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Abstract
As virtual reality display technologies advance, resolutions and refresh rates continue to approach human
perceptual limits, presenting a challenge for real-time rendering algorithms. Neural super-resolution is
promising in reducing the computation cost and boosting the visual experience by scaling up low-resolution
renderings. However, the added workload of running neural networks cannot be neglected. In this paper,
we try to alleviate the burden by exploiting the foveated nature of the human visual system, where acuity
decreases rapidly from the focal point to the periphery. With the help of dynamic and geometric informa-
tion (i.e.,pixel-wise motion vectors, depth, and camera transformation) available inherently in the real-time
rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low-
resolution visual information from frame to frame recurrently. By leveraging a partition-assemble scheme,
we use a neural super-resolution module to upsample the low-resolution image tiles to different qualities
according to their perceptual importance and reconstruct the final output heterogeneously. Perceptually high-
fidelity foveated high-resolution frames are generated in real-time, surpassing the quality of other foveated
super-resolution methods.
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1 INTRODUCTION

With the emergence of the metaverse, the demand for realistic and enjoyable immersive experiences is rising continuously.
The demand drives not only the development of rendering algorithms but also virtual reality display techniques. Virtual reality
headsets nowadays can achieve 8K resolution and refresh rates up to 144Hz to enable the rendering of physical reality and
fancy visual effects. These together lead to a much larger computational workload than ever before, which is hard for computing
devices to catch up.

With the development of artificial intelligence, there are more and more learning-based neural methods applied to the render-
ing field to tackle the computational burden, such as neural denoising1,2, neural interpolation and extrapolation3,4 and neural
supersampling methods5–7. Supersampling, similar to super-resolution8,9, is promising to help real-time rendering reduce the
computation cost and boost the visual experience by scaling up low-resolution renderings. Our method also falls into this group.
Nvidia’s deep learning super sampling (DLSS)6, and its counterparts XeSS10, FSR11, TAAU12 are now widely used in video
games to get a native image quality with a higher frame rate. However, they are either hardware-specific or with a limited up-
scale ratio (e.g., 2×2, 1080P to 4K, which the original resolution is relatively large enough). Neural supersampling for real-time
rendering (NSRR) 5 is the recent research work targeting 4×4 supersampling with a fixed sliding window of 5 historical frames
of extremely low-resolution rendering input. Our method also targets this difficult super-resolution task of a large upscale ratio
of 4× 4 to lower the cost of native rendering. It contributes to a better super-resolution quality with a well-designed temporal
information accumulation mechanism with the help of neural networks that can progressively enrich information needed for
super-resolution and is not limited by a sized time window.

Journal 2023;00:1–18 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1



2 Ye et al.

It is worth noting that running a super-resolution neural network brings another computation workload that the overhead can
not be neglected. In the context of virtual reality and wide field-of-view near-eye display, there exist tricks that display and
rendering algorithms can take advantage of. For human eyes, the visual acuity rapidly drops from the eye fixation region (fovea)
to the eye’s periphery. Foveated Rendering algorithms13–16 exploit this phenomenon by decreasing the rendering quality in the
periphery while maintaining high fidelity in the fovea. We exploit a similar idea in our super-resolution setup by treating different
regions across the view with varying schemes of super-resolution to achieve various qualities (Figure 1). This optimization
reduces the computation cost of the neural networks. However, designing and training a neural network to automatically assign
its workload and reconstruct an image with heterogeneous visual quality is not trivial.

Here in this paper, we design a neural network structure that can be trained concurrently with shared weights and of which
the reconstruction capability is proportional to the complexity natively. Moreover, we propose an explicit apportion scheme
to invoke neural networks to reduce the computation and generate foveated super-resolution results which are well-suited for
arbitrary setups of foveation regions.

We summarize our contributions as follows:

• We propose a neural foveated super-resolution pipeline, which sets a new state-of-the-art baseline of foveated super-
resolution.

• We introduce a recurrent scheme tailored for the foveated super-resolution pipeline, which uses a novel neural masking and
weighting strategy to accumulate historical frames efficiently.

