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Figure 1: Where people live, work and play on a weekday morning around 10AM in Singapore?

ABSTRACT

Using transport smart card transaction data to understand the home-
work dynamics of a city for urban planning is emerging as an al-
ternative to traditional surveys which may be conducted every few
years are no longer effective and efficient for the rapidly transform-
ing modern cities. As commuters travel patterns are highly diverse,
existing rule-based methods are not fully adequate. In this paper,
we present iVizTRANS - a tool which combines an interactive vi-
sual analytics (VA) component to aid urban planners to analyse
complex travel patterns and decipher activity locations for single
public transport commuters. It is coupled with a machine learning
component that iteratively learns from the planners classifications
to train a classifier. The classifier is then applied to the city-wide
smart card data to derive the dynamics for all public transport com-
muters. Our evaluation shows it outperforms the rule-based meth-
ods in previous work.

Keywords: Smart card data, origin-destination (OD), spatiotem-
poral visualization, clustering, machine learning.

Index Terms: Human-centered computing [Visualization]: Visu-
alization application domains—Visual analytics

1 INTRODUCTION

As home-work trips form the majority of trips made during peak
hours of the weekdays, a good understanding of the home-work
dynamics of a city is important for urban and transport planning.
This informs the way planners identify areas where more jobs can
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be introduced to bring jobs closer to homes. It also informs the way
public transport infrastructure and services are planned, to ensure
adequate capacities and reduce travel time. Traditional surveys are
costly and time consuming. Hence they are typically carried out
once every few years so that unable to provide planners with fre-
quent updates of changes. Tapping on the millions of daily trans-
port smart card transactions which are anonymised, allow planners
to obtain more regularly updated picture of public transport com-
muters home-work patterns. This Big-Data method can also com-
plement surveys which tend to be sample-based.

The iVIZTrans tool was developed based on Singapore’s public
transport smart-card system (EZ-Link). Trips are recorded when
commuters tap-in and tap-out each time they enter and exit train
stations, as well as board and alight buses. With a public transport
peak period mode share of 63%, more than 2.6 million Mass Rapid
Transit (MRT) trips and 3.6 million bus trips daily, the insights po-
tentially reflects the travel dynamics for more than 2 million public
transport commuters. Hence, the method developed could poten-
tially also apply for other cities with similar smart card systems and
large commuter base.

While transaction records provide a rich understanding on the
spatial and temporal travel patterns, the data lack information on the
purpose for which the trip was made as well as the nature of activity
between trips. The challenge is in deciphering from travel patterns,
the nature of activities occurring at different locations. Given that
home and work locations are places where commuters visit more
frequently and has some consistency, we recognize that the basic
idea lies in how best to make sense of these frequent and more con-
sistent locations. The key is how best to classify these locations as
the home and work locations. The existing home/work classifica-
tion methods can be categorized as follows:

• Empirical model. These methods employ straightforward
rules to decide if a location is for work or home. For ex-
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ample, [14] assumed that the first departing location of each
day was the home location in a study in London using smart
card data. [11] assumed the home and work locations were
respectively the first and second most visited places. [5, 8]
used mobile phone data and assumed the greatest base station
connection during 6pm to 8am of the next day indicated the
home location in a study in Boston.

• Empirical model plus parameter optimization. These meth-
ods use parametrized rules to better determine home/work lo-
cations. For example, [6] designed a score function which
considered the activity duration and departure time and used
the household survey in a previous year to fit the parameters.
[20] predefined a fixed travel pattern, i.e., a home-work-shop-
home circle, and tried to extract the most likely locations to fit
in.

However, the complexity of commuter trips confounds such
rules. Significant number of commuters make one way trips by pub-
lic transport (either from home or from work and not vice-versa),
the origin and destination between consecutive trips in a day may
be spatially far apart, some do not work regular office hours (e.g.
shift-work, part-time, and some have multiple home or work loca-
tions.

The current approaches have two main limitations. First, their
simplicity is unable to address the complexities that underlie ur-
ban commuting. We used a method similar to the one in [11] on
Singapore’s smart card dataset. An obvious error in the result was
the classification of the Changi International Airport as one of the
top home locations, probably because many residents do work at
the airport for night shifts. The basic assumption that people fol-
low regular daytime work schedules does not always apply in a big
city like Singapore. Also, the assumption that people visit home
more than work places is questionable, especially when only the
PT system is used. Second, it is very hard to validate the result at
individual level, i.e., to understand why a location is classified as
home or work location and verify if it makes sense.

