. embed learned fea-

tures in the texture space of a rough geometry that are projected to

the target view and multiplied with radiance cues. These radiance
cues are visualizations of the rough geometry with different BRDFs

(i.e., diffuse and glossy BRDFs with 4 different roughnesses) under

the target lighting with global illumination. The resulting images

are then used as guidance hints for a neural renderer trained per

scene from a large number (∼10,000) of unstructured photographs

of the target scene for random point light-viewpoint combinations

to reproduce the reference appearance. Philip et al. [2021] also use

radiance hints (limited to diffuse and mirror radiance) to guide a

neural renderer. However, unlike Zhang et al. and Gao et al., they
pretrain a neural renderer that does not require per-scene fine-

tuning, and that takes radiance cues for both the input and output

conditions. Philip et al. require about the same number as input

images as our method, albeit lit by a single fixed natural lighting

conditions and limited to scenes with hard surfaces and BRDF-like

materials. All four methods rely on multi-view stereo which can

fail for complex scenes. In contrast our method employs a robust

neural implicit representation. Furthermore, all four methods rely

on an image-space neural renderer to produce the final relit image.

In contrast, our method provides the hints during volume rendering

of the neural implicit representation, and thus it is independent

of view-dependent image contexts. Our method can relight scenes

with the same complexity as Gao et al. [2020] while only using a

similar number of input photographs as Philip et al. [2021] without
sacrificing robustness.

Model-based Inverse Rendering. An alternative to data-driven re-

lighting is inverse rendering (a.k.a. analysis-by-synthesis) where a

set of trial model parameters are optimized based on the difference

between the rendered model parameters and reference photographs.

Inverse rendering at its core is a complex non-linear optimization

problem. Recent advances in differentiable rendering [Li et al. 2018;

Loper and Black 2014; Nimier-David et al. 2019; Xing et al. 2022]

have enabled more robust inverse rendering for more complex
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scenes and capture conditions. BID-R++ [Chen et al. 2021] com-

bines differentiable ray tracing and rasterization to model spatially

varying reflectance parameters and spherical Gaussian lighting for

a known triangle mesh. Munkberg et al. [2022] alternate between
optimizing an implicit shape representation (i.e., a signed distance

field), and reflectance and lighting defined on a triangle mesh. Has-

selgren et al. [2022] extend the work of Munkberg et al. [2022] with
a differentiable Monte Carlo renderer to handle area light sources,

and embed a denoiser to mitigate the adverse effects of Monte

Carlo noise on the gradient computation to drive the non-linear

optimizer. Similarly, Fujun et al. [2021] also employ a differentiable

Monte Carlo renderer for estimating shape and spatially-varying

reflectance from a small set of colocated view/light photographs.

All of these methods focus on direct lighting only and can produce

suboptimal results for objects or scenes with strong interreflections.

A notable exception is the method of Cai et al. [2022] that combines

explicit and implicit geometries and demonstrates inverse render-

ing under known lighting on a wide range of opaque objects while

taking indirect lighting in account. All of the above methods eventu-

ally express the shape as a triangle mesh, limiting their applicability

to objects with well defined surfaces. Furthermore, the accuracy of

these methods is inherently limited by the representational power

of the underlying BRDF and lighting models.

Neural Implicit Representations. A major challenge in inverse

rendering with triangle meshes is to efficiently deal with changes

in topology during optimization. An alternative to triangle mesh

representations is to use a volumetric representation where each

voxel contains an opacity/density estimate and a description of the

reflectance properties. While agnostic to topology changes, voxel

grids are memory intensive and, even with grid warping [Bi et al.

2020], fine-scale geometrical details are difficult to model.

To avoid the inherent memory overhead of voxel grids, NeRF

[Mildenhall et al. 2020] models the continuous volumetric density

and spatially varying color with two multi layer perceptrons (MLPs)

parameterized by position (and also view direction for color). The

MLPs in NeRF are trained per scene such that the accumulated den-

sity and color ray marched along a view ray matches the observed

radiance in reference photographs. NeRF has been shown to be

exceptionally effective in modeling the outgoing radiance field of a

wide range of object types, including those with ill-defined shapes

and complex materials. One of the main limitations of NeRF is that

the illumination present at capture-time is baked into the model.

