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Figure 1: ProInterAR is an integrated visual programming platform for creating immersive AR interactions with a tablet and 
an AR-HMD device. (a)-(b) The AR creator specifes physical contents or creates virtual contents (i.e., a physical white box 
and a virtual tree) from the AR-HMD. (c)-(d) The creator programs the interactive behaviors of the created AR contents from 
a block-based visual programming interface in the tablet. (e) The creator executes, watches, and controls the programmed 
AR application in the AR scene. In this example, an AR game “pat and bounce” is created using ProInterAR: The player frst 
uses his hands to pat a virtual ball to make it move in the AR space continuously. It will bounce when it collides with the AR 
contents (i.e., physical walls, ground, a physical box, a physical chair, and a virtual tree). If the player catches and pats the ball 
once by hand, the score will be added by one. 

ABSTRACT  
AR applications commonly contain diverse interactions among dif-
ferent AR contents. Creating such applications requires creators to 
have advanced programming skills for scripting interactive behav-
iors of AR contents, repeated transferring and adjustment of virtual 
contents from virtual to physical scenes, testing by traversing be-
tween desktop interfaces and target AR scenes, and digitalizing 
AR contents. Existing immersive tools for prototyping/authoring 
such interactions are tailored for domain-specifc applications. To 
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support programming general interactive behaviors of real ob-
ject(s)/environment(s) and virtual object(s)/environment(s) for novice 
AR creators, we propose ProInterAR, an integrated visual program-
ming platform to create immersive AR applications with a tablet 
and an AR-HMD. Users can construct interaction scenes by creating 
virtual contents and augmenting real contents from the view of 
an AR-HMD, script interactive behaviors by stacking blocks from 
a tablet UI, and then execute and control the interactions in the 
AR scene. We showcase a wide range of AR application scenarios 
enabled by ProInterAR, including AR game, AR teaching, sequential 
animation, AR information visualization, etc. Two usability studies 
validate that novice AR creators can easily program various desired 
AR applications using ProInterAR. 

CCS  CONCEPTS  
CHI ’24, May 11–16, 2024, Honolulu, HI, USA • Human-centered computing → Ubiquitous and mobile com-
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. puting systems and tools; Mixed / augmented reality; Graph-ACM ISBN 979-8-4007-0330-0/24/05 
https://doi.org/10.1145/3613904.3642527 ical user interfaces; User interface toolkits. 

https://doi.org/10.1145/3613904.3642527
mailto:permissions@acm.org
mailto:karan@dgp.toronto.edu
mailto:xupengfei.cg@gmail.com
https://doi.org/10.1145/3613904.3642527
mailto:permissions@acm.org
mailto:karan@dgp.toronto.edu
mailto:xupengfei.cg@gmail.com
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642527&domain=pdf&date_stamp=2024-05-11


                   

      

   
            

         
            

             
    

        
        

         
          

          
            

         
            

          
            

         
          

           
          

        
         

         
           

        
         

         
             

         
         

          
           

          
         

         
        

           
          

 
            

       
          

         
          

        
       

       
           

           
          

         
         

          
          

        
           

           
          

        
          

          
         

          
         

             
         

         
         

       
        

          
           
         

          
          

            
        

            
           

         
          

        
        

          
           

          
      
        

         
         

        
      
          

  

       
        
          

         
          

         
      

           

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hui Ye, Jiaye Leng, Pengfei Xu, Karan Singh, and Hongbo Fu 

KEYWORDS  
AR contents, AR interactions, Visual programming 

ACM Reference Format: 
Hui Ye, Jiaye Leng, Pengfei Xu, Karan Singh, and Hongbo Fu. 2024. ProInt-
erAR: A Visual Programming Platform for Creating Immersive AR Interac-
tions. In Proceedings of the CHI Conference on Human Factors in Computing 
Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, 
USA, 15 pages. https://doi.org/10.1145/3613904.3642527 

1  INTRODUCTION  
Augmented Reality (AR) seamlessly blends the virtual and phys-
ical realms, enhancing our perception and providing immersive 
experiences that were once confned to science fction. From en-
tertainment and gaming [30, 33] to education [43], healthcare [51], 
and industry [10], AR applications have the potential to transform 
numerous sectors and redefne the way we live, work, and play [6]. 

AR applications involve numerous types of interactions of both 
real and virtual AR contents in dynamic or static forms. Currently, a 
typical workfow to create AR applications usually consists of four 
steps: 1) conceptualize and plan basic ideas; 2) build AR contents by 
augmenting physical elements with virtual elements; 3) design user 
interfaces and AR interactions required for users to interact with 
the contents; 4) script the controlling and reactive behaviors of the 
AR contents in game engines and frameworks (e.g., Unity, Unreal, 
ARKit, ARCore). One signifcantly difcult step for inexperienced 
creators without strong programming background is to script AR 
interactions [20] since it requires advanced low-level coding skills 
and heavy coding tasks. In virtue of visual scripting [26], some 
desktop-based tools (e.g., Unreal Blueprints and Lens Studio) en-
able users to script AR experience using node-based programming. 
Although they relieve the programming burden, they require the 
AR contents to be placed frst in a virtual scene or template and 
then transferred to a physical scene with repeated adjustment. Be-
sides, they require creators to traverse between programming on 
desktop interfaces and testing on target AR scenes from mobile 
devices, limiting fexibility [2]. On the other hand, AR contents and 
their properties (e.g., motion, appearance) need to be obtained or 
used during programming. Virtual contents can be accessed easily 
in virtual representations, while real-world contents need to be 
digitized for access by desktop-based programming interfaces and 
scripted behavior transfer in AR scenes. How to smoothly fuse the 
AR contents in programming remains a question for novice AR 
creators. 

To make the creation of AR applications to be more in situ, 
researchers have proposed various immersive toolkits for author-
ing and prototyping AR interactions. Such toolkits allow users to 
specify reactive behaviors of AR contents via visual programming 
workfows [39, 40, 48, 52]. However, these works have mainly fo-
cused on domain-specifc interaction tasks (e.g., gestural interaction 
[39], toy-based interaction [52], spatially-aware interaction [48], 
human-centered context-aware interaction [40]). For more general 
AR interactions, the behaviors of the real and virtual contents might 
contain many properties and variations to be controlled, so it is 
hard to achieve them using existing toolkits. Recent works like 
LearnIoTVR [53] and FlowMatic [50] are proposed for creating gen-
eral VR applications. However, they focus on scripting interactions 

among virtual contents, while we aim to handle AR scenes contain-
ing both real and virtual contents and more complex interactive 
paradigms, especially between the real and virtual contents. 

There are still very few tools for supporting novice AR creators 
to create general AR applications. One of the exceptions is ARcadia 
[19], which presents a prototyping platform for a real-time tangible 
interface based on block-based visual programming. However, it 
employs marker-based AR through a laptop camera with a fxed 
viewpoint while we want to utilize the advantages of markerless 
AR based on AR-HMD (Augmented Reality Head Mounted Display) 
to provide a more fexible and immersive interface for scripting 
3D behaviors of AR contents tightly coupled with users’ surround-
ings. In this work, we frst discuss the design scope of general AR 
interactions. Based on it, we propose ProInterAR, a block-based vi-
sual programming system to create immersive AR interactions, for 
novice AR creators who have some background in programming 
but limited experience in creating AR applications. 

To achieve in-situ and portable authoring experience and re-
lieve hand fatigue, we provide user interfaces (UIs) with integrated 
devices: a visual programming UI from a tablet browser, a scene 
creation, execution, and controlling UI from an AR-HMD. Creators 
can construct interaction scenes by creating AR contents from the 
view of the AR-HMD, script the interactive behaviors by stacking 
blocks from the tablet UI, and then execute and view the scripted 
interactions by controlling the contents and detecting the interac-
tions in the AR scene. We design the programming blocks based on 
Scratch [32], which can be dragged, stacked, and grouped to any 
created/specifed AR contents. Various types of interactions can be 
implemented with a diverse range of blocks. We demonstrate four 
application scenarios (i.e., AR game, AR teaching, sequential ani-
mation, AR information visualization) to show its expressiveness 
and usability. We conducted two usability studies with AR creators 
to evaluate the usefulness of ProInterAR. From the studies, we fnd 
that novice AR creators can easily create diverse AR applications 
with varying complexity using our system. 

