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Figure 1: Example images generated by Parti. Top row: “Oil-on-canvas painting of a blue night sky
with roiling energy. A fuzzy and bright yellow crescent moon shining at the top. Below the exploding
yellow stars and radiating swirls of blue, a distant village sits quietly on the right. Connecting earth
and sky is a flame-like cypress tree with curling and swaying branches on the left. A church spire
rises as a beacon over rolling blue hills.” (a 67-word description of the Starry Night by Vincent
van Gogh). Middle row: “A close-up high-contrast photo of Sydney Opera House sitting next to
Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars, and radiating swirls of
blue”. Last row: Similar to the middle row, but with “anime illustration” and different landmarks
(the Great Pyramid and the Parthenon).
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Abstract

We present the Pathways [1] Autoregressive Text-to-Image (Parti) model, which
generates high-fidelity photorealistic images and supports content-rich synthesis
involving complex compositions and world knowledge. Parti treats text-to-image
generation as a sequence-to-sequence modeling problem, akin to machine transla-
tion, with sequences of image tokens as the target outputs rather than text tokens in
another language. This strategy can naturally tap into the rich body of prior work
on large language models, which have seen continued advances in capabilities and
performance through scaling data and model sizes. Our approach is simple: First,
Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as
sequences of discrete tokens. Second, we achieve consistent quality improvements
by scaling the encoder-decoder Transformer model up to 20B parameters, with a
new state-of-the-art zero-shot FID score of 7.23 and finetuned FID score of 3.22 on
MS-COCO. Our detailed analysis on Localized Narratives as well as PartiPrompts
(P2), a new holistic benchmark of over 1600 English prompts, demonstrate the
effectiveness of Parti across a wide variety of categories and difficulty aspects. We
also explore and highlight limitations of our models in order to define and exem-
plify key areas of focus for further improvements. See parti.research.google
for high-resolution images.

1 Introduction

People are generally able to conjure rich and detailed scenes through descriptions expressed in
written or spoken language. Supporting the ability to generate images based on such descriptions
can potentially unlock creative applications in many areas of life, including the arts, design, and
multimedia content creation. Recent research on text-to-image generation, e.g., DALL-E [2] and
CogView [3], has made significant progress in generating high-fidelity images and demonstrating
generalization capabilities to unseen combinations of objects and concepts. Both treat the task as a
form of language modeling, from textual descriptions into visual words, and use modern sequence-
to-sequence architectures like Transformers [4] to learn the relationship between language inputs
and visual outputs. A key component of these approaches is the conversion of each image into a
sequence of discrete units through the use of an image tokenizer such as dVAE [5] or VQ-VAE [6].
Visual tokenization essentially unifies the view of text and images so that both can be treated simply
as sequences of discrete tokens—and thus amenable to sequence-to-sequence models. To that end,
DALL-E and CogView employed decoder-only language models, similar to GPT [7], to learn from a
large collection of potentially noisy text-image pairs [8, 9]. Make-A-Scene [10] further expands on
this two-stage modeling approach to support both text and scene-guided image generation.

A different line of research with considerable momentum involves diffusion-based text-to-image
models, such as GLIDE [11] and concurrent works DALL-E 2 [12] (a.k.a., unCLIP) and Imagen [13].
These models eschew the use of discrete image tokens in favor of diffusion models [14, 15] to
directly generate images. These models improve zero-shot Fréchet Inception Distance (FID) scores
on MS-COCO [16] and produce images of markedly higher-quality and greater aesthetic appeal
compared to previous work. Even so, autoregressive models for text-to-image generation remain
appealing given extensive prior work on scaling large language models [17, 18, 19, 20] and advances
in discretizing other modalities–such as images and audio–so that inputs in those modalities can
be treated as language-like tokens. This work presents the Pathways Autoregressive Text-to-Image
(Parti) model, which generates high-quality images from text descriptions, including photo-realistic
ones, paintings, drawings, and more (see Fig. 1 & 2). We show that with a ViT-VQGAN [21] image
tokenizer, scaling autoregressive models is an effective way to improve text-to-image generation,
enabling such models to accurately integrate and visually convey world knowledge.

Parti is a sequence-to-sequence model based on the Transformer [4], an architecture critical to perfor-
mance on many tasks, including machine translation [4], speech recognition [22, 23], conversational
modeling [24], image captioning [25], and many others. Parti takes text tokens as inputs to an encoder
and autoregressively predicts discrete image tokens with a decoder (see Figure 3). The image tokens
are produced by the Transformer-based ViT-VQGAN image tokenizer [21], which produces higher-
fidelity reconstructed outputs and has better codebook utilization compared with dVAE [5], VQ-VAE
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A. A photo of a frog reading the newspaper named “Toaday” writ-

ten on it. There is a frog printed on the newspaper too.

B. A portrait of a statue of the Egyptian god Anubis wearing avia-

tor goggles, white t-shirt and leather jacket. The city of Los Ange-

les is in the background. Hi-res DSLR photograph.

C. A high-contrast photo of a panda riding a horse. The panda is

wearing a wizard hat and is reading a book. The horse is standing

on a street against a gray concrete wall. Colorful flowers and the

word "PEACE" are painted on the wall. Green grass grows from

cracks in the street. DSLR photograph. daytime lighting.

D. A giant cobra snake made from X. X ∈ {“salad”, “pancakes”,

“sushi”, “corn”}

E. A wombat sits in a yellow beach chair, while sipping a martini

that is on his laptop keyboard. The wombat is wearing a white

panama hat and a floral Hawaiian shirt. Out-of-focus palm trees

in the background. DSLR photograph. Wide-angle view.

F. The saying "BE EXCELLENT TO EACH OTHER" ..., (a) brick

wall and alien (b) driftwood. (c) old wooden boat with reflection.

(d) stained glass. (See text for full prompts.)

G. Three-quarters front view of a X Y Z coming around a curve in

a mountain road and looking over a green valley on a cloudy day.

DSLR photograph. X ∈ {blue, red, yellow}, Y ∈ {1977, 1997,

2017}, Z ∈ {Porsche 911, Corvette, Ford F-150}

H. A raccoon wearing formal clothes, wearing a tophat and hold-

ing a cane. The raccoon is holding a garbage bag. Oil paint-

ing in the style of X. X ∈ {“Rembrandt”, “Vincent Van Gogh”,

“Hokusai”, “pixel art”, “pointillism”, “abstract cubism”, “Egyp-

tian tomb heiroglyphics”, “traditional Chinese painting”, “Mad-

hubani art”}

I. A photo of an Athenian vase with a painting of X playing Y in

the style of Egyptian hieroglyphics. X ∈ {“pandas”, “toucans”,

“pangolins”}, Y ∈ {“tennis”, “soccer”, “basketball”}

Figure 2: Selected Parti images. See Section 6.1 for discussion.

3



Figure 3: Overview of Parti sequence-to-sequence autoregressive model (left) for text-to-image
generation with ViT-VQGAN as the image tokenizer [21] (right).

[6], and VQGAN [26]. Parti is conceptually simple: all of its components – encoder, decoder and
image tokenizer – are based on standard Transformers [4]. This simplicity makes it straightforward
to scale our models using standard techniques and existing infrastructure [19, 20, 27, 28]. To explore
the limits of this two-stage text-to-image framework, we scale the parameter size of Parti models
up to 20B, and observe consistent quality improvements in terms of both text-image alignment and
image quality. The 20B Parti model achieves new state-of-the-art zero-shot FID score of 7.23 and
finetuned FID score of 3.22 on MS-COCO.

While most recent work has focused exclusively on the MS-COCO benchmark, we also show that
strong zero-shot and finetuned results can be achieved on the Localized Narratives dataset [29], which
has descriptions that are four times longer than MS-COCO’s on average. These results demonstrate
the strong generalization capability of Parti to longer descriptions, allowing us to pile on considerable
complexity in our explorations with the model (see examples in Figure 2 and the Appendix, and the
discussion of growing a cherry tree in Section 6.2). Nevertheless, existing captioning / descriptioning
datasets are limited to photographs and descriptions of their contents, but much of the appeal of
text-to-image models is that they can produce novel outputs for fantastical prompts. Given this, we
introduce PartiPrompts (P2), a rich set of over 1600 (English) prompts curated to measure model
capabilities across a variety of categories and controlled dimensions of difficulty.5 Each prompt in
P2 is associated with both a broad category (out of 12 categories, ranging from abstract to animals,
vehicles, and world knowledge) and a challenge dimension (out of 11 aspects, ranging from basic, to
quantity, words & symbols, linguistics, and complex). Our detailed analyses and human evaluations
on MS-COCO, Localized Narratives and P2, along with extensive discussion of Parti’s limitations
(Section 6.3) give a comprehensive picture of the strengths and weaknesses of Parti models—and
establish autoregressive models as strong contenders for high-quality, broadly capable, open-domain
text-to-image generation models.

Our main contributions include: (1) We demonstrate that autoregressive models can achieve state-
of-the-art performance: 7.23 zero-shot and 3.22 finetuned FID on MS-COCO, and 15.97 zero-shot
and 8.39 finetuned FID on Localized Narratives; (2) Scale matters: our largest Parti model (20B) is
most capable at high-fidelity photo-realistic image generation and supports content-rich synthesis,
particularly those involving complex compositions and world knowledge; and (3) We also introduce
a holistic benchmark, the PartiPrompts (P2), propose a novel concept of Growing a Cherry Tree,
establish a new precedent regarding identifying limitations of text-to-image generation models, and
provide a detailed breakdown, with exemplars, for error types we observed.

5Imagen [13] introduces 200 prompts in DrawBench for similar purposes. See Section 4.3 for discussion.
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2 Parti Model

Similar to DALL-E [2], CogView [3], and Make-A-Scene [10], Parti is a two-stage model, composed
of an image tokenizer and an autoregressive model, as highlighted in Figure 3. The first stage
involves training a tokenizer that turns an image into a sequence of discrete visual tokens for training
and reconstructs an image at inference time. The second stage trains an autoregressive sequence-to-
sequence model that generates image tokens from text tokens. We describe details for these two stages
below, together with other techniques for building high-performing autoregressive text-to-image
models, such as text encoder pretraining, classifier-free guidance, and reranking.

2.1 Image Tokenizer

Autoregressive text-to-image models must linearize 2D images into 1D sequences of patch repre-
sentations. In the limit, these are just pixels, as with iGPT [30], but this requires modeling very
long sequences even for small images (e.g., a 256×256× 3 RGB image leads to 196,608 rasterized
values). Worse, it is based on a very low-level representation of the inputs rather than a richer one
informed by the position of a pixel in the context of the image. Previous work [2, 6, 10, 21] addressed
this problem by using a discrete variational auto-encoder to learn quantized representations of image
patches over a collection of raw images. Instead of learning representations that can take any value in
the latent space, a visual codebook is learned that maps a patch embedding to its nearest codebook
entry, which is a learned and indexable location in the latent space. These entries can be thought of as
visual word types, and the appearance of any of these words in a patch in a given image is thus an
image token.

To be most useful for the second stage model, the image tokenizer needs to learn an effective
visual codebook that supports balanced usage of its entries across a broad range of images. It also
must support reconstruction of a sequence of visual tokens as a high-quality output image. We use
ViT-VQGAN [21] with techniques including `2-normalization codes and factorized codes, which
contribute to training stability, reconstruction quality and codebook usage. A ViT-VQGAN image
tokenizer is trained with the same losses and hyper-parameters as [21] on images of our training
data (see Section 4.1). We first train a ViT-VQGAN-Small configuration (8 blocks, 8 heads, model
dimension 512, and hidden dimension 2048 as shown in Table 2 of [21], with about 30M total
parameters), and learn 8192 image token classes for the codebook. We note that the second stage
autoregressive encoder-decoder training only relies on the encoder and the codebook of a learned
image tokenizer. To further improve visual acuity of the reconstructed images after second-stage
encoder-decoder training, we freeze the tokenizer’s encoder and codebook, and finetune a larger-size
tokenizer decoder (32 blocks, 16 heads, model dimension 1280, and hidden dimension 5120, with
about 600M total parameters). We use 256×256 resolution for the image tokenizer’s input and output.

We notice visual pixelation patterns in some of the output images of ViT-VQGAN when zooming
in (see Appendix H), and further find ill-conditioned weight matrices of the output projection layer
before the sigmoid activation function. As a fix, we remove the final sigmoid activation layer and the
logit-laplace loss, exposing the raw values as RGB pixel values (in range [0, 1]). Conveniently, this
fix can be hot-swappable into an already trained image tokenizer by finetuning the decoder.

Finally, while images of resolution 256×256 capture most of the contents, structures and textures,
higher-resolution images have greater visual impact. To this end, we employ a simple super-resolution
module on top of the image tokenizer, shown in Figure 4. Stacked convolutional layers with residual
connections are used as the super-resolution network module following WDSR [31] (12 residual
blocks with 128 channels). It is learned with the same losses of ViT-VQGAN (perceptual loss,
StyleGAN loss and `2 loss with same loss weighting in [21]), mapping from reconstructed images to
higher-resolution reconstructed images. The super-resolution module has about 15M parameters for
the 512×512 version and about 30M parameters for the 1024×1024 version. We note that diffusion
models could also be used here as iterative refinement super-resolution modules, as also demonstrated
in DALL-E 2 [12] and Imagen [13], either with or without conditioning on text inputs.