• We design a partition-assemble strategy that leverages arbitrary foveation patterns to generate heterogeneous foveated super-
resolution in real-time.
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F I G U R E 1 Overview of our foveated super-resolution method. We begin by generating low-resolution renderings using
the native renderer. To determine the spatial visual quality required for each image patch, we estimate a luminance-contrast-
aware foveation map 15, considering factors such as eccentricity and content. After discretization, the foveation map categorizes
image patches into different quality levels: low, medium, and high. Our neural foveated super-resolution method, referred to as
FovSR, takes both the low-resolution rendering content and the discretized foveation map as input. FovSR uses this information
to generate foveated high-resolution results that exhibit varying visual quality across distinct regions. For a more detailed
examination of our results, zoomed-in crops are displayed on the right, offering a closer look at the output. The fovea is marked
by a red cross.

2 RELATED WORK

2.1 Image and Video Super Resolution

The convolutional neural network is first used in single image super-resolution (SISR) in SRCNN17. Afterwards, deeper
structure 18, residual learning19, dense inter-layer connections20 are also introduced. EDSR21 utilizes a stack of modified
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ResBlocks22 to achieve enhanced quality, making it a fundamental building block in super-resolution networks with many sub-
sequent modifications23,24. And the stacking manner of blocks is a common practice in designing efficient super-resolution
network24 and is also adopted by our method.

The pioneering video super-resolution (VSR) works either rely on neural networks to implicitly integrate multi-frame infor-
mation25–27 or estimate optical flow from adjacent frames to track the pixel movement28–33. However, the per-pixel estimation
of optical flow is time-consuming which requires an addition neural network, and the accumulated errors can lead to apparent
artifacts. Multi-level mechanisms28,32 and deformable convolution30,31,33 are employed for more accurate optical-flow estima-
tion, error elimination, and further modification of the sampling positions and weight. Moreover, complicated neural network
structures, including the currently emerging transformer-based ones34, are not favored for real-time performance.

SISR fails to utilize the temporal information, and VSR is getting increasingly sophisticated to integrate it better. In the
context of real-time rendering, an accurate motion vector is available in the pipeline, which relieves the effort in flow estimation.
NSRR5 leverages the power of motion vectors to restore high-resolution details with simple neural networks. It directly uses
rendering samples from five historical frames and stores several neural tensors requiring relatively large memory. Our method,
instead, employs a recurrent scheme to break the limit of fixed window size without incurring any overhead. Our method is
more efficient in filtering invalid information and enhancing the rendering quality.

2.2 Spatial and Temporal Supersampling

Classical temporal-spatial supersampling techniques have been developed based on the observation of shading coherence and
consistency across both spatial and temporal dimensions. Supersampling is initially developed to tackle the aliasing problem by
generating more samples to produce better pixels while it also refers to the idea of upscale low-resolution renderings5,6,10–12,35,36.

Classical supersampling methods involves spatial and/or temporal information enrichment. Spatially, there are multi-
sampling antialiasing (MSAA) 37, fast approximate antialiasing (FXAA)38, morphological antialiasing (MLAA)39, and
subpixel morphological antialiasing (SMAA)40. Similar to the idea of VSR, reusing the samples from previous frames inspires
a series of temporal supersampling methods41.

Traditional temporal techniques rely on a temporal accumulator as a crucial component to generate, warp, validate histor-
ical rendering samples, and accumulate current samples for every frame. The motion vector is used in a reverse reprojection
caching scheme 42 for pixel shaders to look up in the screen-sized cache trying to reuse the available result before doing the
standard computing in order to reduce shader execution. Amortized supersampling 43 is proposed to reduce aliasing, which
reuses multiple sets of historical shading results estimated at four subpixel positions around the target pixel to retain more spa-
tial information and incrementally update one of them with jittered sampling. Temporal antialiasing (TAA)44 follows the basic
idea of amortized supersampling and uses a low discrepancy progressive sampling sequence to avoid clustering in either space
or time. A significant challenge arises because warped historical buffers do not align perfectly with the current frame, leading
to ghosting artifacts and visually invalid samples due to movements and varying lighting conditions. Furthermore, successive
temporal reprojection introduces blur due to sampling interpolation43, and the information stored in the historical buffers grad-
ually becomes outdated. TAA uses a neighborhood color clamping/clipping and an exponential moving average scheme to
filter invalid samples and blend current samples but requires well-designed heuristics to run effectively41. A classical spatio-
temporal upsampling method36 is close to our method’s neural temporal accumulator. But it needs high-resolution geometry
auxiliary buffers to filter the invalid temporal samples. NSRR5 is a state-of-the-art method which utilizes neural networks in
accumulating temporal samples but only five previous frames can be considered.