In summary, our work makes the following contributions: 

• A design scope that describes general AR interactions. 
• A visual programming toolkit integrating a tablet browser 
and an AR-HMD for creating general AR interactions. 

• A demonstration of application scenarios. 
• Two usability studies to validate the usefulness of the pro-
posed system. 

2  RELATED  WORK  

2.1  Visual  Programming  Approaches  and  
  Interfaces

To program interactive behaviors, developers usually use tradi-
tional text-based programming interfaces to express the logic, iter-
ation, and operation. However, it requires a steep learning curve 
and a solid understanding of syntax and coding structures. Vi-
sual programming paradigms [4, 26] are proposed to lower the 
entry barriers to non-experienced developers, with the forms of 
fowchart-based programming [5, 15, 49], block-based program-
ming [17, 32, 53], state-machine programming [3, 21], etc. As a 

https://doi.org/10.1145/3613904.3642527
https://doi.org/10.1145/3613904.3642527


                  

     
        
         

         
       

               
        

           
          

          
         

           
        

    

         
          

         
         
       

         
    

          
         

          
          

          
          

          
          

         
           
         

         
           

        
          

         
         
         

         
        

        
             

           
          

            
       

        
         
           

      
         

         
         

         
       

         
        

        
        

       

        
        

        
          

        
         

          
       

         
         

      
        

         
          

      
        

         
           

         
       

           
          

         
        

           
       

           
         

          
        

            
          

           
      

           
          

           
         

          
   

           
         
          

ProInterAR: A Visual Programming Platform for Creating Immersive AR Interactions CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

representative type of fowchart-based programming, node-graph-
based programming is widely adopted in prototyping complex pro-
gram logic and data processing pipelines for various applications, 
e.g., graphical applications [37], AR/VR applications [31, 34, 50], 
and machine learning tasks [9]. Alternatively, block-based program-
ming [13, 19, 24, 32] is considered to be easy for beginners [1, 41, 53] 
by utilizing simple and self-contained blocks and drag-and-drop 
interfaces. Among them, Scratch [32] is one of the popularly used 
tools for kids and beginners to create interactive 2D graphical ap-
plications, e.g., stories, animations, games. We share a similar goal 
with Scratch – to allow non-professional creators to create interac-
tive applications easily, but diferently – to script immersive 3D AR 
applications. Thus, we carefully design our visual programming 
interface based on Scratch. 

2.2  Toolkits  of  Developing  AR/VR  Applications  
Currently, professional creators usually resort to 3D game engines 
such as Unreal and Unity to create AR/VR applications by build-
ing scenes and writing scripts using the programming language 
supported by a chosen engine. Creators must implement object 
behaviors, user interactions, gameplay mechanics, and any cus-
tom functionalities required for the AR/VR experience. However, it 
requires extensive low-level programming. 

To address this issue, researchers have explored the use of dif-
ferent types of visual programming interfaces with lower entry 
barriers in building AR/VR applications [11, 14, 17, 19, 50]. Commer-
cial tools [34, 38] with rich media integration employ node-based 
systems and allow users to connect nodes that represent specifc 
actions, operations, or functions to defne the logic and interactive 
behavior. However, these tools require users to frst build scenes 
and script programs on desktop interfaces and then deploy the ap-
plications on target AR/VR-enabled devices, and place AR contents 
frst on virtual scenes or templates and then convert and adjust 
them to physical scenes repeatedly. Meanwhile, users must map 
the real-world contents and their digital representations in the au-
thoring tools. The gap between the target scene and the developing 
platform induces in-situ programming interfaces. For example, an 
early work, Smarter Objects [14], introduces an initial prospect in 
designing a tablet-based AR interface to program the functionality 
of physical objects and virtual interactions by connecting lines. 
We also utilize a tablet-based visual programming interface, but 
diferently, targeting immersive AR scenes for more general 3D 
interactions. ARcadia [19] presents a block programming interface 
to defne and execute interactive behaviors between tangible ob-
jects and UI elements in marker-based AR scenes. It is built on a 
desktop with a camera with limited FoV. In contrast, our markerless 
AR-HMD system enable users to author and test AR interactions 
from an AR-HMD and program on a tablet, thus allowing users to 
experience unconstrained perspectives while keeping free traverse 
between two devices. BlocklyXR [17] adopts a block-based pro-
gramming approach to allow general users to design storytelling. 
Compared to these works, we aim to support the programming of 
3D interactions of various physical/virtual objects/environments 
controlled from an AR-HMD, especially for the close interactions 
between the virtual and physical elements. Besides, our system sup-
ports hand-based interactions such as hand grasping and collision. 

For VR applications, FlowMatic [50] and XRSpotlight [11] utilize 
functional reactive programming and programming with examples, 
respectively, to help developers build VR interactions. While they 
provide much control to event- and example-based interactions for 
virtual objects, our block-based programming UI introduces more 
basic programming concepts with fexible combination and event 
listening for both virtual and physical objects. 

2.3  AR  Authoring/Prototyping  Interfaces  for  
Contents  and  Interactions  

Instead of programming interfaces, recent research has focused 
more on exploring interactive techniques for authoring and pro-
totyping AR contents and interactions. Various types of interac-
tions can occur between real and virtual contents, such as respon-
sive and interactive visualization and animation between humans, 
tangible objects, sketches, and animated characters[18, 27, 29, 36, 
44, 47], freehand AR interactions with digital contents [8, 39], 
spatially-aware interactions among physical objects and humans 
[46, 48], etc. Although most existing works propose novel author-
ing workfows for creating AR experiences and interactions for 
end-users/designers, they support creating domain-specifc AR ap-
plications. More general and customized interactions that contain 
multiple control (e.g., conditions, iterations, loops, time waiting) are 
not well supported. For example, CAPturAR [40] provides an AR 
programming interface to author human-involved context-aware 
interactions. Instead of human-centered behavior, we want to sup-
port more general AR interactions happening with various real 
(including a user’s hands and head) and virtual contents. From the 
design goal’s perspective, CAPturAR aims to provide a high-level 
rule-based authoring tool for building personalized daily applica-
tions based on historical context data, while ours ofers a grounded 
programming tool to script various AR interactions from the basic 
function combination. ProObjAR [48] allows users to design spatial 
interactions of physical objects in an event-triggering workfow, 
but it does not support the design of linked interactions that in-
volve multiple event-triggering mechanisms. In AR applications, 
the interactive behavior of one object might work as the triggering 
condition of another object’s behavior. The object behaviors might 
have diferent levels of variations to be controlled. However, the 
existing works can only author the pre-defned interaction work-
fows. To fll in these gaps, we propose a programming toolkit that 
can 1) ofer more control over the behavior properties and varia-
tions and 2) handle diferent levels of control (e.g., iterations, loops) 
of/between the behaviors of the object(s). 

3  DESIGN  SCOPE  OF  GENERAL  AR  
INTERACTIONS  

Since most of the existing AR authoring tools are tailored for spe-
cifc tasks, there is no framework discussing the possibilities and 
boundaries of general AR interactions. In this section, we develop a 
design scope that describes general AR interactions from multiple 
dimensions, and discuss how ours and the closely related works 
support these dimensions. 

Subject. AR contents can be divided into four subject types: real 
objects (e.g., tangible items, human body parts, animals), virtual 
objects (e.g., 3D models, visual efects and flters, annotations), real 
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Table 1: Design scope of AR interactions, and how the closely related works cover the dimensions. RO, VO, RE, and VE refer to 
real objects, virtual objects, real environments, and virtual environments, respectively. 