2.2 Encoder-Decoder for Text-to-Image Generation

As shown in Figure 3, a standard encoder-decoder Transformer model is trained at the second stage,
by treating text-to-image as a sequence-to-sequence modeling problem. The model takes text as input
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Original Image
256 × 256

ViT-
VQGAN

Reconstructed Image
256 × 256

Reconstructed Image
1024 × 1024

nearest 
downsample

Original Image
1024 × 1024

frozen

Super-Resolution 
Upsampler 

trainable

Figure 4: A learned super-resolution module to upsample 256 × 256 images to higher-resolution
1024 × 1024 ones based on a frozen ViT-VQGAN image tokenizer. The super-resolution module
takes 256× 256 images as inputs without conditioning on text inputs.

Model Encoder Layers Decoder Layers Model Dims MLP Dims Heads Total Params
Parti-350M 12 12 1024 4096 16 350M
Parti-750M 12 36 1024 4096 16 750M
Parti-3B 12 36 2048 8192 32 3B
Parti 16 64 4096 16384 64 20B

Table 1: Size variants of Parti. Both encoder and decoder are based on Transformers [4]. The
self-attention layer in decoder transformer is causally masked. Parameters of ViT-VQGAN image
tokenization are not included in the total parameter count and can be found in Section 2.1.

and is trained using next-token prediction of rasterized image latent codes generated from the first
stage image tokenizer. For text encoding, we build a sentence-piece model [32, 33] of vocabulary
size 16,000 on a sampled text corpus from the training data (Section 4.1). Image tokens are produced
by a learned ViT-VQGAN image tokenizer (see Section 2.1). At inference time, the model samples
image tokens autoregressively, which are later decoded into pixels using the ViT-VQGAN decoder.

We use a maximum length of text tokens of 128, and the length of image tokens are fixed to 1024
(i.e., 32×32 latent codes from a 256× 256 input image). As an example, the 67-word description
of the Starry Night prompt given in Figure 1 has a total length of 92 text tokens. All models use
conv-shaped masked sparse attention [34]. We train four size variants ranging from 350 million to
20 billion parameters, as detailed in Table 1. Specifically, we configure the Transformers following
previous practice of those in scaling language models with default expansion ratio of 4× in MLP
dimensions. We double the number of heads when the model dimension is doubled. In the current
scaling variants, our configuration prefers a larger decoder for modeling image tokens and as a result
the decoder has more layers (e.g., 3× in the 3B model and 4× in the 20B model).

Most of the existing two-stage text-to-image generation models, including DALL-E [2], CogView [3]
and Make-A-Scene [10], are decoder-only models. We found that at the model scale of 350-million
to 750-million parameters, the encoder-decoder variants of Parti outperformed decoder-only ones,
both in terms of training loss and text-to-image generation quality in our early exploration. We thus
chose to focus on scaling the encoder-decoder models.

2.3 Text Encoder Pretraining

The encoder-decoder architecture also decouples text encoding from image-token generation, so it is
straightforward to explore warm-starting the model with a pretrained text encoder. Intuitively, a text
encoder with representations based on generic language training should be more capable at handling
visually-grounded prompts. We pretrain the text encoder on two datasets: the Colossal Clean Crawled
Corpus (C4) [35] with BERT [36] pretraining objective, and our image-text data (see Section 4.1)
with a contrastive learning objective (image encoder from the contrastive pretraining is not used).
After pretraining, we continue training both encoder and decoder for text-to-image generation with
softmax cross-entropy loss on a vocabulary of 8192 discrete image tokens.

The text encoder after pretraining performs comparably to BERT [36] on GLUE (see Appendix G,
Table 9); however, the text encoder degrades after the full encoder-decoder training process on
text-to-image generation. We leave this observation as a future research topic on the difference and
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Figure 5: 4-way in-layer model parallelism with fully partitioned activations used to scale the 3B
model training. The figure shows a simplified Transformer feed-forward layer (with the sequence
dimension omitted); each color represents data on one device. We also use 128-way data parallelism.

unification of generic language representation and visually-grounded language representation. Still,
the text-encoder pretraining marginally helps text-to-image generation loss with 3B-parameter Parti
models, so pretraining is used by default in our 20B model. We provide detailed training loss, GLUE
evaluation of text encoders, and some qualitative comparison in Appendix G.

2.4 Classifier-Free Guidance and Reranking

Classifier-free guidance [37] (CF-guidance in short) is critical in the context of improving the sample
quality of diffusion models [11, 12, 13] without pretrained classifiers. In this setup, a generative
model G is trained to be able to perform unconditional generation G(z) (where z represents random
noise) and conditional generation G(z, c) (where c represents some condition, such as language
descriptions). It is implemented as randomly dropping out the conditional vector (masking out or
switching to a learned embedding) with some probability. During the inference process, sampling of
an output I is done by using a linear combination of the unconditional and conditional predictions:

I = G(z) + λ(G(z, c)−G(z)), (1)

where λ is a hyperparameter representing the weight of classifier-free guidance. Intuitively, it
decreases the unconditional likelihood of the sample while increasing the conditional likelihood,
which can be viewed as encouraging alignment between the generated sample and the text condition.

Classifier-free guidance has been similarly applied in the context of autoregressive models for text-
to-image generation [10, 38] to great effect. Make-A-Scene [10] finetunes the model by randomly
replacing the text prompts with padded tokens. During inference, tokens are sampled from a linear
combination of logits sampled from an unconditional model and a conditional model on a text prompt.
We also apply CF-guidance in Parti, and find it has a significant improvement on the output image-text
alignment, especially on challenging text prompts.

With batch-sampled images per text prompt, contrastive reranking is used in DALL-E [2] which
produces image-text alignment scores after the generation. We apply contrastive reranking in our
work and find it is complementary to classifier-free guidance. Compared with the 512 images used in
DALL-E [2], we sample just 16 images per text prompt for the experiments reported in this paper.
We rerank each output set based on the alignment score of image and text embedding of a Contrastive
Captioners model (CoCa) [25]. A CoCa base-size model (Table 1 in [25]) is trained on the same
dataset with details in Section 4.1. We note that reranking over a small set of batch-sampled images
is computationally cheap in the text-to-image sampling process, and produces helpful image-text
alignment scores among diverse image outputs.

3 Scaling

We implement our models in Lingvo [39] and scale with GSPMD [28] on CloudTPUv4 hardware
for both training and inference. GSPMD is an XLA compiler-based model partitioning system that
allows us to treat a cluster of TPUs as a single virtual device and use sharding annotations on a few
tensors to instruct the compiler to automatically distribute data and compute on thousands of devices.
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Figure 6: An illustration of 16-stage GSPMD pipelines used to scale the 20B model training. The
figure shows how the 16 devices are used for data parallelism in the quantizer, embedding and softmax
layers, but repurposed for pipelining in the encoder and decoder layers. Each color represents data
or layer assigned to one device. The decoder uses 4-round circular schedule to further reduce the
pipeline bubble ratio. On top of this, we use additional 64-way data parallelism for all layers.

Training. We train both 350M and 750M models simply with data parallelism. For the 3B model,
we use 4-way in-layer model parallelism (see Figure 5), and 128-way data parallelism. Partitioning a
single dimension in each tensor is sufficient to scale a 3B model. The model weights are partitioned
on the feed-forward hidden dimension and the number of attention heads dimension; the internal
activation tensors of the feed-forward and attention layers are also partitioned on the hidden and heads
dimensions. One difference from Megatron-LM [27] is we fully partition the output activations of
feed-forward and attention layers on a different dimension, with the details illustrated as the finalized
2d sharding in the GSPMD work [28]. This strategy will result in ReduceScatter and AllGather
communication patterns instead of AllReduce, which significantly reduce peak activation memory.

The 20B model has 16 encoder layers, and 64 decoder layers (see Table 1). The size of the weights
per layer is moderate (as opposed to being very wide), which makes pipeline parallelism [40] a good
option for scaling. We use a generic pipelining wrapper layer allowing us to specify a single-stage
program, which will later be automatically transformed into a multi-stage pipelining program; the
wrapper layer uses vectorization and shifting buffers to reduce pipelining into a tensor partitioning
problem (see Section 3.3 of [28]). Thus, all lower-level infrastructure can be reused for pipelining.
There are two additional benefits in adopting GSPMD pipelining: 1) it allows us to conveniently
configure pipelines within model sub-components, simplifying the overall complexity for encoder-
decoder models, and 2) since pipelining is implemented as tensor partitioning on vectorized programs,
we can reuse the same set of devices for other types of parallelism outside the transformer layers.

We configure the model to have separate encoder and decoder pipelines, each with 16 stages. We
also use 64-way data parallelism in addition to pipelining. However this makes per-core batch size
small, exposing an additional challenge of excessive pipeline stalls due to inter-stage data dependency
(known as bubbles in pipeline parallelism [40]). To reduce the ratio of bubbles, we adapt the circular
schedule as described in [28] in the decoder pipeline (a similar technique was also proposed in [41]),
where the 4 layers in each stage are executed in a round-robin order. Outside the encoder and decoder,
we use the same set of devices to do data parallelism instead of pipelining for the embedding, softmax,
and image tokenizer layers. Figure 6 illustrates the overall distributed training strategy.

During training, Adafactor [42] optimizer is used to save memory with β1 = 0.9, β2 = 0.96 and
decoupled weight decay value of 4.5 × 10−2. The first moments of optimizer slot variables are
also quantized from float32 to int8. We use default dropout ratio 0.1 for all models in both encoder
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Dataset Train Val AvgWords Caption Image

MS-COCO (2014) [16] 82K 40K 10.5 “A bowl of broccoli and apples with
a utensil.”

Localized Narratives
(COCO subset) [29] 134K 8K 42.1 “In this picture, we see a bowl con-

taining the chopped apples and broc-
coli. In the background, we see a
white table on which seeds or grains,
broccoli, piece of fruit, water glass
and plates are placed. This table is
covered with a white and blue color
cloth. This picture is blurred in the
background.”

Table 2: Evaluation data statistics and examples. Images from the COCO portion of Localized
Narratives come from the MS-COCO (2017) set; Localized Narratives descriptions are four times the
length of captions in MS-COCO on average. The example above highlights the massive difference in
detail between MS-COCO and Localized Narratives for the same image.

and decoder. A deterministic version of dropout layer as well as a vectorized version of Adafactor
optimizer are used in the 20B model to enable training pipelined models. Data types are cast to
bfloat16 for attention projection and feed-forward transformers layers, while all layer norms and
model output are kept as float32. We use a default learning rate of 4.5e-5 and exponential learning rate
schedule with 5,000 warm-up steps. Exponential decaying starts at training steps 85,000 with a total
of 450,000 steps and final ratio of 0.025. We use a global batch size of 8192 during training. We do
not use exponential moving average of the model weights to save device memory. Conv-shaped sparse
attention is used in the decoder transformers, similar to DALL-E [2] (Appendix B.1. Architecture,
Fig. 11). We additionally clip gradient norm to a value of 4.0 to stabilize the training, especially at the
beginning. At the output of both the encoder and decoder, we apply an additional layer normalization.

Inference. Our primary goal for inference optimization is to speed up small-batch image generation.
We choose in-layer model parallelism for both the 3B and 20B models. As opposed to training, we
do not fully partition the output activations for feed-forward and attention layers for inference; this is
because 1) each step of the autoregressive decoding produces much smaller tensors and (at the time
of writing) AllReduce performs better on small data, 2) activation memory is not a concern during
inference, which does not have a backward pass.

4 Training and Evaluation Datasets

4.1 Training Datasets

We train on a combination of image-text datasets for all Parti models. The data includes the publicly
available LAION-400M dataset [43]; FIT400M, a filtered subset of the full 1.8 billion examples used
to train the ALIGN model [9]; JFT-4B dataset [44], which has images with text annotation labels. For
textual descriptions of JFT, we randomly switch between the original labels as text (concatenated if an
image has multiple labels) or machine-generated captions from a SimVLM model [45]. We discuss
the limitations of the data in Section 8. For all image inputs, we follow the DALL-E dVAE input
processing (Section A.2. Training in [2]) for image tokenizer training and the DALL-E Transformer
input processing (Section B.2. Training in [2]) for encoder-decoder training.

4.2 Evaluation Datasets

We evaluate our models on MS-COCO (2014) [16] and Localized Narratives [29], summarized
in Table 2. MS-COCO is the current standard dataset for measuring both zero-shot and finetuned
text-to-image generation performance, which makes it a consistent point of comparison with prior
work. However, MS-COCO captions are short, high-level characterizations of their corresponding
images. For a more comprehensive evaluation, we also use the COCO portion of Localized Narratives
(LN-COCO), which provides longer, detailed descriptions of images corresponding to the MS-COCO
(2017) dataset, and compare Parti’s performance on LN-COCO against [46, 47]. These long-form
descriptions are typically quite different from the descriptions used to train large text-to-image
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Category Examples

ABSTRACT commonsense; happiness; hope; insight; 300; 101; golden ratio; Fibonacci number

ANIMALS a Tyrannosaurus Rex; 7 dogs sitting around a poker table, two of which are turning away; a
white rabbit in blue jogging clothes doubled over in pain while a turtle wearing a red tank
top dashes confidently through the finish line

ARTS a dutch baroque painting of a horse in a field of flowers; a painting of a fox in the style of
starry night; A raccoon wearing formal clothes, wearing a top hat and holding a cane. The
raccoon is holding a garbage bag. Oil painting in the style of Vincent Van Gogh.