In our paper, we use the idea of temporal supersampling to accumulate useful information. We jitter the camera following
16-frame sequence and update 1/16 of the 4×4 grid every frame to amortize the rendering for super-resolution. With the help of
neural networks, our method is not limited in certain rendering pipeline or scenarios and is more robust in filtering the temporal
information to increase the visual quality. During the reconstruction of high-resolution results, analyzing spatial proximity
is also adopted in the reconstruction neural network, which is more powerful compared to traditional spatial supersampling
methods.

The idea of temporal supersampling is also applied in coarse pixel shading45 for antialiasing, in neural denoising46 for more
supporting samples, in interpolation3 and extrapolation4 for generating entire novel frames. Neural network is applied more and
more often in rendering pipeline and our work of super-resolution relies on them to solve an important aspect of the real-time
rendering.
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2.3 Foveated Rendering

Foveated rendering accelerates the rendering in virtual reality by rendering with a non-uniform resolution for the display. Clas-
sic foveated rendering methods include multi-layer rendering13, G-buffer mapping47,48, variable-rate shading14,49,50. Classical
method 13 adopts a way to dividing the the field-of-view into 3 rectangular layers according to the eccentricity and assign
a fixed shading rate to different layers. The shading rate can also vary according to the image content (such as luminance-
contrast15) besides eccentricity. The regions with a fixed shading rate can be arbitrary (Figure 1). DeepFovea51 leverages the
power of generative adversarial neural networks to reconstruct a plausible peripheral video from a small fraction of pixels
sampled in a foveated pattern, but it fails to adjust the computation workload while the neural network executes the same com-
putation regardless of the region’s eccentricity. FovNerf52 accelerates the rendering of neural radiance field in VR with the
idea of foveated rendering. It has to train different networks separately to deal with different foveation layers. FOCAS53 and
FovMSLapSRN (FovMLS)54 also target on foveated super-resolution. They generate image regions with different qualities, ei-
ther with the partial model or recursive neural network, respectively. However, these two methods can only handle different
foveation layers in a fixed pattern and they are not specifically designed for graphical rendering. In order to reduce the infer-
time of super-resolution network, we design a partition-assemble scheme to generate foveated super-resolution renderings with
arbitrary estimated foveation patterns in real time.

3 METHOD

In this section, we will demonstrate how our method works. We start by describing the neural temporal accumulator, which
maintains and updates a neural historical feature recurrently in Section 3.1. In Section 3.2, we show how our reconstruction
neural network translates the historical neural features into foveated super-resolution results.

3.1 Neural Temporal Accumulator

Temporal-spatial supersampling techniques rely on a temporal accumulator as a crucial component to warp, validate historical
rendering samples, and accumulate current samples for every frame. To effectively address these issues such as ghosting arti-
facts, visually invalid samples and reprojection blur as mentioned in Section 2.2, we propose a novel method that leverages a
combination of several neural networks within the temporal accumulator. This enhanced framework, referred to as the Neural
Temporal Accumulator (NTA), aims to accumulation historical information as well as mask or attenuate the influence of invalid
and outdated samples. The framework of NTA is showed in Figure 2(a).

In our method, the original information of the current frame includes the low-resolution motion vector vt, depth map dt, and
color buffer rt with a resolution of (h, w). These are generated by the native graphical renderer and incorporate quarter sub-
pixel camera jitter offsets within a fixed 16-frame circular jitter sequence. Concurrently, a corresponding jitter mask Jt, with a
resolution of (4h, 4w), is generated, consisting of all 1 value except for the current sub-pixel sampling positions, which are filled
with zeros. Furthermore, a neural feature ft is extracted from the low-resolution rendered color and depth buffer using a feature
extraction module (FEM) illustrated in Figure 3 (a) and then upscaled to Ft (4×4 bilinearly upsampling of the low-resolution ft).