ProInterAR CAPturAR[40] ProObjAR[48] GesturAR[39] Pronto[22] MechARSpace[52] Rapido[21] ARcadia[19] RealityCanvas[44] ARMath[18] Teachable	Reality[25]

Subject

RO ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VO ✔ ✔ ✔ ✔ ✔

RO - VO ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
RO - RE ✔ ✔ ✔ ✔ ✔ ✔
RO - VE ✔
VO - RE ✔ ✔ ✔ ✔ ✔
VO - VE ✔

Scenario Domain-specific ✔ ✔ ✔ ✔ ✔ ✔ ✔
General ✔ ✔ ✔ ✔

Concurrency	
Serial ✔ ✔ ✔ ✔ ✔ ✔

Parallel ✔ ✔ ✔ ✔ ✔

Logic Simple ✔ ✔ ✔ ✔ ✔
Complex ✔ ✔ ✔ ✔ ✔ ✔

environments (e.g., walls, grounds), and virtual environments (e.g., 
virtual surfaces). Environments provide a broader spatial context 
in which the interaction is situated than objects. Any AR interac-
tion can be decomposed into basic interactions happening between 
two subjects of the same or diferent type(s). Removing meaning-
less combinations of two subjects, we list seven combinations in 
Table 1 within the subject dimension. Most existing works focus 
on authoring the interactions of real or virtual objects. In these 
works, real environments mainly serve as a contextual background 
[21, 22, 40], which does not involve direct interactions with other 
AR contents. Our system aims to enable both the environments and 
objects with direct interaction capacities, such as a human evading 
moving virtual walls, and a ball falling to the ground and bouncing 
up. 

Scenario. AR interactions are designed to meet the needs of 
diferent usage scenarios. Most of the existing works explore AR 
interactions in certain domains of usage scenarios by adopting a 
certain type of AR contents, such as context-aware human-centered 
behavior [40], spatially-aware object interactions [48], freehand 
interactions [39], toy-based interactions [52], mobile AR prototypes 
[21], etc. Interactions in more general usage scenarios such as proto-
typing AR experience [22] and tangible AR [19, 25] involve broader 
paradigms. Our system aims to support general interactions (i.e., 
spatial, hand-based, exterior, and geometric interactions) of broader 
types of AR contents. 

Concurrency. From the time perspective, AR interactions can 
happen serially or parallelly. In the serial mode, one interaction 
follows the completion of its previous one. This sequential nature 
ensures that each interaction receives the necessary attention be-
fore moving on to the next. On the other hand, in the parallel mode, 
AR interactions can occur concurrently, enabling multiple inter-
actions to occur simultaneously. This parallelism leads to a more 
dynamic and interactive AR experience. The works relying on a 
trigger-action workfow [39, 40, 48, 52] usually support serial in-
teractions. Video-fow-based prototyping [21, 22, 44] can support 
simultaneous interactions ideally, but they mainly aim to author 
a series of interaction fows along the video fow. We design our 
system to program interactive behaviors for individual AR contents 
so that the interactions can happen independently, enabling both 
serial and parallel patterns. 

Logic. An AR interaction can encompass a range of logic fows, 
varying from simple to complex. In simpler cases, the logic fow 
may involve straightforward and linear sequences of steps such as 

a single trigger-action interaction [39, 48, 52]. However, AR interac-
tions can also feature complex logic fows incorporating branching, 
loops, iterations, time control, and multiple conditional statements. 
For instance, an AR interaction might involve recognizing difer-
ent human behaviors [40], each triggering a specifc set of efects. 
We want to support programming interactions with complex logic 
controls. 

4  SYSTEM  DESIGN  

4.1  Overview  
To support the programming of the general AR interactions dis-
cussed above, we propose ProInterAR, a block-based visual program-
ming system implemented in an integrated tablet and AR-HMD 
interface. An iPad Air 4 and a Microsoft HoloLens 2 are used to 
deploy the application. The presented ideas can be easily ported 
to other combinations of tablets (e.g., Microsoft Surface Pro) and 
AR-HMD devices (e.g., Apple Vision Pro). ProInterAR consists of 
three main components: a scene creation UI (Section 4.2), a visual 
programming UI (Section 4.3), and an execution and controlling UI 
(Section 4.4). We design our visual programming UI in the tablet, 
mainly considering the hand fatigue issue of immersive program-
ming. The system is designed based on the imperative programming 
concept [12]. We will frst introduce these three components and 
UIs and then use an example (Section 4.5) to illustrate the program-
ming workfow. 

4.2  Scene  Creation  UI  
Interactive Content Selection/Creation. To start developing 
an AR application, the creator frst needs to create the contents 
to be interacted with. Based on the design scope discussed above, 
we allow users to create AR contents from four categories: real-
world objects, real-world environments, virtual objects, and virtual 
environments. 

Real-world Objects. A real-world object needs to be tracked with 
a 6-DoF pose for interaction. Since the limited computation capac-
ity of HoloLens 2 does not support real-time estimation of a 3D 
bounding box of arbitrary objects, we adopt an interactive approach 
for manually initiating an object’s bounding box. The user drags 
a 3D bounding box to a real-world object of interest and adjusts 
its volume and direction using pinch gestures (Figure 2(a)). Once 
fnished, a real-world object with its position and orientation is 
created in the system and passed to the programming UI for access. 
Since the user can manipulate the real-world object by hand, we 
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a b c d
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Figure 2: Create or specify AR contents for interaction. (a) 
Create a bounding box to specify a real-world object. (b)-(c) 
Create a plane using a palm gesture to specify a planar real-
world environment. (d) Create multiple planes and group 
them together to specify a compound real-world environ-
ment. (e)-(f) Select a part of the detected spatial mesh to 
specify a curved-surfaced or customized real-world environ-
ment. (g) The object library contains various commonly used 
virtual contents. (h) Drag and drop a virtual model from the 
library and transform it using hand gestures. 

track its dynamic 6-DoF pose according to the hand pose due to the 
relative rest state between the object and the hand. Two specifc 
types of real-world objects, i.e., hands and head, are also in the con-
tent lists for users to select in our system. We extract the positions 
and orientations of hand objects (i.e., left-hand palm, right-hand 
palm, and 15-fnger joints) and the head object from the HoloLens. 

Real-world Environments. Diferent from real-world objects, real-
world environments usually stay static. So, we only need to specify 
their initial states without tracking them later. Three techniques are 
supported to create a real-world environment for interaction. First, 
we allow users to create a plane using a hand palm gesture (Figure 
2(b)) and transform it using a pinch gesture to overlay it with a 
physical environment (Figure 2(c)). It can turn a planar physical 
environment into an interactable object in the system. Second, 
we allow users to create multiple planes and group them to form 
a compound environment object (Figure 2(d)). It is applicable to 
the physical environment with multiple planes (e.g., a chair with 
vertical and horizontal planes). Third, for curved surfaces or other 
customized environments, users can use a hand-pointing gesture 
to select a part of a spatial mesh detected by HoloLens 2 (Figure 
2(e)-(f)). Using these three techniques, an environment is specifed 
and passed to the programming UI for selection. 

Virtual Objects. We provide an object library that contains mul-
tiple commonly used virtual elements in AR applications (Figure 
2(g)). This library can be easily expanded based on target applica-
tions. The user can drag and drop a virtual object to the AR scene 
and change its size, position, and orientation using a pinch gesture 
(Figure 2(h)). In addition, we allow users to import their customized 
virtual objects by uploading them from the interface of the tablet 
browser. 

Virtual Environments. The user can use a similar method to real-
world environment creation to create a virtual environment, or 
drag-and-drop an argument value like box zone to work as a virtual 
environment. The creation and deletion of all the contents are 
updated in real-time in the programming UI and the AR scene. 

Figure 3: Create fve types of argument values: (a) Create a 
small bounding box to specify a certain position, (b) Create a 
large bounding box to specify a certain box zone, (c) Create a 
plane to specify a certain plane zone, (d) Create an arrow to 
specify a certain axis, and (e) Create a text proxy to specify a 
certain text. (f) The argument option feld of a block in the 
programming UI is updated when an “Axis1” is created. 

Argument Value Creation. Besides the contents to be inter-
acted with, some argument values also need to be created in advance 
in the AR scene and passed to blocks for further interaction. For 
example, when the user wants to program the behavior of a car 
rotating around a customized axis or the efect of a mole to appear 
at a random location within a customized zone in a whack-a-mole 
game, the axis and the zone need to be frst created in the scene 
and then shown in the block argument feld for specifcation. Our 
system supports the creation of fve types of argument values (i.e., 
position, box zone, plane zone, axis, and text), as illustrated in Fig-
ure 3. The user can create a small bouncing box that indicates a 
certain position (Figure 3(a)), a large bounding box indicating a 
certain box zone (Figure 3(b)), a plane representing a certain plane 
zone (Figure 3(c)), an arrow that represents a certain axis (Figure 
3(d)), and a certain text (Figure 3(e)). Once an argument value is 
created, it will be passed to the argument option feld for selection 
(Figure 3(f)). 