ILLUSTRA-
TIONS

concurrent lines; a diagram of brain function; concentric squares fading from yellow on the
outside to deep orange on the inside; a drawing of a series of musical notes wrapped around
the Earth

OUTDOOR
SCENES

a grand piano next to the net of a tennis court; a white country home with a wrap-around
porch; beautiful fireworks in the sky with red, white and blue; a peaceful lakeside landscape
with migrating herd of sauropods

PEOPLE the Beatles crossing Abbey road; a woman with long hair next to a luminescent bird; a tall
man stooping down to enter a low red sports car; a politician wearing a soccer jersey and
holding a volleyball while giving a speech on a stage

VEHICLES an F1; a boat in the canals of venice; a car with tires that have yellow rims; a blue semi-truck
and its trailer jumping over a row of motorcycles. there are metal ramps on either side of the
motorcycles.

WORLD
KNOWL-
EDGE

U.S. 101; the skyline of New York City; An aerial view of Ha Long Bay without any boats;
view of the Great Wall from its base; A close-up high-contrast photo of Sydney Opera House
sitting next to Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars,
and radiating swirls of blue.

Table 3: Sample categories in the PartiPrompts (P2) benchmark. Examples (separated by semicolons)
range from abstract concepts such as “golden ratio” to concrete ones such as “the skyline of New
York City”. For full descriptions of all categories, see Appendix D.

generation models. This provides a measure of generalization to out-of-domain distributions, as well
as the finetuning capability of these models. Regardless of the community’s current focus on zero-
shot performance, the ability to finetune effectively is also important for adapting an open-domain
text-to-image generation model to work with a specific application area or domain.

4.3 PartiPrompts

Existing benchmarks like MS-COCO [16] and Localized Narratives [29] are clearly useful for
measuring the progress of text-to-image synthesis systems, but the descriptions available in them
are generally limited to everyday scenes and objects found in natural images. This limits their
representation of a broad spectrum of prompts – in particular, they lack prompts that allow us to
better probe model capabilities on open-domain text-to-image generation. For example, MS-COCO
captions are brief characterizations of high level participants and actions in images; these typically
cover common scenarios and are oriented toward objects. Localized Narratives has highly-detailed
descriptions, but also emphasizes natural scenes and objects. Recently, the work by [48] focuses
on the text-to-image generation task, but is limited to only two scenarios, unseen object-color (e.g.,
“blue petal”) and object-shape (e.g., “long beak”). Motivated by these shortcomings, we present
PartiPrompts (P2), a set of 1600 diverse English prompts that allow us to more comprehensively
evaluate and test the limits of text-to-image synthesis models.

Each prompt in the P2 benchmark is associated with two labels: (1) Category, indicating a broad
group that a prompt belongs to, and (2) Challenge, highlighting an aspect which makes a prompt
difficult. Table 3 provides a few samples of categories (out of 12 options) used in P2, ranging from
abstract concepts such as the “golden ratio” to concrete world-knowledge ones such as “the skyline
of New York City”. Similarly, Table 4 lists a sample of challenge aspects (out of 11), ranging from
basic ones such as “a rabbit” to complex ones such as a full description of the painting Starry Night
(“Oil-on-canvas painting of a blue night sky ... A church rises as a beacon against rolling blue
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Challenge Examples

BASIC a rabbit; U.S. 101; a margarita; lily pads; brain coral; The Alamo; a family

COMPLEX the Sydney Opera House with the Eiffel tower sitting on the right, and Mount Everest
rising above; a white rabbit in blue jogging clothes doubled over in pain while a turtle
wearing a red tank top dashes confidently through the finish line; Oil-on-canvas painting
of a blue night sky with roiling energy. A fuzzy and bright yellow crescent moon shining at
the top. Below the exploding yellow stars and radiating swirls of blue, a distant village
sits quietly on the right. Connecting earth and sky is a flame-like cypress tree with curling
and swaying branches on the left. A church spire rises as a beacon over rolling blue hills.

IMAGINATION a four-eyed horse; a toaster shaking hands with a microwave; a peaceful lakeside land-
scape with migrating herd of sauropods; a flower with large red petals growing on the
moon’s surface; A rusty spaceship blasts off in the foreground. A city with tall skyscrapers
is in the distance, with a mountain and ocean in the background. A dark moon is in the
sky. realistic high-contrast anime illustration.

LINGUISTIC
STRUCTURES

Incomprehensibilities; Pneumonoultramicroscopicsilicovolcanoconiosis; The horse raced
past the barn fell; One morning I chased an elephant in my pajamas; The dog chased the
cat, which ran up a tree. It waited at the top; The dog chased the cat, which ran up a tree.
It waited at the bottom.

PERSPECTIVE the back of a violin; an extreme close-up view of a capybara sitting in a field; tall buildings
seen through a window with rain on it; view from below of a tall white ladder with just
one rung leaning up against a yellow brick wall

QUANTITY an owl family; 7 dogs sitting around a poker table, two of which are turning away; a
basketball game between a team of four cats and a team of three dogs

WRITING &
SYMBOLS

a grumpy porcupine handing a check for $10,000 to a smiling peacock; a group of cats in
a meeting. there is a whiteboard with "stack more layers" written on it; The saying "BE
EXCELLENT TO EACH OTHER" written on a red brick wall with a graffiti image of a
green alien wearing a tuxedo. A yellow fire hydrant is on a sidewalk in the foreground.

Table 4: Sample challenge aspects in the P2 benchmark. Examples (separated by semicolons) range
from basic to complex ones such as a full description of the Starry Night “Oil-on-canvas painting of a
blue night sky ... rolling blue hills”. For full descriptions of all challenge aspects, see Appendix D.

hills.”). For example, the prompt “a peaceful lakeside landscape with migrating herd of sauropods”
is categorized as OUTDOOR SCENES, while its challenge aspect is IMAGINATION. Similarly, the
prompt “7 dogs sitting around a poker table, two of which are turning away” has ANIMALS as
category and QUANTITY as challenge aspect. These two views of a prompt allows us to analyze a
model’s capabilities from both aspects–the overall content generated and the subtle details captured.

Figure 7: A summary of the PartiPrompts (P2) set of 1600 descriptions, spanning across many
category labels (left) and challenge aspects (right).

We created PartiPrompts both by thinking of novel prompts and by manually curating and sampling
prompts from recent papers [2, 3, 11, 12, 49] (which accounts for about 7% of prompts in P2). While
it is possible to assign multiple categories and challenge aspects to a prompt, we chose to reduce the
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complexity of model analysis by manually deciding on a single primary category and challenge aspect
for each prompt. For example, when there is a proper noun, we will prefer to label the prompt as
WORLD KNOWLEDGE (e.g., “a painting of street in Paris”) over other categories, e.g., ARTS. We also
prioritize categories that have fewer examples, e.g., ARTS, over those with plenty, such as ANIMALS,
as in the case of the prompt “A raccoon wearing formal clothes, wearing a tophat and holding a cane.
The raccoon is holding a garbage bag. Oil painting in the style of Vincent Van Gogh.” The PEOPLE
category always takes priority, e.g., “a team playing baseball at the beach” is labeled as PEOPLE
instead of OUTDOOR SCENES; we do this to ease future work on fairness and bias interested in
using PartiPrompts, as it can be easily split to include or exclude prompts involving people. Figure 7
highlights the distribution of category labels and challenge aspects over the 1600 prompts. One can
group these prompts into levels of difficulties by the challenge aspects: Standard includes BASIC
and SIMPLE DETAIL (about 1/3 of the prompts); Intermediate includes FINE-GRAINED DETAIL
and STYLE & FORMAT (also about 1/3 of the prompts); and Challenging includes the remaining 7
challenge aspects such as IMAGINATION, QUANTITY, COMPLEX, and LINGUISTIC STRUCTURES.

It is also worth mentioning DrawBench, a concurrently developed benchmark of 200 prompts
introduced in [13]. It has eleven labels that mix both categories (e.g., “DALL-E”) and challenging
aspects (e.g., “Counting”). PartiPrompts, in contrast, teases apart these two dimensions, with 12
categories and 11 challenging aspects, allowing for richer categorizations of prompts and more fined-
grained analyses, together with 8× more prompts. Both benchmarks contain prompts that present
strong challenges for current best models–including DALL-E 2, Imagen and Parti–and hopefully will
inspire further benchmarks to increase the level of difficulty as future models continually improve.

5 Experiments

We conduct automatic evaluations on both MS-COCO and Localized Narratives to compare with
previous work. On MS-COCO and PartiPrompts, we also obtain human side-by-side evaluations for
Parti 20B to compare with a strong retrieval baseline, as well as the XMC-GAN model [47], which
has the best FID out of all publicly available models at the time of writing. We also conduct human
evaluation on two Parti models with parameters 3B and 20B on PartiPrompts, and provide a detailed
breakdown on categories. By default, Parti samples 16 images per text prompt and uses a CoCa
model to rank the outputs (see Section 2.4).

5.1 Retrieval Baseline

Perhaps the most compelling use for text-to-image generation models is creating novel images for
situations that have never been depicted. Strong models should thus be more effective than an
approach that simply retrieves candidate images from a large dataset. We implement a retrieval
baseline as follows. For every training data example, we compute image embeddings from an
EfficientNet-L2 ALIGN-based model [50]. Then, given a text prompt, we identify the nearest training
image measured by the alignment between the text prompt embedding from the ALIGN-based model
and the image embeddings. This can be done at the scale of our data by using efficient similarity
search libraries such as ScaNN [51]. These retrieved examples (from the training set) are then
provided as the output of the baseline, to be evaluated by images actually generated by our models.
We manually visualize the retrieved images given the text prompts and observe that this retrieval
approach represents a high-quality baseline, especially for common text descriptions.

To compare with Parti generated images, we report retrieval baseline results under two settings that
we characterize as zero-shot and finetuned to align with the model evaluation terminology. For
MS-COCO, retrieval over our training data is “zero-shot”, while retrieval over MS-COCO’s train split
is “finetuned” – corresponding to out-of-dataset and in-dataset retrieval, respectively. We compare
Parti generated images with retrieved images using both automated measures and human evaluation
for both image realism and image-text alignment.

5.2 Evaluation Metrics

We evaluate using two primary axes: (1) generated image quality, and (2) alignment of the generated
image with the input text. We report both automated quantitative metrics and human evaluation
results. In addition, we show example model outputs for qualitative assessment and comparison.
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Approach Model Type MS-COCO FID (↓) LN-COCO FID (↓)

Zero-shot Finetuned Zero-shot Finetuned

Random Train Images [10] - 2.47 -
Retrieval Baseline - 17.97 6.82 33.59 16.48

TReCS [46] GAN - - - 48.70
XMC-GAN [47] GAN - 9.33 - 14.12
DALL-E [2] Autoregressive ∼28 - - -
CogView [3] Autoregressive 27.1 - - -
CogView2 [61] Autoregressive 24.0 17.7 - -
GLIDE [11] Diffusion 12.24 - - -
Make-A-Scene [10] Autoregressive 11.84 7.55 - -
DALL-E 2 [12] Diffusion 10.39 - - -
Imagen [13] Diffusion 7.27 - - -

Parti Autoregressive 7.23 3.22 15.97 8.39

Table 5: Comparison with previous work on the MS-COCO (2014) [16] and Localized Narratives
(COCO split) [29] validation sets. When available, we report results for both zero-shot and finetuned
models. Retrieval models either perform retrieval over our training set (“zero-shot”), or the respective
MS-COCO and LN-COCO training sets (“finetuned”). Parti samples 16 images per text prompt and
uses a CoCa model to rank the outputs (Section 2.4). Similar to DALL-E 2 [12], we use guidance
scale 1.2 for all above results. We report zero-shot FID score of other model sizes in Figure 9.

Automatic image quality. Similar to prior work in text-to-image generation, we use the Fréchet
Inception Distance (FID) [52] as the primary automated metric for measuring image quality.6 FID is
computed by running generated and real images through the Inception v3 [53] model, and extracting
features from the last pooling layer of the model. The Inception features of the generated and real
images are used to fit two separate multi-variate Gaussians. Finally, the FID score is computed
by measuring the Fréchet distance between the two multivariate Gaussian distributions. Following
[2, 47, 54], we use 30,000 generated and real image samples for evaluation on MS-COCO (2014)
using the same DALL-E input preprocessing (Section B.2. Training in [2]) with 256×256 image
resolution. The validation set of the Localized Narratives COCO split contains only 5,000 unique
images, so we follow [47] in oversampling the captions to acquire 30,000 generated images.

Automatic image-text alignment. Following DALL-Eval [55], we also measure text-image fit
through automated captioning evaluation (or captioner evaluation): an image output by the model is
captioned with a pretrained VL-T5 model [56] and then the similarity of the input prompt and and
the generated caption is assessed via BLEU [57], CIDEr [58], METEOR [59] and SPICE [60].

Human side-by-side. We follow previous work [2, 47] in doing side-by-side evaluations in which
human annotators are presented with two outputs for the same prompt and are asked to choose which
output is a higher quality image (generally, better with respect to image realism) and which is a better
match to the input prompt (image-text alignment). The models are anonymized and the pairs are
randomly ordered (left vs. right) for each presentation to an annotator, and each pair is judged by five
independent annotators. We graphically show the gradual breakdown of results for each model in
terms of the number of examples where it obtains 0, 1, 2, 3, 4 or 5 votes. In addition, we highlight
the percentage of examples where each model has obtain the majority (three or more votes), as a
summary of the comparison. See Appendix E for a screenshot of our annotator interface.