Several methods have been introduced to support post-capture

relighting under a restricted lighting model [Li et al. 2022; Martin-

Brualla et al. 2021], or by altering the color MLP to produce the

parameters to drive an analytical model of the appearance of ob-

jects [Boss et al. 2021a, 2022, 2021b; Kuang et al. 2022; Srinivasan

et al. 2021; Yao et al. 2022; Zhang et al. 2021c], participating me-

dia [Zheng et al. 2021], or even whole outdoor scenes [Rudnev et al.

2022].

Due to the high computational cost of ray marching secondary

rays, naïvely computing shadows and indirect lighting is impracti-

cal. Zhang et al.[2021c], Li et al. [2022], and Yang et al. [2022] avoid
tracing shadow rays by learning an additional MLP to model the

ratio of light occlusion. However, all three methods ignore indirect

lighting. Zheng et al. [2021] model the indirect lighting inside a

participating media using anMLP that returns the coefficients of a 5-

band expansion. NeILF [Yao et al. 2022] embeds the indirect lighting

and shadows in a (learned) 5D incident light field for a scene with

known geometry. NeRV [Srinivasan et al. 2021] modifies the color

MLP to output BRDF parameters and a visibility field that models

the distance to the nearest ’hard surface’ and lighting visibility. The

visibility field allows them to bypass the expensive ray marching

step for shadow computation and one-bounce indirect illumination.

A disadvantage of these solutions is that they do not guarantee that

the estimated density field and the occlusions are coupled. In con-

trast, our method directly ties occlusions to the estimated implicit

geometry reproducing more faithful shadows. Furthermore, these

methods rely on BRDFs to model the surface reflectance, precluding

scenes with complex light-matter interactions.

NeLF [Sun et al. 2021] aims to relight human faces, and thus

accurately reproducing subsurface scattering is critical. Therefore,

Sun et al. characterize the radiance and global light transport by

an MLP. We also leverage an MLP to model local and global light

transport. A key difference is that our method parameterizes this

MLP in terms of view and light directions, whereas NeLF directly

outputs a full light transport vector and compute a relit color via an

inner-product with the lighting. While better suited for relighting

with natural lighting, NeLF is designed for relighting human faces

which only exhibit limited variations in shape and reflectance.

Similar in spirit to our method, Lyu et al. [2022] model light trans-

port using an MLP, named a Neural Radiance Transfer Field (NRTF).

However, unlike us, Lyu et al. train the MLP on synthetic training

data generated from a rough BRDF approximation obtained through

physically based inverse rendering on a triangle mesh extracted

from a neural signed distance field [Wang et al. 2021] computed

from unstructured observations of the scene under static natural

lighting. To correct the errors due the rough BRDF approximation,

a final refinement step of the MLP is performed using the captured

photographs. Similar to Lyu et al.we also use an MLP to model light

transport, including indirect lighting. However, unlike Lyu et al. we
do not rely solely on an MLP to model high frequency light trans-

port effects such as light occlusions and specular highlights. Instead

we provide shadow and highlight hints to the radiance network

and let the training process discover how to best leverage these

hints. Furthermore, we rely on a neural representation for shape

jointly optimized with the radiance, allowing us to capture scenes

with ill-defined geometry. In contrast, Lyu et al. optimize shape

(converted to a triangle mesh) and radiance separately, making their

method sensitive to shape errors and restricted to objects with a

well-defined shape.

An alternative to using an implicit neural density field, is to

model the shape via a signed distance field (SDF). Similar to the

majority of NeRF-based methods, PhySG [Zhang et al. 2021b] and

IRON [Zhang et al. 2022a] also rely on an MLP to represent volu-

metric BRDF parameters. However, due to the high computational

cost, these methods do not take shadowing or indirect lighting in

account. Zhang et al. [2022b] model indirect lighting separately, and

train an additional incident light field MLP using the incident light-

ing computed at each point via ray casting the SDF geometry. While

our method also builds on a neural implicit representation [Wang

et al. 2021], our method does not rely on an underlying paramet-

ric BRDF model, but instead models the full light transport via an
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Figure 2: Overview: our neural implicit radiance representation is trained on unstructured photographs of the scene captured

from different viewpoints and lit from different point light positions. The neural implicit radiance representation consists of

two multi layer perceptron (MLP) networks for modeling the density field and for modeling the light transport. The MLP for

modeling the density takes as input the position, and outputs the signed distance function of the shape and a feature vector

that together with the current position, the normal extracted from the SDF, the view direction, the light source position, and

the light transport hints, are passed into the radiance MLP that then computes the view and lighting dependent radiance.

