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AAbbssttrraacctt  

Planar surfaces are distinguished features of man-made 
environment, which are used in many computer vision 
applications such as object detection, motion segmentation, 3D 
scene reconstruction, and 3D mapping. One of the most used 
technique for robust plane detection is the RANdom SAmple 
Consensus (RANSAC), which is a global iterative method for 
estimating the parameters of a certain model from input data 
points contaminated by a set of outliers (noisy data). 
Unfortunately, the standard RANSAC suffers from some 
problems regarding the processing time, accuracy of fitting data, 
and finding an optimal solution. This paper gives a review study 
of the most recent RANSAC enhancements techniques. In 
addition, it covers the solving techniques for the speed, 
accuracy and optimality problems. 

 

11..  IInnttrroodduuccttiioonn  

Man-made environment consists of many parallel lines, orthogonal 

corners, and regular shapes such as rectangles. Therefore, planes are 

commonly employed, as primitive components, in various robotics and 

computer vision tasks. One popular application is 3D reconstruction and 

scene analysis [1-6], in addition, objects can be recognized accurately 

using 3D point cloud in [7-9], another application is motion segmentation 

from RGB-D videos which are represented by Bertholet et al. in [10]. 

Additionally, steerable displays and HoloDesk [11, 12] which allows the 

user to be immersed in a virtual 3D graphics environment, and finally 3D 

mapping from Surveillance videos are presented by Ruofei et al. [13].  
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The RANSAC, the most common algorithms for planar surface detection 

proposed by Fischler and Bolles [14], is a global parameter estimation 

approach designed to fit the data points contaminated by a large set of 

outliers, i.e. noisy data, to a predefined model. 

Several methods have been proposed for enhancing the RANSAC. 

This study provides a survey of the most common RANSAC 

enhancements over the past few years [15-28]. They can be 

categorized according to the problems they seek to solve. It can be 

seen that the most important problems concerned with RANSAC 

enhancement are speed, accuracy and optimality.  

The rest of this paper is organized sequentially as follow: The 

standard RANSAC approach is illustrated in Section 2. Speed, 

accuracy, and optimality enhancement of the standard RANSAC are 

discussed in Section 3. The conclusion of the different enhanced 

RANSAC methods is clarified in Section 4. 

 

22..  BBaacckkggrroouunndd  

22..11  SSttaannddaarrdd  RRAANNSSAACC  

In computer vision, the RANdom SAmple Consensus (RANSAC) [14-29] 

is considered one of the most commonly used algorithms for plane 

detection. The RANSAC is firstly introduced by Fischler and Bolles [14] 

for 2D detection, then it has been proven by Schnabel et al. [30]  to detect 

basic shapes, for example cones, spheres, cylinders, planes from 3D point 

clouds as well. The RANSAC is a global iterative method that robustly 

finds model parameters from a set of data points. 

Figure 1 shows an example of applying RANSAC for 2D line fitting 

problem. By assuming data as a collection of inliers and outliers, the 

RANSAC can robustly estimate the parameters of planes with high degree 

of accuracy even number of outliers exceed 50% of the sample points. 

Unlike other statistical sampling techniques such as M-estimators and 

least-median squares [31, 32] that use as much as possible of the data, the 

RANSAC uses the smallest data set (starting from three points) and 

proceeds to enlarge this set with consistent inliers.  
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Figure 1: Estimating the line parameters using the standard RANSAC 

 

Figure 2: The RANSAC flowchart 
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The RANSAC algorithm consists of two simple steps that are iteratively 

repeated as shown in Fig. 2. Firstly, a hypothesis stage where a small 

collection of inliers (n), i.e. data that fits the model, is randomly selected 

before a fitting model and the corresponding model parameters are 

computed. Secondly, an evaluation stage where the RANSAC checks for 

data points in the entire dataset that fits the estimated model parameters 

obtained from the first step. If any of the input points does not fit the 

model with error greater than distance threshold (d), it is considered as an 

outlier. 

22..11..11  HHyyppootthheessiiss  ssttaaggee  

In the hypothesis step, the RANSAC randomly selects a subset of data 

points, before the parameters of the model is estimated from the input 

points. If the given model is plane, Ax + By + Cz + D = 0, and M = [A, B, 

C, D]
T
 is the parameters to be estimated. Unlike common regression 

techniques such as least square method, the RANSAC is a resampling 

technique that generate candidate solutions using the smallest number of 

points. In other words, the RANSAC converts the estimation problem 

from the continuous domain to the discrete domain. 