5.3 Main Results

Table 5 presents our main results of automated image quality evaluation. Parti achieves a comparable
zero-shot FID score 7.23 compared with diffusion-based model Imagen [13]. When finetuned, Parti
achieves state-of-the-art FID score of 3.22, a dramatic improvement over previous best finetuned FID
7.55 from an autoregressive model, Make-a-Scene [10]. It is also better than the in-dataset retrieval
baseline, with an FID score 6.82. We note that the retrieval baseline is worse than using 30,000

6We use https://github.com/mseitzer/pytorch-fid for computing FID scores.
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Approach BLEU (↑) METEOR (↑) CIDEr (↑) SPICE (↑)
Random Train Images 4.4 9.2 4.8 2.0
Retrieval Baseline 24.7 23.9 84.1 16.6
Ground Truth (upper bound) 32.5 27.5 108.3 20.4

DALL-ESmall5 9.3 12.9 20.2 5.6
ruDALL-E-XL6 13.9 16.0 38.7 8.7
minDALL-E [62] 16.6 17.6 48.0 10.5
X-LXMERT [63] 18.5 19.1 55.8 12.1

Parti 26.4 23.9 83.9 16.5

Table 6: Comparison with prior work on captioner evaluation on the MS-COCO 5K test set [64]
with baselines from DALL-Eval [55]. Ground Truth represents the theoretical upper bound on this
evaluation with captions generated using MS-COCO images as inputs to the VL-T5 model [56]. Parti
samples 16 images per text prompt and uses a CoCa [25] model to rank the outputs (Section 2.4).

random samples from MS-COCO real training set images – which obtains an FID of 2.47. The root
cause is that the retrieval model often selects the same images for similar types of prompts, leading to
duplicates in the retrieved images for evaluation. For example, there are only 17,782 unique retrieved
MS-COCO train images for 30,000 validation text prompts, leading to worse diversity and poorer
FID score as compared to the 30,000 random samples from the train set. We also show qualitative
comparisons (Appendix C, Figure 24) of non-cherry-picked Parti sampled images along with outputs
of other approaches [2, 10, 11, 12] on MS-COCO prompts. Parti demonstrates strong generalization
without finetuning on specific domains like MS-COCO, and it achieves a high degree of image
realism – often very close to that of real images.

For LN-COCO, Parti achieves a finetuned FID score of 8.29, which is a massive improvement over
XMC-GAN’s finetuned result of 14.12 and the retrieval baseline’s 16.48. Moreover, Parti achieves
a zero-shot FID score of 15.97, which nearly matches XMC-GAN’s finetuned score (trained on
LN-COCO set). We visualize and compare side-by-side with XMC-GAN and find the zero-shot
images produced by Parti are qualitatively much better in realism and image-text fit compared to
images produced by XMC-GAN, which we offer as a cautionary tale that researchers should not rely
solely on FID for comparison of text-to-image generation models.

5.4 More Results on MS-COCO

Automatic image-text alignment evaluation. Table 6 provides results of Parti on the captioner
evaluation [55] as an automatic image-text alignment measure. Parti outperforms other models on
this measure, and it closes much of the gap to the scores obtained for captions generated from the
ground truth images. The retrieval baseline performs comparable to Parti. Unlike FID scores, random
train images perform considerably worse on the captioner evaluation, as expected. The captioner
evaluation complements FID score evaluation as an automatic image-text alignment measurement for
text-to-image generation models; however, we also note these results are limited by the captioner
model’s [56] ability to discriminate between outputs from different approaches.

Human evaluations. For MS-COCO, we compare our zero-shot generation results against the
finetuned XMC-GAN [47] model, which has best the FID out of all publicly available models with
available images of the same MS-COCO prompts, at the time of writing. For each prompt, the
output from Parti and XMC-GAN are anonymized and shown to 1,000 independent human evaluators.
The results are summarized and shown in Figure 8. Even though Parti is not trained on MS-COCO
captions or images, our results are overwhelmingly preferred by human annotators over XMC-GAN
outputs: 91.7% preference score for image realism and 90.5% for image-text match.9 When compared
against the retrieval model on MS-COCO, Parti is evaluated as slightly worse on image realism

5https://github.com/lucidrains/DALLE-pytorch
6https://rudalle.ru
9We analyzed the cases in which XMC-GAN is rated as more realistic compared to Parti, and found that

most of these examples were due to Parti producing illustrations or cartoons, rather than photo-realistic images.
While these were generally well aligned with the given prompts, the evaluation likely disadvantages Parti since
MS-COCO is entirely focused on photographs and descriptions of them.
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Figure 8: Human evaluation results over 1,000 randomly sampled prompts from the MS-COCO
(2014) validation set. Each prompt is rated by 5 independent human evaluators. The zero-shot Parti
models are used in all comparisons. Our model significantly outperforms XMC-GAN [47], despite
the latter being finetuned on MS-COCO. When compared against the retrieval model (retrieval over
about 4B training images), Parti is better on image-text match, but worse on image realism (as
retrieved images are real images).

(45.2% compared to 54.8%) but evaluated as better on image-text match (55.2% compared to 44.8%).
This shows that in nearly half of the comparisons between Parti’s output and real images, the former
generated images were judged as more realistic by people—a strong statement of the visual quality of
images produced by the model. The fact that Parti outputs are preferred for image-text match shows
that generation is an important means of producing accurate visual depictions of even the mostly
quotidian scenes described in MS-COCO captions.
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Figure 9: Effects of scaling Parti models of different sizes. We show zero-shot FID scores (left) on
MS-COCO (2014) and the training loss curves of the corresponding models (right).

Comparison of Model Scaling. We compare four different model sizes of Parti, with parameter
counts ranging from 350M, 750M to 3B and 20B, as shown in Table 1. All four models are trained
on the same mixture of datasets with the same image tokenizer and CoCa reranking model described
in Section 2.4. Figure 9 summarizes the corresponding zero-shot FID scores on MS-COCO (2014).
Parti models are trained with next token prediction loss for text-to-image generation, using softmax
cross-entropy loss over a 8192-vocab image codebook. The loss is averaged by 1024 (the total
output length) image tokens per example. We observe better training loss as well as zero-shot FID
on MS-COCO when we scale up the model. Specifically, a significant quality jump is achieved
by scaling model from 750M to 3B; furthermore, the 20B model outperforms 3B model in more
challenging prompts (e.g., text rendering). We highlight qualitatively how these models perform
visually in Figures 10 and 13, using challenging prompts from the P2 benchmark (see Section 5.5).

5.5 Results on PartiPrompts

Human Evaluations. In addition to MS-COCO, we also conduct human evaluations on the P2
benchmark, comparing our 20B model against the 3B variant and the Retrieval baseline. Figure 11
shows that the 20B model is clearly preferred by annotators over the retrieval baseline both in terms of
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Parti-350M Parti-750M Parti-3B Parti-20B

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass
in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

A green sign that says "Very Deep Learning" and is at the edge of the Grand Canyon.
Puffy white clouds are in the sky.

A blue Porsche 356 parked in front of a yellow brick wall.

A photo of an astronaut riding a horse in the forest. There is a river in front of them with water lilies.

A map of the United States made out of sushi. It is on a table next to a glass of red wine.

Figure 10: Qualitative comparison of top-1 images sampled from Parti models of increasing sizes
(350M, 750M, 3B, 20B). All Parti models sample 16 images per text prompt and rerank using the
same CoCa model described in Section 2.4. We use prompts in the P2 benchmark (Section 4.3) to
test WORLD KNOWLEDGE, FINE-GRAINED DETAIL, and WRITING & SYMBOLS.
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Figure 11: Human evaluation results on PartiPrompts.

image realism (63.2%) and image-text match (75.9%). These results offer a complementary view to
the comparison in Figure 8: on the much more challenging P2 benchmark (Section 4.3), the retrieval
baseline was unable produce matching outputs for many prompts. The 3B model closes the gap but
the 20B is still preferred in terms of image realism (56.8%) and image-text match (62.7%).
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Figure 12: Breakdown of human preferences of the Parti 20B model over the 3B model in terms of
P2 categories (left) and challenge aspects (right). Each aspect is shown along with the number of
prompts associated with it (e.g., the Abstract category has 46 prompts).

To better understand the improvements of the 20B over the 3B models, Figure 12 further breaks
down human preferences of the 20B model in terms of image-text match across P2 categories (left)
and challenge aspects (right). In terms of categories, the 20B model is clearly preferred over most
categories, especially ABSTRACT, WORLD KNOWLEDGE, VEHICLES, and ARTS. The 20B and
3B models are on par for PRODUCE & PLANTS. In terms of challenge aspects, the 20B model are
better over all dimensions, especially WRITING & SYMBOLS, PERSPECTIVE, and IMAGINATION.
See Appendix F for full breakdown on image realism and image-text match for both the Retrieval
baseline and the 3B model.

Qualitative comparison. To understand qualitatively the effect of scaling, we present in Figure 10
and 13 non-cherry-picked top-1 images sampled from Parti models of increasing sizes (350M, 750M,
3B, 20B). All model variants use the same image tokenizer and CoCa reranking model, described in
Section 2.4, with sampling of 16 images per text prompt. We use prompts from the P2 benchmark to
test the models’ capabilities across a range of categories and challenging aspects.
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Parti-350M Parti-750M Parti-3B Parti-20B

Infinity

The back of a violin

Four cats surrounding a dog

A squirrel gives an apple to a bird

Pneumonoultramicroscopicsilicovolcanoconiosis

Figure 13: Qualitative comparison of scaling Parti models, similar to Figure 10. We show that simple
prompts from the P2 benchmark (Section 4.3) can also be quite challenging. These examples test
concepts such as ABSTRACT, PERSPECTIVE, QUANTITY, and LINGUISTIC STRUCTURE.
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Figure 10 clearly shows improved quality as we scale up model size. The 3B model is, sometimes,
as good as the 20B one in terms of the visual quality and image-text alignment for FINE-GRAINED
DETAIL prompts such as “astronaut riding a horse” with “water lilies”. The “blue Porsche 356” over
“yellow brick wall” is a strong test of world knowledge: only the 20B model gets it right. The 3B
model produces a visually clean car, but it is one which never existed – it seems to merge features of
multiple two-seater sports cars from the 1960s. When it comes to more challenging prompts such as
those that test WORLD KNOWLEDGE and WRITING & SYMBOLS, the 20B model is able to produce
better compositions, such as the “kangaroo wearing an orange hoodie and blue sunglasses” over the
“Sydney Opera House” and the sushi-made “map of United States” (interestingly with wasabi in the
map from the 20B model), as well as precise text outputs, such as “Welcome Friends!” and “Very
Deep Learning”, compared to those of the 3B model.

Figure 13 examines models from a different perspective by demonstrating that short prompts in the
P2 can also be quite challenging. The 20B model shows its strong visual abilities when generating
ABSTRACT concepts, e.g., the “infinity” sign, and atypical PERSPECTIVE, e.g., “the back of a violin.”
While both the 3B and 20B models generate animals rather well, the 20B model shines with more
photorealistic outputs, e.g., for the prompt “a squirrel gives an apple to a bird”, and correct QUANTITY
in the case of “Four cats surrounding a dog”. Lastly, for the LINGUISTIC STRUCTURE example
of “Pneumonoultramicroscopicsilicovolcanoconiosis”, considered to be the longest English word
(related to a lung disease), the 20B model generates a reasonable illustration of a lung.

6 Discussion

In this section, we discuss our selected examples, then give a walk through of working with a complex
prompt, and finally provide a break-down (with examples) of limitations of Parti.

6.1 Selected Examples

In Figures 1 and 2 (along with the additional examples in Figures 16, 17 and 19 in the Appendix),
we hope to concretely convey some of the strengths of Parti, including its ability to handle complex
prompts, multiple visual styles, words-on-text, world knowledge, and more. The top row of Figure 1
shows the model accommodating a very long and complex description of van Gogh’s painting The
Starry Night—the outputs all come from the same batch and show considerably visual diversity. The
other rows show that the model can co-locate famous landmarks in a common scene and adapt styles.

The top row of Figure 2 shows single images for tricky or complex prompts: (A) is short but
includes writing of an intentionally misspelled word “toaday” (toad-ay) and an image-within-image
specification that is successfully executed; (B) has a complex prompt that requires knowledge of
both Anubis and the Los Angeles skyline; and (C) has extensive visual complexity covering multiple
entities and their details and (literal) writing on the wall, with photo-realism. (D) shows simple but
effective concept combination. (E) provides four outputs from the same batch, showing both diversity
and quality of multiple outputs for a complex prompt. (F) demonstrates text rendering of a reasonably
long expression along with other complex details, including following the contours of driftwood,
fading of the writing and its reflection in the water, and integration of words into stained glass.10 (G)
shows that the model can reproduce world knowledge related to precise visual details for multiple
variants of three vehicles that have existed and changed over many decades, while also incorporating
additional scene details and color specifications and producing photo-realistic outputs. (H) shows
a detailed description in the style of various artists and art movements. (I) shows the adaptation of
animals and sports to the style of Egyptian hieroglyphics and additionally placed on Athenian vases
(which featured a different art style), including conforming the painting to the contours of the vases.

10The prompts in Figure 2, panel F are: The saying "BE EXCELLENT TO EACH OTHER" X, where X is:

• written on a red brick wall with a graffiti image of a green alien wearing a tuxedo. A yellow fire
hydrant is on a sidewalk in the foreground.

• written with carved letters on driftwood.

• written in faded paint on the hull of an old wooden boat and reflected in the water. Wide-angle lens.