To incorporate information from previous frames into the current frame, the historical neural feature FR
t–1 is warped into WFR

t–1
with the guidance of the upsampled motion vector Vt. This process should also involve effectively validating the historical in-
formation. Classical temporal supersampling methods rely on rejection and rectification techniques for this purpose. Rejection
methods typically use geometric data, such as reprojected depth, object ID, normal, and world position, to determine the valid-
ity4,11,42. However, these checks may not be universally applicable and often require specific thresholds, making them fragile,
particularly in super-resolution tasks where imprecise upsampled low-resolution buffers are used. Rectification methods, which
involve color data, are also employed to handle shading changes, such as moving shadows. In these methods, historical color is
clipped to the convex hull in color space based on neighboring samples from the current frame44. However, in super-resolution,
the neighborhood of current rendered samples may not be reliable as the color gamut is often overestimated. Additionally,
the attenuation of historical information needs careful consideration to strike a balance between gradually blurred history and
aliased current samples43. Neural networks have the potential to replace these complex heuristics, and in our approach, a neural
network plays a key role in this temporal filtering, especially for our super-resolution task.
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F I G U R E 2 Overview of the proposed framework: (a) The process of the neural temporal accumulator, as described in
Section 3.1. In each frame t, a graphical renderer generates low-resolution buffers vt, dt, rt with camera jittering. A neural feature
ft is extracted from the color rt and depth dt buffer using Feature Extraction Module (FEM). Historical feature FR

t–1 is warped
from the previous frame with upscaled current motion vector Vt. With warped historical feature WFR

t–1 and upscaled current
feature Ft as inputs, a mask Mt is predicted using the mask prediction module (MPM) to blend the warped feature and current
feature. In the blending step, a jitter mask Jt is also involved to indicate the shifted positions of current rendering according to
the jitter sequence of the camera. Yellow arrows represent bilinearly upscaling and black arrows represent data paths. (b) An
overview of the foveated image reconstruction, as described in Section 3.2. The updated neural feature FR

t is partitioned based
on a foveation map, and the reconstruction module (RCM) processes the resulting patches P to obtain corresponding super-
resolved patches P̂. The final result SRt for display is generated by assembling these reconstructed patches, which is then passed
to the screen for display.

We employ the mask prediction module (MPM) as shown in Figure 2(a) and Figure 3(b) to predict the weight of the historical
frame in temporal accumulation. The MPM estimates an adaptive damping weight mask Mt, allowing for the masking out of
invalid samples and the attenuation of the outdated samples. This is achieved by leveraging the combined information from
the geometry and visual samples stored in the historical feature, as well as the current upsampled neural feature extracted from
color and depth. Specifically, MPM takes warped historical feature (WFR

t–1), the current upsampled feature Ft as the inputs, and
predicts a one-channel mask Mt used for temporal accumulation.

Then, we blend the warped historical feature WFR
t–1 and the current frame feature Ft to get the accumulated feature FR

t em-
ploying a recursive exponential moving average (EMA) method. Equation 1 is utilized to filter the historical neural feature and
integrate the current neural feature. In this equation, the symbol ∗ denotes element-wise multiplication. The introduced jitter
mask Jt plays a role in refreshing the neural feature for the currently rendered positions.

FR
t = Mt ∗ Jt ∗W FR

t–1 + (1 – Mt ∗ Jt) ∗ Ft (1)

In our paper, with the neural temporal accumulator proposed, we get the valid accumulated feature FR
t , which is later used to

reconstruct the foveated super-resolution result.
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3.2 Foveated Image Reconstruction

In order to generate foveated super-resolution image which has heterogeneous gaze-contingent quality across the visual field,
we build a super-resolution neural ReConstruction Module (RCM) as shown in Figure 2 (b). It allows the users to customize
the quality of result by defining the output as

P̂ = R(P,ΦR, q) (2)

where P represents a tile of the neural feature after temporal accumulation and blending, ΦR denotes the network parameters,
and q is a flag indicating the quality level.

For super-resolution with varying quality in different regions based on their perceptual importance, we adopt a partition-and-
assemble scheme. The partition operation, denoted as P(FR

t , k, o, q), divides the neural feature FR
t into small feature patches.

