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ABSTRACT The concept of Acoustic Source Identification (ASI), which refers to the process of identifying

noise sources has attracted increasing attention in recent years. The ASI technology can be used for

surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence,

manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the

core technologies for noise source identification. Manual identification of acoustic signatures, however,

has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence

(AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper,

we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the

strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the

literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications,

environment/event source recognition, healthcare, and other fields. We also highlight relevant research

directions.

INDEX TERMS Acoustic source identification, feature extraction, machine learning, deep learning, sound

classification.

I. INTRODUCTION

Acoustic data carry valuable insights for scientific and

engineering research communities across different sectors

that include human speech recognition [1], ocean exploration

and localization [2], animal and birds localization [3] and

underwater geographical imaging [4]. Acoustic data analysis

is a complex process that encounters a number of chal-

lenges, including inaccurate data, inadequate measurements,

noise/reverberation, and large amounts of data. For instance,

multiple arrivals of an acoustic signal can result in poor

source localization. Utterances and background noises in

sound recordings make it difficult for machines to interpret

an acoustic signal [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

In recent years, advances and developments in acoustic

processing have been broadened through the application

of AI principles. With the progress of AI, the capabilities

of pattern recognition have tremendously increased in

image processing, computer vision applications and speech

processing. AI in acoustics has significantly contributed

and progressed in the past few years. Advanced acoustic

processing techniques can consolidate the strengths of AI

methods to achieve better performance when it comes to

recognition, identification and localization than conventional

audio processing methods.

AI-based (ASI) can be tailored to meet the needs of

a diverse range of applications. For example, AI-based

ASI plays a vital role in the industrial sector through

continuous condition monitoring [7]. It can be used to detect

and identify faults in different components of machines,

thereby improving their safety, efficiency and reliability.
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The undersea domain is becoming more contested day

by day; therefore, demanding constant surveillance and

monitoring operations. The acoustic signature radiated by

marine vessels has unique information that can be utilized to

identify, detect and recognize a marine vessel. In addition,

AI-based ASI can be employed in target detection and

recognition that aids the navy in the crucial investigation

of both deep and shallow underwater environments [8]. The

surveillance of human activities in modern environments is

predominately carried out in urbanized areas for the safety

and security of the general public. Environmental sound

recognition (ESR) systems are incorporating AI-based ASI

to identify sound sources that exist in our everyday envi-

ronment [9]. Additionally, ASI can also be tailored to meet

the requirements of a wide range of healthcare applications,

such as cardiac auscultation [10], fall detection [11] and

hearing-impaired wearable devices [12]. This technology is

not only limited to the above-mentioned applications, but

is also useful for music genre classification [13], animal

and bird species identification [14], [15], robotics [16],

drone detection [17], and insect identification [18] as

well.

Owing to the significance of ASI recently, a number

of research works have been carried out and published in

the literature in different fields of applications. We have

summarized some of the latest review works in ASI, and they

are outlined in Table 1.

The authors in [19] surveyed the environmental sound

identification (ESI) and sound event recognition for surveil-

lance applications in which various domain features have

been compared that are suitable for sound events and

scene identification systems. Moreover, AI model-based

approaches have also been compared by using different avail-

able data sets for ESI and event detection. Lei et al. in [20]

have presented a detailed review on intelligent fault diagnosis

using the sound ofmachines in industrial settings andAI tech-

niques. In addition, a detailed road map for future researchers

is discussed to enhance the quality and outcome of AI

models for intelligent fault diagnosis. AlShorman et al. [25]

also published a study on fault diagnosis in components

of motors using radiated acoustic patterns and AI methods.

The authors in [21] surveyed different machine learning

(ML) techniques used in the past few years and elucidated

a deep learning (DL) framework for underwater target

recognition. The information from underwater images is used

to classify targets using DL. Similarly, Chen et al. [23]

also reviewed the underwater target recognition applica-

tion based on DL methods and discussed problems in

feature extraction (FE) and captured underwater image

quality.

In addition to this, the authors in [22] reviewed systemat-

ically and mostly used DL methods for the classification of

heart sounds for cardiac auscultation. In this paper, two DL

methods, convolutional neural network (CNN) and recurrent

neural network (RNN) is emphasized over the course of

the past five years. Nunes [24] published a detailed review

on anomaly detection in the object based on its acoustic

signature. In their review, ML techniques from 2010 to

2020 are studied and analyzed for anomalous detection.

Most recently, Bansal and Garg [26] focused on ESI and

classification using various traditional ML classifiers and

deep neural networks(DNNs). They have also explicated

various pre-processing and FE schemes for ESI. Lastly, the

authors in [27] introduced and reviewed in their study the

integration of internet of things (IoT) and ML approaches for

smart environments in which acoustic sensing using IoT and

ML algorithms has been outlined.

To the best of our knowledge, there is no other survey

published so far that presents such a detailed overview of

AI-based ASI. We have compiled a detailed overview of

AI-based ASI along with its various applications to provide

future researchers with a holistic understanding of this

concept. Our contribution through this survey is organized as

follows:
• We surveyed and compared recent reviews and surveys

on AI-based ASI for various applications including,

surveillance, healthcare, smart cities, underwater detec-

tion and machinery fault detection.

• We present a detailed overview of AI-based ASI

process. We discuss data acquisition and traditional

audio processing methodologies along with famous

databases used in various fields by researchers. More-

over, we compiled and provide a detailed discussion

on the significance and methodology of traditional

audio processing techniques, FE methods, ML and DL

algorithms that have been mostly used in the literature

to aid readers in forming an effective model for a given

problem.

• We provide a detailed overview of AI-based ASI

in diagnosing faults in industrial machinery, under-

water applications, event source detection (ESD),

and ESI, healthcare, music-genre classification and

wildlife monitoring applications. In our review,

we provide a thorough comparison and analysis

based on previous works’ limitations and performance

metrics.

• We discuss the possible future research directions in the

light of this survey and some generalized methodologi-

cal recommendations for future researchers to extend the

pathways in this area and overcome problems in ASI-

based ASI.

We organized the remaining paper as follows: In Sec-

tion II, the methodology of data acquisition and audio

data pre-processing has been discussed. We highlight some

famous databases that have contributed to AI-based ASI.

Next, we compile various popularly used FE techniques,

AI algorithms and evaluation metrics. In Section III,

we survey ASI in industrial fault detection, underwater

applications, ESI, healthcare, music-genre classification,

wildlife monitoring and forensics. Future research directions

are discussed in Section IV followed by the conclusion of this

paper in Section V.
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TABLE 1. Brief summary of relevant review works.
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FIGURE 1. Acoustic source identification process.

II. ACOUSTIC SOURCE IDENTIFICATION OVERVIEW

AI-based acoustic source identification is a systematic

process of recognizing an unknown source using the sound

that it generates. Further, it includes five basic stages

that comprise, data acquisition, data pre-processing, FE,

feature selection, and identification or classification using

AI algorithms. Generally, the model performs better when

all of these steps are followed. These stages are illustrated

in Figure 1. In this section, we have explained in detail all

the steps of ASI and highlighted methods that have been

previously used in literature frequently.

A. DATA ACQUISITION

In this subsection, we detail the methodology of data

acquisition for the ASI process. Data acquisition can be

defined as the process of collecting and gathering relevant

information to drive the aims and objectives of an AI-based

problem. Data collection is the fundamental step of the

AI-ASI process. The methodology of data collection can

impact the performance of an AI algorithm; therefore, it can

alter the decision of a given problem.

There are two ways to generate data for further processing;

synthetic data and real data. Supervised learning algorithms

are limited by the scarcity of labeled data. There can be

cases where a sufficient amount of data is unobtainable to

characterize a particular problem, for example, underwater

environment, hyper-diverse rain forests, etc. Therefore,

an investigator can simulate a large amount of data to

achieve an efficient recognition system. To generate realistic

data, the investigator has to take into account natural

noise and reverberation must be added to the generated

sound.To limit the massive use of simulated data, data

augmentation techniques [49] is a promising solution. Data

augmentation generates additional training examples without

more recordings, often leading to improved performance.

Real acoustic data collection can be conducted via micro-

phones and hydrophones. After collecting data from an

experimental procedure, raw data needs to be initially labeled

to avoid mixing. Real data can also be aggregated by using

data augmentation techniques if the gathered samples are

insufficient.

InAI-basedASI, public evaluation and benchmark datasets

help the research community to investigate the performance

of various proposed systems. We have categorized some

of the popular data sets with respect to their applications.

In addition, each data set’s properties and web links are

mentioned in Table 2.

B. DATA PRE-PROCESSING

Raw acoustic data is mostly not suitable for FE and needs to

be preprocessed. Raw data in its original state is not suitable

for the AI algorithm as it can compromise the performance

of the model. There are various reasons that can affect the

suitability of data for learning algorithms such as excess data,

insufficient data and tampered data. Some of the data might

be corrupted in case of loads of data. In contrast, insufficient

data lacks the necessary attributes of the dataset. In both

cases, the predictive ability of the model gets weakened

resulting in poor accuracy. For example, the decision-tree

algorithm splits the data set into training and testing sets and

missing information may lead to an inaccurate decision [50].

Moreover, there are other important data pre-processing steps

required to ensure the data is prepared for the next stagewhich

are as follows:

1) DATA AUGMENTATION AND INTEGRATION

Data integration is defined as combining various heteroge-

neous data into unified data. This involves two techniques

known as tight coupling and loose coupling [51]. Contrast-

ingly, data augmentation is the technique of adding data by

synthesizing new data from available data. Data augmen-

tation can be carried out for time and frequency domain

features. Recently, SpecAugment has become popular in

audio processing as an effective data augmentation technique,

especially for spectrograms [52].