In order to obtain a good plane, the RANSAC loops for number of 

iterations Nit, which can be obtained from the following equation: 

 
 Sq

p
=N





1log

1log
it  (1) 

Where p is the probability of finding a good plane from the input points, q 

is the probability that a point is an inlier, and S is the number of points in 

the sample. 

22..11..22  EEvvaalluuaattiioonn  ssttaaggee  

The RANSAC operates in a hypothesize-and-verify phases. After the 

hypothesis stage, the RANSAC evaluates the candidate hypotheses to find 

the most suitable one, which is supported by the largest number of inlier 

candidates. Input data is considered inliers if only they fall below a 

predefined distance threshold (t), given as: 
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 
222

111

C+B+A

D+Cz+By+Ax
=t  (2) 

Fortunately, the RANSAC does not have to extensively evaluate all the 

input data points, since two termination criteria can be used before that. 

On the one hand, the evaluation process may finish if the probability of 

finding a better model than the current best candidate falls below a 

predefined threshold. On the other hand, the termination could be 

achieved if the number of evaluated samples exceeds the number expected 

to select an uncontaminated sample. 

22..11..33  RRAANNSSAACC  pprroobblleemmss  

The RANSAC is widely applied for estimation of a model due to its 

simple implementation and robustness. However, The RANSAC 

suffers from some common problems that are:  

1. The RANSAC is a heavy computation algorithm and consumes large 

processing time.  

2. The RANSAC fails to produce reliable results in situations with two 

nearby crossing planes, such as steps, stairs, curbs, or ramps, where 

the detected planes may contain more inliers than the real models.  

3. The standard RANSAC does not find the same model in each iteration 

if it is applied to the same experiment. This is very important in cases 

where a measurement of other experiment related parameters is 

required. 

 

33..  TThhee  RRAANNSSAACC  eennhhaanncceemmeennttss  

The RANSAC enhancement methods can be summarized as shown in Fig. 

3. In the following subsections, some RANSAC’s descendants that treat 

such problems are illustrated. 

33..11  SSppeeeedd  EEnnhhaanncceemmeenntt  

The RANSAC’s processing time can be estimated from the 

following formula: 
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 EH T+TS=T  (3) 

Where, S is number of sampled data points, TH is time for the 

hypothesis generation, and TE is time for hypothesis evaluation for 

each input data point. 

 

Figure 3: Classification of enhanced RANSAC methods 

33..11..11  TThhee  RRaannddoommiizzeedd  RRAANNSSAACC  ((RR--  RRAANNSSAACC))  

Principles- It is possible to quit the evaluation stage if the hypothesis is far 

from the candidate plane, which leads to reducing the evaluation time 

(TE). In [15], Matas and Chum introduced a new randomized version of 

the RANSAC that uses this theory. The R-RANSAC (Randomized 

RANSAC) reduces the computing time of the evaluation step (TE) by 

adding a preliminary test (Td, d Test) before the hypothesis evaluation 

stage. 
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Hypotheses is partially evaluated using a subset of the input data points d 

from total N points (where d<<N). This test is passed if all randomly 

selected d points are consistent with the candidate model. If the value of d 

is 0, this means standard RANSAC. However, setting d to 1 is 

recommended as the optimal value.  

Discussion- Due to the fact that the most evaluated hypotheses are 

contaminated by outliers, a statistical test is performed on only a small 

amount of data to reject such models. Consequently, the number of 

verified data points is reduced (and thus the time according to equation 

(3)). The most important disadvantage of this method is the possibility of 

neglecting (bypassing) a good sample. 

33..11..22  TThhee  11--PPooiinntt  RRAANNSSAACC  

Principles- The standard RANSAC checks the consistency of data points 

against the global hypothesized model. The search for correspondences, or 

neighbor points, firstly starts with comparing local surface features to all 

input data points. However, applying these searching methods is very 

excessive and requires a lot of processing time. As a result, Civera et al. 

[16] introduced the 1-Point RANSAC to solve this problem by 

incorporating a priori probabilistic information into the hypothesis 

generation stage. The 1-point RANSAC combined the standard RANSAC 

and Extended Kalman Filter (EKF) that uses the available probabilistic 

knowledge before the hypothesis stage.  

Discussion- Differently from the standard RANSAC, the starting point is 

not only input data point, but also a probability distribution over the model 

parameters is required. By using this prior probability information, the 

sample size for the hypothesis generation can be reduced to a minimum of 

only 1 data point. Consequently, computational savings can be achieved 

due to the minimization of input point and hence a smaller number of 

iterations according to equation (1), without the loss of discriminative 

power and accuracy of the RANSAC. 