MLP. Furthermore, we do not rely on an MLP decoupled from the

estimated geometry to estimate shadowing, but instead accumulate

light occlusion along a single shadow ray per view ray, ensuring

consistency between the shadows and the estimated geometry.

3 METHOD

Our goal is to extend neural implicit representations such as NeRF

[Mildenhall et al. 2020] to model variations in lighting. NeRF has

proven to be exceptionally efficient for viewpoint interpolation.

In contrast to ray tracing with solid surfaces, NeRF relies on ray

marching through the volume, requiring at least an order of mag-

nitude more computations. Not only does this ray marching cost

affect rendering, it also leads to a prohibitively large training cost

when secondary rays (e.g., shadows and indirect lighting) are con-

sidered. Instead of building our method on NeRF, we opt for using

NeuS [Wang et al. 2021], a neural implicit signed distance field

representation, as the basis for our method. Although NeuS does

not speed up ray marching, it provides an unbiased depth estimate

which we will leverage in subsection 3.2 for reducing the number

of shadow rays.

Following priorwork, our neural implicit radiance representation

relies on two multi layer perceptrons (MLPs) for modeling the

density field (following NeuS) and for modeling the (direct and

indirect) radiance based on the current position, the normal derived

from the density field, the view direction, the point light position,

and the features provided by the density network. In addition, we

also provide light transport hints to the relightable radiance MLP to

improve the reproduction quality of difficult to model effects such

as shadows and highlights. Figure 2 summarizes our architecture.

To train our neural implicit relightable radiance representation,

we require observations of the target scene seen from different

viewpoints and lit from different point light positions. It is essen-

tial that these observations include occlusions and interreflections.

Colocated lighting (e.g., as in [Luan et al. 2021; Nam et al. 2018])

does not exhibit visible shadows and is therefore not suited. Instead

we follow the acquisition process of Deferred Neural Lighting [Gao

et al. 2020] and capture the scene from different viewpoints with

a handheld camera while lighting the scene with a flash light of a

second camera from a different direction.

We opt for parameterizing the radiance function with respect

to a point light as the basis for relighting as this better reflects

the physical capture process. A common approximation in prior

religting work that relies on active illumination (e.g., Light Stage) is
to ignore the divergence of incident lighting due to the finite light

source distance, and parameterize the reflectance field in terms

lighting directions only. Similarly, we can also approximate distant
lighting with point lighting defined by projecting the light direction

onto a large sphere with a radius equal to the capture distance.

3.1 Representation

Density Network. Our neural implicit geometry representation

follows NeuS [Wang et al. 2021] which uses an MLP to encode a

Signed Distance Function (SDF) 𝑓 (p) from which the density func-

tion is derived using a probability density function 𝜙𝑠 (𝑓 (p)). This
probability density function is designed to ensure that for opaque

objects the zero-level set of the SDF corresponds to the surface.

The width of the probability distribution models the uncertainty

of the surface location. We follow exactly the same architecture

for the density MLP as in NeuS: 8 hidden layers with 256 nodes

using a Softplus activation and a skip connection between the input

and the 4th layer. The input (i.e., current position along a ray) is

augmented using a frequency encoding with 6 bands. In addition,

we also concatenate the original input signal to the encoding. The

resulting output from the density network is the SDF at p as well

as a latent vector that encodes position dependent features.

Relightable Radiance Network. Analogous to the color MLP in

NeRF and NeuS that at each volumetric position evaluates the

view-dependent color, we introduce a relightable radiance MLP

that at each volumetric position evaluates the view and lighting

dependent (direct and indirect) light transport. We follow a similar

architecture as NeRF/NeuS’ color MLP and extend it by taking the

position dependent feature vector produced by the density MLP,

the normal derived from the SDF, the current position, the view

direction, and the point light position as input. Given this input,

the radiance MLP outputs the resulting radiance which includes all

light transport effects such as occlusions and interreflections. We

assume a white light source color; colored lighting can be achieved



Relighting Neural Radiance Fields with Shadow and Highlight Hints SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

by scaling the radiance with the light source color (i.e., linearity of

light transport).