2) DATA CLEANING

Data cleaning is done to enhance the quality of the signal. The

process involves the identification of inaccurate or irrelevant

data and the elimination/replacement of such unwanted data

in a data set. Errors can occur during naming, missing entries,

or human negligence while gathering. Denoising of data is

also a part of the data cleaning process. Noisy components

can be removed from audio samples by filtering [53]. Noise

problems can also be countered by signal enhancement
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TABLE 2. Datasets used for ASI in various applications.

techniques [54]. Similarly, silence can be easily detected in

audio samples and removed using amplitude-based silence

detection algorithms [55].

3) DATA TRANSFORMATION

Data transformation is required when acoustic data attributes

need to be scaled at the same level. Multiple features present

in a data set, that might be mapped to different scales needs

to be scaled at standard value. Therefore, normalization can

be used to normalize all features to the same scale such as

min-max normalization, z-score normalization and decimal

scaling.

4) DATA LABELING

Pre-processing of the dataset also involves annota-

tion/labeling of data after denoising and transformation.

Usually, this is carried out by expert acousticians who

are familiar with the targetted sounds and able to track

sounds in an audio file. This involves the identification of

targetted sound in an audio file and assigning it with a label

also known as class. These labels are used to train an AI

algorithm. Annotation can also be done by visually inspecting

spectrograms of audio files.

C. FEATURE EXTRACTION AND SELECTION

AI models require discriminatory and distinct features to

learn information about any particular sound. Therefore, FE is

defined as the process of extracting meaningful information

from raw data by removing most of the redundant data.

The extent of training decides the performance of an AI

algorithm. The effectiveness of these features results in

accurate predictions from an algorithm. Therefore, FE and

selection is the method of finding the features that possess

most of the information of a particular data set. In this
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subsection, we discuss the popularly used audio FE methods

as illustrated in Figure 2.

1) TIME DOMAIN FEATURES
• Zero Crossing Rate (ZCR) is defined as the rate of

change of an audio signal from positive to negative and

negative to positive crossing zero level in the middle.

In simple terms, it is the count of signals crossing zero

level in one second period of time. The ZCR for k th

frame is represented mathematically as:

Z (k) =
1

2N

M
∑

n=1

|sgn[xk (n)] − sgn[xk (n− 1)] (1)

where M is the length of the frame and sgn(.) is the sign

function that is

sgn[xk (M )] =

{

1 xk (n) ≥ 0

0 xk (n) < 0
(2)

ZCR estimates fundamental frequency and is proven

efficient for voice-based systems [56]. ZCR conveys

important information about the voiced and silent frames

of a voice signal. Due to its ability to give discriminating

frequency information, this feature can be designed as a

classifier [57].

• ADSR envelop detection stands for Attach, Delay,

Sustain and Release. This FE method is mostly used

in music-genre classification and is not applicable to

real-time sounds due to the absence of decay envelop.

Additionally, it does not work with environmental

sounds since they lack sustain temporal envelop. There-

fore, this kind of envelope is known as AR envelope

which is mostly used in timbre analysis in musical

instruments [58].

• Log attack time: As its name implies, this is the

logarithmic (base 10) of the time interval between the

start time until it has reached to its stable stage. If T0 is

the starting time of the signal and T1 is the maximum

time then the range can be found by the length of the

signal as follows:

Range = log10
1

samplingrate
(3)

LAT = log10(T1 − T0) (4)

Among its applications are the detection of musical

onsets [59] and the detection of environmental and event

sounds [60].

• Energy-based: Energy-based FE is applied on non-

stationary audio signals. This is due to the fact

that the energy of non-stationary signals varies at

different segments; therefore, cannot be defined by

a single energy value. Windowing is usually used to

segment non-stationary signals into quasi-stationary

frames. Short-time energy is calculated as the average

energy of those frames [61]. Short-time energy is a

promising detector of energy contents of un-voiced

FIGURE 2. Acoustic feature extraction methods.

and voice signals [62]. As compared to voiced frames,

it is relatively low in unvoiced frames. A number

of applications can be found in audio analysis,

including environmental sound and event detec-

tion [63], music systems [59], and acoustic monitoring

systems [9].

• Auto-correlation is the extent of similarity of a signal

with its delayed version. This measure is represented

by +1 and −1 values. The maximum relation is given

by +1, the minimum relation is given by −1, and the

absence of any relation is represented by 0. For example,

the correlation at some value of lag is less than 1 but

greater than 0 depending on the extent of similarity [64].

Therefore, the correlation at zero lag will always be

1 since the signal is repeated undelayed. Music analysts

use auto-correlation as a method of analyzing beats,

tempo, and pitch.
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2) FREQUENCY DOMAIN FEATURES

• Peak frequency: Peak frequency conveys information

about the most dominant frequency and the fundamental

frequency of the signal. This is defined as the frequency

of maximum power. In the case of music and speech

classification, peak frequency information is used since

vocal sounds have pure tones (sine wave). Peak fre-

quency provides the best estimate of the pitch in this

case.

• MSAF-Multiexpanded stands for the method of selec-

tion of amplitudes of frequency multi-expanded filter.

These features are mostly used in fault diagnosis

in electrical drilling motors [65] and commutator

motors [66]. These acoustic features are handcrafted

and generated by computing the difference between Fast

Fourier Transform (FFT) spectra of different classes.

The absolute value of differences forms a feature vector

that is used to construct classes.

• SMOFS-Multicrafted is shortened method of frequency

selection which is the same as MSAF-multi expanded

and is being applied in the industrial sector. This is

also used to classify faults in motors [65]. The only

difference between SMOFS-multi crafted and MSAF-

multi expanded FE method is the selection of frequency

components after FFTs computation.

• Short-time Fourier transform (STFT) is the time-

frequency transform of a signal represented as

time-frequency distribution (TFD). In the time-

frequency analysis of an audio signal, time is on one

axis and frequency is on another axis. Changes in the

amplitude of the signal over time can be observed along

with the magnitude of frequency content in the signal.

With the use of STFT, a time-frequency analysis can be

performed on audio signals with abrupt discontinuities

and patterns, which is a promising method for non-

stationary signals. There are different types of TFD

techniques depending on the requirement such as

linear [67], quadratic [68], positive [69] and matching

pursuit TFDs [70]. TFDs are used in audio processing

in the detection of industrial gear faults [71], seismic

data processing [72] and environmental sound source

recognition [67].

• Chroma and tonality based: Chroma-based features

represent an audio signal for example music audio in

the form of 12 chroma segments mapped from the

spectrum. Logarithmic STFT is used to compute these

bin/segments. This representation of mapping is called

chromagram. As the statistics from chroma energy

distribution also have information about the audio,

it is an important method for obtaining chroma-based

features.

Tonality-based features depend on the fundamental

frequency of the harmonic audio signal. Tonality-

based FE is only applicable to stationary periodic

audio signals. The fundamental frequency is the lowest

frequency of a periodic signal. For example, the pitch

of music audio gives an estimate of the fundamental

frequency. Tonal features find their applications in

music onset detection [59], environmental sound source

detection [73], and audio retrieval systems [74].

• Long-term Average Spectrum (LTAS): LTAS is the FFT

generated unusual spectral information from an audio

signal. Due to its ability to capture the spectrum of

both glottal source and vocal tract, it is widely used in

pathological speech [75]. LTAS acquires spectral infor-

mation from every octave of a filtered speech signal.

The spectral information comprises certain parameters

which are combined to form a 99-dimensional feature

vector. These parameters are Root mean square(RMS)

values, normalized mean and standard deviation (SD) of

segment RMS, segment SD normalized by full-band and

band RMS, skewness, kurtosis, range of segment RMS

and variation in RMS energy in ensuing segments.

• Envelop Modulation Spectrum (EMS): This FE method

uses amplitude modulated audio signal. EMS is a

representation of the energy distribution in amplitude

variations across different frequencies. In the first step,

a Butterworth filter of 8th order is used to generate octave

bins centered at certain frequencies from the audio

signal. Following this, the Hilbert transform is used to

extract the envelope of the original signal and the filtered

octave bin. Then power spectrum is estimated by taking

Discrete Fourier Transform (DFT) of the envelope.

A 60-dimensional feature vector is then constructed

containing 6 features derived from the power spectrum,

including peak frequency, peak amplitude, spectrum

energy (0-4Hz and 4-10Hz), and energy ratio. EMS

features can be utilized to solve classification problems

in pathological and control speech [76], [77].

• Spectrum-shape based: In spectrum-based features,

a spectral centroid is commonly used to describe the

position of a spectrum’s center of mass. Normalized

amplitude is computed by the distribution of frequencies

and probabilities across the spectrum. The spectral

centroid is a brightness parameter that describes the

brightness of an acoustic signal. Additionally, this also

conveys information about musical timbre [78] which

is why it is employed in music-mood classification [79]

scenarios.

The spectral center is another type of spectrum-based

feature that relies on median frequency of the signal

spectrum. Due to its energy balancing attribute, this

feature is used in rhythm tracking in the music field [80].

The spectral roll-off feature is defined as a frequency

under which 95 percent of the energy remains. Audio

surveillance systems [9], music-genre classification [47]

and speech-music [61] classification use this feature for

discrimination. There are other spectrum-based features

that have different characteristics of the spectrum. Spec-

tral spread, for example, categorizes sounds according
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to their spectral bandwidth, while spectral skewness and

spectral kurtosis indicate the symmetry and flatness of

the spectrum, respectively.

• Auto regression-based features commonly include linear

prediction coding coefficients (LPCCs) synthesized

using linear prediction analysis of a signal. In this way,

it eliminates the problem of redundancy by estimating

new values based on the previous coefficients. The

linear prediction model generates a compressed spectral

envelope of a digital speech; therefore, it is commonly

used in audio segmentation and retrieval applications.