33..11..33  TThhee  VVooxxeell  RRAANNSSAACC    

Principles- In [17, 18], A preprocessing stage is proposed in order to 

reduce the amount of data points as much as possible while maintaining 
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the main features. The input cloud is firstly down sampled before the 

hypothesis generation step of the RANSAC. This process enhances the 

speed of the RANSAC and avoids problems regarding this massive 

number of points. A voxel grid filter is applied in this filtering process. 

A voxel grid is a group of small 3D cubes, or boxes, that have identical 

sizes. Voxel grid filter is first applied to the input data points. Then, all 

points in the same voxel, 3D box, are replaced with their centroid. The 

output cloud keeps the original geometrical information but with smaller 

number of points. 

Discussion- The size of each cube affects the minimization of data points, 

in other words when the box is larger, the output cloud is smaller and vice 

versa. However, finding an appropriate voxel grid size that makes balance 

between speed and filter quality is very challenging. 

33..11..44  HHaarrddwwaarree  aacccceelleerraatteedd  RRAANNSSAACC  

Principles- Many hardware accelerating approaches are proposed to 

enhance the computing speed of the RANSAC algorithm. By using 

parallel programing based on different techniques (OpenMP, POSIX 

Threads, and CUDA) in [19], execution speedup is achieved. In situations 

where no GPUs are available, using POSIX threads is a better option than 

using OpenMP. Although OpenMP is easier to program, POSIX threads 

give the programmer more direct control to the thread primitives.  

The use of Field Programmable Gate Array (FPGA) for RANSAC speed 

enhancement is introduced in [20-22]. Sharing the coefficient matrix in 

[20] not only reduces the hardware cost but also minimizes the processing 

time complexity. In [21], Tang et al. use double buffering mechanism for 

process pipelining, which implements two memory buffers for real-time 

operations. However, the highly parallel FPGA system in [22] excels in 

performance with a frame rate of 43 frame per second (fps). 

Discussion- Using special hardware enhances the speed of the RANSAC 

to 43 fps, but this requires some additional costs and development efforts. 

33..22  AAccccuurraaccyy  EEnnhhaanncceemmeenntt  

The standard RANSAC classifies points symmetrically, i.e. a point is 

whether consider an inlier or outlier. If the points fulfill the plane’s 

equation with a distance error less than threshold d, then it is considered 



Minufiya J. of Electronic Engineering Research (MJEER), Vol. 26, No. 2, July 2017. 
 

____________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

527 

an inlier, else an outlier. This process is iterated until the best candidate 

plane is found, which contains the maximum number of inliers. 

 

Figure 4: The perpendicular distance (d) between a point and a plane 

Figure 4 illustrates the signed perpendicular distance donated by (d) from 

a plane Ax + By + Cz + D = 0 and a point P (x1, y1, z1), can be calculated 

as following: 

222

111

C+B+A

D+Cz+By+Ax
=d       (4) 

Although the RANSAC is one of the most robust algorithm for regression 

problem and extracting individual planar parameters, its performance is 

unreliable in situations when a single plane crossing two nearby patches 

such as steps, curbs, or ramps. In this case, the RANSAC may segment a 

plane intersecting with multiple planes because of seeking the largest 

number of inliers. 

33..22..11  IInntteeggrraattiinngg  RRAANNSSAACC  aanndd  MMDDLL  

Principles- One way of eliminating such problems is by integrating it with 

Minimum Description Length (MDL) [23]. Firstly, the point cloud is 

divided into small Region Of Interests (ROIs) so that each block may 

include a maximum number of three planes. Then, the RANSAC is 

applied in each ROI to detect planes. Finally, the MDL principle is used to 

determine the number of planes in each ROI, which is a number from zero 

to three.   
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The principle of the MDL encoding technique can be used to present 

interpreting points in 3D space. For a given set of points, several 

hypotheses are assumed, such as outliers (O), 1 plane and outliers (1P+O), 

and 3 planes and outliers (3P+O). 

Let n0 points (xi, yi, zi) in a 3D point cloud, the coordinates given with a 

resolution of є and within range R. The description length for the n0 points 

can be calculated given by Eq. (5), [23]: 

))/(3.()|int(# 00  RlbnOspobits                         (5)  

Where lb(R/є) are the number of bits required to describe one coordinate. 