After reconstruction, the assembling operation, denoted as A(P̂, k, o, q), reassembles the patches P̂ from RCM back to the entire
image SRt. Here, k represents the patch size, o denotes the overlapping size between two patches, and q is the quality flag
assigned to each patch which is indicated by a foveation map. We find that patch size k of 32 × 32 at original low-resolution
and an overlap o of 2 are suitable for keeping the computation overhead bearable and meeting the requirement of representing
arbitrary foveation patterns. Additional padding and depadding are applied to ensure that all patches have the same size, and
the final image is of the correct size.

In detail, during the partitioning process, the arbitrary foveation map assigning patches with a quality flag q can be estimated
and generated using any foveated visual theory13,15. The patches are then divided into groups according to the quality flag, and
each group follows a different path within the reconstruction module to generate P̂. The group of patches assigned a low-quality
flag exits the module at the early exit, while only the patches assigned the highest-quality flag go through the entire network as
shown in Figure 3(c). This approach reduces computation time compared to full-image super-resolution. As for the foveation
map, we adopt the luminance-contrast-aware foveation scheme15 as the default method to estimation foveation map. It uses
low-resolution rendering as the input to predict a resolution map for each patch expressed as the acceptable level of blur. After
thresholding and discretization, a foveation map of three quality levels is generated as shown in Figure 1.

The structure of the network shown in Figure 3(c), which is built upon the stacked blocks inspired by EDSR21. In order to
reduce the weights of the neural network and accelerate the inference, we employ a simplified ResBlock, namely Shallow Res
Block (SRB) with only one convolution layer23. Moreover, to accommodate channel magnification, reduction, and concate-
nation between blocks, we add an adaptive layer before the original SRB only when it is necessary, as shown in the inset of
Figure 3(c) named as Adaptive Shallow Res Block (ASRB), enabling it to adapt to various skip connections and channel changes.
In order to build a lighter network, in the early blocks, the channels are further reduced. PixelUnshuffle and PixelShuffle oper-
ators are placed at the start and end of this module. PixelUnshuffle transforms the original feature patches into smaller one but
with more channels which accelerates the reconstruction while PixelShuffle transforms the results back to the original size.

We also draw inspiration from Unet5 and Unet++55. Skip connections are inserted to establish more connections within the
network to better fuse different level of features. Multiple exits for different quality levels of output are provided by adding three
distinct reconstruction tails to translate the features into color images. The weights incrementally increases for each quality
level while the weights of the common parts are shared. We iteratively output the three results during training and update the
corresponding weights.

4 RESULT

In this section, we evaluate the performance of our method. Necessary implementation details such as datasets, training, loss
function, etc. will be first described in Section 4.1. We report full super-resolution quality in Section 4.2, its foveated super-
resolution quality in Section 4.3 and runtime in Section 4.4. We demonstrate the user study results in Section 4.5 and analyze
our methods with ablation study in Section 4.6.

4.1 Implementation

We constructed three datasets using the game engine Unity, utilizing scenes obtained from its asset store. Each scene was
subjected to exploration by multiple users controlling the camera, resulting in the capture of 100 sequences. Each sequence
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F I G U R E 3 Neural Modules: (a) Feature Extraction Module. Low-resolution color buffer rt and depth buffer dt are first
concatenated and a 8-channel feature is extracted by a three-layer convolutional neural network with ReLU activation. rt and dt

are also concatenated at the end results in a 12-channel neural feature ft. (b) Mask Prediction Module. Warped historical feature
WFR

t–1 and current upscaled feature Ft are concatenated and then pooled with a average pooling layer with a 4× 4 kernel and a
stride of 4. Three convolutional layers generate a 16-channel feature and with a tanh, rescale and 4x4 pixelshuffle, one-channel
mask Mt ranging from 0 to 1 at the high resolution is generated. (c) Reconstruction Module. Feature patch P is unshuffled with
a ×4 PixelUnshuffle layer to get a 192-channel feature at low resolution and it is transformed to 64 channels. This feature goes
through two 32-channel ASRBs, two 64-channel ASRBs and four 128-channel ASRBs to get the deep feature for high quality
super-resolution. With a convolutional tail and a ×4 PixelShuffle, high quality RGB patch P̂ is generated. Low quality and
medium quality patches are generated with partial neural network in the similar way but with earlier exits and less computation.
The number near a convolution layer indicates the output channel of the layer.