Additionally, there is another modified version of

LPCCs which is known as Code Excited Linear

Prediction (CELP) that reassembles the human vocal

tract using a linear prediction model. In linear prediction

models, excitation signals are fed into adaptive or fixed

code-book entries. Afterwards, the model performs the

search in the perceptually weighted domain and closed

iterations. Due to its promising ability to code speech,

this delivers better quality than low bit-rate algorithms.

Therefore, they are used in ESI applications [81].

3) CEPSTRAL DOMAIN FEATURES

Cepstrum represents the cepstral domain that is generated

by taking the inverse Fourier transform of log spectrum

of a waveform. Cepstrum is categorized into three types

depending on different audio applications. In speech process-

ing, power cepstrum features are used, while real cepstrum

features are used for pitch detection [82]. Analyzing cepstrum

features is called cepstrum analysis or quefrency analysis.

Cepstral features have a number of benefits such as source-

filter separation, orthogonality and conciseness. These

attributes make them suitable for training ML algorithms.

In this subsection, we discuss various types of cepstrum

features and their potential applications.
• Mel spectrogram: Mel spectrograms are widely used

features for DL algorithms. They convey useful infor-

mation about an acoustic signal such as loudness

or intensity over time at different frequencies. They

are based on the Mel scale which is the logarithmic

transformation of a signal’s frequency. The behavior of

mel scale reassembles to human’s perception of sound

at different frequencies. The relationship between mel

scale and frequency is shown mathematically as:

m = 2595.log(1 +
f

700
) (5)

If a signal is denoted by x(n) and ka is the index of

mel scale filter, then Log Mel spectrogram is denoted

by Sa(na, ka) which can be computed by Figure 3.

Mel spectrograms have been used in a variety of

applications such as speech-emotion recognition [83],

healthcare [84], underwater target recognition [85],

industrial fault diagnosis [86] and many others.

• Mel Frequency Cepstral Coefficients (MFCCs) are

mostly used cepstrum features for audio processing

FIGURE 3. Computational process of log-Mel spectrogram [87].

due to their ability to resemble the human auditory

system. An audio frame is pre-emphasized and hamming

windowed. Subsequently, the time domain signal is

converted into frequency (N-point) by using DFT. If s(n)

is an audio signal then the energy spectrum in the

frequency domain can be represented by the below

equation.

|S(k)|2 = |
N

∑

n=1

s(n).e
(−j2πnk)

N |2 1 ≤ k ≤ N (6)

Then the filter banks are imposed on the frequency

spectrum S(k). Discrete Fourier Transform is taken

again on filter bank energies and MFCCs are obtained

that can be written as

cm =

√

√

√

√

√

2

Q

Q−1
∑

p=0

log[e(p+ 1)].cos[m.(
2p− 1

2
.
π

Q
)] (7)

MFCCs are prominently used in speech and speaker

recognition systems [88], [89], vowel detection [90],

music-genre classification and audio similarity analy-

sis [91].

• Linear Prediction Cepstral Coefficients (LPCCs) are

generated when LPCs are transformed to a cepstral

domain. LPCCs are less sensitive to numerical precision

as compared to LPCs. It is very easy to convert LPCs to

the cepstral domain. LPCCs carry lots of significance in
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noise elimination [92], music-genre classification [93]

and speech recognition systems [94].

• Perceptual linear prediction (PLP) cepstral coefficient

is another form derived from Linear prediction coef-

ficient. The PLP coefficients represent critical band

spectral resolution, equal-loudness curve and intensity

loudness power law [95]. To generate PLP coefficients,

perceptual processing is performed; afterwards, auto-

regressive modeling is done before converting those

coefficients into cepstral coefficients. PLP coefficients

are useful in animal sounds classification [96], emotion

identification [97] and speech recognition systems [98].

• Greenwood function cepstral coefficients (GFCCs) use

MEL features and are termed as a generalized form of

MFCCs and deliver fine vocal representations of animals

and birds. This is why, GFC features are primarily

founded in terrestrial mammals. GFCCs are derived

from the greenwood equation that closely maps the

cochlear-frequency position for all terrestrial animals

and birds species. Their primary applications include

animal and bird sound identification and classifica-

tion [99].

• Gammatone cepstral coefficients (GTCCs) is one of

the most noise-robust features in automatic speech

recognition systems. GTCCs are extracted in a similar

way as MFCCs and are based on gammatone filter

banks. These filter banks generate output which is the

frequency-time domain representation of an acoustic

signal. GTCCs can be derived to more features by taking

first and second-order derivatives. They are employed in

environmental sound recognition and automatic speech

recognition systems (ASR) [99].

4) IMAGE BASED FEATURES

An image of an object contains patterns and points that

help in the identification of that particular image. AI-based

algorithms distinguish those objects with the help of those

patterns. DL algorithms mostly use image-based features as

inputs for recognition, identification and classification. In this

subsection, we have discussed popularly used image-based

features.
• Local Binary patterns (LBPs): In audio processing,

local binary patterns are called visual descriptors and

can be extracted from the spectrograms of audio

signals. These patterns possess information on grayscale

contrast and local spatial descriptors. The feature vectors

extracted from the spectrogram are used by ML and

DL algorithms for textural analysis. LBPs are powerful

features used in computer vision applications. They

have been proven useful in audio scene detection [100],

psychological diseases analysis from speech [101] and

emotion detection applications [102].

• Local Ternary patterns (LTPs): Local ternary pattern is

an extended version of LBPs. Similar to LBPs, they

are also extracted from spectrograms. The difference

lies in the measurement scales of pixels. LBPs are

scaled in binary pattern (0 and 1) only whereas, LTPs

are scaled into three values that are −1,0 and 1.

LTPs carry significance in audio scene detection and

classification [103] and healthcare analysis [104].

• Histogram of gradients (HOG) descriptor: Histogram

of gradients (HOG) is another feature descriptor that

conveys information about the structure and shape of

an object. These descriptor measures the magnitude

and angle of the gradient and generates histograms.

Similar to other image-based features discussed above,

these features also extract information in the frequency-

time domain. These features have been used in emotion

detection [102], audio scene classification [105] and

snore sound classification [106].

• Scale-invariant feature transform (SIFT) descriptor:

SIFT is an image-based FE method used to generate

local features for small and large-size objects. Their

processing is efficient and close to real-time. Another

benefit of SIFT features is its extensibility to a wide

range of other types of features. SIFT features are used

in computer vision applications, emotion detection [102]

and audio/video concept classification [107].

5) DISCRETE WAVELET FEATURES

An audio signal can be converted into a time-frequency

representation using a wavelet transform. This is merely a

product of the audio signal with a wavelet. Wavelet transform

works in twoways: continuous and discrete. DiscreteWavelet

transform (DWT) is more efficient due to the frequency filter

bank and can extract information from non-stationary signals

such as audio signals. DWT delivers uniformity in time-

frequency resolution. The coefficients generated by DWT

are wavelet features and can also be extracted from wavelet

packet decomposition. Discrete wavelet features are widely

used in audio analysis [108], music classification [109],

motor fault detection [110] and emotion recognition [111].

6) OTHER SPECIAL FEATURES

Researchers have combined a number of approaches to

improve the extraction of discriminatory features and iden-

tification accuracy. The combination of DWT and MFCCs

is usually done by concatenating both MFCCs and DWT

features. A combination of DWT and MFCC method

performs relatively better in noisy scenarios than either

technique alone. For example, Authors in [112] and [113]

used the hybrid method ofMFCC and DWT in speaker recog-

nition and speaker verification and achieved higher accu-

racy in different noisy cases. Similarly, Hidayat et al. [114]

implemented the same combinational approach in the

text-dependent speaker recognition system and achieved

96.67% overall recognition accuracy. Researchers have also

combined MFCCs with GFCCs in various applications in

order to achieve greater efficiency. In [115], authors have

used the fusion of MFCCs, GFCCs and mel-spectrograms

to classify heart conditions based on heart sounds. On the
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PhysioNet2016 set, accuracy was achieved at 96%, which

is higher than the accuracy achieved using MFCCs alone.

Moreover, Al-Qaderi et al. [116] developed a two-stage

speaker identification system using the fusion of MFCCs and

GFCCs and various classification approaches and analyzed

them under different environment noises. The fusion of FE

techniques and classifier is evaluated vs SNR. The proposed

fusion method demonstrated better recognition rates as

compared to base classifiers and FE methods.

There are various vector-based FE methods that are widely

used by researchers withML and DL algorithms. Initially, the

i-vector approach is employed in speaker recognition which

is constructed by a feature extractor or frontend implemented

using Gaussian mixture models (GMM) and universal

background models (UBM) and backend is implemented

with a probabilistic linear discriminant analysis (PLDA)

classifier [117]. After the early success of i-vector-based

systems, a number of hybrid methods combined i-vector

and DL architectures [118], [119]. Subsequently, researchers

have implemented speaker embedding systems based on DL,

d-vectors [120], x-vectors [121], and t-vectors [122] after

the success of i-vectors. In order to train deep d-vectors,

frame-level speech information is used. The deep-vector

architecture includes 300ms speech frames that contain

40 filterbanks. In addition, there are four dense layers (or fully

connected layers) in the network, each containing 256 nodes.

Contrastingly, the x-vector algorithm produces embedded

speaker data based on variable-length speech input [121].

X-vector systems achieve a lower equal error rate (EER)

than i-vector systems and d-vector systems. Inspired by

the performance of FaceNet [123], various domains have

implemented embeddings specific to facial images. The

t-vector system also known as triplet network, is trained on

a shared DNN triplet network and the triplet loss function is

normally applied. T-vector systems do not perform better than

x-vector systems, but these systems usually compete with one

another [124].