If we now assume n points to sit on a plane and the other nn=n 0 points 

to be outliers, we need 


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

 

       (6)  

Where the first term is the MDL for the n0 bits, the second term is the 

MDL for outliers, points not a part of the plane, and the third term 

represents the number of bits to describe the complexity of the plane. By 

assuming that n1, n2, n3 inliers to randomly lie on respective planes, fourth 

terms are presented by applying Gaussian distribution ),(~ Nx . 

Discussion- Integrating MDL with the RANSAC can avoid detect 

incorrect planes due to the complexity of 3D point clouds. The 3D data 

into small blocks, then a number of planes interpret each other and thus 

MDL is essential for deciding how many planes exists in each ROI. This 

approach enhances the RANSAC by not detecting the wrong plane in 3D 

complex scenes. 

33..22..22  TThhee  CCoonnnneecctteedd  CCoommppoonneenntt  RRAANNSSAACC  

Principles- Figure 5 (b) shows the result of applying the standard 

RANSAC to scene containing a curb. Rather than detecting one plane of 

the three possible surfaces, the RANSAC selected a planar surface 

crossing all of them. This problem arises from the fact that the RANSAC 

chooses the plane with maximum fitness (o), i.e., the plane with the 
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highest number of supporting data points (inliers). In order to improve the 

quality of measurements in such cases, Gallo et al. [24] presented dubbed 

Connected Component RANSAC (CC-RANSAC).  

 

Figure 5: (a): 3D point cloud representing a curb. (b) Incorrect planar fitting 

using the standard RANSAC. (c) Same detected plane but using the CC-

RANSAC [24]. 

The RANSAC makes an evaluation to the whole collection of inliers. 

However, the CC-RANSAC only evaluates the largest connected 

components of inliers. The CC-RANSAC argues that inlier points are 

spatially cohered and it introduces a new fitness measurement (o) as 

following: 

o = |IC(P)| (7) 

Where, IC is the largest surface with 8-connected component neighbors of 

data points. As a result of using IC for evaluating the fitness of the 

candidate planes, only inliers from the lower patch is selected. The 

measurement acquired by a 3D camera in front of a curb are shown in a 

Fig. 5 (a). Standard RANSAC Incorrectly segment red points in Fig. 5 (b) 

because of searching for largest number of inliers.  

Although there are two more planar patches visible in the scene, standard 

RANSAC segments the one shown in red in Fig. 5 (b) because it has the 

largest number of inlier data points. On the other hand, CC-RANSAC 

detects the points in one planar patch containing the largest number of 

points as shown in red in Fig. 5 (c). 
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Discussion-The CC-RANSAC algorithm solves the crossing-plane 

problem in simple scenes where planar surfaces are individual such as 

curbs. However, it may output inaccurate results when the input point 

cloud contains two or more planes at short distances close together such as 

stairs. 

33..22..33  TThhee  NNCCCC--RRAANNSSAACC  

Principles- The CC-RANSAC algorithm solves the crossing-plane 

problem in simple scenes where planar surfaces are individual such as 

curbs. However, it may output inaccurate results when the input point 

cloud contains two or more planes at short distances close together such as 

stairs. The Normal-coherence CC-RANSAC (NCC-RANSAC) approach 

by Qian and Ye in [25] solves this problem. 

The NCC-RANSAC contains two steps. Firstly, normal coherence is 

estimated from RANSAC algorithm’s inliers for removing small surfaces. 

The output from this stage is a number of discrete patches. Secondly, 

rather than finding the largest connected component like the CC-

RANSAC, it checks every candidate patch and performs a clustering 

process.  

Discussion- By using both distance and normal thresholds to evaluate the 

candidate planes, the output planes of the NCC-RANSAC method are not 

over-segmented and much more accurate than the CC-RANSAC and the 

standard RANSAC. However, applying those additional evaluation criteria 

requires some additional computing cycles and the overall time is very 

large. 
 