4.3  Visual  Programming  UI  
The UI running on the tablet provides a visual programming inter-
face to specify the AR interactions of the created contents. Based 
on Scratch [32], we design the ProInterAR programming interface 
(Figure 4(a)). During the programming phase, the user can hold and 
operate on the tablet while wearing the AR-HMD to view the AR 
scene (Figure 4(c)). The UI consists of three main components: a 
block list, a block-stack feld, and a content-selection list (Figure 4). 
The content-selection list shows all the created AR contents in the 
AR scene. Once an AR content is created, the user can rename it in 
this feld. 

Block Categories. According to the coding contents, the blocks 
are divided into the following nine categories, as illustrated in 
Figure 5 with diferent colors. We re-design the categories of motion, 
looks, and sensing to make them applicable for AR interactions 
in 3D space. We propose a new category “Hand” to enable hand-
based interactions. The other categories are directly adopted from 
Scratch. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Hui Ye, Jiaye Leng, Pengfei Xu, Karan Singh, and Hongbo Fu

c

d

Content-selection ListBlock List Block-stack Field

a b

Figure 4: The visual programming UI and walk-through of ProInterAR. The programming UI (a) consists of a block list, a
block-stack field, and a content-selection list. The user can drag the blocks from the block list and drop and stack them in the
block-stack field. The created AR contents are shown in the content-selection list for selection. The user can press the green
flag and the red button to execute and stop the program, respectively. The walk-through of a “3D Whack a Mole” example: The
user first creates AR contents, which are shown in the content-selection list on the tablet UI (a). The user then stacks the blocks
(c) for the corresponding contents: the random occurrence blocks for the mole object in the block-stack field (a), the hand grasp
blocks ((b)-bottom) and collision detection blocks ((b)-up) for the hammer object, and the collision condition blocks for the
balloon, cup, and book objects. The user views and tests the program by grasping the hammer to hit the mole and avoiding
hitting other objects from the AR-HMD view (d).

• Motion. We design the motion blocks (Figure 5(a)) to enable
spatial interactions: move, rotate, go to, glide to, face, set
x/y/z to, if collide and bounce, obtaining content position,
direction, distance to another content, and x/y/z position.
Some of the blocks have argument fields to be input or se-
lected. These individual motion blocks can be singly used or
combined to cover most of the common spatial interactions.

• Looks.We provide the size-related (i.e., change or set size),
presence-controlling (i.e., show or hide), and text (i.e., set
text with color) blocks (Figure 5(b)) to control the appearance
change.

• Hand.We design the blocks of grasping real or virtual objects,
objects going to a certain hand finger joint or following hand,
and performing certain hand gestures (Figure 5(c)) for hand-
based interactions.

• Sound.Wedesign the sound blocks of playing/stopping sounds
and control the sound volume (Figure 5(d)).

• Control. We keep most of the controlling blocks (Figure 5(e))
from Scratch for achieving repetitions, conditionals, loops,
iterations, and time waiting .

• Events.We keep the event blocks (Figure 5(f)) from Scratch
to trigger the start of the program and enable event listening
using broadcasting functions.

• Sensing. We design four sensing blocks for detecting the
conditions in AR scenes: collision, position equaling, rotation
equaling, and relative position layout (Figure 5(g)).

• Variables.We also allow users to create their own variables,
set or change them, and hide/show their presence in the AR
scene (Figure 5(h)).

• Operators. We keep most of the operator blocks (Figure 5(i))
from Scratch to deal with mathematical operations.

• My Blocks. We also support defining functions with num-
bers, text, and booleans as parameters by stacking blocks,
which can further help users to quickly implement similar
functionalities.

Stacking Blocks. For each selected content, the user drags,
drops, and stacks the blocks from the block list to program the
interaction. According to the block shapes, the blocks can be stacked
or filled one by one. Multiple stacked block groups can be created
to run independently for each content.

4.4 Execution and Controlling UI
After programming the interactions, the user can execute the pro-
gram by clicking the green flag in the UI (Figure 4), and then test
the program by viewing the effects, manipulating the contents, and
performing interactions with AR-HMD. The user can return to
the programming UI to update the blocks and view the updated
changes at any time.

4.5 Programming Walk-through
Here, we use an example to show the ProInterAR workflow (Figure
4). A user, Fred, wants to create an AR game, “3D Whack a Mole”:
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Figure 5: The nine block categories of ProInterAR: (a) Motion, (b) Looks, (c) Hand, (d) Sound, (e) Control, (f) Events, (g) Sensing, 
(h) Variables, and (i) Operators. 

The mole will appear at a random location for a while and disappear 
in a 3D zone, repeatedly. The player must grasp a hammer and hold 
it to hit the mole. Every time he hits the mole, the score will be 
added by one. During the process, three objects are in the scene: a 
physical cup and book on the desk, and a bunch of virtual balloons in 
mid-air. If the hammer hits these objects, the score will be deducted 
by fve. So, the player should try to hit the mole but avoid hitting 
the objects. 

To start, Fred creates fve objects in the AR scene: a virtual mole, 
a virtual hammer, a bunch of virtual balloons, a physical cup, and a 
physical book. For virtual objects, Fred directly drags them from 
the object library. For the physical cup and book, Fred presses the 
bounding box creation button and drags the boxes to the positions of 
the cup and book, and then adjusts their volumes, respectively. The 
objects are shown in the content-selection list in the programming 
UI correspondingly. Besides the objects, a box zone needs to be 
created to work as an active area of the mole. So, Fred presses the 
“add box zone” button and drags the box, and adjusts its volume 
above the desktop. 

Switching to the programming UI (Figure 4(a)(c)), Fred frst adds 
a new variable named “Score” to calculate the game score. It will 
show in the AR scene. Then Fred stacks a group of blocks to the 
mole object: controlling the mole to appear at a random location 
in the created box zone (Figure 4(a)). For the hammer object, Fred 
stacks the hand-grasping blocks to indicate that when the player 
grasps the hammer, it will follow the player’s hand (Figure 4(b)-
bottom), and the blocks of collision detection with the mole to 
increase the score (Figure 4(b)-top). Finally, for the cup, book, and 
balloon, Fred builds the same block groups that control the scores to 

be deducted by fve when the hammer hits them. It can be achieved 
by copying and pasting the block group from one object to another. 

After the scene creation and programming phases, Fred can 
execute the program by clicking the green fag in the programming 
UI, and then a mole starts to appear at random locations repeatedly. 
Fred grasps the hammer from the desktop, and the hammer follows 
his hand (Figure 4(d)). To increase the score, he hits the mole with 
the hammer and avoids hitting the objects. When the hammer 
touches the other objects, the score decreases by fve. 

5  IMPLEMENTATION  
We build ProInterAR in an integrated tablet and AR-HMD interface. 
The programming UI running on the tablet browser is implemented 
using JavaScript based on the React framework [35]. The AR inter-
face running on the AR-HMD is developed in Unity with MRTK 
[23] and deployed to the HoloLens 2. To connect the programming 
web UI in the tablet and the AR interface in HoloLens 2, we build a 
Node.js server and make the two clients communicate with each 
other via the server based on WebSocket protocol [7]. Specifcally, 
due to the limited computation capacity of HoloLens 2, we run the 
server on a PC instead of the HoloLens. Then, we open the two 
clients on the tablet browser and the HoloLens, respectively, both of 
which are wirelessly connected to the server in the same Local Area 
Network (LAN) to achieve real-time communication. The server 
works as a transfer station that sends a message from one client to 
another. The message could be a block of data in the programming 
UI or information of objects and argument values in the AR scene. 
For the block data, we construct 11-dimension data consisting of 
a unique thread ID, task name (i.e., action, condition, get value), 
block name, source object, target object, axis, value, duration, and 
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Figure 6: Applications of ProInterAR: (a) AR game, (b) AR 
teaching, (c) Sequential animation, (d) AR information visu-
alization. 

relative position. When any block in the web UI is executed, the 
tablet client will send a message in the format of the constructed 
data to the Hololens client via the server forward. After receiving 
the message, the Hololens will directly execute the corresponding 
action of the object if the task name in the message is “action”. If 
the task is “condition” or “get value”, the HoloLens must send a 
detection result or obtained value back to the tablet. Besides the 
feedback data for a block, when the objects and argument values 
are newly created in the AR scene, it will also send such data to the 
tablet client to update the object and argument lists in the web UI. 