consisted of 60 frames of low-resolution color images, depth buffers, high-resolution target images, camera jitter information, as
well as view and projection matrices, which were stored as images and text files. The 100 sequences were split into 80 training
sequences, 10 validation sequences, and 10 test sequences. Following NSRR5, the low-resolution images have a resolution of
400 × 225 with a vertical field-of-view of 50 degrees. The low-resolution images are rendered with no anti-aliasing while the
high-resolution images are rendered in the resolution of 4800×2700 originally and downsampled to 1600×900 using a box-
filter to get an effect of super sampling anti-aliasing. When rendering low-resolution contents, a global mip-map bias of -2 was
applied to textures to maintain visual sharpness in low resolution.

We also capture a continuous sequence of head and eye motion for each scene in virtual reality (VR) using the HTC Vive Pro
Eye system. The captured sequence consists of 300 frames and serves as the input for our foveated rendering demonstrations
and evaluations. To ensure consistency with the recommended settings in SteamVR, we record the corresponding data with a
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F I G U R E 4 Each scene consists of three top rows showing cropped patches generated using full-image super-resolution
methods. The last row showcases results obtained from foveated super-resolution methods (green outline for High quality,
yellow for Medium, and blue for Low). The foveation map is presented in the bottom left corner. The large image on the left
demonstrates the foveated result generated by our method. The fovea is indicated by a red cross.
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target high-resolution of 2016 × 2240 and a vertical field-of-view of 104 degrees. These settings are chosen to simulate a real
application environment and accurately represent the visual experience with foveated rendering.

We build our neural network using PyTorch 1.12.0, and the network is trained end-to-end with all the overlapping patches
partitioned from the inputs with the corresponding high-resolution reference. Since our method aims to generate results with
three different reconstruction tails with different parts of the neural network, we randomly output one of the three products and
train the network in this mixed manner. The network was trained with ADAM optimizer with default hyperparameters, and the
learning rate is set to 1e – 4. The network runs on a single Nvidia RTX 3090 graphic card or GTX 1080 Ti for time evaluation
with neural modules optimized with TensorRT. Inspired by NSRR5, we use a weighted combination of the perceptual loss
computed from a pre-trained VGG-16 network56 and the structural similarity index (SSIM)57.

4.2 Full Super-Resolution Evaluation

To show that our network works well in full image super-resolution, we compare our method with several state-of-the-art super-
resolution work. We compared our method with the most related and state-of-the-art neural supersampling method, NSRR5,
considered as a benchmark in the field. Additionally, we included the EDSR21 baseline, which is widely used and performs the
second best according to the evaluation conducted by Xiao et al.5. To explore the effectiveness of the classical neural networks
that have been applied in the context of foveated rendering53,54, we compared our method with MSLapSRN (MLS)58 and
RRN27. MLS utilizes a shared network module for recursive processing and step-by-step upscaling of low-resolution images
while RRN is a classical recurrent network for video super-resolution.

To ensure a fair comparison, we re-implemented all the methods and trained them using the same setup, including the dataset,
learning rate, and loss function. EDSR21 utilizes multiple simplified ResBlocks22 as its core. We set the number of ResBlocks
to 16 and the number of channels of each block to 128. NSRR5, the state-of-the-art method, requires a 5-frame sequence input
and is specifically designed for a window size of 5. We kept this configuration unchanged during our implementation. For
recurrent methods like RRN27 and our proposed method, which are not limited by a fixed window size, we set the length of
training sequences to 5 and trained them in a recurrent manner. In the case of RRN27, we set the number of ResBlocks to 10 and
the number of channels to 128, consistent with FOCAS53. For MLS58, we set the number of recursive blocks to 8, the depth of
each block to 5, and the number of channels to 64.

Following NSRR5, we use three quality metrics for evaluation: peak-to-noise ratio (PNSR), structural similarity index
(SSIM)57, and spatio-temporal entropic difference (STRRED)59. Table1 presents the average values of each metric obtained
from 10 test sequences with 60 frames in each sequence. Our method and RRN were tested in a recurrent manner, as they can
be executed recurrently without additional overhead, unlike NSRR5, where the network is fixed and not scalable. To account
for this, we omitted the first 4 frames since NSRR5 does not provide corresponding outputs for them. Our method outperforms
the existing methods with all metrics. And the STRRED shows that our method has better temporal stability.