7) PERFORMANCE OF ACOUSTIC FEATURE EXTRACTION

TECHNIQUES

Traditional ML algorithms use almost all aforementioned

features from time, frequency, and cepstral domains to solve

various problems. Features need to be handpicked based on

the performance of each model. DL algorithms work on

unstructured audio representations. Sound features, such as

spectrograms and MFCCs, are capable to extract patterns on

their own. Furthermore, they are supported by a vast amount

of data and computing power [125]. Therefore, widely used

feature representations by DL algorithms that can be directly

fed into neural network architectures are spectrograms,

mel-spectrograms and Mel-Frequency Cepstral Coefficients

(MFCCs).

In order to solve a specific problem, researchers have

used a variety of features. The best ones were selected

by their performance and evaluation metrics. Researchers

in [126] have compared the performance of MFCC, PLP, and

LPC techniques for speaker recognition. Among these, PLP

has performed better at low SNR values thus it is proven

as a robust technique in the presence of noise. In [127],

it has been validated that MFCCs are good at computing the

distance between sounds. Moreover, the performance of a

FE technique also depends on the nature of the sound. For

example, speech andmusic sound share similarities in phones

and notes, and harmonic structures in spectra. Unlike speech

and music, environmental sounds have obscure periodicities

and an indefinite dictionary of sounds which is why they

are complex. Therefore, FE techniques that mimic human

perception of sounds such as LPCCS [98], MFCCs [91], and

GTCCs [99] are mainly used in speaker and music systems.

Researchers have proven in one study [128] that the right

combination of time and frequency-based techniques can out-

perform well-known techniques. In their paper, Robert et al.

compared the performance of the combined approach of

line spectral frequencies (LSF), ZCR and spectral ux (SFX)

with MFCCs in a standard audio recognition system.

F-scores indicated that the proposed approach achieved

97.5% and MFCC 78.9%. The Chromagram has demon-

strated great potential in one study [129] of Thai classical

music instruments and has proven a good representation of

the complex internal structure of Thai music. One investiga-

tion [130] compared different acoustic FE techniques based

on robustness to noise and spectro-temporal representation.

According to the results, spectrogram, gammatone filterbank

and Zweig impedance function-based linear transmission line

generated good outcomes against noise at −5dB whereas,

wavelet feature scored worst at +2dB. In terms of spectro-

temporal representation, Zweig impedance function-based

linear transmission line and wavelet feature performed

better than the Mel spectrogram. Gammatone filterbank and

spectrogram performed satisfactorily during the test phase.

D. AI METHODS

This subsection discusses some of the traditional and widely

used ML and DL algorithms. After appropriate features are

extracted successfully, these AI algorithms are trained on

the informative features to learn about the acoustic signature

generated by a particular sound source. Figure 4 represents

the traditional machine learning and deep learning algorithms

that are used in ASI in various scenarios.

1) MACHINE LEARNING ALGORITHMS

To date, few researchers have compared ML algorithms in

research work [131], [132]. Some of the prominent ML

algorithms are discussed as follows:
• K-Nearest Neighbour (KNN): K-nearest neighbour

is an instance-based, non-parametric, and supervised

ML algorithm. This is used to solve regression and

classification-based problems mostly. An audio sample

is assigned with a class label when most of the nearest

neighbours belong to that class. This is known as

majority voting which is the core concept of the KNN
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FIGURE 4. Traditional machine learning and deep learning methods.

algorithm. KNNs are used in identifying patterns in

texts. [133], ESI [131] and finance studies [134].

• Support Vector Machines (SVM): SVM is another

supervised learning classifier used for classification

and regression analysis. SVM works with the use of

various kernels based on the number of classes. There

are different SVM kernels used for various problems

such as linear, polynomial, Radial Basis Function

(RBF), and gaussian. SVM uses a set of hyper-planes

or decision boundaries in N-dimensional space that

classifies different classes. The number of features

is a decisive factor that determines the dimensions

hyperplane. SVMhas been proven a promising classifier

for generalization problems. This can work well with

small datasets. Some of the applications of SVM include

text categorization [135], image classification [136] and

environmental source detection [54].

• Hidden Markov Model (HMM): Hidden Markov Model

(HMM) is a statistical classifier with its ability to

consume less computational power as compared to other

classifiers. HMM works on the principle of Markov

chains. The Markov chain stays hidden in the process

of observing events in different states of the Markov

chain. In HMM, variables can be continuous or discrete.

HMM learns the path of trajectory from an existing

dataset containing classified trajectories. Therefore, for

classification and recognition purposes, a flying object

(hidden model) is classified knowing only its trajectory.

HMM is employed in various fields such as speech

recognition [137], gesture recognition [138] and target

classification [139].

• Gaussian Mixture Model (GMM) is another probabilis-

tic unsupervised learning model i.e. it does not need the

prior information of the data points labeled with classes.

GMM can approximate complex class density functions

with random precision. Further, it can also be employed

as a supervised classifier. However, its performance has

shown to be lesser than the KNN and SVM in various

applications [140].

• Artificial Neural Networks (ANN) are subsets of ML

that work like biological neurons signaling each other.

ANNs are made up of a set of artificial neurons also

called nodes. These nodes form layers comprising an

input layer and one or more hidden layers and an output

layer. Every node has a weight and threshold value

to communicate between layers. That’s how they can

transfer data between layers and the network gets trained

on it and gains accuracy over time. ANN is a supervised

algorithm and it learns by using examples. For instance,

a network can identify a dog in an image when they are

trained with manually labeled dog images using outputs

obtained from other dog images. The learning rate in

ANN varies over time. ANNs are massively used in

almost every other field such as in healthcare [141],

stocks and finance [142], 3D reconstruction [143] and

environmental sound source identification [131].

2) DEEP LEARNING ALGORITHMS

This subsection outlines commonly used DL approaches

which are as follows:
• Convolutional Neural Network (CNN): CNN is a type of

DL also known as a feed-forward neural network. CNNs
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are primarily used to detect, identify and classify objects

based on given visual image data [144]. CNN comprises

four types of layers, convolution layer, pooling layer,

fully connected layer, and non-linear layer. In CNNs,

nodes are capable to do weight sharing thus possessing

an important property called shift-invariance. This is

why CNNs have convolutional layers along with linear

filter banks on input layers. They have applications

in video recognition, recommender systems, object

detection, image classification and natural language

processing.

• Tensor Deep Stacking Network (TDSN) is a DL

algorithm that learns from parallel hidden layers in

each unit. TDSN is an extension of a deep stacking

network that has sequential layers only in its modules.

There is no change in the stacking operation of TDSN

compared to the Deep stacking network(DSN). TDSN

and DSN have the same computational complexity

and scalability. In addition to this, TDSN offers train-

ing in hidden representations to encode speaker and

environment information to include their factors [145].

Khamparia et al. performed sound classification using

T-DSN and obtained an accuracy of 56.00% [146].

• Image recognition network: Image-based recognition

networks are very deep CNNs specifically designed for

image features. some of the image recognition networks

include AlexNet, GoogLeNet, LeNET, and VGG16.

AlexNet used a gradient descent optimization function

with all the layers using a uniform learning rate of 0.001.

AlexNet has eight layers whereas GoogleNet is deeper

as it has 22 layers. GoogleNet is a promising deep CNN

that can avoid the problem of overfitting due to many

deep layers with the use of multiple-size filters at the

same level of operation [147]. These image recognition

networks are used on the ImageNet dataset for various

applications.

• Deep Belief Neural Network (DBNN): DBNN is a

traditional deep neural network (DNN) that faces

problems like slow learning and works on big databases

only. DBNN has multiple connected layers. When a

network is trained unsupervised, it can construct its

input layer depending on probabilities. Other layers

can detect features thus they can further be trained

under supervision for accurate predictions. DBNN has

performed better than HMM and neural networks for

event source detection [148].

• Convolutional Recurrent Neural Network (CRNN):

CRNN combines convolutional neural network (CNN)

and RNN and has presented better results in the audio

processing domain.

E. EVALUATION METRICS

The evaluation metric is a useful criterion to study the quality

of an AI algorithm. Evaluation of an AI algorithm is essential

for any project. Many different performance metrics can

be used to test a model. It is very important to include

multiple evaluation metrics in a study to deliver a detailed

performance report of an AI model. In this subsection,

we have discussed some of the prominent evaluation metrics

relevant to AI-based AI from the literature. The confusion

matrix is the mostly used and prominent evaluation method

for classification-based problems. A confusion matrix is a

2-dimensional NxN matrix that is used to summarize the

classification results. In this matrix, one dimension represents

a predicted class and the other dimension represents the

corrected or true class in a given problem. In a binary

classification problem, there are four important terms that

are involved to describe each entry of the confusion matrix.

True positive (TP) is the correct prediction of the positive

class, True negative (TN) is the correct prediction of the

negative class; false positive (FP) is the wrong prediction

of the positive class, and false negative (FN) is the wrong

prediction of the negative class.

The confusion matrix forms the basis for the other types

of metrics. The classification accuracy rate is a usual metric

based on calculating rates from subsets of these values.

In simpler terms, the accuracy of the matrix can be evaluated

by taking an average of the values lying across the main

diagonal.

Accuracy =
(TP+ TN )

(TP+ TN + FN + FP)
(8)

The precision score from the confusion matrix can be

calculated by the ratio of true positives and total positives

predicted. A low precision score of less than 0.5 depicts

the outcome of a high number of false positives due to

imbalanced class or untuned model hyperparameters.