Given the output from the density network 𝑓 as well as the

output from the radiance network 𝑠 , the color 𝐶 along a view ray

starting at the camera position o in a direction v is given by:

𝐶 (o, v) =
∫ ∞

0

𝑤 (𝑡)𝑠 (p,n, v, l, ¯𝑓 ,Θ) d𝑡, (1)

where the sample position along the view ray is p = o+ 𝑡v at depth

𝑡 , n is the normal computed as the normalized SDF gradient:

n = ∇𝑓 (p)/| |∇𝑓 (p) | |, (2)

v is the view direction, l is the point light position,
¯𝑓 the corre-

sponding feature vector from the density MLP, and Θ is a set of

additional hints provided to the radiance network (described in sub-

section 3.2). Analogous to NeuS, the view direction, light position,

and hints are all frequency encoded with 4 bands. Finally,𝑤 (𝑡) is
the unbiased density weight [Wang et al. 2021] computed by:

𝑤 (𝑡) = 𝑇 (𝑡)𝜌 (𝑡), (3)

𝑇 (𝑡) = exp

(
−

∫ 𝑡

0

𝜌 (𝑢) d𝑢
)
, (4)

𝜌 (𝑡) = max

(
dΦ𝑠

d𝑡
(𝑓 (𝑡))

Φ𝑠 (𝑓 (𝑡))
, 0

)
, (5)

with 𝑇 the transmittance over opacity 𝜌 , Φ𝑠 the CDF of the PDF

𝜙𝑠 used to compute the density from the SDF 𝑓 . To speed up the

computation of the color, the integral in Equation 1 is computed by

importance sampling the density field along the view ray.

In the spirit of image-based relighting, we opt to have the re-

lightable radiance MLP network include global light transport ef-

fects such as interreflections and occlusions. While MLPs are in

theory universal approximators, some light transport components

are easier to learn (e.g., diffuse reflections) than others. Especially

high frequency light transport components such as shadows and

specular highlights pose a problem. At the same time, shadows

and specular highlights are highly correlated with the geometry

of the scene and thus the density field. To leverage this embedded

knowledge, we provide the relightable radiance MLP with addi-

tional shadow and highlight hints.

3.2 Light Transport Hints

Shadow Hints. While the relightable radiance network is able to

roughly model the effects of light source occlusion, the resulting

shadows typically lack sharpness and detail. Yet, light source oc-

clusion can be relatively easily evaluated by collecting the density

along a shadow ray towards the light source. While this process is

relatively cheap for a single shadow ray, performing a secondary

ray march for each primary ray’s sampled position increases the

computation cost by an order of magnitude, quickly becoming too

expensive for practical training. However, we observe that for most

primary rays, the ray samples are closely packed together around

the zero level-set in the SDF due to the importance sampling of

the density along the view ray. Hence, we propose to approximate

light source visibility by shooting a single shadow ray at the zero

level-set, and use the same light source visibility for each sample

along the view ray. To determine the depth of the zero level-set, we

compute the density weighted depth along the view ray:

𝐷 (o, v) =
∫ ∞

0

𝑤 (p)𝑡 d𝑡 . (6)

While for an opaque surface a single shadow ray is sufficient,

for non-opaque or ill-defined surfaces a single shadow ray offers a

poor estimate of the light occlusion. Furthermore, using the shadow

information as a hard mask, ignores the effects of indirect lighting.

We therefore provide the shadow information as a additional input

to the radiance network, allowing the network learn whether to

include or ignore the shadowing information as well as blend any

indirect lighting in the shadow regions.

Highlight Hints. Similar to shadows, specular highlights are spar-

sely distributed high frequency light transport effects. Inspired

by Gao et al. [2020], we provide specular highlight hints to the

radiance network by evaluating 4 microfacet BRDFs with a GGX

distribution [Walter et al. 2007] with roughness parameters {0.02,

0.05, 0.13, 0.34}. Unlike Gao et al., we compute the highlight hints

using local shading which only depends on the surface normal

computed from the SDF (Equation 2), and pass it to the radiance

MLP as an additional input. Similar to shadow hints, we compute

one highlight hint per view ray and reused it for all samples along

the view ray.