In order to overcome the two limitations, we designed a tool
called iVizTRANS, which 1) uses spatiotemporal visualization to
make the travel patterns clear to human users who can then easily
decide the home/work locations, and 2) employs a machine learn-
ing module to learn from human users and apply the knowledge
to automate the classification for millions of smart card holders in
a batch mode. In this way, the result would be more precise by
incorporating much more features in the decision process, and the
planners will gain confidence as they can easily validate the classi-
fication result for each individual.

The rest of the paper is organized as follows. In Section 2, we
present the framework and pipeline of the interactive learning tool
for iVizTRANS. The visualization design is then described in Sec-
tion 3, while Section 4 will provide the details of the clustering
and machine learning algorithms for iVizTRANS. The experiments
with real data and results of the evaluations are then reported in
Section 5. In Section 6, we describe some related work, and we
conclude in Section 7, giving some ideas for future work.

2 FRAMEWORK OF THE INTERACTIVE LEARNING

Figure 2 shows the framework of the interactive learning tool
for iVizTRANS. The User Interface interacts with the Knowledge
Module under the supervision of human users. The interaction syn-
chronizes the human thinking and the machine-learned classifier
(which is a dummy in the beginning) as follows. For each single
case (i.e. a selected commuter), the knowledge module will first
try to infer the home and work locations based on what it has been
taught. The user then rectifies the inference if it is deemed wrong.
The two corresponding operations are: annotate which conveys the
human thinking to the system and infer which is the decision made
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Figure 2: Framework of the iVizTRANS

by the knowledge module. The Feature Extractor is an important
helper for the intelligent classifier—it extracts the candidate loca-
tions for home/work using a clustering algorithm and summarize
their features needed for the learning process. When the training
is finished by the system achieving a level of performance deemed
satisfactory by the user based on his or her experience, the classifier
can be applied to the whole dataset in a batch process for scalability.

In the interaction stage, a user determines whether the system
has been trained to a satisfactory level according to his/her own
experience. For example, one criterion could be the error rate since
the last annotation, i.e., the user becomes confident if the machine
constantly thinks in the same way since the last teaching. While
this help gains the confidence of the user of iVizTRANS, the system
will conduct another evaluation after applying the classifier to the
whole dataset to compare the predicted results to the ground truth
data (this will be further elaborated in Section 5).

3 VISUALIZATION DESIGN

As aforementioned, smart card data is used in this research. In
Singapore, one needs to tap the card both at the entrance to and
the exit of a transport service. The same Smart Card can be used
for paying for the fares for both subway trains and public buses.
Each single tap in/out records the card holder’s presence at a certain
location and time; each pair of tap in and out forms a trip. Each
trip can be denoted by a tuple r =< u,so,sd , to, td >, where u is
the (anonymised to protect the privacy) identity of the card holder,
s and t represent the locations and timestamps respectively when
tapping the card, with the superscripts o and d indicating the origin
or the destination (OD).

Since the visualization is supposed to reveal the patterns of fre-
quent and regular trips which is a strong implication for home/work
locations, several requirements are considered for the design: It
should 1) visualize both the spatial and temporal attributes of the
movement, 2) distinguish the origin and destination of each trip,
3) highlight the important locations, and 4) highlight the dominant
travel patterns.

3.1 Spatiotemporal Visualization
We adopt the space-time cube based method [1, 3] to overlay the
transportation data by plotting the temporal attribute values along
the z coordinate. All the timestamps are converted to the time of
day, as shown in Figure 3. Each trip is represented by a single
straight line connecting the spatiotemporal coordinates of its origin
and destination, which are rendered with different colors for easy
visual discrimination (origin=blue, destination=orange). The point
of destination is always higher than the origin and the difference
indicates the time spent on travelling.

The white filled circles on the ground represent the important
locations as detected by the clustering algorithm in iVizTRANS (to
be presented in Section 4). These are the candidates for home and
work locations. The center of the circle represents the geolocation
and the size (in terms of area) represents its importance score which
corresponds to the frequency of visits. The coloured boundaries
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indicate the candidate home(red)/work(green) locations inferred by
the classifier. Note that these are visualized only after the first user’s
annotation to create and initialize the classifier for iVizTRANS.

Figure 3: Spatiotemporal Visualization

3.2 Interaction Design
The visualization tool allows the users to interactively change the
views to observe different aspects of the data which will help the
decision making process.