33..22..44  AAssyymmmmeettrriicc  kkeerrnneell  

Principles- Another approach is proposed by Choi et al. [26] by applying 

an asymmetric kernel to the RANSAC as a score function rather than 

using a rectangular and symmetric kernel. The geometric distance, in 

equation (4), is signed so that it is positive when a point is above the plane 

and negative when a point is below the plane. With a priori knowledge of 

the ground plane parameters, error between the given point and the ground 

truth plane is useful to identify whether this point is an inlier or outlier. If 

the point is so close to the ground plane, it is considered an inlier. In 

contrast the point is considered an outlier or from other objects if it is far 

from the ground plane. 
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Modeling the probabilistic likelihood of a point to be an inlier or outlier 

can be derived in equations (8), (9) [23]. Firstly, probability of error from 

an inlier can be modeled using the Gaussian distribution as follows: 









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2

2

2
exp

2

1
)1|(
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i
ii

f
lfp   (8)  

where fi and li are error and label of i-th point, and σ is standard deviation, 

that is the magnitude of inlier noise. Error from outlier can be modeled as 

uniform distribution as follows: 



 


otherwise

fhifh
lfp

i

ii
0

0/1
)0|(

maxmax
 (9)  

Where, hmax is the maximum allowed height for object above the ground 

plane. 

Discussion- The asymmetric kernel is a fast approximation of the 

probabilistic likelihood considering inliers and outliers in a 3D point cloud 

which enables the RANSAC to be more robust to outliers. Although the 

asymmetric kernel involves more computations, its computing speed is 

similar to the standard RANSAC because of using less number of 

iterations. 

33..33  TToowwaarrddss  OOppttiimmaalliittyy  

One of the main disadvantage with the standard RANSAC is that it is not 

repeatable [33] since it is based on random sampling. In addition, instead 

of finding the optimal set of inliers, the RANSAC terminates when it 

obtains a sufficient number of inliers. As a result, the RANSAC does not 

perform well when a large number of contaminations exist, i.e. the number 

of outliers is very large. Another worse problem is the termination criteria, 

since the RANSAC may continue testing the data points even most inliers 

are found according to the defined threshold. 

33..33..11  TThhee  OOppttiimmaall  RRaannddoommiizzeedd  RRAANNSSAACC  

Principles- The R-RANSAC mentioned in section 3.1.1, in which a two-

step evaluation procedure is applied. First, a statistical test is performed on 
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d random data points (d<<N) where N is the total data points. Then, Final 

evaluation on all N points is only performed if the initial test is passed. 

There is no upper bound on time with the R-RANSAC. Consequently, 

Chum and Matas described an optimal randomized RANSAC [27] based 

on Wald's theory of sequential decision making [34]. The hypothesis 

evaluation stage is assumed to be an optimization problem to decide 

whether the candidate model is “good” (Hg) or “bad” (Hb). Then, a “good” 

model is fitted to all data points.  

The Wald’s Sequential Probability Ratio Test (SPRT) is based on the 

likelihood ratio [27]: 

)|(

)|(

1
gr

br
j

r
j

Hxp

Hxp



  (10)  

Where, xr is equal to 1 if the rth data point fits the candidate model, and 0 

otherwise, p(1|Hg) represents the probability of any randomly chosen data 

point to be consistent with the “good” model, which is approximated by 

the fraction of inliers ε among the data points, and p(1|Hb) is the 

probability of a data point to fit a “bad” model, which is modeled as 

Bernoulli distribution with parameter δ [34]. 

For the R-RANSAC test to be optimal, the knowledge of two parameters, 

ε and δ is required. However, theses probabilities differ according to the 

data points and are assumed to be priori unknown and estimated during 

the sampling process. In addition, the decision threshold A is the only 

parameter of the SPRT which can be set to achieve optimal results with 

minimal average runtime to calculate the probabilities ε and δ using 

Wald’s theorems. 

Discussion- An Optimal R-RANSAC is introduced by combining adapted 

SPRT algorithm that remove the prior knowledge requirement of number 

of outliers. It has been proven to have performance close to the 

theoretically optimal with 2 to 10 times faster than the standard RANSAC 

and is up to four times faster than the R-RANSAC. 

33..33..22  TThhee  OOppttiimmaall  RRAANNSSAACC  ((OORRAANNSSAACC))  

Principles- Due to the random nature of the standard RANSAC, it is 

difficult to obtain the same result twice in each cycle. This is important in 

some applications when measuring other involved parameters such as the 

set of inliers. For instance, it is very important that the result does not vary 
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while running medical applications many times in the same circumstances. 

Therefore, Hast et al. presented the ORANSAC to solve such problems 

and to make the RANSAC repeatable, i.e. gives the same result each run. 

Additionally, the ORANSAC provides a stopping criterion that prevents 

performing more data testing if the best model, containing the most inliers, 

is already found.  