For the condition detection among objects, we use the collision 
detection method in Unity. For hand/head and hand grasp detection, 
we track the hand/head pose in real-time, and detect the grasping 
gesture by checking if the hand pose remains unchanged over 
a duration. When the hand pose starts to change, the grasp is 
detected as ending. The other hand gestures are detected using 
similar methods. For physical object tracking, we use the relative 
pose between the specifed 3D bounding box and the hand to update 
the 3D object pose with respect to the hand pose in real time. 

6  APPLICATION  SCENARIOS  

6.1  AR  Game  
AR game is one of the most popular AR applications to the public 
community. Using ProInterAR, creators can design and develop their 
own interactive AR games, which range from simple and casual 
experiences to more complex and immersive gameplay. Here, we 
use an instrument-playing game in AR to show one application 
scenario of ProInterAR. A creator wants to build AR instruments 
for a personal band using multiple physical objects in daily life 
and patting these instruments by hand to play diferent sounds 
(Figure 6(a)). To achieve it, the creator can create bounding boxes 
for the physical contents (e.g., chairs and table planes). Then, in 
the programming UI, the creator stacks the blocks for these ob-
jects so that when they collide with hands, they will play certain 
instrument sounds. To play it, the user pats the objects by hand and 
form a music sequence. For more complex interactions, the creator 
can create a virtual keyboard on the desk plane for collision with 
diferent fngers. 

6.2  AR  Teaching  
AR technology in educational process can enhance and transform 
the way students learn and engage with educational contents [18]. 
Teachers and students can build their own AR learning and experi-
ment contents using ProInterAR. For example, when teaching the 

properties of the magnetic force in a physics class, a teacher wants 
to demonstrate the diferent movements between bar magnets, a 
metal cup, and iron screws, but only has a cup at hand. He/she im-
ports the virtual bar magnets and iron screws to the AR scene, and 
programs the motions of these objects when the hand grasping one 
bar magnet and approaching other objects: the other bar magnet 
with the same pole will move away, the screws will be attracted 
closely and follow the magnet, and the bar magnet will be attracted 
to the cup surface (Figure 6(b)). 

6.3  Sequential  Animation  
Animation is another popularly used component in general AR 
applications. ProInterAR is capable of creating animations with 
various DoFs. Here, we show the creation of a sequential animation 
built by ProInterAR, which is not easy to create using existing AR 
authoring tools [39, 48] due to the sequential triggering workfow. 
For example, a creator aims to create a plant growing animation 
(Figure 6(c)): a virtual plant is planted in a physical fower pot, and 
it will grow with an increasing size. Once it changes to a large size, 
it will turn to blossom and yield fruit, and the fruit will fall to the 
ground. Using ProInterAR, the creator frst drags a virtual plant to 
the pot and a fower and fruit to the plant and sets them hidden at 
the beginning. Then, in the programming interface, the creator sets 
the plant to change size and a condition that when the size reaches 
a threshold, the fower will show. The fowers will also change their 
sizes. When their sizes reach a threshold, the fruit will show up for 
a while, and then fall to the ground. 

6.4  AR  Information  Visualization  
AR information visualization provides a possibility to present and 
display data, information, and visualization in a spatial and interac-
tive manner. It combines virtual and real-world environments to 
enhance the understanding and exploration of data. Our system 
can also beneft from easy creation of AR information visualiza-
tion applications. For example, a sales department in a company is 
exploring the sales volumes of several types of drinks. When one 
drink is placed on the table and the user clicks on the table or the 
drink, it will show diferent sales charts. When another drink is 
placed close to it, it will show the comparison sales chart (Figure 
6(d)). 

7  USABILITY  STUDIES  
To evaluate the usefulness and expressiveness of ProInterAR, we 
conducted two separate usability studies, including an individual 
evaluation (Section 7.1) for evaluating the performance of individual 
users in a single session and a long-session evaluation (Section 7.2) 
for evaluating the continuous performance of two users across fve 
days. 

7.1  Study  1:  Individual  Evaluation  
Participants. We recruited 12 participants (8 males and 4 females, 
aged 10-34, M = 24, SD = 14). Ten were university students with 
backgrounds of design (U7-8), human-computer interaction (U1, 
U3, U6), computer graphics and vision (U2, U4, U5), electronic en-
gineering (U9), and industrial engineering (U10). One was a child 
(U11) in the ffth grade of primary school, and one was a teenager 
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Figure 7: A gallery of the selected programmed applications from Study 1. (a) AR game “fick football”: tap to shoot the ball and 
hit the goalkeeper. (b) AR animation: throw a ball to attract a dog coming close. (c) AR fshing game: hold a rod to catch a fsh 
from the pool and leave it on the ground. (d) AR archery game: use a pinch gesture to release an arrow: the closer hitting the 
target, the higher the score gets. (e) AR game: press buttons to control the car. When hitting gold coins or the cup, the score will 
increase or game over. (f) AR instruction: instruct to assemble machine parts in a specifed order. (g) Interaction prototyping 
for AR tourism: touch the wall to call up a virtual narrator to introduce diferent paintings. (h) IoT function design: move a cup 
to a certain position to light up the lamp. (i) AR navigation: press a target on a map and follow the arrow to navigate there. (j) 
AR Q&A game: press left or right to answer questions for level up. (k) AR try-on: pat virtual shoes and try on them. (i) AR 
measurement: use hand distance to measure edge length. Please refer to the supplemental materials for detailed descriptions 
and corresponding programs. 

(U12) in the second grade of secondary school. Four (U1, U7, U8, 
U11) had used AR applications (e.g., Pokémon GO [28], AR Mea-
sure, Just A Line, AR flters, IKEA AR). Half of the participants 
had strong programming experience (U1-6 with self-reported 4-5 
points on a 5-point scale, from 1 = no experience to 5 = strong ex-
perience), and the remaining had limited programming experience 
(U7-12 with self-reported 1-3 points). Four participants (U1, U6, U7, 
U11, U12) had used visual programming tools (e.g., Scratch, Unreal 
Blueprints) before. All participants had no AR application creation 
experience except U1 and U3, who had utilized Unity to create AR 
teleconferencing and gaming apps. They mainly were novice AR 
creators, which were our target users. Please note that our current 
in-lab studies sufer from several limitations such as the selected 
pool of participants and the small participant samples. Despite our 

eforts to diversify the participants’ backgrounds, the majority of 
them consist of college students, which may introduce potential 
biases. We would like to emphasize that our studies primarily aim 
to provide a preliminary evaluation on the user experience of our 
system. In the future, we will strive to test our system with a more 
diverse range of participants in feld studies. 

Tasks and Procedure. At the beginning of the study, we showed 
the participants the UIs and workfow of ProInterAR. The partici-
pants learned how to use our system through a simple interactive 
example as a tutorial: “uses two buttons to control the movement 
of a virtual cartoon character, which triggers a text box display 
when it hits a real cup on the table.” We started the introduction 
of ProInterAR with simple conditional and motion statements to 
guide the participants to realize the required functionality in the 
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tutorial, and we answered their questions in detail when they did 
not understand. We took a step-by-step explanation approach for 
the participants with little programming experience to familiarize 
them with ProInterAR. After the tutorial, we asked each participant 
to complete the creation of two AR applications, one game-related 
and the other non-game-related, and encouraged them to use real 
objects/environments and virtual objects/environments as much 
as possible. The participants were asked to think about their tar-
get interaction results roughly in advance. During the study, we 
discussed with them to further refne their target interactions by 
informing them about what our curernt implementation of ProIn-
terAR could and could not achieve. There was a 5-minute break 
between designing the two applications. After completing each pro-
gram, each participant experienced and tested the AR applications 
they designed and developed. At the end of the study, we asked the 
participants to fll in a System Usability Scale (SUS) questionnaire 
on a 5-point scale (1 = strongly disagree to 5 = strongly agree), as 
well as a NASA-TLX questionnaire on a 5-point scale (the lower, 
the better). In addition, we conducted a small-scale interview with 
them to discuss their user experience. The interviews and interac-
tion process were audio-recorded and later transcribed with their 
agreement by flling out an informed consent form. We encouraged 
them to express their positive and negative opinions. Each study 
took about 50-70 minutes. Each participant was compensated with 
a 13-USD gifted card. 