3.3 Loss & Training

We jointly train the density and radiance network using an image

reconstruction loss L𝑐 and an SDF regularization loss L𝑒 . The im-

age reconstruction loss is defined as the 𝐿1 distance between the

observation 𝐶 (o, v) and the corresponding estimated color 𝐶 (o, v)
computed using Equation 1: L𝑐 = | |𝐶 − 𝐶 | |1, for a random sam-

pling of pixels (and thus view rays) in the captured training images

(subsection 3.4). Furthermore, we follow NeuS, and regularize the

density MLP with the Eikonal loss [Gropp et al. 2020] to ensure a

valid SDF: L𝑒 = ( | |∇𝑓 (p) | |2 − 1)2
.

3.4 Data Acquisition

Training the implicit representation requires observations of the

scene viewed from random viewpoints and lit from a different

random light position such that shadows and interreflections are in-

cluded. We follow the procedure from Gao et al. [2020]: a handheld
camera is used to capture photographs of the scene from random

viewpoints while a second camera captures the scene with its colo-

cated flash light enabled. The images from the second camera are

only used to calibrate the light source position. To aid camera cali-

bration, the scene is placed on a checkerboard pattern.

All examples in this paper are captured with a Sony A7II as the

primary camera, and an iPhone 13 Pro as the secondary camera.

The acquisition process takes approximately 10 minutes; the main

bottleneck in acquisition is moving the cameras around the scene.

In practice we capture a video sequence from each camera and

randomly select 500−1,000 frames as our training data. The video

is captured using S-log encoding to minimize overexposure.

For the synthetic scenes, we simulate the acquisition process by

randomly sampling view and light positions on the upper hemi-

sphere around the scene with a random distance between 2 to 2.5
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times the size of the scene. The synthetic scenes are rendered with

global light transport using Blender Cycles.

4 RESULTS

We implemented our neural implicit radiance representation in Py-

Torch [Paszke et al. 2019]. We train each model for 1,000𝑘 iterations

using the Adam optimizer [Kingma and Ba 2015] with 𝛽1 = 0.9 and

𝛽2 = 0.999 with 512 samples per iteration randomly drawn from

the training images. We follow the same warmup and cosine decay

learning rate schedule as in NeuS [Wang et al. 2021]. Training a

single neural implicit radiance representation takes approximate

20 hours on four Nvidia V100 GPUs.

We extensively validate the relighting capabilities of our neural

implicit radiance representation on 17 synthetic and 7 captured

scenes (including 4 from [Gao et al. 2020]), covering a wide range

of different shapes, materials, and lighting effects.

Synthetic Scenes. Figure 3 shows relit results of different syn-

thetic scenes. For each example, we list PSNR, SSIM, and LPIPS [Zhang

et al. 2018] error statistics computed over 100 test images different

from the 500 training images. Our main test scene contains a vase

and two dice; the scene features a highly concave object (vase)

and complex interreflections between the dice. We include several

versions of the main test scene with different material properties:

Diffuse, Metallic, Glossy-Metal, Rough-Metal, Anisotropic-

Metal, Plastic, Glossy-Plastic, Rough-Plastic and Translu-

cent; note, some versions are only included in the supplemen-

tal material. We also include two versions with modified geome-

try: Short-Fur and Long-Fur to validate the performance of our

method on shapes with ill-defined geometry. In addition, we also

include a Fur-Ball scene which exhibits even longer fur. To vali-

date the performance of the shadow hints, we also include scenes

with complex shadows: a Basket scene containing thin geometric

features and a Layered Woven Ball which combines complex

visibility and strong interreflections. In addition to these specially

engineered scenes to systematically probe the capabilities of our

method, we also validate our neural implicit radiance representation

on commonly used synthetic scenes in neural implicit modeling:

Hotdog, Lego and Drums [Mildenhall et al. 2020]. Based on the

error statistics, we see that the error correlates with the geometric

complexity of the scene (vase and dice, Hotdog, and Layered Wo-

ven Ball perform better than the Fur scenes as well as scenes with

small details such as the Lego and the Drums scene), and with the

material properties (highly specular materials such as Metallic

and Anisotropic-Metal incur a higher error). Visually, differences

are most visible in specular reflections and for small geometrical

details.

Captured Scenes. We demonstrate the capabilities of our neu-

ral implicit relighting representation by modeling 3 new scenes

captured with handheld setups (Figure 4). The Pikachu Statue

scene contains glossy highlights and significant self-occlusion. The

Cat on Decor scene showcases the robustness of our method on

real-world objects with ill-defined geometry. The Cup and Fabric

scene exhibits translucent materials (cup), specular reflections of

the balls, and anisotropic reflections on the fabric. We refer to the

supplementary material for additional video sequences of these

scenes visualized for rotating camera and light positions.