Precision =
TP

(TP+ FP)
(9)

Recall or sensitivity is defined as the number of correct

positive outcomes divided by the total number of positive

instances identified by the classifier. The area under the

precision-recall curve delivers an average precision score

(APS). The mean of the average precision score is termed

mAP and can be computed by taking the mean of APS over

all classes. The F-1 score is another evaluation metric that

measures the test’s accuracy. This provides a harmonic mean

of precision and recall scores for a classification task.

Recall =
TP

(TP+ FN )
(10)

F1 =
2

( 1
precision

+ 1
recall

)
(11)

Area under the curve (AUC-ROC) is one of the frequently

used metrics to analyze the performance of a classifier. AUC

gives outcomes in binary classification problems. According

to the definition of an AUC, it is the probability that a

randomly chosen positive instance will rank higher than a

randomly chosen negative instance by the classifier. There

are three terms that explain the characteristics of AUC; True
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FIGURE 5. Confusion matrix.

positive rate (TPR), True negative rate (TNR) and False

positive rate (FPR) are defined mathematically as:

TPR =
TP

(FN + TP)
(12)

TNR =
TN

(TN + FP)
(13)

FPR =
FP

(TN + FP)
(14)

These AUCmetrics are displayed on the receiver operating

characteristic (ROC) graph. The AUC-ROC graph is drawn as

FPR on the x-axis and TPR on the y-axis. The values of FPR

and TPR range from 0 to 1. The greater the value of the AUC,

the higher the performance of the model.

Mathews Correlation coefficient (MCC) [149] is a more

reliable metric than the aforementioned traditional metrics.

MCC is the measure of the difference between true and

predicted classes that is analogous to x2 statistics on a

confusion matrix.

MCC =
(TN .TP− FN .FP)

√
(TP+ FP).(TP+ FN ).(TN + FP).(TN + FN )

(15)

MCC achieves a high score when prediction in all

categories (TP, FP, TN, and FP) is true with respect to the size

of positives and negatives. MCC offers numerous advantages

over the F1 score and accuracy in binary classification

problems [150].

III. APPLICATIONS OF AI-BASED ASI

This section discusses the significance of AI-based ASI and

its applicability to a variety of applications. As we mentioned

before, this section provides a detailed discussion of AI-based

ASI in fault diagnosis, underwater detection, ESR, health-

care, music-genre classification and wildlife monitoring. For

all these applications, we compared previous works based on

evaluation metrics, limitations and advantages. In addition,

we also provide statistical analysis of proposed models from

the literature review.

A. MACHINERY FAULT DETECTION

This subsection provides a detailed discussion of ASI

methods that have been applied in industrial settings for

intelligent fault diagnosis in machines and their components.

In addition to the discussion of ASI methods for fault

diagnosis, we present state-of-the-art artificial intelligence

models for the identification and detection of faults. We have

also summarized relevant studies in Table 3 to give a clear

overview of their works. With the progress and development

in production processes, science, and technology, machines,

and equipment is getting advanced and automated. Modern

machines are complex and their components are linked to

each other. A slight fault can raise a chain of issues in a

machine if not diagnosed timely. For instance, the crash of

a US space shuttle occurred due to a slight problem in its

component. Therefore, research is needed in the fields of

urgent condition monitoring and intelligent fault diagnosis

so that prompt maintenance activities can be done to ensure

the smooth functioning of equipment. This shall increase

the reliability and safety of the industrial environment and

reduction of costs as well. Fault diagnosis has been conducted

using vibration, thermal, current, and sound signals from

the machinery in different components of machines such as

motors, gearboxes, bearings, transformers, etc.

In 2013, Pandya et al. [151] discussed fault diagnosis in

rolling element bearings in one of the earliest ASI-related

papers. In their work, acoustic signals from bearings are

captured and time-frequency features are derived using

intrinsic mode functions. Then, supervised machine learning

classifiers such as KNN and weighted KNN are used for

the classification of faults and KNN has been chosen as the

best classifier with 92.77% accuracy. Later on, Yoon and

He [152] and Yao et al. [163] investigated the fault diagnosis

in planetary gearbox using acoustic emissions and supervised
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TABLE 3. Summary of ASI in industrial machinery fault detection.
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TABLE 3. (Continued.) Summary of ASI in industrial machinery fault detection.

learning algorithms. To accomplish this, Yoon and team set up

the power gearbox (PGB) test rig experiment, created faults

in gears artificially, and collected acoustic samples using

acoustic sensors. In their study, KNN, back propagation (BP),

and LAMSTAR learning algorithms are used to compare their

performances based on their error rates. Subsequently, Yao

utilized four classification models back propagation neural

networks (BPNN), Extreme learning, random forests (RF),

and SVM for fault classification and compared the results.

Right after Yoon’s work, Waqar and Demetgul [154] did

another experiment with worm gear in motors. Both vibration

and sound signatures from the motors at different speeds

are acquired. The collected signatures were preprocessed

and classified using Multilayer Perceptron Artificial neural

network (MLP-ANN). The trained algorithm achieved suc-

cessful prediction of 2 different speeds and 4 different oil

levels. Adam et al. [66] used real acoustic data of four states

of faulty three-phase induction motors, extracted two types of

features, and used nearest neighbour, BPNN, and a modified

classifier based on words coding for recognition.

The authors in [156] proposed a fault diagnosis model that

can identify new fault modes through K-means unsupervised

clustering and store the real-time data for future fault

diagnosis. An experiment has been conducted to validate their

study inwhich they recorded acoustic signals from bearings at

different speeds to create a database. Further, KNN classifier

has been used to estimate the prediction performance.

In recent literature of the last three years,

Potovcnik et al. [159] performed the classification based on

the condition of the system valve using acoustic features and

various ML algorithms. To accomplish this, an experimental

setup of the valve assembly with a microphone is established

in a semi-anechoic chamber. The proposed methodology

also involves the comparative analysis of feature selection

using different classification models. Later, Yaman [160]

and Santos et al. [164] investigated the faults in the bearings

of three-phase induction motors. Audio data is collected

by setting up experiments and classifying the data using

supervised learning algorithms such as SVM,KNN, andMLP

respectively. Later in 2022, Orhan et al. [166] continued and

proposed a lightweight method for the detection of faults in

unmanned aerial vehicle (UAV) motors. Audio datasets are

collected from healthy and faulty motors of various (UAV)

sources. SVM classifier is used for fault diagnosis in UAV

motors. Moreover, Cai et al. [162] and Fu et al. [168] did

their research on anomaly detection in transformers using

acoustics. Fu and team developed a method namely lightFD

to perform SVM classification on edge devices with limited

computing power. Most recently, Liu et al. [167] also studied

rotor-bearing fault analysis and use sound data acquired from

faulty rotating machinery and classified by SVM, KNN, and

decision trees.

B. UNDERWATER APPLICATIONS

ASI in the underwater medium has a wide range of

applications. For example, ASI capability plays a vital role

in the military to identify friendly/adversarial objects (e.g.,

submarines, torpedoes) in water. ASI is also beneficial for

scientists studying marine ecology, geology, oceanography,

and seismology. Moreover, the ability to localize objects and

analyze transients in ocean acoustics can be utilized by the

mining industry for offshore oil and gas discovery and plant

maintenance.

Traditionally, ASI has been performed successfully in

the underwater medium using matched-field processing

(MFP) [183]. However, one of the severe limitations of MFP

is its sensitivity to the mismatch between model-generated

datasets and real-world conditions [169], [183]. In other

words, MFP may not be flexible enough to adapt its

parameters to changing channel conditions (e.g., sound speed

profiles, bathymetry, and chemical composition of water)

which is an inherent and peculiar nature of the underwater
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TABLE 4. Comparison of AI-based ASI in underwater applications.

medium. In order to combat this challenge, many works in

the literature have resorted to data-driven ML techniques

which can learn from and adjust themselves to rapidly varying

channel conditions, yielding better results such as improved

accuracy for ASI.

In this work, we have conducted a comprehensive lit-

erature review on ML techniques for ASI in the under-

water medium. Table 4 compares the AI-based ASI in

underwater applications based on their advantages and

limitations. Additionally, based on the type of AI technique,

we have organized the works into the following main

categories:

• Feed-Forward Neural Networks (FFNN)

• Multi-Layer Perceptrons (MLP)

• Deep Neural Networks (DNN)

1) FEED-FORWARD NEURAL NETWORKS (FFNN)

The authors in [169] have formulated the ASI problem

as a ML problem where the ML model learns directly

from observed data. In this work, the authors utilize a

vertical linear array for building a normalized covariance

matrix which is used as a training dataset. Three ML

techniques - FFNN, SVM and ensemble learning-based

random forest (RF) are evaluated against the traditional
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MFP technique. Results indicate that ML algorithms yield

better results when ASI is posed as a classification problem

rather than a regression problem. Moreover, FNN yields

better predictive performance at multi-frequency inputs with

SNRs above 0 dB despite a small number of training

samples.

In their follow-up work in [170], the same authors show

that ML-based classifiers deliver better results in estimating

ship range for up to 10 km when MFP fails at approx-

imately 4 km range when environmental information is

limited.

More recently, the work in [171] has proposed a two-stage

process of underwater target detection where the first stage

involves beamforming-based direction of arrival (DoA)

estimation and the second stage involves taking the DoA

information and feeding it into an FFNN which develops a

detection model. The proposed method can yield a detection

accuracy of as high as 97.32% at particular locations of the

ocean.

2) MULTI-LAYER PERCEPTRONS (MLP)

Traditional recursive algorithms such as gradient descent

used in neural networks (NN) encounter multiple issues

such as low accuracy, slow convergence, and local minima

entrapment. This has led researchers to use heuristics/meta-

heuristics-based algorithms for training NNs. The work

in [172] has used grey wolf optimization (GWO) for

training NN for target classification. Results show that

compared to the Particle Swarm Optimization (PSO) algo-

rithm, Gravitational Search Algorithm (GSA), and the hybrid

algorithm (i.e. PSOGSA), the multi-layer perceptron (MLP

NN) using GWO yields better results across all three

datasets used (i.e., Iris, Lenses, and Sonar-1988) in terms

of higher accuracy (>95% for Sonar), lower probabil-

ity of local minima entrapment and higher convergence

rate.