Results. Each application took about 25-40 minutes for the 
participants to complete. They spent most of the time (i.e., about 
20-30 minutes) iteratively building AR scenes, programing the be-
haviors, and testing the programs, and then about 5-10 minutes 
playing or interacting with each application. A total of 22 AR ap-
plications were created by the participants (Figure 7) since the 
child and teenager participants each only created one application. 
These results covered extensive application scenarios, including 
AR games, AR animation, AR instruments and tutorials, AR naviga-
tion, AR shopping, interaction prototyping, IoT function design, AR 
measurement, AR ftness, etc. For game-related applications, some 
participants transformed classic 2D games into 3D AR versions by 
replacing traditional keyboard and mouse controls with hand inter-
action (U4, U9, U10). Some enjoyed designing games that involved 
virtual and real-world interactions by incorporating the surround-
ing environment or objects (U1-3, U5, U7-9, U11). Some preferred 
utilizing expansive real spaces to design hide-and-seek games (U11). 
For non-game-related applications, most participants tended to re-
alize the convenient experiences that AR could bring based on their 
own imagination (U1-2, U5-7, U9). A few participants wanted to 
reenact certain real-life moments, even if they involved somewhat 
unrealistic animations (U4). Some utilized our system as a tool for 
prototyping purposes (U3, U8, U10). The applications include all 
the types of contents supported in our system: real objects (e.g., 
cup, hand, hand fnger), real environments (e.g., wall plane, table 
surface), virtual objects (e.g., fshing rod, bow and arrow, virtual dog 
and character), and virtual environment (e.g., virtual wall). The in-
teractions include spatial movements of a single object (e.g., ball and 
character moving), collisions between two objects or objects and 
environments (e.g., hand-table, car-obstacle), appearance change 
(e.g., arrow show and hide, text color change), gestural interactions 
(e.g., hand grasping, pinch gesture), context-aware events (e.g., state 
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Figure 8: SUS (Top) and NASA-TLX (Bottom) score distribu-
tions. The question description in SUS is the key points from 
the full SUS questions. For the scores of SUS, the higher, the 
better. For the scores of NASA-TLX, the lower, the better. 

detection to trigger IoT functions), and audio efects (e.g., playing 
music). In terms of programming, we found that hand-object colli-
sion detection was one of the most popular triggering conditions, 
and the participants were very comfortable engaging in interactions 
with hand touches regardless of whether the target objects were 
virtual or real. Moreover, they preferred collision detection even for 
conditional judgments without involving their hands, such as de-
termining whether two objects reached the same location, and the 
participants usually used collision detection rather than distance or 
position detection. One possible explanation is that collisions are 
more intuitive and easier to understand. Variables were frequently 
used because they could serve as both scoreboards in games and 
state controllers in programming and also helped achieve commu-
nication across objects similar to broadcasting. Multiple arguments 
(e.g., position and box zones, user-defned axes) were created and 
passed to the block feld. Various controls like loops, repetition, 
condition judgments, broadcasting, and time waiting were used to 
script complex interaction paradigms. 

The SUS scores rated by the participants were overall good, and 
Figure 8(Top) shows the rating distribution of every SUS question. 
Most participants thought our system to be easy to use (Q3) with 
workfows and programming interfaces designed to be simple and 
easy to understand (Q2), and also intuitive to operate (Q8). The 
system is also very consistent (Q6), and the integration of features is 
great (Q5). They thought that in most scenarios where they wanted 
to easily and quickly realize and experience the target efect in situ, 
our system could help a lot. They also believed that they would 
frequently use our system both indoors and outdoors (Q1). All the 
participants were confdent in using our system (Q9), except one 
participant (U4), who was afected by her unfamiliarity with operat-
ing the Hololens device, and they were satisfed with the results. At 
the same time, the participants with rich programming experience 



                  CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

         
         

          
           

          
        

          
            

        
           

          
          

         
          

          
       

           
          

           
  

         
            

        
          

        
             

        
          

           
          

         
             
          

         
 

         
         

           
         

        
         

          
           
          

           
          

         
           

             
          

           
    

        
           

        
          

        
             

          
          
           

          
          

         
        

          
           

      
        
        

        
         
      
          
           

            
           

          
          

        
            

           
        
            

            
        

          
             

           
         
           

   
         

        
         
           

         
            
            

         
            

         
         

        
           
            

          
          

 

ProInterAR: A Visual Programming Platform for Creating Immersive AR Interactions 

also raised some doubts. They thought that perhaps their program-
ming experience allowed them to familiarize themselves with our 
system very quickly, but they were conservative and thought there 
was still a learning curve for other users (Q7). Some participants 
believed that our system had its own rules, requiring additional 
learning regardless of the user’s programming experience (Q10). 
One participant (U8) with little programming experience felt that it 
was necessary to have a technical person to guide them through the 
system initially. Two participants (U11-12) with prior experience 
using Scratch found it easy to learn (Q4). Figure 8(Bottom) shows 
the NASA-TLX scores. We found that most of the participants, ex-
cept for two participants (U6, U8) with little AR-HMD experience, 
perceived the workload of our system to be low. 

To analyze the qualitative feedback during the study and the 
interviews, we conducted a thematic analysis. Two of the authors 
coded the transcribed documents by systematically identifying 
and labeling them and then made a codebook. Then, the authors 
grouped related codes together to form themes, and reviewed and 
refned them by revisiting the coded data. Six main themes emerged 
as follows. 

T1: Overall User Experience (All). The participants felt that ProInt-
erAR was overall easy to learn or/and use, friendly to beginners, and 
provided a great understanding of coding concepts. Some partici-
pants (U1, U5-6, U9) mentioned the convenience of instant testing 
after programming since they could “fnd problems immediately 
and adjust the blocks to see the updated results in real-time (U1).” A 
participant with an interaction design background (U8) said, “al-
though my programming experience is limited, I think your system 
still facilitates me by including a wide variety of interactions between 
real and virtual contents.” His programmed application in Figure 7(c) 
contains a variety of programming elements (e.g., loop, condition) 
that he had not coded with before. U7 commented that “it is simple 
and easy, which is beyond my expectation.” They also highlighted 
areas for improvement, such as providing sound efects during 
operations. 

T2: Advantages of Combining Tablet Interface and AR-HMD (U2, 
U4-5, U7-9, U11). The participants mentioned that the tablet inter-
face was similar to daily usage, less distracting, and allowed for 
precise and familiar operation habits. The AR-HMD provided an 
immersive and fexible environment for in-situ authoring. The par-
ticipants also appreciated the convenience and portability of such 
an integrated interface, as “the mobile setup lets me program any-
where without relying on any desktop computer (U4).” U7 with the 
design background mentioned that “it is applicable to mobile scenes 
where I can design the concepts based on a surrounding environment. 
Programming on the tablet also streamlines the design procedure with 
convenient and rapid operations.” The child participant with Scratch 
experience (U11) liked the AR authoring feature [42] since it can 
“play 3D interactions and turn the 2D elements in Scratch to the 3D 
elements in the physical world.” The markerless object tracking was 
also appreciated by the participants, as U9 said “it supports tracking 
objects with diferent volumes.” 

T3: Similarities and Diferences with Traditional Coding (U1-2, 
U4-6, U9). This theme mainly comes from the participants with a 
programming background. They noted that ProInterAR shared some 
similarities in terms of logic with traditional coding. However, they 

also emphasized the diferences, such as the graphical representa-
tion of coding logic, the use of pre-defned functions, and the ease of 
getting started with ProInterAR. U1 said our system “turning coding 
logic into graphical elements is easy to remember. Graphical memory 
helps quickly construct the whole game logic instead of sufering from 
coding format issues. With self-contained blocks, users just need to 
stack the blocks.” As a programming beginner, U9 commented that 
our interface was direct and intuitive; especially with object-centric 
programming, she can “quickly create connections between the phys-
ical objects and environments to the programming UI.” She especially 
liked the block enclosing design (e.g., the space within the if-else 
blocks) to learn the coding functions. 