Comparisons. Figure 5 compares our method to IRON [Zhang

et al. 2022b], an inverse rendering method that adopts a neural

representation for geometry as a signed distance field. From these

results, we can see that IRON fails to correctly reconstruct the shape

and reflections in the presence of strong interreflections. In a second

comaprison (Figure 6), we compare our method to Neural Radiance

Transfer Fields (NRTF) [Lyu et al. 2022]; we skip the fragile inverse

rendering step and train NRTF with 500 reference OLAT images and

the reference geometry. To provide a fair comparison, we also train

and evaluate our network under the same directional OLAT images

by conditioning the radiance network on light direction instead of

point light position. From this test we observe that NRTF struggles

to accurately reproduce shadow edges and specular interreflections,

as well as that our method can also be succesfully trained with di-

rectional lighting. Figure 7 compares our method to the pre-trained

neural relighting network of Philip et al.. [2021] on the challenging

Metallic test scene. Because multiview stereo [Schönberger and

Frahm 2016] fails for this scene, we input geometry reconstructed

from the NeuS SDF as well as ground truth geometry. Finally, we

also render the input images under the reference target lighting; our

network is trained without access to the target lighting. Even under

these favorable conditions, the relighting method of Philip et al.
struggles to reproduce the correct appearance. Finally, we compare

our method to Deferred Neural Lighting [Gao et al. 2020] (using

their data and trained model). Our method is able to achieve similar

quality results from ∼500 input images compared to ∼10,000 input

images for Deferred Neural Lighting. While visually very similar,

the overall errors of Deferred Neural Relighting are slightly lower

than with our method. This is mainly due to differences in how

both methods handle camera calibrations errors. Deferred Neural

Relighting tries to minimize the differences for each frame sepa-

rately, and thus it can embed camera calibration errors in the images.

However, this comes at the cost of temporal “shimmering” when

calibration is not perfect. Our method on the other hand, optimizes

the 3D representation, yielding better temporal stability (and thus

requiring less photographs for view interpolation) at the cost of

slightly blurring the images in the presence of camera calibration

errors.

5 ABLATION STUDIES

We perform several ablation experiments (visual and quantitative)

on the synthetic datasets to evaluate the impact of each of the com-

ponents that comprise our neural implicit radiance representation.

Shadow and Highlight Hints. A key contribution is the inclusion

of shadow and highlight hints in the relightable radiance MLP.

Figure 9 shows the impact of training without the shadow hint, the

highlight hint, or both. Without shadow hints the method fails to

correctly reproduce sharp shadow boundaries on the ground plane.

This lack of sharp shadows is also reflected in the quantitative

errors summarized in Table 1. Including the highlight hints yield a

better highlight reproduction, e.g., in the mouth of the vase.

Impact of the Number of Shadow Rays. We currently only use a

single shadow ray to compute the shadow hint. However, we can
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Figure 3: Qualitative comparison between synthetic scenes relit (right) for a novel viewpoint and lighting direction (not part of

the training data) and a rendered reference image (left). For each example we list average PSNR, SSIM, and LPIPS computed

over a uniform sampling of view and light positions.

Figure 4: Qualitative comparison between captured scenes relit (right) for a novel viewpoint and lighting direction (not part of

the training data) and a reference photograph (left). For each example we list average PSNR, SSIM, and LPIPS computed over

randomly sampled view and light positions.

also shoot multiple shadow rays (by importance sampling points

along the view ray) and provide a more accurate hint to the radiance

network. Figure 10 shows the results of a radiance network trained

with 16 shadow rays. While providing a more accurate shadow

hint, there is marginal benefit at a greatly increased computational

cost, justifying our choice of a single shadow ray for computing

the shadow hint.

NeuS vs. NeRF Density MLP. While the relightable radiance MLP

learns how much to trust the shadow hint (worst case it can com-

pletely ignore unreliable hints), the radiance MLP can in general not

reintroduce high-frequency details if it is not included in the shadow

hints. To obtain a good shadow hint, an accurate depth estimate of

the mean depth along the view ray is needed. Wang et al. [2021]
noted that NeRF produces a biased depth estimate, and they intro-

duced NeuS to address this problem. Replacing NeuS by NeRF for

the density network (Figure 10) leads to poor shadow reproduction

due to the adverse impact of the biased depth estimates on the

shadow hints.