• written in a stained glass window.
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6.2 Growing a Cherry Tree

Like other recent work on text-to-image generation, this paper includes novel images and the complex
prompts given to the model to produce them, as discussed in the previous subsection. Naturally,
the most challenging and impressive examples are selected (that is, cherry picked), as noted in the
captions. As such, they do not typically represent, for example, a single shot interaction in which the
model directly produces such an image as its most highly ranked output. As noted in section 8, we
are unable to release our model directly to the public, so in this section we hope to provide a brief
window into the process of increasing descriptive and visual complexity with Parti, including how,
along the way, things go right or do not just work immediately.

A key concept we would like to introduce in this endeavor is that of growing the cherry tree — a
concept that we believe will be useful in this space going forward. To put a fine point on it, many
of the prompts and resulting images that are seen in Figure 2 and others in the Appendix (noted
as “selected”) are not only cherry picked: they are the result of exploring and probing the model’s
capabilities – the product of an interactive process in which a prompter tests a prompt idea, evaluates
the outputs holistically, modifies the prompt, and repeats the process. Sometimes, all the outputs are
great, and the prompter wants to push the model further. Other times, none of the outputs are ideal,
so strategies to change or rephrase the prompt are employed. In this way, one develops a prompt in
increments while interacting with the model, in order to produce a cherry tree that offers up some
great outputs that can ultimately be plucked. While many–perhaps most–of the prompts an average
user would come up with would be quite a bit simpler, this is how we find the breaking points and
identify the next opportunities and challenges to focus on. We also expect that designers, artists and
other creatives would similarly want to push on these limits; anecdotally, this is how some artists
have described working with current text-to-image models that are available to the public.

As a concrete example, consider the process of developing a complex prompt as depicted in Figure 14.
This shows a branching and merging process of creating prompt variations, along with two outputs
for each prompt. In each box with a prompt, the best of the top eight 20B Parti outputs (as ranked
from all outputs) is given on the left and the worst of the top eight is given on the right.

• We start with two core entities, the sloth and the van, in Row 1.

• Row 2 adds specific details for each; overall, the model accommodates this well, but notice
that box 2(b) has a sloth with two books and an odd bow tie as its worst outcome of eight.

• Row 3 shows the first major problems: Box 3(a) has two left arms on the sloth and Box 3(b)
has a sloth but is completely missing the van mentioned in the prompt.

• Row 4 shows where things start to get particularly tricky: 4(a) is the full combination of
the sloth and van with all details, though only by simple concatenation of the respective
prompts. The best (left) output manages to get things technically correct, but the van is out
of the picture; however, the worst (right) output is a confused mess. 4(b) attempts to improve
matters by relating the sloth and van via positioning (The sloth stands a few feet in front of
a shiny VW van), but this ends up producing cartoonish outputs, and even the best output
puts the cityscape in the background rather than on the van. 4(c) shows one fix, which is
to switch to flowers on the van; with this, the model can produce a strong, photorealistic
output that corresponds well with the prompt.

• A second fix is given in 5(b), where the van and photo are promoted to the front of the
prompt (rephrasing); alas, the sloth is missing its quarterstaff in the best output, and the
worst output is cartoonish and lacking in key details. 5(a) shows that some problems of
perspective and representation are resolved by going to a non-photo format (but the city is
not on the van, yet again). 5(c) shows that a format change (to ink sketch) and swapping
flowers for the cityscape again rescue the composition for the best output; however, the
worst output is again a confused mess with a van that has a cowboy hat and a sloth arm
holding a quarterstaff.

We hope this diagram and its description give a sense of how a model like this responds as one
adds detail and rephrases prompts. In a sense, this is a form of model whispering as one stretches
such models to their limits. That said, it is often remarkable how much descriptive complexity and
diversity the model can readily accommodate. In the next section, we point to specific areas in which
the Parti model still systematically runs into difficulty and are thus key areas for improvement.
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Figure 14: A depiction of several steps in the process of adding details or rephrasing to build a
complex prompt that the model responds to well. For each prompt, we show the best output of the
top eight ranked images (on the left) and the worst (on the right), using the 20B Parti model. Note
that for rows 1-4, the additional text “dslr photograph. daytime lighting.” is appended to the given
prompt. See Section 6.2 for discussion.
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6.3 Limitations

There are a number of situations that Parti currently handles poorly or inconsistently, or which lead to
interesting patterns in outputs – even producing some bloopers (which can at times be delightful).
The likelihood of all of these errors increases with prompt complexity. Figure 15 provides example
prompts and images, along with mention of specific failure modes they exemplify. Note that the
examples are selected non-cherries that are often low in the ranked outputs, and that in many cases
(though not all) the model produces a highly ranked and high-quality output for the prompt. 11 We
list the failure modes and discuss them here. Unless otherwise specified, all references are to Figure
15, and are given in terms of panel (capital letter) and image (a-d).

Color bleeding. When color is provided for one object in a description or is very strongly associated
with the object itself, but left unspecified for others, it often spreads to the under-specified objects.
Examples include baseballs being made yellow when in the presence of tennis balls (A(b,c)), or a
crown being given the color of a shirt (D(a,d)).

Feature blending. Similarly, when two described objects have some similarities, they can become
fused as one object or the attributes of another are incorporated. Examples included baseballs with
tennis ball fuzz (A(b,c)), hybrids of the Great Pyramid and Mount Everest instead of co-placement
(B(c,d)), and the melding of the VW symbol into the kilt’s sporran (Fig. 14, boxes 4b, 4c, 5a).

Omission, hallucination, or duplication of details. Especially in complex scenes, the model will at
times either omit some mentioned details, duplicate them or hallucinate things that are not mentioned.
Examples include missing baseballs in A(d), the missing space shuttle in D(a,c), the missing horse
carriage and statue in I(b), and the inclusion (hallucination) of glasses in H(d).

Displaced positioning or interactions. Objects are at times put in the wrong position (especially
with increased prompt complexity). Examples include the beetle not grappling with the airplane in
C(a,c,d), the space shuttle and drawing of a shuttle in D(b,d), the grass and crack in H(a), and the
position of the Earth in I(b).

Counting. Parti can reliably produce up to seven objects of the same type (when not also specifying
other objects as in panel A or mixing other details). Beyond that, it is mostly imprecise. When
there are counts of multiple types of entities, there is a near complete failure, as shown in A(a-d).
Interestingly, the reranker appears to help with counting; e.g.for five red apples the top six images all
have five apples, but thereafter the count varies from four to six. For ten red apples (see E(c,d)), the
counts for the top-ranked eight images for one batch were 8, 10, 9, 9, 9, 8, 11, 6.

Spatial relations. While the model often correctly depicts objects specified as above or below each
other, it is still inconsistent for that and is usually random for left vs. right. These failures especially
compound when it involves spatial relations between groups of objects (e.g., A(a) and F(a,b)).

Negation and absence. Parti tends to draw items that are mentioned, even when the prompt says
a thing is missing. For example, F(c,d) shows outputs that include bananas and orange juice even
though the prompt is A plate that has no bananas on it. There is a glass without orange juice next
to it. F(d) has bananas off the plate, but this is just an incidentally interesting example and not an
indicator of handling mention-of-absence well. We do find some examples with no bananas that
are ranked very low, so there is also appears to be a compounding effect of both the generator and
reranker in this case.

Incorrect visual aspect and media blending. Especially in scenes where mixed media types are
involved, such as photo-realistic objects along with writing and paintings on walls, some items will

11Some prompts could not fit in the figure. They are:

H(a,b) A robot painted as graffiti on a brick wall. The words "Fly an airplane" are written on the wall. A
sidewalk is in front of the wall, and grass is growing out of cracks in the concrete.

I(a,b) Horses pulling a carriage on the moon’s surface, with the Statue of Liberty and Great Pyramid in the
background. The Planet Earth can be seen in the sky. DSLR photo.

I(c) A shiny robot wearing a race car suit and black visor stands proudly in front of an F1 race car. The
sun is setting on a cityscape in the background. comic book illustration.

I(d) the saying "BE EXCELLENT TO EACH OTHER" on a rough wall with a graffiti image of a green
alien wearing a tuxedo.
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A. Four images generated in the same batch for the prompt two
baseballs to the left of three tennis balls. Failures: color bleeding
(b); feature merging (b,c); counting (a-d); spatial relations (a-d).
(b-d) also include (arguably reasonable) hallucination of ground

details such as gravel and grass.

B. Generated images of (a) Mount Everest and (b) The Great
Pyramid as references and demonstrating the model’s knowledge.

Two images (c,d) generated for The Great Pyramid of Giza
situated in front of Mount Everest. Failures: feature-merging of
pyramid with pyramidal top of Everest (d) or making a snowy
Egyptian Pyramid (d); the pyramid depicted is Khafre’s, not

Khufu’s (Great) Pyramid (d).

C. Four images generated in the same batch for the prompt A
rhino beetle this size of a tank grapples a real life passenger

airplane on the tarmac. Failures: difficulty in overriding true life
size leads to a big beetle poorly merged with a tank (a); toy

airplane (b), attempts to use perspective to make a big beetle (c,d),
hallucination of extra beetle (b).

D. Four images generated in the same batch for the prompt A
portrait of a statue of Anubis with a crown and wearing a yellow
t-shirt that has a space shuttle drawn on it. A white brick wall is

in the background. Failures: color bleeding (a,d); incorrect visual
aspect (a,b,d); (unspecified) media blending (c); displaced

positioning (b,d); missing details (a,c).

E. (a,b) Two images generated in the same batch for a cream
colored labradoodle next to a white cat with black-tipped ears.

(c,d) Two images generated in the same batch for ten red apples.
Failures: hard to disentangle specific features assigned to

multiple entities in the same description (a,b); incorrect count of 8
(a) and 11 (b). (Note that some correctly had ten apples.)

F. (a, b) Two images in the same batch for the prompt a stack of
three red cubes with a blue sphere on the right and two green
cones on the left. (c, d) Two images in the same batch for the

prompt a plate that has no bananas on it. there is a glass without
orange juice next to it. Failures: Incorrect relative positioning of

objects (a,b,d). Incorrect coloring-to-attribute association (b).
Hallucination (of objects specifically mentioned as absent) (c, d).

G. (a,b) Two images in the same batch for A horse sitting on an
astronaut’s shoulders. DSLR photo. (c,d) Two images in the same
batch for Zoomed out view of a giraffe and a zebra in the middle

of a field covered with colorful flowers Failures: hallucination (a);
difficulty overriding strong priors (b); entity overriding (another

horse instead of an astronaut) (b); entity duplication (zebras) (c,d).

H. (a,b) Two images generated in the same batch for A robot
painted as graffiti on a brick wall. The words "Fly an airplane"
are written on the wall. A sidewalk is in front of the wall, and

grass is growing out of cracks in the concrete. (c,d) Two images
for a poodle wearing a baseball cap holding a dictionary in hand
and writing bonez on a chalkboard Failures: Errors/omissions in

rendering text (all); use-mention confusion for words (b);
incorrect visual aspect (grass)(a); displaced positioning (cracks)

(a); hallucination (d).

I. (See main text for full prompts) (a,b) Two images generated for
a complex prompt of horses pulling a carriage, the statue of liberty,
the moon, and the Earth, and images for (c) a robot race car driver

and (d) alien graffiti with writing. Failures: Duplication of
objects (a,b); relative scaling errors (a,b,c); physically impossible

configurations (b,c,d); (unspecified) media blending (d).

Figure 15: Images from 20B Parti model showing errors and limitations. In the captions, (a), (b),
(c), (d) refer to top left, top right, bottom left and bottom right, respectively. Note that many of
the example images come from batches that included successful (and typically more highly ranked)
images. See Section 6.3 for detailed discussion. 23



jump from being depicted as an object to being depicted as a drawing, or vice versa. Examples
include the drawn form of Anubis in D(a), the space shuttle as an object in D(b), and the grass as
painted on the wall in H(a). We also see media blending, where an object’s coherence is lost and
it transitions from object to drawing, such as the blending of the drawn Anubis head with body in
D(c) and the alien’s top part being a painting that connects to non-drawn legs in I(d). While these are
interesting visual effects, they were not specified in the prompt and thus indicate a lack of control
over object coherence and appearance in such situations.

Strong visual priors. Certain configurations and visual features are so strongly correlated that it
can be hard to nudge the model away from them, especially in the face of other complexities in the
description. For example, Panel C shows a failed attempt to create a tank-sized rhinoceros beetle—for
the most part, the model shrinks the scene (e.g. with a toy plane) or tries to use perspective to make
the beetle appear visually larger. Its only successful attempt to make a massive beetle errs in including
an actual tank. We also found that the model is very resistant to reverse a horse-and-rider situation:
the only way to have the horse on the astronaut was to avoid riding and instead rephrase this as
something akin to a horse sitting on an astronaut’s shoulders; this produces some examples that give
the requested configuration (G(a)), but most outputs contain errors, including the astronaut on the
horse, the astronaut next to the horse, or even depicting the rider as a horse astronaut (G(b)). In some
cases where a horse was put onto an astronaut, the model included yet another astronaut on the horse.
As another example, when generating images of statues of Abraham Lincoln wearing clothing such
as a polo shirt and a baseball cap, the model can do it reliably, but many of the outputs nevertheless
have him wearing outfits from well-known statues and paintings of Lincoln.