T4: Application Scenarios (U1-2, U5, U9-12). The participants be-
lieved ProInterAR had great generalizability to various application 
scenarios. They mentioned its usefulness in designing games, pro-
totyping, and implementing complex logic in any scene. Specifc 
scenarios mentioned include large-scale playground design, ed-
ucational purposes for kids, and enabling real objects with IoT 
functions. U10 expected that “it can help kids learn coding concepts, 
how to begin programming, and they will be interesting to start from 
the objects around them.” The kid participant (U11) found the tool 
interesting and useful to allow her to understand complex coding 
logic intuitively. One participant (U5) with some experience in AR 
prototyping stated, “ProInterAR supports the implementation of a 
wide range of common interaction functions. I believe it can cover the 
functions of multiple toolkits I have used before for wider usage.” 

T5: Learning Curve (U2-U3, U9, U11). Some participants men-
tioned that it became easier for them to use ProInterAR when they 
were familiar with it, which usually came with the creation of their 
second application. The kid participant (U11) needed instruction 
at the beginning, mainly for the interactions from the AR-HMD, 
and later she could explore features on her own. U2 and U7 also 
mentioned that it became very easy when they learned all the sys-
tem’s functions, including various block functions. It indicates that 
there is a slight learning curve, especially for the participants with 
limited programming backgrounds. 

T6: Limitations and Challenges (U1-3, U4, U11). The participants 
also mentioned certain limitations and challenges. These include 
limited debugging functions, confusion when dealing with a large 
number of objects, difculty in searching for blocks, and the heavy 
weight of AR-HMD. Some limitations were inherited from Scratch, 
like U1 with rich coding experience said, “since most of the blocks 
can only control selected objects, it is necessary to use the broadcast 
function to make cascading efects between diferent objects, which 
is a bit cumbersome and can be very error-prone when the program 
becomes complex, and the system’s debugging capabilities are very 
limited.” We will improve our block copy-and-paste function to 
change block arguments more intelligently and include the debug-
ging features in the future. U3, who had designed VR/AR projects, 
said, “the creation of a character’s smooth motion path requires me to 
specify multiple individual points, which is a little cumbersome.” This 
might be improved by including a user-defned curve for argument 
creation. 
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P1:	Office	Assistant	Application P2:	Adventure	Game

Day

1 (a)	Familiarize	with	coding	concept,	programming	UI,	and	HoloLens	
interactions.

(a)	Where	he	grasps and moves the virtual	key to the metallic square, the instruction shows above left hand
leading	to	the	position of the treasure.

2 (b)	When	she	sits	down,	show	a	water	drop	above	the	cup	to	remind	
drinking	water. (b)	When he arrives near the tree, a monster	appears	and	follows	him	upon	discovering	the	treasure.

3
(c)	When	she	sits	down	and	watches	screen,	show	a	text	and	character	to	
remind	taking	a	break.	
(d)		When	she	leaves,	the	program	resets	to	the	initial	state.

(c)	A	trap	to	eliminate	the	monster:	he	guides	the	monster	to	the	trap’s	location	and	physically	activates	it	by	
touching	the	real	environment.

4

(e)	Set	timewait to	(b)	and	(c).
(f)	Enhance	a	physical	trash	bin,	drag	the	water	drops	and	time	remindings
to	bin	to	delete	and	reset	timers.
(g)	When	she	comes/leaves,	play	a	sound	to	remind clocking	in/out.

(d)	He	obtains	the	treasure	on the treetop and	acquires	a	light	sabe by grasping it.	
(e)	Two	new	monsters	appear.
(f)	Three	life	points	are display	above his	right hand.

5
(h)	Set	an	interactive	virtual	pet	on	the	desktop:	when	pat	the	pet,	it	speaks	
encouraging	words;	when	perform	a	pinch	gesture,	show	heart	moving	
from the finger to the pet. When the pet hits the heart, it shakes.

(g)	Endow	the	monsters	in	(e)	one	with	close-range	attacks	and	the	other	with	long-range attacks.
(h)	He	uses	acquired light	saber to	attack	each	monster	twice	and	avoids	their	attacks.	Hit	by	them	will	lose	one	
life	point.
(i)	When	eliminate	both	monsters,	game	over.

Figure 9: The top and bottom rows respectively show intermediate result snapshots of two long-session applications and 
descriptions for each day. 

7.2  Study  2:  Long-session  Evaluation  
From the frst study, we found that ProInterAR could help users 
create high-quality AR applications for various usages. However, 
from the emerging theme T5 (learning curve), we found that it 
might bring a more natural experience when users continuously 
use ProInterAR, especially for users without coding experience. To 
investigate the learning efects further, we conducted a long-session 
evaluation. To understand the learning efects comprehensively and 
fgure out the ceiling of our system, we consider both novice and 
professional AR creators in this study. 

Participants. Two university students (P1: female aged 27, P2: 
male aged 28) were invited for a fve-day evaluation. They did 
not participate in Study 1 or use our system before. P1 had no 
AR creation experience before, while P2 had created several AR 
applications, including an AR-guided training system, an AR-guided 
robot control system, and an AR game using Unity and Unreal ITK. 
P1 had no programming experience but P2 had an extensive coding 
background. Both of them had not used any visual programming 
tools before. 

Tasks and Procedure. Each participant was asked to create 
an AR application using ProInterAR with a bottom-up approach, 
starting from an initial idea and incrementing on it gradually to form 
a complete application. The session took about 30 minutes each day. 
Before starting the tasks, the participants were instructed to use 
ProInterAR through the same example in Study 1. After each day’s 
task, we had small-scale interviews with them to gather feedback. 

Results. P1 and P2 designed an ofce assistant application and 
an adventure game, respectively. Figure 9 shows their designed ap-
plications in each day. Both participants expressed high satisfaction 
with the fnal outcome, and their applications included all the types 
of contents supported by our system. Below we will show some 
details and fndings from their interviews. 

P1 thought the block-based visual programming UI to be very 
user-friendly, “Although I don’t fully understand the specifc details 

within each code block, I fnd it easy to understand the approach 
where diferent functions have distinct shapes, and programming is 
done by matching these shapes together.” And P1 commented that 
“I fnd it very useful to copy and paste code by directly dragging it 
onto diferent objects.” Furthermore, P1 mentioned that AR added 
emotional signifcance to real-world objects, “A water cup, for ex-
ample, doesn’t have much life to it, but by adding a cute virtual water 
droplet on it, it creates a stronger emotional connection with me. It 
might even make me more inclined to drink water on time every day.” 
Overall, P1 believed ProInterAR would be helpful for her everyday 
creativity, “I feel like I can use this tool to create anytime, anywhere. 
Sometimes I cannot bring my inspiration home, but with this tool, I 
can immediately implement and experience it when I have a sudden 
burst of inspiration outdoors.” During the study, we observed some 
phenomena that indicated P1’s learning curve. Initially, she com-
plained about our system’s inability to provide more information 
about the code blocks. She desired concise textual explanations 
when hovering her fnger over a code block, which could be added 
as a future feature, especially for beginners. After implementing 
some simple triggering efects, she became more profcient in using 
commonly used code blocks. However, when attempting to com-
bine them into a system and continue adding functionality while 
ensuring robustness, she found that programming logic became the 
primary limiting factor for her, “Although I am not going to use more 
complex code blocks, I now need to consider the logical relationships 
between multiple variables and objects, which confuses me.” After 
the study, P1 was thrilled with the AR application she designed and 
expressed, “I am extremely proud to have created such an application. 
I have realized that the principles behind seemingly simple tools in 
everyday life are actually quite complex, requiring consideration of 
various unexpected situations. Now I am flled with confdence in 
learning programming.” 