Connection View When a user hovers the mouse cursor over
the circles on the ground, it will switch to the connection view as
shown in Figure 4—the hovered cluster is yellow-filled. It is ac-
tually a Arc Diagram by which repeated events can be easily spot-
ted [17]. Each arc represents a directional connection between the
two clusters. The from (origin) and to (destination) ends are still
rendered with blue and orange. Each cluster might have two arcs
connecting to another: one for outgoing and another for incoming
trips presented at different heights for easy visual discrimination.
The width of the arc lines denotes the strength of the connection
which corresponds to the number of trips between the two locations.
This view can help the user develop useful insights about the role of
a location. For example, one hint for distinguishing home and work
location in Figure 4 is the number of connections. A home location
might have more connections than the corresponding work location
due to the activities on non-working days. It is not always true but
a human user can consider it together with many other features.

(a) Connections for Home Location (b) Connections for Work Location

Figure 4: Connection View for Home and Work Locations

Trip Aggregation The interval between two consecutive trips
indicates the length of stay. For Home/Work place detection, we
focus on the trips that are related to long lasting activities such as
working and sleeping rather than short ones such as bus/train trans-
ferring, shopping, dining, etc. The trip aggregation functionality in
iVizTRANS combines multiple short inter-trip stays into one based
on a user-specified time threshold. Figure 5 shows a comparison be-
tween the original trips (a) and the aggregated trips by 3.5 hours (b),
which means every two or more trips with an interval smaller than
3.5 hours will be combined into one. As can be seen, the cluster in
the middle has shrunk a lot which means the visits to it are usually
short, while the other two remain almost the same size, indicating
that they are good candidates for home/work locations.

(a) Before Aggregation (b) After Aggregation

Figure 5: Trip Aggregation by 3.5 Hours

Trip Clustering For better visualization of the trip data for
home/work detection, we remove the random trips and retain only
the ones with recurrent patterns. To do this, we cluster the trips to
highlight the dominant patterns. The clustering algorithm is similar
to that that we have used for clustering the locations but extended to
deal with the 4 elements vectors < so,sd , to, td >. Figure 6 shows
a comparison between visualizing the raw single trips and visualiz-
ing the clustered trips. The width of a trip cluster corresponds to the
number of the raw trips in this cluster, which is shown together with
the average departure/arrival times when the cluster is highlighted.
Note that the line on the ground is an orthographic projection of
the highlighted trip cluster to indicate the OD on the 2D map. The
clustered trips visualization is simpler and clearer for the user.

(a) Single Trips (b) Trip Clusters

Figure 6: Raw Trips vs. Trip Clusters

Statistical Plots To help the user understand the data better,
we use statistical plots which are complementary to the spatiotem-
poral visualization in a sense that it summarizes the data to provide
the user with a good comparative overview. In iVizTRANS, when
one hovers over a clustered location with mouse, 4 plots pertaining
to the location will be displayed in the UI as depicted in Figure 7.
The sub-figures (a,b,c) show the histograms for departure time, ar-
rival time and duration of stay respectively. These are very helpful
for discriminating home and work locations. The x axis in these
3 plots represent the hours of a day. The plot in sub-figure (d) is
the travel activity spectrum, i.e., each departure (blue) and arrival
(orange) is plotted as a thin band at the position according to its
timestamp. The x axis here represents the whole temporal period
of the selected dataset (which is 92 days in this example). The
sub-figure (e) shows a case where the spectrum plot view is useful.

51



Here, two locations that are pointed by the red arrows have similar
patterns but there are no intersection between their spectrum plots.
This probably implies a home moving or a job switching around the
time indicated by the red dot line.

(a) Histogram of Departure Time (b) Histogram of Arrival Time

(c) Histogram of Duration of Stay (d) Travel Activity Spectrum

(e) A Case of Home Moving

Figure 7: Statistical Plots for Selected Cluster and Derived Insights

Annotation Tool In iVizTRANS, annotation is the way for the
user to gradually train the machine learning classifier. It is needed
in two situations: 1) at the very beginning when the classifier is not
created yet, and 2) when the classifier gives an inference deemed
wrong by the human user. It is unnecessary to annotate when the
inference is deemed correct. Figure 8 shows a case where the in-
ferred home work location (a) does not make sense so the user has
annotated the correct ones (b) which are filled with corresponding
colors using iVizTRANS’s Annotation Tool.

(a) Wrong Inference (b) Annotate the Right Ones

Figure 8: Correct the Wrong Inference by Annotation

4 ALGORITHMS

4.1 Clustering
As mentioned earlier, a clustering algorithm is used to discover im-
portant locations as well as dominant trip patterns from the Smart
Card PT data. The trip clustering is a second clustering process
based on the results from the location clustering. Both of them are
presented in this section.