Strong linguistic priors. Certain terms are highly associated with particular entities or word senses.
For example, a soccer ball flying over a Lincoln shows a ball flying over a statue of Abraham Lincoln.
The automotive Lincoln can be brought in by adding car, SUV, etc. Similarly, a soccer ball flying
over a bat produces images of baseball bats; again, this can be fixed, as it were, by adding attributes
of animal bats. It is even possible to explore the tensions between competing word senses in examples
such as the astronomer married a star, where the presence of astronomer invokes the heavenly body
sense of star but the act of marrying invokes (more plausibly) the sense of a movie star [65]. When
given an illustration of an astronomer marrying a star, Parti goes with the heavenly body depiction,
even when making it movie star. Switching to a politician instead of astronomer leads to outputs
showing a man and woman, but also including a star (iconic five-point representation) in the image.
Even with more details such as A photo of an astronomer in a tuxedo marrying a beautiful movie
star. The star is wearing a white dress., the model produces some outputs with a wedding couple,
but backed by an image of the cosmos. It seems likely that the overwhelming presence of stars as
heavenly bodies or icons in the visual training data creates a very strong combined linguistic and
visual prior that is hard for the model to shift from.

Text rendering errors. It is remarkable that text-to-image models like Parti and Imagen can render
text in diverse and contextually appropriate ways on images (see the examples in Figure 2, Panel
F, for example), even though there is no explicitly curated or created training data for learning this
ability. Nevertheless, text rendering is often hit-or-miss. It is common to have a few characters off
even in simple prompts. For more complex prompts, the errors in rendering text increase with scene
and descriptive complexity, as shown in Panel H. The ability to render text can also lead to situations
where the model basically tries to render the entire prompt text in the image, e.g. as the title of a
book. This usually happens for prompts that are not visually descriptive (e.g. How to succeed in life.),
and it is necessary to explicitly call out formats like oil painting or illustration in order for these to
produce a non-textual output.

Use-mention errors. The model can render text on images, but at times it produces an image (use)
rather than text (mention) (e.g., the drawing of an airplane in H(b)), or vice versa (rendering Space
shuttle on a t-shirt instead of drawing one – another output related to D, but not shown).

Disentangling multiple entities. The model is often able to pack quite a lot of detail into an image
that contains a single entity, but is much more challenged when there are multiple key entities.
This can be seen with the sloth and van example of Figure 14, where the model struggles at their
combination (row 3, box b), and where subsequent addition of complexity leads to fewer good outputs.
However, it is often even more difficult when the entities are of the same type, such as two animals,
as demonstrated in E(a,b), where even fairly simple details are spread between the entities.
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Stylistic misses. Parti can produce many styles reliably, such as pointillism and woodcut, but others
like cubism and surrealism often miss the style at a deeper level, especially when applied to a complex
scene. The styles of some specific painters can be modeled well, such as van Gogh and Rembrandt,
but others are either lacking or very hit-or-miss, such as Michelangelo (which mostly look the same
as adding oil painting.). Interestingly, scale interacts with specific painters: for example, applying in
the style of van Gogh actually produces more diverse outputs consistent of style for the 3B model,
while outputs are pretty much dominated by Starry Night with the 20B one.

Impossible scenes. Some outputs (usually ones ranked quite low) show entities that are inconsistently
integrated, such as I(c), where the robot straddles the car in a nonsensical manner. Other cases
involving mixed media lead to similarly bizarre outputs, including a drawing of Anubis’s head on
a photo-like body (D(c)) and a graffiti alien that extends to a depiction of real feet on the ground
(I(d)). (Note that in both of these cases, these would be great outputs if the prompt explicitly specified
that these effects were desired.) Other challenges come up in trying to compose complex fantastical
scenes, such as the carriage, moon and earth outputs in I(a,b), where the lighting of the statue, moon
and Earth are completely inconsistent (a) and the Earth appears sitting on the moon (b).

Zoom and perspective. Parti often produces outputs that are too zoomed in, e.g. showing just part
of a vehicle or a subject. While it can respond to directives like zoomed out, three-quarters view,
wide-angle lens, this still often results in cropping on the subject. To ensure broader view, it is often
necessary instead to use other details, such as including shoes on a subject to get the feet or adding a
description of a field and flowers to get an entire giraffe (as done in G(c,d)).

Animal protagonists. Due to concerns discussed in Section 8, we experimented with many animals
acting as stand-ins for protagonists in descriptions. As it turns out, some animals are easier to work
with than others. For example, mammals with paws that are more similar to human hands, such as
bears, wombats, and raccoons more reliably result in better images than geckos, insects, and fish. This
is likely due to the visual and morphological similarity they have with people as well as the fact that
they are more commonly used as human-like protagonists in the wider visual world (e.g., in cartoons).
It is also often necessary to include “photo” or “photograph” in the prompt to push the model to
make photo-like images, and even then it will often produce cartoon-like outputs—especially with
increasing description complexity.

Detailed or tricky visual effects. It is very difficult to get the model to respond to prompts such as a
bear emerging from a puzzle (and variations thereof) where one might want to have an Escher-like
image of part of the bear appearing as quasi-real and the other being part of the puzzle. In general,
controlling such fine-grained specifications seems beyond the current model, and is likely to be better
served in an interactive editing setting.

Common misconceptions. Some visual world knowledge is incorrectly understood in the broader
world, and this is partially reflected in the data and then the model. For example, it is commonly
thought that the central pyramid in the Giza Complex is the Great Pyramid, but in fact that is the
pyramid of Khafre. The true Great Pyramid is Khufu’s, which is to the north. Khafre’s pyramid is
often mistakenly attributed as the great one because it sits on slightly higher ground (but is actually
shorter at 136.4 meters compared to Khufu’s 146.6 meters) and because it sits prominently behind
the Great Sphinx. This mistaken attribution is reflected in images associated with the terms the Great
Pyramid, and it shows up in many of Parti’s outputs for the Great Pyramid (including B(d)).

We hope these observations and breakdown of limitations and error types, and their correspondences
in many of the PartiPrompts, will be useful both for contextualizing the strong capabilities we present
elsewhere in the paper and for inspiring future work on improving text-to-image generation models
in general. In this light, it is also worth recalling WordsEye [66], an automatic text-to-scene system
built in 2001. It derived dependency structures from prompts, converted them to semantic structures,
and then used those to select, position and scale the objects and participants in the described scene.
Though it is no match for current text-to-image such as Parti on open-domain, broad capabilities,
including world knowledge, it actually could precisely manage several of the above stated limitations,
including counting, negation, relative scale, and positioning – such that it could produce a computer
graphics visual (based on an explicit 3D representation) corresponding to complex prompts such as:

John uses the crossbow. He rides the horse by the store.The store is under the large
willow. The small allosaurus is in front of the horse. The dinosaur faces John. A
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gigantic teacup is in front of the store. The dinosaur is in front of the horse. The
gigantic mushroom is in the teacup. The castle is to the right of the store.

WordsEye could also handle specifications of measurements such as lengths and heights, and make
correct visual adjustments for the output image, e.g., for prompts such as The lawn mower is 5 feet
tall. John pushes the lawn mower. The cat is 5 feet behind John. The cat is 10 feet tall. With the
advent of broadly capable – but often imprecise models – such as Dall-E 2, Imagen and Parti, this
should inspire us to revisit ideas and capabilities of earlier systems such as WordsEye and aspire
toward models that combine breadth, visual quality, and control.

7 Related Work

Text-to-image generation. The task of text-to-image generation tackles the problem of synthesiz-
ing realistic images from natural language descriptions. Successful models enable many creative
applications. WordsEye [66] was a pioneering approach that was based on rule-based methods and
explicit 3D representations. One of the earliest models based on deep learning [67] proposed using
conditional GANs for generating images of birds and flowers from language descriptions. Later
works improved upon generation quality by introducing progressive refinement [68, 69] and using
cross-modal attention mechanisms [47, 54]. Several other works propose using hierarchical models
that generate images by explicitly modeling the location and semantics of objects [46, 70, 71, 72].

Remarkable improvement has been achieved by treating text-to-image generation as a sequence
modeling problem [2, 3, 10, 26, 73] trained on large-scale image-text pairs. A two-stage framework
is usually exploited [21, 74] where in the first stage the images are tokenized into discrete latent
variables. With image tokenization and de-tokenization, text-to-image generation is treated as a
sequence-to-sequence problem amenable to language models with transformers, which provide
opportunities of scaling such models by applying techniques and observations from large language
models [7, 19, 75, 76].

The most recent impressive results have been attained with diffusion models [11, 12, 13], where the
models are learned to condition on the text encoder of the CLIP [77] image-text model, or frozen text
encoder (like T5 [35]) pretrained by language self-supervision. Diffusion models work by positing a
process of iteratively adding noise to an image and then learning to reverse that noise conditioned
on text input or feature. When used with diffusion model cascading [78], these models have proven
effective for generating high-fidelity images from text prompts and have achieved state-of-the-art
zero-shot MS-COCO FID scores [13].

Image tokenizers. Previous work has explored tokenizing images into discrete latent variables with
a learned deep neural network. Early work like discrete Variational Auto-Encoders (dVAEs) [5]
optimizes a probabilistic model with discrete latent variables to capture datasets composed of discrete
classes. However, dVAEs often generate blurry pixels when applied to natural images. Recent
work like VQGAN [26] (based on VQVAE [6]) further applies adversarial loss [79] and perceptual
loss [80, 81] to synthesize images using convolutional neural networks with self-attention modules.
ViT-VQGAN [21] builds upon VQGAN, with improvements on both architecture and codebook
learning. Transformers [4] are used to encode images into latent variables and decode them back to
images. We use ViT-VQGAN [21] with slight modifications (see Section 2.1) as our image tokenizer.

8 Broader Impacts

Beyond the model capabilities and evaluations presented above, there are broader issues to consider
with large-scale models for text-to-image generation. Some of these issues pertain to the development
process itself, including the use of large, mostly uncurated training datasets of images obtained from
the web with little oversight (discussed also in [13]), or conceptual vagueness around constructs in the
task formulation [82]. Since large text-to-image models are foundation models [83] — enabling both
a range of system applications as well as finetuning for specific image generation tasks — they act as
a form of infrastructure which shapes our conceptions of what is both possible and desirable [84, 85].
Predicting all possible uses and consequences of infrastructure is difficult if not impossible, and so
responsible AI practices which emphasize transparently documenting and sharing information about
datasets and models are crucial [86, 87, 88]. Although applications are beyond scope of this paper,
we discuss here some likely opportunities and risks that can be anticipated.
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Creativity and art. The ability of machine learned models to produce novel, high-quality images
using language descriptions opens up many new possibilities for people to create unique and aes-
thetically appealing images, including artistic ones. Like a paint brush, these models are a kind of
tool that on their own do not produce art—instead people use these tools to develop concepts and
push their creative vision forward. For artists, such models could provide new means of innovation
and exploration, including opportunities to create on-the-fly generation of art that sets a theme or
style while responding to viewer interactions, or to generate novel and unique visual interactions
in video game environments. For non-artists, these affordances present a chance to explore their
visual creativity through a natural language interface which does not require technical artistic ability.
Text-to-image systems could also assist creativity for people with disabilities (cf. [89, 90]), but we
caution against doing so without also adopting participatory methods to increase the likelihood of
actual needs being met and to avoid misconceptions about disability [91].

Assessing the design merit or artistic merit (or lack thereof) of a piece created using machine learned
models requires a nuanced understanding of algorithmically based art over the years, the model itself,
the people involved and the broader artistic milieu [92]. The range of artistic outputs from a model is
dependent on the training data, which may have cultural biases towards Western imagery, and which
may prevent models from exhibiting radically new artistic styles the way human artists can [93].

Visual (mis)communication. The pre-ML history of text-to-image largely consists of assisting com-
munication with non-literate groups including language learners (including children, e.g., storybook
illustrations), low-literacy social groups (e.g., up until the late modern period, religious illustrations
for low-literacy congregations), and speakers of other languages. Parti uses an architecture and
strategy that is directly connected to the neural sequence-to-sequence models used for machine
translation [94] and other communication aids such as sentence simplification [95] and paraphrasing
[96]. This potentially strengthens the temptation to use large text-to-image models to assist with
communication. However, we caution against the use of text-to-image models as communication aids,
including for education (cf. [89]), until further research has examined questions of efficacy and utility,
since text and image convey meaning in distinct ways and with distinct limitations. Cross-cultural
considerations are of special concern, as little research has considered questions of accessibility of
computer-generated images to members of non-Western cultures. Not only do visual styles differ
cross-culturally, but also the form and appearance of instances of categories may radically differ
across cultures (e.g., wedding attire, food, etc [97, 98]) in ways that might lead to miscommunication.

Deepfakes and disinformation. Given that the quality of model outputs is good enough to be
confused for real photographs,12 and also because output quality and realism is rapidly improving,
there are obvious concerns around using such technology to create deepfakes. One way to mitigate
this problem is to apply watermarks that people cannot perceive to every generated image [99], such
that it is possible to verify whether any given image is generated by a particular model such as Parti.
While this approach may mitigate risks of disinformation, harms may still occur when an individual’s
likeness is reproduced without their consent.

Bias and safety. Text-to-image generation models like GLIDE, DALL-E 2, Imagen, Make-a-Scene,
CogView and Parti are all trained on large, often noisy, image-text datasets that are known to contain
biases regarding people of different backgrounds. This is particularly highlighted in Birhane et al’s
[100] analysis of the LAION-400M dataset [43]: their study of the dataset surfaced many problems
with respect to stereotyping, pornography, violence and more. Other biases include stereotypical
representations of people described as lawyers, flight attendants, homemakers, and so on. Models
trained on such data without mitigation strategies thus risk reflecting and scaling up the underlying
problems. Our primary training data is selected and highly filtered to minimize the presence of NSFW
content; however, we incorporated LAION-400M during finetuning with classifier-free guidance
– this improved model performance but also led to generation of NSFW images in some contexts.
Other biases include those introduced by the use of examples that primarily have English texts and
may be biased to certain areas of the world. In informal testing, we have noticed, for example, that
prompts mentioning wedding clothes seem to produce images biased towards stereotypically female
and Western attire.