Furthermore, Figure 4 presents a visual representation of the quantitative results obtained from several cropped regions of
the full super-resolution images generated by these five methods.

T A B L E 1 Quality comparisons of full super-resolution with existing methods on three virtual scenes. Results for each
method are averaged across 10 test sequences in each scene. The number behind to name indicates how many frames the method
takes as input while R indicates that it is tested in a recurrent manner. For PSNR and SSIM higher values mean higher quality,
while for STRRED low values mean higher quality.

Metric Dataset EDSR(1) MLS(1) RRN(R) NSRR(5) Ours(R)

PSNR↑
City 27.09 26.14 26.99 29.27 29.36

Village 27.49 26.92 27.52 29.55 29.61
Bistro 25.55 24.81 25.55 27.63 27.94

SSIM↑
City 0.9172 0.8968 0.9158 0.9488 0.9507

Village 0.8338 0.8139 0.8343 0.8893 0.8907
Bistro 0.8064 0.7783 0.8064 0.8807 0.8901

STRRED↓
City 132.6 176.9 123.7 81.8 74.3

Village 154.3 195.1 136.2 79.6 75.1
Bistro 286.9 391.3 261.2 134.5 114.0
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T A B L E 2 Quality comparison of different super-resolution levels and the foveated super-resolution results on three scenes
in VR setting. Different qualities of super-resolution are compared as the full image are super-resolved uniformly. H, M, L
stand for high quality, medium quality and low quality, respectively. Foveated result are also compared with foveation-specific
image quality metrics. Values of each method are average over all the frames in the test sequence for each scene in VR. For a
fair comparison for foveated results, we keep a fixed gaze at the center and a fixed foveation map for each method.

Metric Dataset FovMLS L/M/H FOCAS L/M/H Ours L/M/H

PSNR↑
CityVR 25.86 / 27.84 / 28.25 26.28 / 26.50 / 28.84 30.85 / 31.51 / 31.67

VillageVR 27.02 / 29.19 / 29.24 27.65 / 27.83 / 29.62 31.38 / 31.98 / 32.19
BistroVR 24.74 / 26.70 / 26.71 25.47 / 25.77 / 27.09 28.79 / 29.43 / 29.78

SSIM↑
CityVR 0.886 / 0.929 / 0.938 0.894 / 0.894 / 0.946 0.963 / 0.969 / 0.971

VillageVR 0.854 / 0.888 / 0.894 0.849 / 0.856 / 0.901 0.929 / 0.935 / 0.937
BistroVR 0.758 / 0.808 / 0.821 0.769 / 0.777 / 0.834 0.882 / 0.898 / 0.902

Metric Dataset FovMLS-Fov FOCAS-Fov Ours-Fov

EWPSNR↑
CityVR 94.6377 95.4413 98.5528

VillageVR 91.5090 91.9554 95.2319
BistroVR 96.1158 96.8928 100.4871

FovVDP↑
CityVR 8.1720 8.1162 8.5175

VillageVR 8.1184 8.0410 8.6234
BistroVR 8.0312 7.9634 8.6086

4.3 Foveated Super-Resolution Evaluation

In this section, we assess the quality of foveated super-resolution produced by our method and compare it with two super-
resolution methods focusing on generating foveated results: (1) FovMLS54, a method that leverages the characteristic of MLS58

for foveated rendering; (2) FOCAS53, a method employs the recurrent networks of RRN27 for foveated super-resolution. To
evaluate the performance, we utilize test datasets consisting of sequences recorded in VR, capturing head motion and gaze
information as described in Section 4.1.

To generate foveated super-resolution results with varying image quality in different regions, all methods are required to
upscale the input to target resolution with different levels of quality. We employ three quality levels (high-H, medium-M, low-
L) for the inner, middle, and outer regions. FOCAS53 achieves this by cropping the neural feature when passing it through
stacked ResBlocks. Regions requiring higher visual quality are retained after cropping and undergo additional neural blocks.
The resulting mixed feature is combined and transformed into the final result. Similarly, FovMLS54 crops the middle region of
the input image and upscales it to a 2× 2 size with medium quality. It then recursively crops the inner region and upscales it to
a 4× 4 size with high quality. In our method, we employ a partition-assemble scheme and a multi-exit reconstruction module
to generate reconstructed results, as described in Section 3.2.