4.1.1 Location Clustering
For using public buses in Singapore, one typically uses two differ-
ent bus stops (in opposite traffic directions) to leave and come back
to a location such as the home. The location of the bus stops should
be grouped together because they both pertain to the home location.
In fact, the density of the bus/train stops in Singapore is very high,
and the transportation network is highly connected. This means that
people may visit or leave a place using different routes, modes, and
stops in the vicinity of their desired destination. The purpose of lo-
cation clustering is therefore to group the PT stop locations serving
the same roles to a particular commuter.

The points for clustering include all the tap in/out locations in
the Smart Card data, with each trip contributing two points. There
are a number of existing clustering algorithms that can be used.
Beecham et al. [4] used VA to evaluate three clustering algorithms
for classifying commuting behavior from cyclists’ journeys, and
they concluded the density-estimation is the best one. We adopted
a similar algorithm adapted from hierarchical clustering. The main
challenge is how to decide the distance threshold – a large threshold
would potentially merge home and work locations which are close
to each other, while a small one could separate the locations with
the same role but are at a distance from each other. Thus, we made
the following changes to the classic hierarchical clustering:

Distance Function Should two locations within a certain dis-
tance threshold–say 1 KM–always be grouped into the same clus-
ter? For discussion, let us look at two examples. Figure 9(a) shows
a case in which one’s home location is between the two stops. As
such, he might walk to each of them for different destinations; (b)
shows another case that one takes a bus to another bus stop 1000m
away to work. Although the distances between the bus stops are
both the same (1000m), S1 and S2 should be grouped into the same
cluster while S3 and S4 should not. To distinguish between such
cases, we devise a flexible distance threshold by modifying the dis-
tance function to produce a smaller value for case (a) than for case
(b).

The trips between two stops indicate different roles for the loca-
tions. If a person takes a bus or train to travel from A to B, it is a
sign that A and B should be separated into two clusters. If there are
no trips between A and B, and the distance between them is min-
imal, then they have a higher chance to be in the same cluster for
the perspective of the particular commuter. We can use the distance
function as follows:

d(x,y) = f (d∗(x,y),τ(x,y))

τ(x,y) is the number of trips between location x and y which could
be either single bus stops or clusters. d∗(x,y) is the raw distance
function which in this paper simply computes the Euclidean dis-
tance. f (d,n) is the function that computes a new distance based
on the two inputs. We implement this function as a weighted dis-
tance

f (d,n) = w(n)×d

For each individual commuter’s history, we assume the numbers of
trips between each pair of stops is subject to a Gaussian distribution
N (µ,σ2). µ and σ can be estimated from the data. The weight
function is then defined as

w(x) = 1+λ ×F (x)/

F is the Cumulative Distribution Function (CDF) for Gaussian dis-
tribution. λ is a constant which is set to 2 in our experiment, which
means the maximum number of trips will times the distance by 3.

Termination Condition The classic hierarchical clustering ter-
minates when the number of clusters is reduced to the specified
value. Our clustering method ends when no merging operations
could result in an acceptable new cluster, which means that the
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Figure 9: Examples of Clustering for Home Locations

radius of it is within the specified radius threshold. There are
typically 3 types of distance functions for a hierarchical cluster-
ing: complete-linkage distance, single linkage distance and average
linkage distance. To minimize the radius of the merged cluster, we
choose the last one which is defined as

D(A,B) =
1
|A||B| ∑a∈A

∑
b∈B

d(a,b)

4.1.2 Trip Clustering
Trip clustering is based on the results generated from the location
clustering above. Each trip record r =< u,so,sd , to, td > is con-
verted to r =< u,co,cd , to, td > where c represents the cluster it be-
longs to. The clustered trips must have the same OD pair. Note that
the OD pair is directional which means < c1,c2 > and < c2,c1 >
are different pairs. Thus, the trip clustering process is a loop over
all the cluster OD pairs. For each pair, we run the algorithm over all
the trips with the same OD. Given two trips r1 and r2, the distance
function only takes the two timestamps as input:

d(r1,r2) =
√
(to

1 − to
2 )

2 +(td
1 − td

2 )
2

We use the same clustering algorithm with this distance function
to discover the dominant trips, as shown in Figure 6. The radius
threshold is also needed as input which is set to 2 hours as shown
in Figure 6. iVizTRANS provides a UI to allow users to change the
thresholds for both location and trip clustering.

4.2 Learning Model
For each individual commuter in the dataset, iVizTRANS recom-
mends a few clusters as candidates for his or her home and work
place. A human then selects the home/work locations so that the
machine can learn from it. To characterize the clusters so that the
learning algorithm can understand why human users make such a
decision, we list the features that are relevant to learning the deci-
sion making in the next section. We train a random-forest model
from those features and an optimal selection is recommended by a
loss matrix.