The authors in [173] have used another meta-heuristic-

based algorithm (i.e., biogeography-based optimization

(BBO)) for classification with NNs for the same three

datasets as [172] (except Sonar-2015 has been used in [173]).

Non-linear migration models offer two-pronged advantages:

one to search agents for better exploration of the solu-

tion space resulting in local optima avoidance; and two

to accelerate the search agents towards global optimum

enhancing convergence rate without sacrificing accuracy of

classification.

More recently, the authors in [174] have used another

meta-heuristic Dragonfly Algorithm (DA) on active, passive,

and Gorman and Sejnowski sonar datasets and compared its

performance against BBO, GWO, Ant Lion Optimization

(ALO), ACO, GSA and Multi-verse Optimization (MVO)

algorithms where DA outperforms the rest in terms of

accuracy and convergence speed.

The work in [175] presents a method for classifying targets

in passive sonar usingMLP trained by a salp swarm algorithm

(SSA). The authors have also used MFCC to improve the

dataset’s dimensions. The proposed method utilizes SSA to

optimize the weights and biases of the MLP, which are then

used to classify sonar signals. SSA allows for faster and more

efficient training of the MLP even with the presence of noise.

The limitation of the proposed method is that it is based on

passive sonar, which may be limited in its ability to detect

targets that are quiet or have low echo strength. Additionally,

themethod relies on the SSA,whichmay be sensitive to initial

conditions and may not be able to find the global optimal

solutions.

More recently, the Whale Optimization Algorithm (WOA)

and an improved WOA with Local Wavelet Acoustic

Pattern (LWAP) have been utilized in [176] and [177],

respectively, for training MLP NNs. These works indicate

that meta-heuristics-based MLP NN training for sonar target

classification is a promising technique.

3) DEEP NEURAL NETWORKS (DNN)

Besides MLP NNs, researchers have also used DNNs

for ASI. The work in [178] uses DNN for ranging and

depth determination of acoustic source in shallow water

(100 m) using DNNs. They propose two methods: a) a

two-stage FE and model building process b) a direct process

of training a convolutional neural network (CNN)–FNN

(CNN-FNN) architecture by using raw acoustic data. Both

methods provide better performance compared to MFPs

under mismatched environments.

Inspired by the human auditory system of sound percep-

tion, the authors in [179] propose a deep CNN for underwater

target recognition. The architecture maps various frequency

components into a bank of multi-scale deep filter sub-

networks. Then it mimics the neuro-plasticity mechanism of

the human brain to train those multi-scale deep filter sub-

networks using raw time-domain ship noise. The proposed

method, when trained with raw time domain waveforms,

achieves better classification accuracy as compared with

standard CNN/DNN methods with other types of training

input such as MFCCs.

The work in [180] has proposed a DNN-based source

localization technique for very shallow water environments

(a 1.1 × 1.4 m laboratory tank with depth 0.1 m) with

high-frequency components, while the work in [181] have

devised a deep transfer learning technique which can be

adapted by models such as that proposed in [180] to translate

its capabilities for real-world deep-sea environments. The

transfer learning approach in [181] can open new possibilities

for effectively training DNNs since real-world deep-sea trial

data are difficult to obtain.

More recently, the work in [182] has proposed a method

where learning features are extracted from five different

dimensions, i.e., noise spectrum level (NL), time–frequency

spectrum (Spec), power spectral density (PSD), Mel-

frequency cepstral coefficient, and Mel filter bank energy

(FBANK). Then the authors compared the performance of

SVM and CNN on noise-added data with various SNR

levels. They have found that underwater noise can be best
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characterized by NL and PSD features. Additionally, CNN

outperforms SVM in noise classification.

C. EVENT AND ENVIRONMENTAL SOUND SOURCE

DETECTION

In this subsection, we provide a detailed discussion of

the significance of acoustic source identification (ASI) in

environmental sound source recognition and event detection.

First, we discuss the applications and benefits of environmen-

tal sound source identification. Then, we discuss in detail

most of the FE and AI methods available in the literature.

Later, we present a summary of the event and environmental

source identification works and highlighted their limitations

in Table 5.

ASI can be used to recognize events and scenes. Context

recognition is becoming popular and becoming an important

research area. Acoustic scene identification is defined as

the recognition and classification of acoustic scenes such

as schools, offices, hospitals, and trains/buses based on the

generated sounds [200]. The aim is to create applications

that can improve urban environments if the activities in

the surroundings are detected and identified. Environment

sound source identification is a complex activity as compared

to speech and music because environment sounds are

very dynamic in nature and sometimes it is difficult to

identify targeted sounds due to background noise. Some

of the sounds can have a low signal-to-noise ratio that

can make it difficult for some sources to be recognized

properly [201].

ESR is a promising method for audio surveillance

applications [202]. In addition, ESR can be used in

robotics to improve their navigating abilities and inter-

actions with the environments [203], [204]. ESI along

with video analysis contributes its benefits majorly in

surveillance applications of homes and cities [205], [206].

Home surveillance is very important, especially for elderly

people who are living alone or other smart home applica-

tions [207], [208]. ESI has been used to recognize animal

species [209], [210], [211], bird species [212], [213] by

their distinct acoustic signatures for bioacoustic applications

and wildlife monitoring. Recently in a study [214], hive

health has been monitored by analyzing hive sounds using

AI algorithms.

In our study, we have reviewed the literature extensively

to compile the renowned work which has been done in

the field of ESI and sound event detection (SED). The

authors in [19] did the survey and compiled the works

which have been investigated in environment audio scene and

sound event recognition for surveillance purposes. Recently,

a detailed review [26] has been published in the area of

ESI. This research work highlighted the environmental and

events sound datasets, FE methods, and different ML and DL

algorithms used in recent studies. In the past five years of

literature, the prominent works accomplished by authors in

urban sound event detection and environment sound source

identification are as follows.

Authors in [184] have developed an efficient urban sound

classification mechanism using ML. Local and global FE

techniques are employed to process the most discriminant

information-carrying features for the ML algorithm. A mix-

ture of expert model techniques is also introduced to assemble

information from local and global features. Zhu et al. [187]

performed multi-scale FE on audio data. In multi-scale

convolution, the signal waveform is convolved with filters

at different scales and performed feature fusion. CNNs are

trained after the pooling of useful features. By employing

these setups, improvements in sound recognition are achieved

that yield better results than previous methods. The authors

in [188] improved sound recognition in hearing aids by

using ensemble techniques. Moreover, automation in devices

is introduced with respect to sensing and recognizing

sounds and their sources. Similarly, Ahmed et al. published

his work [192] to establish an automatic environmental

sound recognition system using deep learning. Image-based

features are used to train the DL algorithm. Moreover,

the performance of various FE methods is compared and

achieved different recognition accuracy rates using publicly

available data sets.

Lately, in 2021, many researchers actively worked in this

area and published their works. The authors in [194] recorded

ambient sounds in an indoor environment for the purpose of

recognizing an activity based on the produced sound. Spectral

information has been extracted from the data collected by

using smart IoT sensors. CNN-DL model has been used

by the research team along with fuzzy logic to accomplish

a coherent recognition of activities. Nanni et al. [195]

presented their idea of combining ensembles of classifiers

exploiting six data augmentation schemes for the training of

CNNs. Further, those ensembles are tested on open-sourced

environmental sound datasets. The performance of ensembles

are compared extensively with the ones mentioned in the

literature resulting in a high-performing ensemble with high

accuracy. Zinemanas and team [196] proposed a novel

interpretable architecture employing a DNN for ESI. Audio

domain knowledge is used to improve the distinction in

classes. The key idea was to incorporate frequency-dependent

similarity by assigning different weights to each frequency

bin in the latent space. Due to the system’s interpretability,

it can be evaluated and debugged easily. Moreover, the

authors in [197] proposed an intelligent forest monitoring

system that applies signal processing techniques such as

dynamic time warping andML algorithms trained byMFCCs

and spectral feature spaces.

D. HEALTHCARE APPLICATIONS

This sub-section outlines the usefulness of AI-based ASI in

the healthcare field and research that has been done in the

past few years. AI-based ASI has been widely used in the

healthcare field in fall detection, health, and fitness wearable

devices, equipment for hearing-impaired patients, and cardiac

auscultation.
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TABLE 5. Summary of event or environmental source identification using artificial intelligence techniques.
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TABLE 5. (Continued.) Summary of event or environmental source identification using artificial intelligence techniques.

Elderly people have the tendency to fall down in their later

ages and sometimes they do not have access to any external

help. The fall can be serious and can lead to severe injuries

that may take longer to heal in old age. In this case, early first

aid is very crucial to reduce the risk of death [215], [216].

Therefore, these incidents can considerably be avoided using

modernAI techniques alongwith traditional methods. In past,

various methods for fall detection have been proposed such as

by using cameras [217], sensors [218], [219] and radars [220],

[221]. Health support wearable devices for hearing impaired

people provides a promising solution for them to interact with

their surroundings [222], [223]. Nowadays, heart auscultation

has been used massively in conjunction with AI techniques

for the diagnosis of cardiovascular diseases [224] and

condition monitoring of arteries and valves [225].

The authors in [103] proposed a fall detection framework

that is based on signal processing methods such as silent

zone suppression and acoustic ternary pattern FE. SVM

has been used to classify and detect fall events. Their

proposed method works well in a multi-class environment.