Intended uses. Due to the impacts and limitations described above, and the need for further
exploration of concerns, Parti is a research prototype. It is not intended for use in high-risk or
sensitive domains, and is not intended to be used for generating images of people.

12E.g., DALL-E 2 outputs: https://www.mattbell.us/my-fake-dall-e-2-vacation-photos-passed-the-turing-test/
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These considerations all contribute to our decision not to release our models, code or data at this time.
Instead, we will focus in follow-on work on further, careful measurement of model biases, along
with mitigation strategies such as prompt filtering, output filtering and model recalibration. We also
believe that it may be possible to use text-to-image generation models as tools to understand biases
in large image-text datasets at scale, by explicitly probing them for a suite of known types of bias
and also trying to uncover other forms of hidden bias. We will also coordinate with artists to adapt
capabilities of high performing text-to-image generation models toward their work, be it for purely
creative ends or art-for-hire. This is all the more important given the intense interest among many
research groups and the consequent fast pace of development of models and data for training them.
Ideally, these models will augment—rather than replace—human creativity and productivity, such
that we all can enjoy a world filled with new, varied and responsible aesthetic visual experiences.

9 Conclusion

In this work, we demonstrate that autoregressive models like Parti can produce diverse, high-quality
images from textual prompts, and furthermore that they present distinct scaling advantages. In
particular, Parti is able to represent a broad range of visual world knowledge, such as landmarks,
specific years, makes and models of vehicles, pottery types, visual styles – and integrate these
into novel settings and configurations. We also provide an extensive discussion of the limitations,
including a breakdown of many kinds of model errors and challenges, that we hope will be useful
both for contextualizing what the model can do and for highlighting opportunities for future research.
To this end, the PartiPrompts (P2) benchmark that we release with this work are intentionally crafted
to induce many of these error types.

There are also opportunities to integrate scaled autoregressive models with diffusion models, starting
with having an autoregressive model generate an initial low-resolution image and then iteratively
refining and super-resolving images with diffusion modules [12, 13, 49]. It is also crucial to make
progress on the many significant evaluations and Responsible AI needs for text-to-image generation
models. To this end, we will conduct more experiments and comparisons with both autoregressive
and diffusion models in order to understand their relative capabilities, to address key questions of
fairness and bias in both classes of models and strategies for mitigating them, and to identify optimal
opportunities for combining their strengths.
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A More Selected Examples

In Figure 16, Figure 17, Figure 18 and Figure 19, we present more selected examples probing
the model’s capabilities to handle complex prompts, multiple visual styles, texts-on-image, world
knowledge, and more.

B Image Samples for Cross Reference and Comparison

This section presents image samples with the same text prompts from related work including DALL-
E [2] (Figure 20), GLIDE [11] (Figure 21), unCLIP [12] (Figure 22) and Imagen [13] (Figure 23) for
cross reference and comparison. We exclude some text prompts or replace some sub-prompts with
broader impact concerns that are discussed in Section 8. We also add some new (sub-)prompts (noted
in the caption) that are not from the related work to make four images per row for typography.

C Qualitative comparison on MS-COCO

Figure 24 shows a qualitative comparison of non-cherry-picked Parti sampled images along with
outputs of other approaches [2, 10, 11, 12] on MS-COCO prompts. Parti demonstrates strong
generalization without fine-tuning on specific domains like MS-COCO, and it achieves a high degree
of image realism that is typically very close to that of real images.
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A super math wizard cat, richly textured oil painting A heavy metal tiger standing on a rooftop while singing and jam-

ming on an electric guitar under a spotlight. anime illustration.

A richly textured oil painting of a young badger delicately sniffing

a yellow rose next to a tree trunk. A small waterfall can be seen in

the background.

A rusty spaceship blasts off in the foreground. A city with tall

skyscrapers is in the distance, with a mountain and ocean in the

background. A dark moon is in the sky. realistic high-contrast

anime illustration.

A set of 2x2 emoji icons with happy, angry, surprised and sobbing

faces. The emoji icons look like X. All of the X are wearing Y. X,

Y ∈ {“pigs, crowns”, “dogs, blue turtleneck”, “pandas, colorful

sunglasses”, “colorful macarons, cowboy hats”}

Oil painting generated by artificial intelligence

Portrait of a tiger wearing a train conductor’s hat and holding

a skateboard that has a yin-yang symbol on it. X. X ∈ {photo-

graph, comic book illustration, oil painting, marble statue, char-

coal sketch, woodcut, child’s crayon drawing, color ink-and-wash

drawing, Chinese ink and wash painting}

A punk rock X in a studded leather jacket shouting into a mi-

crophone while standing on a Y. dslr photo. X, Y ∈ {“squirrel,

stump”, “frog, lily pad”, “platypus, boulder”}

Portrait of a gecko wearing a train conductor’s hat and holding a

flag that has a yin-yang symbol on it. X. X ∈ {“Oil on canvas”,

“Marble statue”, “Comic”, “Child’s crayon drawing”, “Photo-

graph” , “Charcoal”, “Chinese ink”, “Watercolor”, “Woodcut”}

Figure 16: Selected Parti images.

35



A warrior wombat holding a sword and shield in a fighting stance.

The wombat stands in front of the Arc de Triomphe on a day

shrouded mist with the sun high in the sky. realistic anime illus-

tration.

A sloth in a go kart on a race track. The sloth is holding a banana

in one hand. There is a banana peel on the track in the background.

DSLR photograph.

A robot with a black visor and the number 42 on its chest. It stands

proudly in front of an F1 race car. The sun is setting on a cityscape

in the background. wide-angle view. comic book illustration.

A photograph of the inside of a subway train. There are X sitting

on the seats. One of them is reading a newspaper. The window

shows the Y in the background. X ∈ {“red pandas”, “lobsters”,

“frogs”, “raccoons”}, Y ∈ {“jungle”, “ocean”, “river”, “city”}

A group of farm animals (cows, sheep, and pigs) made out of

cheese and ham, on a wooden board. There is a dog in the back-

ground eyeing the board hungrily.

Two cups of coffee, one with latte art of X. The other has latte art

of Y. X, Y ∈ {“the Eiffel tower, the Statue of Liberty”, “a heart,

a star”, “a cat, a panda”, “a map of the United States, a map of

Africa”}

A close-up of two X wearing karate uniforms and fighting, jumping

over a waterfall. color woodcut illustration. X ∈ {“chameleons”,

“beetles”, “matnis”}

A photograph of a bird wearing headphones and speaking into a

high-end microphone in a recording studio.

Oil painting of a giant robot made of sushi, holding chopsticks.

Figure 17: Selected Parti images.

36



A punk rock squirrel in a studded leather jacket shouting into a

microphone while standing on a stump and holding a beer on dark

stage. dslr photo.

An oil painting of two rabbits in the style of American Gothic, wear-

ing the same clothes as in the original.

A soft beam of light shines down on an armored granite wombat

warrior statue holding a broad sword. The statue stands an or-

nate pedestal in the cella of a temple. wide-angle lens. anime oil

painting.

A solitary figure shrouded in mists peers up from the cobble stone

street at the imposing and dark gothic buildings surrounding it. an

old-fashioned lamp shines nearby. oil painting.

A teddy bear wearing a motorcycle helmet and cape is X. dslr

photo. X ∈ {standing in front of Loch Awe with Kilchurn Cas-

tle behind him, driving a speed boat near the Golden Gate Bridge,

car surfing on a taxi cab in New York City, riding a motorcycle in

Rio de Janeiro with Dois Irmãos in the background}

(a) the door of knowing, a portal brightly opening the way through

darkness. abstract anime landscape oil painting.; (b) trying to find

my way in a big confusing world, abstract oil painting; (c) light

and happiness throughout and finding its way to every corner of

the world, abstract oil painting; (d) an abstract oil painting in

deep red and black with a thick patches of white

A helicopter flies over X. X ∈ {“the Grand Canyon”, “Yosemite”,

“the Arches National Park”}

A funny Rube Goldberg machine made out of X. X ∈ {“wood”,

“paper”, “metal”}

X rises on the horizon. X ∈ {“Mars”, “Saturn”, “Jupiter”}

Figure 18: Selected Parti images.
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A photo of a light bulb in outer space traveling the galaxy with a

sailing boat inside the light bulb.

A television made of water that displays an image of a cityscape at

night. dslr photo.

A dignified beaver wearing glasses, a vest, and colorful neck tie.

He stands next to a tall stack of books in a library. dslr photo.

A photo of a X made of water. X ∈ {“maple leaf”, “palm tree”,

“four-leaf clover”, “lotus flower”}

A photo of a X made of water. X ∈ {“panda”, “teddy bear”,

“crocodile”, “dragonfly”}

X. detailed charcoal sketch. X ∈ {“A section of the Great Wall

in the mountains”, “The Great Hypostyle Hall of Karnak”, “A

Mesoamerican pyramid surrounded by jungle”, “Taj Mahal with

its reflection”}

A X made of cardboard. X ∈ {“spaceship”, “old phonograph”,

“castle”}

A tornado made of X crashing into a skyscraper. painting in the

style of Y. X ∈ {“sharks”, “tigers”, “bees”}, Y ∈ {“Hokusai”,

“abstract cubism”, “watercolor”}

Downtown X at sunrise. Detailed ink wash. X ∈ {“Manhat-

tan”, “Shanghai”, “San Francisco”, “Saigon”, “ Rio de Janeiro”,

“Austin”, “Singapore”, “Sydney”, “Seattle”}

Figure 19: Selected Parti images.
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small bird with a pale yellow underside light brown crown and back gray tail and
wing tips tip of tail feather bright yellow black eyes and black strip over eyes

an armchair in the shape of an avocado

an illustration of a baby daikon radish in a tutu walking a dog

a tapir made of accordion. a tapir with the texture of an accordion.

an illustration of a baby hedgehog in a christmas sweater walking a dog

a neon sign that reads “backprop”. a neon sign that reads “backprop”. backprop neon sign.

Figure 20: Parti image samples with text prompts from DALL-E [2] for cross reference and compari-
son.
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a hedgehog using a calculator

a corgi wearing a red bowtie and a purple party hat

robots meditating in a vipassana retreat

a stained glass window of a panda eating bamboo

a futuristic city in synthwave style

A cozy living room with a painting of a corgi on the wall above a couch and
a round coffee table in front of a couch and a vase of flowers on a coffee table

Figure 21: Parti image samples with text prompts from GLIDE [11] for cross reference and compari-
son.
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a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese

A teddybear on a skateboard in Times Square.

A bowl of soup that looks like a monster X, where X ∈ {“knitted out of wool”, “spray-painted on a wall”,
“made out of plasticine”, “with tofu says deep learning” (the last sub-prompt is not from DALL-E 2 [12])}

An astronaut riding a horse X, where X ∈ {“in a photorealistic style”, “in the style of Pop Art”,
“as a pencil drawing”, “made out of sushi” (the last sub-prompt is not from DALL-E 2 [12])}

Figure 22: Parti image samples with text prompts from DALL-E 2 [12] (a.k.a., unCLIP) for cross
reference and comparison.
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A black apple and a green backpack.

A panda making latte art.

A couple of glasses are sitting on a table.

New York Skyline with Hello World written with fireworks on the sky.

A raccoon wearing cowboy hat and black leather jacket is
behind the backyard window. Rain droplets on the window.

A photo of a confused grizzly bear in calculus class.

Figure 23: Parti image samples with text prompts from Imagen and DrawBench [13] for cross
reference and comparison.
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“a green train is coming
down the tracks”

“a group of skiers are
preparing to ski down

a mountain.”

“a small kitchen with
a low ceiling”

“a group of elephants
walking in muddy

water.”

“a living area with a
television and a table”

Figure 24: Qualitative comparison of zero-shot images sampled (not cherry picked) from Parti and
other models on MS-COCO prompts. Parti model samples 16 images per text prompt and uses a
CoCa model [25] for re-ranking (Section 2.4).

D PartiPrompts

We list below the full set of categories (Table 7) and challenge aspects (Table 8) together with their
descriptions and additional examples in the P2.

E Human Evaluation Procedure

This section describes the human evaluation procedure we conducted for evaluating model outputs.
The website used for conducting these evaluations are shown in Figure 25. For each image, we
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Category Description Additional Examples

ABSTRACT Descriptions that represent abstract
concepts, including single words
and simple numbers.

inspiration; derision; infinity; 42; 0; fairness; energy; gravity; intelli-
gence; yin-yang; meaning of life; A city in 4-dimensional space-time

ANIMALS Descriptions in which the primary
participants are animals.

a Stegasaurus; brain coral; A donkey is playing tug-of-war against an
octopus. The donkey holds the rope in its mouth. A cat is jumping over
the rope; Dogs sitting around a poker table with beer bottles and chips.
Their hands are holding cards.