4.2.1 Feature Engineering
For each cluster, we extracted 24 features as shown in Table 1,
which can be categorized as follows:

• Primitive statistical descriptors. These are the descriptors
that can be directly computed over a single feature, such as
the sum, variance, average for the number of visit, depar-
ture/arrival time, duration, or connection of a cluster.

• Comparative descriptors. Some comparative values are use-
ful for determining the home/work locations, e.g., the ratio
between the visit on weekdays and weekends. We also ob-
served from visualization that in some situations people tend
to use public transportation more for going to work than for
going home. In this sense, the ratio between the arrival and
departure is useful for the decision.

• Partial descriptors. This refers to the descriptors generated
over only part of the data. By using trip aggregation the short

Table 1: Features for Machine Learning

Name Description
nVisit Number of visit
nVisitAgg Number of visit after trip aggregation
rArrDep Ratio between the numbers of arrival and departure
vArr Variance of arrival time (time of day)
vArrCls Max variance of arrival time for the clusters
vDep Variance of departure time (time of day)
vDepCls Max variance of departure time for the clusters
nStay Number of long stays in 24 hours
nStayAgg Number of stay durations in 24 hours after trip aggregation
tStay Average stay duration
tStayAgg Average stay duration after trip aggregation
vStay Variance of the stay duration
vStayAgg Variance of the stay duration after trip aggregation
rNVitWH Ratio between the visits on weekdays and weekends
nCon Total number of connections
vCon Variance of the strength values of the connections
nConArr Number of arrival connections
vConArr Similar to vCon but for all arrival connections
nConDep Number of departure connections
vConDep Similar to vCon but for all departure connections
oVisit Index of order by visit
oVitAgg Similar to oVisit but for aggregated trips
rVitAgg Ratio between the visits from raw trips and aggregated trips
rArrDepWH Ratio between rArrDep values for weekdays and weekends

stay trips are removed so as to highlight the home/work re-
lated ones. Some primitive descriptors are reproduced over
the aggregated trips. Another process is the clustering of the
arrival/departure time. This is due to the observation that
some people have two different working schedules so that the
arrival times are distributed in two clusters, within either of
which the variance is very small which is an implication for
work location.

The duration is identified from consecutive trips. However, some
commuters might use other transportation means (for example, taxi-
cabs) in between so that the person appeared to have stayed put at
the place for a rather long duration even though the person has actu-
ally moved away. In order to eliminate such noise from the data, we
require that 1) the duration identified should be less than 24 hours
2) the origin of the second trip should be within a certain range of
the destination of the first one.

The arrival and departure times of day, which are normally used
in other work, are not included in the model. From our previous
experience, the working schedules vary for different people in Sin-
gapore. For example, in our earlier example of misclassification of
home locations at Changi International Airport, it was probably due
to many people working on night shifts there. Thus, we omit the ar-
rival and departure time values intentionally to prevent the classifier
from being biased.

4.2.2 Learning Algorithm

We choose random forest as the learning algorithm for our iViz-
TRANS due to its robustness on processing large numbers of fea-
tures. The training set includes all the variables listed in Table 1 and
the annotations from human users as one of the three types: home,
work and others. Given that some commuters in the training dataset
may travel a lot more than the others such that their values for the
features are much greater than those from the others, we also nor-
malize the input values by the maximum values of the same type
and the same commuter.
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The resulting classifier is then used to classify whether a can-
didate location is a home, work or other location for a particular
commuter. Since each of the candidate locations is classified sep-
arately, it is possible for two location clusters of a commuter to be
determined simultaneously as his home locations. To resolve this
problem, we use a loss matrix to select the optimal home/work pair.

Instead of directly assigning a particular class label to a candi-
date cluster, the random forest model computes the probabilities for
the candidate to belong to each of the three classes. In our case, it
can be denoted as a 3 elements vector < ph, pw, po >, respectively
representing the probabilities for home, work and other. Assuming
we have n clusters from a commuter, the learning model will pro-
duce a size n vector array which we named as the Inference Array

Definition 4.1 (Inference Array). The inference for a set of
clusters with each item indicating the predicted probabilities of
the corresponding cluster belonging to each of the classes, P =
{P1,P2, ...,Pn} where Pi = {ph

i , pw
i , po

i } and ph
i + pw

i + po
i = 1.

Then, if cluster i is selected as home location and j is selected as
work location, the Expected Inference Array is the defined as:

Definition 4.2 (Expected Inference Array). An inference array that
fully supports the hypothesis of i as home and j as work location.
Ei, j = {E i, j

1 ,E i, j
2 , ...,E i, j

n }, where E i, j
i = {1,0,0}, E i, j

j = {0,1,0},
E i, j

k (k 6= i,k 6= j) = {0,0,1}.