Yauganouglu et al. [226] developed a real-time detection

system for hearing-impaired people using a wearable device

in which sound events’ information is conveyed to the user

through vibrations. A combination of pre-processingmethods

is used for FE. Correct perception and recognition of sound

have been made delivered using KNNs classifier and audio

fingerprinting. Later, Ramadhan and team [227] published

their work in which acoustic event recognition is investigated

as part of a smart home system for elderly people. In their

work, spectrograms are extracted from practically collected
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audio data to train a DL model i.e. CNN. During their

investigation, an accuracy rate of 97.5% in silence and 85%

in normal scenarios are achieved respectively.

Recently, Jain et al. [12] developed an interactive tool

namely ProtoSound for the hearing impaired or people with

hard-of-hearing problems. The system has the ability to

personalize a sound recognition model from user recordings.

User recordings undergo the same set of steps of FE

and classification performed by the chosen model. CNN

architecture is being used in the ProtoSound system for the

prediction of sounds. Their proposed ProtoSound achieved an

average accuracy of 88.9%. Authors in [228] also presented

a review of sound recognizer tools for hearing-impaired

individuals. In their review, a user-driven automated sound

recognition system is studied using ML techniques. The

potential use of personalizable sound recognition systems is

also highlighted for prospective research.

Authors in [229] used curve fitting and a KNN algo-

rithm. The normal and abnormal heart sounds have been

classified with 92% accuracy. Nouman et al. [230] developed

a framework for automatic heart sound detection by using

neural networks. An optimal combination of 1D-CNN and

2D-CNN is employed which exhibited an accuracy of

89.22%. Furthermore, Zhang and team [231] proposed a

novel method based on temporal quasi-periodic features and

LSTMalgorithm. The popular 2016 PhysioNet dataset is used

and an accuracy of 94.66% is achieved.

In addition, the authors in [232] performed their research

in determining the heart condition based on its sounds

and developed an AI-enabled tool for automatic quality

assessment. Two datasets (2016 PhysioNet/CinC Chal-

lenge and self-collected) are used to compute necessary

de-noised features and trained MLP classifier to per-

form binary classification of heart sounds. Then in the

same year Zhiming et al. [233] proposed a heart sound

recognition method to identify congenital heart disease

in patients. Two classifiers, SVM and BP are used to

train MFCC features extracted from heart sounds obtained

from the 2016 Heart sound Challenge dataset. Their work

improved the accuracy of detection of the congenital

disease up to 93.52%. Kui et al. [234] proposed a promising

approach in the classification of heart sounds using the

duration-dependent hidden Markov model (DHMM) in

the segmentation of heart sounds. Additionally, dynamic

frame length is used to extract MFCCs from heart audio.

Then, the extracted features are classified using DL i.e.

(CNN). A majority voting optimization algorithm is used

to optimize the classification results. They achieved 93.89%

and 86.25& accuracy for binary class and multi-class

respectively.

Another research performed by Bilal and team [235]

classified heart sounds using 1D-CNN. He proposed a

classification model employing Local Binary Pattern (LBP)

and Local Ternary Pattern (LTP) features. Using PASCAL

and PhysioNet 2016 datasets, he scored 91.66% and 91.78%

classification accuracy respectively. Recently, the authors

in [236] published their work investigating heart sound

classification aimed at the diagnosis of disease due to

heart failure. Two heart sound data sets (PhysioNet and

PASCAL) are used and then preprocessed to generate

MFCC features. Principal Component analysis and linear

discriminant analysis has been used for feature selection

and dimensionality reduction. Eventually, SVM, gradient

boosting algorithm(GBA), and random forests classifiers are

trained on those features to perform the classification task.

E. OTHER APPLICATIONS

This subsection discusses some of the recent literature

reviews of the research work in various other applications

such as music-genre classification, wildlife monitoring and

forensic applications.

1) MUSIC-GENRE CLASSIFICATION

Moreover, inspired by the advancements in natural language

processing (NLP), Zhuang et al. [237] designed a transformer

classifier for music-genre classification. They used the

famous GTZAN dataset and the transformer model is fed

with mel-spectrograms as features and achieved an accuracy

of 76.0%. Later, Mounika et al. [238] applied CNN and

CRNN to classify music into various genres. The proposed

classification is performed on GTZAN dataset and generated

mel-spectrograms as distinguishing features. Their proposed

model indicated a classification accuracy of 73.2% with train

accuracy being 12% lower than validation accuracy due to

the overfitting problem in the model. The authors in [239]

developed a transformer model-based music recognizer in

which they used MFCCs to recognize the genre of audio. The

performance of their proposed model is analyzed on GTZAN

original dataset and data augmented set which resulted in a

better accuracy rate of 75.1%.

Furthermore, Shah and team [240] classified music into

different genres using various time and frequency domain

features. They extracted spectral centroid, onset strength,

ZCR, tempo, spectral contrast, spectral bandwidth, roll-off

contrast, and flatness to train SVM, random forests and

gradient-boosting ML algorithms. In addition, Spectrograms

are extracted to train DCNNs. Their classification perfor-

mance is compared which proves CNN outperforms ML

algorithms. Lately, Cheng et al. [13] performed their research

to understand the music-genre classification problem using

visual mel spectrogram with YOLOv4 neural network which

is based on CNN. Their model is evaluated on various metrics

such as precision, recall, F1-score, mAP, and confusion

matrix. The average mAP results indicated 97.93% accuracy

on the test set and 91.49% on the training set. They achieved

better accuracies on GTZAN dataset however, the used

graphical spectrum feature increases hardware cost. Most

recently, the authors in [241] introduced a hybrid approach

of CNN, multimodal and transfer learning based model.

In this approach, GTZAN and Ballroom dataset has been

used for analysis and benchmarking. Wavelet features are
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extracted and mel-spectrograms as visual representations in

CNN. Results have demonstrated that their proposed hybrid

model scored 81% onGTZAN and 81%on ballroom datasets.

Added to this, the computational performance of their model

is also analysed in their study on a laptop and a supercomputer

with a supercomputer having much lower computational

time.

2) WILDLIFE MONITORING AND BIO-ACOUSTICS

Furthermore, in wildlife monitoring and bio-acoustics, sev-

eral studies have been performed to study animal behav-

ior and classification problems based on their acoustic

features. The behavior of domestic cats was studied by

Pandeya et al. [242] by developing an automated classifica-

tion system over cats’ generated sounds. The cat sounds

dataset has been increased with the help of a data augmenta-

tion technique and extracted mel spectrograms as features for

classification. Transfer learning of CNN and convolutional

deep belief network (CDBN) has been carried out due to

the close relation of cat sound and music. This resulted in

an overall good performance in classification accuracy and

receiver operating characteristic (ROC) metrics. Later on,

the same authors in [243] investigated cow sounds as SED

technique and developed an autonomous monitoring system.

Using a data-driven approach, mel spectrogram is selected

as a potential feature for video object description models

(VODMs) and this approach is compared with conventional

CNN. The proposed approach achieved better quantitative

and qualitative scores. In addition to this, Li et al. [244]

proposed an automatic sound recognition system in dairy

cows that classifies the ingestive behavior in them. A publicly

available jaw movements dataset of two forage species

is used. Time, frequency domain, and MFCCS features

are formed and a statistical model is developed. Then,

three DL models CNN(Conv1D), (Conv2D), and LSTM are

trained and optimized to classify the ingestive behaviors.

The resultant performance under different forage species and

heights came out to be 0.93, and the difference between the

best and poorest obtained was 0.4-0.5.

The authors in [43] did their research on insect sound

recognition. An ARS center dataset is used which comprises

sound files of various activities of insects such as moving,

feeding, and calling. CNNs are trained with feature maps

created with MFCCs and obtained 92.56% recognition rate.

Sun et al. [245] developed a reliable rainforest monitoring

system using data augmentation and CNN-based transfer

learning due to the scarcity of datasets. This system

enables the detection and classification of various animal

species (birds, amphibians, invertebrates, mammals). Their

model achieved an average accuracy of ≥ 90% with

mel-spectrogram features. However, their model included

limited sonotypes of rainforest only. Moreover, Echinski

and team [246] also investigated birds species using the

sounds of birds and established a recognizer model. The

spectrograms of bird sounds are fed into Resnet34 CNN for

training. Performance metrics indicated a macro average F1

score of 0.74. However, their system could not recognize

new entries in the test dataset which needs to be addressed.

Recently, Jiang et al. [247] solved the classification problem

as SED of ape calls using LSTM neural network. Three types

of input features are used i.e. raw waveform, spectrogram

and wave2vec 2.0 for the training of NNs. In their study, the

results demonstrated that wave2vec 2.0 outperformed the raw

waveform of than spectrogram in the classifier.

3) SPEAKER IDENTIFICATION (SID) SYSTEM FOR FORENSICS

AI-based ASI is not limited to the above-mentioned applica-

tions. Over time, it has gained much significant attention in

speaker identification and verification system for forensics

and surveillance applications. Authors in [248] proposed

a novel model to detect disguised voices for forensic

identification systems. GMM supervector obtained from

Gaussian distribution of the speaker’s voice and extracted

MFCCs are used as features to train SVM classifier. The

proposed model achieved good identification rates and lower

error rate than 7%. Later, authors in [249] presented another

method based on the evaluation of speech quality data.

Three experiments are performed on SRE dataset to assess

the impact of quality data on forensic speaker recognition

(FSR). GMM universal background model (UBM) is trained

on MFCCs and delta MFCCs-based vectors. The results

indicated their proposed model obtained an Equal Error

Rate (EER) of 0.6% as compared to state-of-the-art perfor-

mance on TIMIT dataset. Rozario et al. [250] implemented

a speaker recognition system using ANNs. The performance

of Relative Spectral Amplitude (RASTA) PLP, MFCCs and

Power Normalized Cepstral Coefficient (PNCC) features are

compared on TIMIT database. The results demonstrated that

MFCCs outperformed PNCC and RASTA-PLP in speaker

identification with the highest accuracy score of 90.66% on

the full speech segment.