Impact of the number of Basis Materials for the Highlight Hints.
Table 1 shows the results of using 1, 2, 4 and 8 basis materials for

computing the highlight hints. Additional highlights hints improve

the results up to a point; when too many hints are provided erro-

neous correlations can increase the overall error. 4 basis materials
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Table 1: Ablation results

Ablation Variant PSNR ↑ SSIM ↑ LPIPS ↓
Full hints 32.02 0.9727 0.0401

w/o highlight hint 31.96 0.9724 0.0407

w/o shadow hint 27.67 0.9572 0.0610

w/o any hints 27.54 0.9568 0.0620

1 basis material 31.54 0.9707 0.0428

2 basis materials 31.54 0.9707 0.0429

4 basis materials 32.02 0.9727 0.0401

8 basis materials 31.98 0.9726 0.0401

50 training images 24.29 0.9335 0.0706

100 training images 27.96 0.9572 0.0520

250 training images 30.36 0.9666 0.0456

500 training images 32.02 0.9727 0.0401

strike a good balance between computational cost, network com-

plexity, and quality.

Impact of Number of Training Images. Figure 11 and Table 1

demonstrate the effect of varying the number of input images from

50, 100, 250 to 500. As expected, more training images improve

the results, and with increasing number of images, the increase

in improvement diminishes. With 250 images we already achieve

plausible relit results. Decreasing the number of training images

further introduces noticeable appearance differences.

6 LIMITATIONS

While our neural implicit radiance representation greatly reduces

the number of required input images for relighting scenes with com-

plex shape and materials, it is not without limitations. Currently we

provide shadow and highlight hints to help the relightable radiance

MLP model high frequency light transport effects. However, other

high frequency effects exist. In particular highly specular surfaces

that reflect other parts of the scene pose a challenge to the radiance

network. Naïve inclusion of ’reflection hints’ and/or reparameter-

izations [Verbin et al. 2022] fail to help the network, mainly due

to the reduced accuracy of the surface normals (needed to predict

the reflected direction) for sharp specular materials. Resolving this

limitation is a key challenge for future research in neural implicit

modeling for image-based relighting.

7 CONCLUSION

In this paper we presented a novel neural implicit radiance represen-

tation for free viewpoint relighting from a small set of unstructured

photographs. Our representation consists of twoMLPs: one for mod-

eling the SDF (analogous to NeuS) and a second MLP for modeling

the local and indirect radiance at each point. Key to our method is

the inclusion of shadow and highlight hints to aid the relightable

radiance MLP to model high frequency light transport effects. Our

method is able to produce relit results from just ∼500 photographs

of the scene; a saving of one to two order of magnitude compared

to prior work with similar capabilities.
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Figure 5: Comparison to inverse rendering results from IRON [Zhang et al. 2022a] (from 500 colocated training images) on

the Metallic scene. Our model is evaluated under colocated point lights. IRON is affected by the interreflections and fails to

accurately reconstruct the geometry.

Figure 6: A comparison to Neural Radiance Transfer Fields (NRTF) trained on 500 OLAT reference images and reference

geometry. To provide a fair comparison, we also train our network on the same directional OLAT images (without reference

geometry) instead of point lighting. NRTF struggles to correctly reproduce shadow boundaries and specular interreflections

(see zoom-ins).

Figure 7: Comparison to the pretrained relighting network of Philip et al. [2021] on 500 input images of theMetallic scene

rendered with the target lighting. Even under these favorable conditions, their method struggles to reproduce the correct

appearance for novel viewpoints.
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Figure 8: Comparison with Deferred Neural Lighting [Gao et al. 2020]. We train our neural implicit radiance representation

using only 1/25th (∼500) randomly selected frames for Gao et al.’s datasets, while achieving comparable results.

Figure 9: Impact of shadow and highlight hints; without the hints the network fails to accurately reproduce the desired effect.

Figure 10: Impact of the number of shadow rays and the underlying implicit shape representation demonstrated on the Basket

scene. Using 16 shadow rays only provides marginal improvements at the cost of significant computation overhead. Using

NeRF as the basis for the neural implicit shape yields degraded shadow quality due to depth biases.

Figure 11: Impact of the number of captured training images. Increasing the number of training images improves the quality.

The quality degrades significantly when the number of images is less than 250.