We were surprised that P2 quickly became profcient in using 
ProInterAR almost without our assistance. He commented that the 
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programming mechanism for each object in the system was very 
similar to scripting in Unity, thus allowing him to quickly adapt. 
He also felt ProInterAR to be very practical, “When designing AR 
applications before, I had to place the virtual assets in the real world 
and record their position and rotation information frst. Then, I would 
develop applications using Unity. Finally, I would deploy the appli-
cation onto the AR-HMD and return to my target scene for testing. 
During the development process, I could not truly observe how these 
virtual assets interacted in the real world, thus hindering my creativ-
ity. Additionally, whenever I needed to add something new, I had to 
repeat the above process, which was quite cumbersome. In contrast, 
ProInterAR enables me to program directly in the scene, add virtual 
assets whenever I want, and test them on the spot. It’s truly fantastic.” 
He believed that the combination of a tablet and AR-HMD was 
a great compromise, “Directly programming within an AR-HMD 
would be a disaster. The controls and clarity would be major issues. 
Desktop-based development for AR applications separates the creation 
and development process, which cannot get real-time feedback. A 
portable device like the tablet provides a good balance of precise con-
trol, display clarity, and support for mobile usage.” Throughout the 
study, P2 consistently expressed how powerful our ProInterAR was, 
“I notice that the system has built-in code blocks like ‘collide,’ ‘face,’ 
‘move,’ ‘show,’ ‘hide,’ etc. Implementing such functionalities with real 
code is not easy and time-consuming. Now, I can conveniently use 
them and focus on designing the applications I want to create. This 
signifcantly reduces time overhead and, in my opinion, makes it more 
user-friendly for those who are inexperienced.” After the study, we 
discussed further insights about ProInterAR with P2. He mentioned, 
“I believe this block-based visual programming is highly suitable for 
beginners. The stacking of blocks and the diferent shapes and text de-
scriptions on them make it easier for the inexperienced to understand.” 
Furthermore, he also mentioned some limitations of ProInterAR. 
He pointed out that the current ProInterAR had limited capabilities 
for inter-object communication. It could only be achieved through 
features like Broadcast and Variable, which resulted in a signifcant 
amount of communication-related code in complex AR applications. 
He stated, “ProInterAR only supports controls within the current ob-
ject. However, in my experience, I often need to simultaneously control 
multiple objects, which requires the ability to control other objects 
beyond the current object. What I am hoping for is the ability similar 
to designing scripts on an empty object in Unity to control other objects 
within the scene. This could contribute to cleaner code and help reduce 
potential errors and debugging burden when designing large-scale AR 
applications.” 

8  DISCUSSIONS  AND  FUTURE  WORK  

8.1  Scalability  to  More  Complex  Applications  
Although ProInterAR allows users to create various AR interac-
tions applicable to diferent scenarios, the current scope has some 
limitations in meeting all the expectations of our target users. 

Physical Simulation. As a powerful tool to enhance realistic be-
haviors and interactions of virtual contents, physical simulation 
has not been supported in our current system. Participants U4, who 
created an efect of throwing a ball (Figure 7(b)) and U10, who cre-
ated a game of shooting with an arrow (Figure 7(d)), both expected 
to endow the ball and the arrow with gravity. We can easily extend 

our system with a force system by introducing a new category of 
blocks, where each block simulates a kind of force with diferent 
variations. The user can simply drag such blocks to the block stacks 
of the contents for adding force simulation efects. 

Access to More Information. Our system allows users to script spa-
tial interactions by obtaining the pose information of AR contents, 
including hand joints and head. To support more complex inter-
actions (e.g., context-aware interactions (U3) in CAPturAR [40], 
other-body-part-based interactions (U5)), obtain context informa-
tion (e.g., the current time, weather, and trafc condition), and the 
poses of other body parts, we can include system information and 
online APIs and enable body part tracking by attaching external 
sensors. 

8.2  Limitations  of  Content-centric  
Programming  

ProInterAR requires users to program behaviors for each content 
individually. The blocks of each content are run independently. It is 
fussy to obtain the state of one content in the blocks of another since 
it requires setting a broadcasting block to communicate between 
two contents. Such a content-centric programming manner is com-
monly used in professional software (e.g., Unity), but they allow to 
obtain the information of other contents from scripts. By displaying 
the information of one content in the blocks of another, it might 
be confusing to distinguish which content the block will work on. 
One possible solution is to introduce a simple logic of node-based 
programming, which is good at transmitting information. 

8.3  2D  Programming  versus  Immersive  
Programming  

Researchers have discussed the benefts of immersive programming 
over 2D programming in [53]. We admit that immersive program-
ming provides more spatial information and instant programming 
feedback. Although our programming interface is set up in a tablet 
browser, it is not a traditional 2D programming interface built on 
a desktop, which is isolated from the AR scenarios. Instead, the 
user can bring the tablet and wear the AR-HMD at the same time. 
So the user can program the interactive behaviors while keeping 
an eye on the AR scene. The programmed results can be executed, 
watched, and controlled instantly. In addition, we think our current 
programming blocks are not necessarily to be designed in a 3D for-
mat, since directly using it in a 2D UI benefts users to have familiar 
and quick hand interaction “with less hand fatigue and distraction, 
and increasing accuracy”, as refected from P1 in Study 2, who was 
experienced in immersive authoring. 

8.4  DoFs  of  Programming  Blocks  
In our current system, we design the programming blocks as funda-
mental concepts, allowing users to stack and combine them freely. 
It is the reason that we allow for more fexible programming for 
general AR interactions. While it ofers much freedom, it sometimes 
requires creators to stack the blocks for similar actions repetitively. 
For example, to make a virtual car move around physical objects, 
creators might need to create several buttons to control the moving 
direction. Similar block stacks with diferent argument values (i.e., 
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moving direction) and conditions (i.e., if pressed by hand, trigger-
ing the movement) must be created for each button. To facilitate 
these procedures, the wrapped block components with pre-defned 
functions can be introduced. For example, a virtual joystick and a 
virtual direction button group can be predefned as block compo-
nents. Hand-related block components, such as pre-defned relative 
hand positions and hand directions, can also be wrapped to achieve 
convenient function specifcations. 

8.5  Tracking  and  Detection  of  Physical  
Contents  

We provide a manual assignment of a 3D bounding box to an 
arbitrary physical object (e.g., a phone) and a manual plane cre-
ation/mesh selection for physical environments. The 6-DoF pose of 
the physical objects is tracked according to the user’s hand pose. 
However, for automatically moving physical objects (e.g., a moving 
car and a running human), our approach does not work. Besides, 
the bounding box can only approximate the rough volumes of the 
objects. For more detailed and fne shapes and surfaces, it is dif-
fcult to detect unless the creator carefully creates and combines 
multiple planner surfaces. So, in the future, we will integrate more 
robust and fexible object detection, tracking, and shape estimation 
algorithms [16] into our system. We will also explore using hand 
motions to create surfaced planes [45]. 

9  CONCLUSION  
This paper has presented ProInterAR, a visual programming tool 
that enables novice AR creators to create general AR interactions. 
We frst discussed the design scope of general AR interactions from 
four dimensions: subject, scenario, concurrency, and logic. We ana-
lyzed how closely related works on AR prototyping, authoring, and 
programming cover the aspects of the dimensions, and the scope of 
our proposed system that would support. Compared to the existing 
works, we allow users to create general AR interactions directly 
and closely happening among both real and virtual objects and 
environments, in a parallel and independent manner, with complex 
logic fows. Based on these considerations, we designed and devel-
oped our system, consisting of three components: a scene creation 
UI from the AR-HMD, a block-based visual programming UI from 
the tablet, and an execution and controlling UI from the AR-HMD. 
Users can create diferent types of AR contents and behavior varia-
tions using the corresponding approaches. The programming UI 
contains nine categories of blocks to enable motion, looks, hand 
interaction, sound efects, and multiple logic controls (e.g., event 
sensing and listening, repetition, condition statements, operators, 
and variables). We demonstrated the system workfow using an 
example of creating a game “3D Whack a Mole”. We showcased the 
four potential application scenarios: AR game, AR teaching, sequen-
tial animation, and AR information visualization. One individual 
study and one long-session study were conducted to evaluate the 
usability, expressiveness, and learning efects of ProInterAR. They 
verifed that our system can help creators easily create AR applica-
tions with varying complexity. 
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