The ORANSAC resamples the input data points to a number of sets then 

iteratively estimate the model and the score, number of inliers, is stored in 

each cycle. If a large number of inliers is found in one set out from the 

resampling process, this is considered as a seed that begins growing by re-

estimation and scoring steps. This loop will not stop until no further 

changes arises in this large set, which means a probable optimal solution is 

found. Finally, pruning stage with lower tolerance is done to keep only the 

most accurate inliers. 

Discussion- Unfortunately, the ORANSAC might not return the same 

consensus twice if there is no optimal solution. This is the case when the 

set of inliers is very small where the probability of finding an optimal 

model is very rare. Another possible cause is that two discrete optimal 

solutions exits where Sa has one inlier more than Sb where the optimal 

result may fluctuate between these two solutions. 

  

44..  CCOOMMPPAARRAATTIIVVEE  SSTTUUDDYY  

Table 1 illustrates a brief comparison between the enhancements of 

RANSAC with respect to speed, accuracy and optimality. When the speed 

is very fast, it is in the range 30 fps or more, fast means 2 or more times 

faster than the standard RANSAC, slow indicates that the speed is similar 

to the standard RANSAC, whereas very slow means larger than or equal 

to 2 times slower than the standard RANSAC. 

Regarding accuracy, it is considered low when the results is worse than 

the standard RANSAC, medium means a little enhancement of accuracy, 

additionally high is given to methods where a significant enhancement to 

accuracy is achieved. Finally, optimality enhances is indicated by using 

yes or no. 
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Table 1. Comparison of RANSAC enhancements [15]–[28] 

 

 

55..  CCoonncclluussiioonn  

This survey study covers the most vital problems of using the standard 

RANSAC and their presented solutions over the past years. One major 

problem of using the standard RANSAC is the processing speed since it is 

a heavy computation algorithm. Researchers proposed modifications to the 

standard RANSAC to minimize its intensive computations. Another 

crucial problem has been solved, is that despite being one of the most 

robust algorithms for detecting separate planar surfaces, it returns 

improper results when two or more crossing patches are found in the 

scene. Finally, the standard RANSAC quits evaluation stage when a 

sufficient number of relevant points are found even this is not the optimal 

solution. This makes the standard RANSAC not repeatable because of its 

random nature, some approaches have solved the optimality problem in 

certain circumstances 
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للكشف عن المستويات في  توافق العينات العشوائيةلتحسينات مسح 

 الصور ثلاثية الأبعاد

 
 المستوية هي السمات المميزة للبيئة من صنع الإنسان، والتي تستخدم فيي الأسطح

وإعياةة  الوجوه، وتجزئية الحرةية، العديد من تطبيقات الرؤية بالحاسب مثل تحديد

 اء المشيييثد ي ييييي الأبعييياة، وبنييياء الخيييرائ  ي ييييية الأبعييياة، وتعيييد هييي ه التقنييييةبنييي

(RANSAC توافق العينات العشوائية أو)  الأةثر استخداما للكشف عين الأسيطح

معيال  نميو م معيين مين  المستوية، وهو استخدام أسلوب التكرار العشيوائي لتقيدير

. (الصياخبة)البياناا  الدخيلة  لقي نقاط البيانات المدخلة التي تحتوي مجموعة من ا

وللأسف، فإن توافق العينات العشيوائية القياسيية يعياني مين بعيش المشياةل، علي  

أخير  هيي عيدم  سبيل المثيا  أنثيا مكل ية للةايية مين قييا وعيل المعالجية. مشيكلة

الحيالات التيي  توافق العينات العشوائية إل  نتائج ةعيقة الانتيام فيي قصو  طريقة

ويرجع  لك إل  طريقة الترةيب . ا وجوة مستو  عاطع لمستويين أخرينيكون فيث

الأساسية المعتمدة عل  المسافة، والبيانات الناتجة تحتوي نقاط من المستويين معيا 

وأخييرا، فيإن توافيق العينيات العشيوائية . بدلا من الحصو  عل  مستو  واقد فق 

التيي تنتميي للمسيتوي هيو أعيل  النقياط سيء للةاية عندما يكيون عيدة القياسية يكون

العديد من الباقثين عل  مد  السنوات الماضية بتشكيل الكثيير  ل لك عام. ٪50من 

التحسينات لتوافق العينات العشوائية لحل مثل هي ه المشياةل. فيي هي ه الدراسية  من

ةميا تي  عميل  .ت  عرض معظ  ه ه التقنيات المحسنة، وفقيا للمشيكلة التيي تي  قلثيا

 .لكل من الطرق الم ةورة( السرعة، الدعة، الكمالية)دف إل  تحديد القي  مقارنة تث
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