ARTIFACTS Descriptions of a usually simple ob-
ject (such as a tool or ornament)
showing human workmanship or
modification as distinguished from a
natural object

a violin; a t-shirt with Carpe Diem written on it; a doorknocker shaped
like a lion’s head; a lavender backpack with a triceratops stuffed animal
head on top; a paranoid android freaking out and jumping into the air
because it is surrounded by colorful Easter eggs

ARTS Descriptions of existing paintings or
intended to produce novel images in
the format of a painting.

an abstract painting with blue, red and black; a super math wizard cat,
richly textured oil painting; a sport car melting into a clock, surrealist
painting in the style of Salvador Dali; Painting of a panic-stricken
creature, simultaneously corpselike and reminiscent of a sperm or fetus,
whose contours are echoed in the swirling lines of the blood-red sky

FOOD &
BEVER-
AGE

Descriptions of things animals, es-
pecially human beings, eat or drink.

a margarita; milk pouring from a glass into a bowl; A bowl of Pho
served with bean sprouts on top; a bottle of beer next to an ashtray with
a half-smoked cigarrette; A photo of a hamburger fighting a hot dog in a
boxing ring. The hot dog is tired and up against the ropes.

ILLUSTRAT-
IONS

Descriptions of images that involve
specific types of graphical represen-
tations, including geometrical ob-
jects, diagrams, and symbols.

a metallic blue sphere to the left of a yellow box made of felt; the cover
of a book called ’Backpropaganda’ by I.C. Gradients; A set of 2x2 emoji
icons with happy, angry, surprised and sobbing faces. The emoji icons
look like dogs. All of the dogs are wearing blue turtlenecks.

INDOOR
SCENES

Descriptions about objects and par-
ticipants that occur indoors.

a very fancy French restaurant; a room with two chairs and a painting
of the Statue of Liberty; a small kitchen with a white goat in it; A single
beam of light enter the room from the ceiling. The beam of light is
illuminating an easel. On the easel there is a Rembrandt painting of a
raccoon

OUTDOOR
SCENES

Descriptions about objects and par-
ticipants that occur outdoors.

a marina; a white bird in front of a dinosaur standing by some trees; a
robot painted as graffiti on a brick wall. a sidewalk is in front of the wall,
and grass is growing out of cracks in the concrete.

PEOPLE Descriptions where the primary par-
ticipants are human beings (but not
specific individuals, living or dead).

a scientist; a family of four walking at the beach with waves covering
their feet; Renaissance portrayals of the Virgin Mary, seated in a loggia.
Behind her is a hazy and seemingly isolated landscape imagined by the
artist and painted using sfumato.

PRODUCE
&
PLANTS

Descriptions focused on plants or
their products (fruits, vegetables,
seeds, etc).

lily pads; a banana without its peel; a pineapple surfing on a wave; a
flower with large red petals growing on the moon’s surface

VEHICLES Descriptions where the focus is on
man-made devices for transportion.

a rowboat; a friendly car; A sunken ship becomes the homeland of fish;
a yellow dump truck filled with soccer balls driving in a coral reef. a
blue whale looms in the background.

WORLD
KNOWL-
EDGE

Descritpions focused on objects and
places that exist in the real world.

A Big Ben clock towering over the city of London; the Sydney Opera
House with the Eiffel tower sitting on the right, and Mount Everest rising
above; A portrait of a metal statue of a pharaoh wearing steampunk
glasses and a leather jacket over a white t-shirt that has a drawing of a
space shuttle on it.

Table 7: Full descriptions of all categories in the PartiPrompts (P2) benchmark. We show additional
categories and examples that were not included in Table 3.
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Challenge Description Additional Examples

BASIC Descriptions about a single subject
or concept with little to no detail or
embellishment.

a tornado; a hot air balloon; 300; The Starry Night; yin-yang;
artificial intelligence

COMPLEX Descriptions that include many fine-
grained, interacting details or rela-
tionships between multiple partici-
pants.

a hot air balloon with a yin-yang symbol, with the moon visible in
the daytime sky; A high-contrast photo of a panda riding a horse.
The panda is wearing a wizard hat and is reading a book. The horse
is standing on a street against a gray concrete wall. Colorful flowers
and the word "PEACE" are painted on the wall. Green grass grows
from cracks in the street.

FINE-
GRAINED
DETAIL

Descriptions that include very de-
tailed specifications of attributes or
actions of entities or objects in a
scene.

a Triceratops charging down a hill; The Statue of Liberty on a cloudy
day; a bamboo ladder propped up against an oak tree; beautiful
fireworks in the sky with red, white and blue; a full moon peeking
through clouds at night; a photo of a white bird in front of a dinosaur
standing by some trees; an elder politician giving a campaign speech

IMAGINATION Descriptions that include participants
or interactions that are not, or are
generally unlikely to be, found in the
modern day world.

a smiling banana wearing a bandana; a grand piano next to the
net of a tennis court; the statue of Liberty next to the Washington
Monument; A photo of a light bulb in outer space traveling the galaxy
with a sailing boat inside the light bulb

LINGUISTIC
STRUC-
TURES

Long and/or abstract words or com-
plex syntactic structures or semantic
ambiguities.

supercalifragilisticexpialidocious; a laptop with no letters on its
keyboard; To a squirrel, a dog gives an apple; A robot gives a
wombat an orange and a lemur a banana; The trophy doesn’t fit into
the brown suitcase because it’s too large; a brown mouse laughing
at a gray cat because a 16 ton weight is about to fall on its head

PERSPECTIVE Descriptions that specify particular
viewpoints or positioning of the sub-
jects in a scene.

Mars rises on the horizon; The frog found itself in the newspaper;
view of a giraffe and a zebra in the middle of a field; three quarters
view of a rusty old red pickup truck with white doors and a smashed
windshield

PROPERTIES
& POSI-
TIONING

Descriptions that target precise as-
signment of properties to entities or
objects (often in the context of mul-
tiple entities or objects), and/or the
relative spatial arrangement of enti-
ties and objects with respect to one
another or landmarks in the scene.

A green heart with shadow; a large yellow sphere behind a small
purple pyramid; a brown trash bin to the left of a blue recyling bin;
concentric squares fading from yellow on the outside to deep orange
on the inside; a pen-and-ink crosshatched drawing of a sphere with
dark square on it

QUANTITY Decriptions that specify particular
counts of occurences of subjects in
a scene.

ten red apples; a pile of cash on a wooden table; a group of not more
than five meerkats standing with the sun setting behind them

SIMPLE DE-
TAIL

Descriptions that include only simple
or high-level details.

a horse in a field of flowers; a soccer ball flying over a car; a subway
train coming out of a tunnel; a pumpkin with a candle in it; an
Egyptian statue in the desert

STYLE &
FORMAT

Descriptions that specifically focus on
the visual manner in which a subject
or scene must be depicted.

a thumbnail image of a gingerbread man; a horse in a field in
Minecraft style; the flag of the United Kingdom painted in rusty
corrugated iron; Anime illustration of the Great Pyramid sitting next
to the Parthenon under a blue night sky of roiling energy, exploding
yellow stars, and chromatic blue swirls

WRITING &
SYMBOLS

Descriptions that require words or
symbols to be accurately represented
in the context of the visual scene.

A green sign that says "Very Deep Learning" and is at the edge of the
Grand Canyon; Portrait of a tiger wearing a train conductor’s hat
and holding a skateboard that has a yin-yang symbol on it. charcoal
sketch; Two cups of coffee, one with latte art of a lovely princess.
The other has latter art of a frog.

Table 8: Full descriptions of all challenge aspects in the P2. We show additional challenge aspects
and examples that were not included in Table 4.

45



Figure 25: Human evaluation setup.

Image Realism (Parti 20B vs. 3B model)
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Figure 26: Breakdown of human preferences of the realism of images from the Parti 20B model over
the 3B model in terms of P2 categories (left) and challenge aspects (right).

request five independent annotators to select which of two (anonymized) models are preferred, for
image realism and image-text match. Annotators were employed as contractors and were paid hourly
wages that are competitive for their locale. They have standard rights as contractors. They are fluent
non-native English speakers.

F Human Evaluations on PartiPrompts

F.1 Effect of Model Scale

Figure 26 further breaks down the human preferences of the 20B model (over the 3B model) across
P2 categories (left) and challenge aspects (right) for image realism. We observe that as compared to
the human preference for image-text match (Figure 12), the 20B model wins out on image realism
by a smaller margin. This suggests that model scaling mostly benefits language understanding and
image-text match, as compared to improvements on image realism. This makes intuitive sense:
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Image-Text Match (Parti 20B vs. Retrieval)
Categories Challenge Aspects
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Figure 27: Breakdown of human preferences of the image-text match of images from the Parti 20B
model over the retrieval baseline in terms of P2 categories (left) and challenge aspects (right).

image realism is largely dependent on the quality of the ViT-VQGAN quantizer, and thus scaling the
transformer model would primarily improve the ability of Parti to composite and represent natural
language concepts.

In terms of individual categories, the 20B model is preferred over the 3B for the majority of categories,
most prominently ABSTRACT, WORLD KNOWLEDGE, VEHICLES, and ARTS. For other categories,
the human preference is mostly on par for the 20B and 3B models, with the 3B model being slightly
preferred for outdoor scenes. Interestingly, we observe that over the challenge aspects, the 20B model
outperforms the 3B model on all challenge aspects, except for BASIC prompts. This suggests that the
3B model scale is sufficient to handle the basic prompts in PartiPrompts(which generally contain more
simple prompts). Increasing model size to 20B does not help and may even slightly harm generation
quality on these concepts. In contrast, the 20B model achieves a marked improvement in performance
on more difficult PartiPromptsprompts, such as those in the COMPLEX and IMAGINATION challenge
dimensions. This aligns with our observations on the significant improvement of the 20B model on
prompts from the ABSTRACT category.

F.2 Comparison Against Retrieval Baseline

In addition to comparing our 20B and 3B models, we also run human evaluations of the Parti 20B
model against the retrieval baseline. Figure 27 and 28 show human preference of the 20B model
(over the retrieval baseline) across P2. On image-text match (Figure 27), the Parti model significantly
outperforms the retrieval baseline in most categories, except for ABSTRACT. This highlights the
difficulty in generating good images for ABSTRACT prompts, which may be a potential area of
improvement for future work. Along different challenge aspects, Parti outperforms the retrieval
baseline in every category on image-text match, which we attribute to the improved ability of Parti
to synthesize images for diverse and complex prompts. Many of the harder prompts in the P2 are
‘adversarial’ in nature, and were designed to test the limits of text-to-image synthesis models. These
prompts are generally unlikely to have appeared in standard training datasets, and consequently
difficult for retrieval based models which rely on retrieving the closest match from our training corpus.
The positive results along this evaluation highlight the strength of a generative model such as Parti,
and its ability to handle diverse and creative prompts.

When evaluated on image realism (Figure 28), Parti fares well against the retrieval baseline, and
is preferred by human annotators across the majority of the P2 categories (except ABSTRACT and
INDOOR SCENES), as well as preferred along all challenge aspect dimensions. We note that this is a
remarkable feat, considering that the retrieval model retrieves real images from a training corpus.
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Figure 28: Breakdown of human preferences of the realism of images from the Parti 20B model over
the retrieval baseline in terms of P2 categories (left) and challenge aspects (right).

Model CoLa(↑) SST2 (↑) RTE (↑) MRPC (↑) QQP (↑) QNLI (↑)
BERT 54.6 92.5 62.5 87.6 87.4 91.0

UNITER 37.4 89.7 55.6 80.3 85.7 86.0
SimVLM 46.7 90.9 63.9 84.4 87.2 88.6
CLIP 25.4 88.2 55.2 65.0 53.9 50.5
FLAVA 50.7 90.9 57.8 86.9 87.2 87.3

Encoder after encoder pretraining 55.2 95.9 59.0 90.9 88.5 90.1

Encoder after encoder-decoder training
(w/o encoder pretraining) 15.7 82.5 49.5 81.5 76.8 66.6
(w/ encoder pretraining) 20.4 84.8 53.4 78.3 76.7 78.2

Table 9: Results of Parti text encoder on the GLUE benchmark after pretraining with joint BERT and
CLIP objectives or (continued) training with text-to-image generation objective.

These results highlight the ability of Parti to synthesize realistic images, which are deemed by human
evaluators as close to photorealistic (or even more photorealistic, in some cases).

G Encoder Pretraining

While it is straightforward to warm-start the model with a pretrained text encoder, we observe the
text-encoder pretraining very marginally helps text-to-image generation loss with 3B-parameter Parti
models. Qualitative examples are shown in Figure 29 and quantitative loss comparison is shown in
Figure 30. We leave this observation as a future research topic on the difference and unification of
generic language understanding and visually-grounded language understanding.

H Pixelation Patterns of ViT-VQGAN

We notice visual pixelation patterns in some of the output images of ViT-VQGAN when zooming
in (see Appendix H), and further find ill-conditioned weight matrices of the output projection layer
before the sigmoid activation function. As a fix, we remove the final sigmoid activation layer and the
logit-laplace loss, exposing the raw values as RGB pixel values (in range [0, 1]). Conveniently, this
fix can be hot-swappable into an already trained image tokenizer by finetuning the decoder.
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Figure 29: Ablation of text encoder pretraining. In some of the prompts, we observe text-pretrained
model outperforms non-pretrained encoders as examples shown above. However on average, we
observe no significant quality improvement by warming-up text encoder. Both models are with 3B
parameters trained on the same mixture of datasets for ablation.
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Figure 30: Ablation of text encoder pretraining. We plot text-to-image generation softmax cross-
entropy training loss. The training of pretrained text encoder is only slightly better. Both models are
with 3B parameters trained on the same mixture of datasets for ablation.

Original Image Reconstructed Image Zoom-in of Reconstructed Image

Figure 31: Example of pixelation patterns (saturated pixel values at some locations) in the outputs
of ViT-VQGAN [21] architecture when zooming in. It can be fixed by removing the final sigmoid
activation layer and the logit-laplace loss, exposing the raw values as RGB pixel values (in range [0,
1]).
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