The loss of making such a selection is defined as the Selection
Loss.

Definition 4.3 (Selection Loss). The loss for selecting candidate i
as home and j as work location.

li, j =
n

∑
k=1
|Pk−E i, j

k |

Definition 4.4 (Loss Matrix). Given n candidate clusters, a n×
n matrix L where each element is the selection loss of elements
indicated by the indexes of its row and column, L(i, j) = li, j.

A loss matrix is produced for each commuter. The next task is to
select the minimal element from the matrix, namely the row/column
index of which indicates the optimal pair for home/work location.
According to Definition 4.1, the minimal value for the selection
loss is 0 and the max is n

√
2. The minimal loss value, which is the

selected one, can serve as an confidence indicator for a selection.
A high loss value generally means the home/work pattern of the
particular commuter is not very clear based on the data used to train
the model. Another indicator is the ratio between the minimal value
and the second minimal value, which might indicate multiple home
or work locations such as the case shown in Figure 7.

5 EXPERIMENTS

5.1 Data Processing
We used a 3-months’ (92 days in total) smart card dataset for our
experiment. Problematic records such as those missing the essential
fields used in our model are removed. The number of unique cards
is about 6 million which is roughly the same as the total population
in Singapore. It does not make much sense to try to analyse those
who travel infrequently, given that our task is to identify home/work
locations for urban commuters. Thus, in our experiment, we only
keep the data from those cards that were used in more than 10 days
of the whole 3 month period. This results in only about 3 million
such commuters. The result is aggregated to districts before sharing
which could improve the privacy protection.

5.2 Annotation and Training
About 200 commuters’ data were annotated by urban planners from
URA, which were used for training and the resulting classifier was
applied to the rest of about 3 million travelers.

The trip aggregation interval was set to 3 hours according to our
experience from using the visualization tool—the visualization nor-
mally changes the most when the interval was increased to 3 hours.
The distance threshold for location clustering was set to 1.5Km. We
choose a large distance threshold to deal with the cases similar to
(a) in Figure 9 but we don’t worry about cases like (b) for which the
home and work clusters will be separated by the distance function.

The random forest algorithm separates the training set into two
parts: one for constructing the decision trees and the other, which
is also named out of bag (OOB) data, is for error estimation. The
resulting random forest in this experiment has an estimated error
rate of 5.66%. Figure 10 shows the importance scores for the input
variables defined in Table 1. The mean decrease accuracy (MDA)
and mean decrease Gini (MDG) are two common metrics for mea-
suring the importance of the input features. One observation is that
the important features here include some derived ones such as rAr-
rDepWH, rArrDep, rVitAgg,vDepCls, etc., which suggests that our
feature engineering is effective.
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Figure 10: Importance of the Training Features

5.3 Evaluation
The conventional way of evaluation is to compare the computed re-
sults to demographic data from surveys such as [7]. However, the
survey data could be biased. For example, some surveys are based
on registered information which might not be true or not updated.
Some may be focused only on their citizens or a particular segment
of the local residents which do not cover the whole population in
the city. As such, for this work, we propose a method that uses only
the housing units map to evaluate, which we think is more objective
and comprehensive. As shown in Figure 11, the color is encoded
by the number of total dwelling units in the area. The base map in
the figure is provided by Urban Redevelopment Authority (URA)
of Singapore 1. Note that many zones do not have any residence.
Given the fine granularity in the dwelling units information, we be-
lieve there should be a strong correlation between its values and the
home locations computed accurately using iVizTRANS.

The evaluation we present for our experiment shows the corre-
lation between the distributions of housing units and home loca-
tions identified from our analysis. Namely, we respectively count
the number of housing units and identified location grouped by the
district map, which generates two distributions. The correlation co-
efficient is computed using

ρX ,Y =
cov(X ,Y )

σX σY

1Master Plan 2014 Subzone Boundary: http://data.gov.sg/Metadata/
OneMapMetadata.aspx?id=MP14 SUBZONE WEB PL&mid=188915&
t=SPATIAL
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Figure 11: Distribution of Dwelling Units Aggregated by Subzones

Table 2: Distribution correlation between housing map and identi-
fied home locations

Base Map M1 M2 iVizTRANS
Transport MTZ (1186) 0.306 0.385 0.571
Planning MTZ (514) 0.566 0.625 0.778
Planning Area (55) 0.731 0.833 0.942

For comparison, we reimplemented two other methods, namely
1) the method introduced in [11] which assumes the most visited
place as the home location, and 2) a method similar to [6] which
defines a score function that incorporates the visit, stay duration,
active days and active weekdays. Since the home/work locations
are derived from the locations of the bus stops which are not exactly
the same as the geo-locations of home and work, we expect that a
district map with finer granularity has a lower correlation coefficient
value. Thus, three district maps were used which divide Singapore
into different numbers of zones: transportation Mass Transfer Zone
(MTZ) - 1186, planning MTZ - 514, planning areas - 55.