Subsequently, authors in [251] proposed a DL-based

speaker identification mechanism using improved shuffled

MFCC (SHMFCC). The data augmentation approach is used

in conjunction with the extraction of shuffledMFCC features.

Three different datasets; LibriSpeech, TSP and VoxCeleb1

are used to conduct experiments for the study. The tuned

Feed forward DNN was trained and tested under various

noisy conditions. The proposed method demonstrated high

accuracy in all noisy scenarios. Later, Bakir et al. [252]

presented a forensic voice application. Data sets comprising

recordings from 1000 people have been gathered andMFCCs

features are extracted. The identification rates of CNN and

DBN trained on these features are compared. CNN performed

better than DBN on all MFCC vector lengths. Recently,

Authors in [253] performed speech enhancement firstly by

employing spectral and log Minimum Mean Square Error

(MMSE) techniques. Then, the task of speaker identification

on the Australian Forensic Voice comparison database is

carried out by training GMMonMFCC features. The average

scores of log MMSE are observed much higher than of
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spectral subtraction. The trained model achieved a 63.5%

accuracy score for speech signals enhanced by using the log-

MMSE technique. Babu et al. [254] presented a short review

of the forensic speaker identification (FSID) system. The

authors highlighted the physical properties of speech signals.

Several FE techniques and AI algorithms for FSID are also

discussed in the paper.
• Computational complexity of SID systems: Speaker

recognition is an important technology when it comes

to forensics, access control systems and the financial

sector. AI-based approaches introduce a new direction

to this technology in terms of recognition accuracy,

computational complexity and identification rates. Over

the past decades, there has been plenty of research

being done to solve problems in speaker recognition and

speaker verification systems. Inspired by the remark-

able performance of DL algorithms in SID systems,

researchers have applied DL algorithms in speaker

recognition [255], [256] and delivered high accuracy.

However, advanced DL algorithms are computationally

intensive; therefore, restricting its implementation on

hardware platforms.

ML algorithms implemented in SID systems such as

GMM and SVM are less computationally complex

as compared to DL algorithms. The execution time

of GMM trained on MFCCs is 0.8ms at 48MHz

frequency for a speech set of length 20 [257]. Moreover,

the execution time of SVM and MFCCs is 4.6ms

at 50Hz [258]. Another group of researchers [259],

developed a SID framework based on MFCCs and SVM

and concluded an execution time of 9.10ms per frame.

DL algorithms comprise several hidden layers which

add additional time complexity to a system. In speaker

recognition, deep CNNs, RNNs and ResNet models

are mostly employed by the researchers. Cai et al.

in [260] presented a DNN-based framework with

i-vector approach for the Speaker verification sys-

tem. The inefficient use of DNN layers resulted in

the high computational complexity of this method.

Authors in [261] modified ID-ResNet20 by changing

its convolutional kernels from 3 × 3 to 1 × 3 which

reduced the computational complexity of the system

by two-thrids approximately. The peak computation-to-

communication ratios of layers resulted in 3.75 Gb/s

for a speech length of 3s. In addition, the authors

further modified the ResNet20 by adding a pooling

layer after the convolutional layer. In comparison to the

original ResNet20, the modified model achieved 51%

reduced parameters and 64% computational complexity.

In [262], authors developed a less complex attacking

toolkit namely PhoneyTalker for DNN-based speaker

recognition systems. The results from proposed frame-

work demonstrated a low average time cost (ATC) of

0.03s and 15% ASR improvement than state-of-the-

art methods. In addition, authors in [263] proposed

a lightweight Few-shot speaker identification (FSSI)

based on recurrent convolutional block (RCB) on the

backbone of Bidirectional LSTM. A softmax layer is

introduced in the proposed model and evaluated on three

datasets (VoxCeleb1, VoxCeleb2, and LibriSpeech). The

performance metrics model size (MS) and the num-

ber of multiplication and addition operations (MACs)

indicated improvements as compared to state-of-the-art

methods. The method achieved the highest accuracy

scores 92.89%, 92.74% and 98.51% (V2-set, V1-set,

L-set) on feature subset size 4 with low values of MS

(54.14k) and MACs (103.16M).

In addition to above-mentioned applications, there are

a few more applications that we discussed here. Authors

in [264] classified sonar targets of different shapes and

sizes in the air using MLP neural networks. In their

method, they generated feature vectors after extraction of raw

echos’ spectrograms and other spectral features using STFT.

After training MLP-NN, the performance is compared with

narrowband and wideband excitation signals. Jin et al. [265]

developed an object recognition framework for robots in

an open environment based on their acoustic signatures

collected by using the dynamic contact method. K-nearest

neighbour ML algorithm is trained with MFCC features.

Their framework proved that robots can detect objects by

their acoustic waveforms and gives the best results with

180◦ joint rotation and 180◦ horizontal rotation. Moreover,

He et al. [266] investigated drone sound identification in

a noisy environment. Feature vectors of drone sounds are

created by employing harmonic line association (HLA) and

wavelet packet transform (WPT) FE methods. SVM along

with optimized parameters by genetic algorithm (GA) is

used to identify drones. They achieved 100% identification

probability during trials.

IV. FUTURE RESEARCH DIRECTIONS

With numerous challenges and limitations faced by ASI,

there exists immense potential for future research in various

areas. This section discusses some recommendations based

on our perspective for future consideration. We believe these

directions would be interesting to investigate which would

improve the performance of ASI and enhance a better under-

standing of this concept. Some of these recommendations

appeal to general methodological problems and some are

specific to ASI in the light of the earlier analysis in this

survey:
• Real-time database expansion: Sometimes, required

datasets are not available to solve a particular ASI

problem for example in the underwater domain. Due

to scarcity of real databases, it is very challenging

to address undersea problems. DL approaches cannot

be applied in this case because of insufficient data.

In these cases, the underwater research community can

expand underwater databases by collecting new reliable

real-time audio datasets.

• Poor generalization ability of DL: Another problem that

demands real-world data sets is the poor generalization
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ability of the DL model. DL models trained on

simulated data perform poorly when tested on real-

world datasets. This is called train-test data mismatch.

This problem also occurs when acoustic data acquisition

trials are unrealistically performed and room geometries

are not considered. Therefore, in this line domain

adaption [267] and transfer learning [268] techniques

must be investigated which ensures improving the

performance of the network for one problem (real data)

but actually trained for another problem (simulated

data).

• Improvements in audio processing (AP): Multiple

acoustic data acquisition trials conducted in various

situations can introduce background noise and poly-

phonic sounds. Robust techniques need to be developed

to identify and eliminate such anomalous sounds,

especially in the case of multiple sound sources. New

robust FE hybrid approaches with better discrimination

for real-time ASI applications need to be explored.

Our survey revolves around ASI only and we haven’t

considered the cases of Acoustic source separation

(ASS), diarization and sound source enhancements that

are all connected to ASI. In this survey paper, we have

shown, how AI-based data-driven approach to ASI can

replace conventional AP techniques. We believe that

a combination of AP techniques and powerful DL

models in particular deep generative models such as

(GANs) [269], variational autoencoders (VAEs) [270]

and dynamical VAEs [271], can model the temporal

and/or spectral characteristics of sounds. Therefore

along with AP these DL approaches can improve the

performance of aforementioned problems and may be

implemented by future researchers.

• Multi-task learning approach (MTL): Multi-task train-

ing is a general method used to improve the performance

DNNs on a given problem by training the model

to simultaneously handle other several tasks [272].

As per our knowledge and our survey, no one has

used the MTL approach to tackle tasks jointly. In an

ASI-based problem, this approach is implemented in

the following way: First part of the model (e.g.,

FE module for several blocks) is common for different

tasks, afterwards the model divides into different

modules each one performing a different specialized

task. The common module ensures the discovery of

efficient signal representation which is used for other

tasks. This approach offers data efficiency and shared

representations and reduces overfitting problem as

well.

• We noticed in our survey, many deep networks are

presented which are computationally inefficient and

thus require high computing power. Therefore future

research can consider developing powerful DNNs using

computing power for big datasets.

• In this paper, we have carried out a detailed survey but

in future, meta-analysis, simulations and results can be

added as well that will foster pathways to better research

and development.

V. CONCLUSION

ASI is facing numerous challenges in accuracy, automation

and robustness. AI methods have evolved and serve as a

promising solution to these problems. In the past decade,

considerable research has been carried out in various domains

to identify and recognize sound sources from their acoustic

signatures but these research works have not been surveyed

and compiled to give a comprehensive review. Our work

serves as a detailed guide for future researchers. In our

work, we have attempted to study and review the past

few research works towards acoustic source identification

using AI methods and organized them in terms of different

applications.

In this paper, we have presented an in-depth survey of

ASI in the industry for fault detection, underwater for target

recognition, surveillance, medical for disease diagnosis and

fall detection and some others. Initially, we highlighted

potentially available databases for future research to start

with. Then, we highlighted a few basic audio processing

steps. Afterwards, an overview of FE techniques in time,

frequency and cepstral domains was presented to aid

researchers to choose the best technique as per the given

problem, dataset and AI algorithm. We have also discussed

briefly some of the traditional ML and DL algorithms that

have been mostly used in literature. Added to this, we have

given a comprehensive survey of the ASI works along with

its significant contributions in various fields in subsequent

sections. Lastly, we have discussed some future research

directions for the readers after explaining the thorough idea

of the concept and its significance.
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