The result is shown in Table 2, where the following conclusions
can be drawn:

• Our visual learning tool consistently outperforms the other
two methods. Note that we did not use the housing map for
the training but only as a reference for visualization. Further-
more, we applied our methods using the three different district
maps and the performance of iVizTRANS is always superior,
independent of the base maps used.

• As we expected, since the locations derived from the bus/train
stops have certain distances to the real home/work locations,
the coefficient consistently decreases when using finer grained
base map for aggregation as can be seen from Table 2.

Figure 1 shows a snapshot of the animation based on the gen-
erated result. It shows at the time shown at the upper-left corner,
where are the people and whether they are at their home, work, or
other locations which might be the places for play. Some other in-
teresting insights can be easily drawn from the results–for example,
where do the night shift job-holders work in Singapore.

5.4 Discussion
Although the results have demonstrated a good performance gain
using our iVizTRANS on PT data, there are some inherent limita-
tions for a comprehensive understanding of where people live, work
and play in Singapore :

• The dataset does not include people who live close to their
work locations so that they walk to work, e.g., the foreign

workers and international students who tend to rent flats near
where they work or go to school.

• The density of dwelling units were not considered. Units have
different room types such as 3-room, 4-room flat. The distri-
bution of total dwelling units might be a bit different from the
reality.

• The first mile and last mile issue introduces uncertainties to
the result, i.e., the trips before entrance and after exit to the
PT system. Most of them are walking trips but some of them
are by shuttle buses or private cars.

• The ratio between people using public transport and private
transport varies in different areas. According to data pub-
lished by Land Transport Authority (LTA) 2, people who live
close to the train stations would more likely choose PT as their
primary commuting option than those who live further.

For city-wide home/work detection, these limitations can be
overcome in the future by incorporating more datasets such as mo-
bile phone data, which can capture walking trips and has a better
coverage. A more detailed housing map which includes the room
type could be a more reasonable indicator for the distribution of the
residents. A zone-specific ratio between PT and non-PT commuters
can be estimated if we have the vehicle ownership data. A method
to distribute people from bus/train stops to nearby buildings is in-
troduced in [15] which is a possible solution to the first/last mile
issue.

The evaluation for work locations is not easy as pointed out
in [7]. There are two possible ways: 1) comparing to survey data,
the limit of which has already been discussed 2) a similar evalua-
tion process if we have the commercial/industrial building data. It
is worthy of trying but we also need the work space density data
since it varies significantly in different areas/industries.

It is highly possible to reuse iVizTRANS in other cities given that
a similar OD dataset is available. Some cities adopt a uniform fare
system so that tap-out is not needed. In this case, some other dataset
such as GSM data can be used to generate the OD. There are three
possible challenges one might face when reusing it in other cities:

1. How representative is the result? The key factor is how many
people use PT as their main transport vehicle in the city. The
share of PT in Singapore is very high - about 60% of overall
trips are by PT. Other cities need to consider the PT share
when reusing the method.

2. What is the precision of localization? The home/work loca-
tions are derived from the stops/stations. Thus, its precision
relies on how close the real home or work locations are to
the stops. Singapore has a very dense PT network so that the
localization is regarded acceptable for a planning zone based
aggregation. For other cities, accordingly to the accessibility
of PT systems, the precision of localization needs to be eval-
uated.

3. Does the same feature set work for the machine learning? The
current feature set is well designed so that it should work for a
similar dataset but maybe in a different way, i.e., the generated
model and feature importance table might be very different.
However, there might be other important features that are not
included. This is open for researchers to explore in the future.

2HITS: http://www.lta.gov.sg/apps/news/page.aspx?c=2&id=
1b6b1e1e-f727-43bb-8688-f589056ad1c4
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6 RELATED WORK

Space-time cube was first introduced by Hägerstrand [10] and used
by many later work. For example, Gatalsky et al. [9] used it to visu-
alize and detect clusters of events. Kapler and Wright [12] focused
on combining the spatial and temporal attributes and developed an
interactive 3D view to display and track events, objects and activi-
ties. Previous work has also shown that origin and destination (OD)
data can be visualized to better uncover the overall traffic pattern.
This was specifically investigated by Wood et al [18], and they sub-
sequently applied the techniques to visualize the bicycle hire use
and travel patterns in London [19].

From the perspective of urban planning and transportation engi-
neering, researchers in this domain have recently begun to use big
data analytics to derive new insights. For example, the smart card
data investigated in this work has become an important data source
for analysing city-wide travel patterns [16]. For city planning, Med-
ina et al. [15] used the smart card data in Singapore to estimate the
capacities of workplaces. Lathia et al. [13] tried to segment smart
card users by their travel behaviors, the result of which could be
used for providing personalized service. Zhong et al. [21] proposed
a method to infer the purposes of trips from smart card data, based
on which they further infer the functions of buildings. Andrienko
et al. [2] focused on preserving users’ privacy when designing a VA
tool to detect significant personal places.

7 CONCLUSION AND FUTURE WORK

In this paper, we have focused on home and work place detection
based on travel patterns reflected in the smart card data. We have
showed that with the help of appropriate visualization and various
interactive analytic tools, we can effectively make use of our ca-
pability of visual interpretation to train the computer program to
learn an accurate classifier that can then be applied to huge vol-
umes of city-wide PT smart card data. Our main contribution to the
VA community is to show the possibility and advantage of applying
VA techniques to solve urban problems.

The feedback from the urban planners is very positive - they
found the tool very useful for them to understand the travel pat-
terns and locate the home/work locations. The main concern raised
was about the accuracy of localization when a fine grained district
map was used for aggregation (see Table 2). They wondered if we
could achieve a building-level accuracy for localization, which is
limited by the nature of smart card dataset but could be solved to
some extent by employing a distribution method [15].

Also, some new and interesting questions were raised. For exam-
ple, is iVizTRANS reusable for other types of datasets, e.g., the mo-
bile phone data, how to identify the home and play locations of peo-
ple with jobs that do not require them to report to a fixed work place,
such as real-estate agents, or how to identify the home and play lo-
cations of people without jobs such as unemployed adults, children
and old people which sum up to a non-trivial number among the
smart card holders? We leave these challenges for our future work.
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[10] T. Hägerstrand. What about people in regional science? Papers of the
Regional Science Association, 24(1):6–21, 1970.

[11] S. Hasan, C. M. Schneider, S. V. Ukkusuri, and M. C. Gonzlez. Spa-
tiotemporal patterns of urban human mobility. Journal of Statistical
Physics, 151(1-2):304–318, 2013.

[12] T. Kapler and W. Wright. Geotime information visualization. In In-
formation Visualization, 2004. INFOVIS 2004. IEEE Symposium on,
pages 25–32, Oct 2004.

[13] N. Lathia, C. Smith, J. Froehlich, and L. Capra. Individuals among
commuters: Building personalised transport information services
from fare collection systems. Pervasive and Mobile Computing,
9(5):643 – 664, 2013. Special issue on Pervasive Urban Applications.

[14] Y. Long and J. Thill. Combining smart card data, household travel
survey and land use pattern for identifying housing-jobs relationships
in beijing. Computers, Environment and Urban Systems, 2013.

[15] S. A. Ordez Medina and A. Erath. Estimating Dynamic Workplace
Capacities by Means of Public Transport Smart Card Data and House-
hold Travel Survey in Singapore. Transportation research record,
(2344):20–30, 2013.

[16] M.-P. Pelletier, M. Trpanier, and C. Morency. Smart card data use in
public transit: A literature review. Transportation Research Part C:
Emerging Technologies, 19(4):557 – 568, 2011.

[17] M. Wattenberg. Arc diagrams: visualizing structure in strings. In
Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on,
pages 110–116, 2002.

[18] J. Wood, J. Dykes, and A. Slingsby. Visualisation of origins, destina-
tions and flows with OD maps. The Cartographic Journal, 47(2):117–
129, 2010.

[19] J. Wood, A. Slingsby, and J. Dykes. Visualizing the dynamics of lon-
don’s bicycle-hire scheme. Cartographica: The International Journal
for Geographic Information and Geovisualization, 46(4):239–251,
2011.

[20] Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid
Model and Computing Platform for Spatio-semantic Trajectories. In
The Semantic Web: Research and Applications, volume 6088 of Lec-
ture Notes in Computer Science, pages 60–75. Springer Berlin Heidel-
berg, 2010.

[21] C. Zhong, X. Huang, S. M. Arisona, G. Schmitt, and M. Batty. In-
ferring building functions from a probabilistic model using public
transportation data. Computers, Environment and Urban Systems,
48(0):124 – 137, 2014.

56