In Figure 4, we present a qualitative demonstration of the foveated super-resolution images produced by our method. We
compare the cropped regions at different quality levels with other foveated super-resolution methods. And in the upper rows
of Table 2, we compare the PNSR and SSIM of these methods. Across all quality levels, our method outperforms the other
two by a significant margin. Furthermore, our method exhibits a more gradual degradation than the other methods, indicating
a smoother transition in image quality.

To ensure a fair and quantitative comparison of the foveated results’ quality, we employ several control strategies. Firstly, we
fix the gaze at the center position. While FOCAS and FovMLS support only nested concentric rectangular foveation patterns,
our method can adapt to any pattern. Therefore, we also adopt a rectangular foveation pattern for our method in this evaluation.
To determine the division of the three foveal layers and the corresponding sizes and borders of each rectangle, we collect the
foveation maps generated by Tursun et al.15 for each test frame with a center gaze. We compute the ratio of the corresponding
areas for each quality level. On average, the inner region occupies 4% of the total area, while the middle region occupies 30%
of the area. These correspond to sizes of [(428, 428), (1240, 1240)] at the target resolution.

For FOCAS and FovMLS, we keep the size of the inner region and middle region the same as ours to showcase the quantitative
quality each method can achieve in the same-sized visual region division. For FOCAS, it processes the inner fovea region
with 10 blocks, the middle region with 8 blocks and 1 block for the entire outer region (FOCAS-20). For FovMLS, the inner
region is super-resolved by ×2 neural upscaling double times, the middle region is super-resolved by ×2 neural upscaling and
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×2 bicubic upscaling and the outer region is upscaled solely by ×4 bicubic interpolation. In the bottom rows of Table 2, we
use EWPSNR60 and FovVDP61 as the metric to evaluate the image and video quality of foveated results. Our method also
outperforms the other foveated methods by a large margin.

4.4 Runtime

We demonstrate the runtime breakdown of major steps of our method in Table 3 with typical mainstream last-generation and
current-generation desktop GPUs as the testbeds for two common targeting resolutions.

The runtime consists of two major parts: neural temporal accumulator and reconstruction. The runtime of neural temporal
accumulator consists of feature extraction, mask prediction, upscaling of motion vector and feature, feature warping as well
as feature blending(Equation 1). The reconstruction neural network module dominates the workload. With the foveated super-
resolution method we proposed, a majority of the computation can be saved. Partition and assembly operations can been seen
as the necessary overhead of our methods but they can be executed in a relatively negligible amount of time. The total frame-
time of our method includes all the time of neural temporal accumulator and foveated reconstruction, and our FovSR can run in
real-time with a frame-time of 9.867ms for 1080p target resolution on a GTX 1080Ti GPU and 8.018ms for 4K on a RTX 3090
achieving around 54% and 43% reduction compared with full super-resolution. Compared to full-size native rendering with
some ray-traced global illumination effect, which can take over 100ms at 1080p5, native rendering at 480× 270 with foveated
super-resolution offers a significantly more efficient approach while still providing a visually satisfying experience.

T A B L E 3 Detailed Time Evaluation. The time of neural temporal accumulator and foveated reconstruction is shown for
4 × 4 super-resolution on two GPUs targeting two resolutions. The steps which are mainly executions of neural modules are
indicated with N in the brackets and they are accelerated with TensorRT at 16-bit precision. Other steps indicated with * are
texture array manipulation like upscaling, warping, blending and partition-assembly operations which are implemented with
graphics API and CUDA implementation. The total time of foveted super-resolution, fullsize super-resolution and reduction
ratio are listed at the last rows. The unit of time is millisecond (ms).

Devices/Resolution GTX1080Ti 1080p GTX1080Ti 4K RTX3090 1080p RTX3090 4K

Neural Temporal Accumulator

Motion Vector Upscaling(*) 0.116 0.503 0.032 0.093
Warping(*) 0.772 3.019 0.125 0.625

Feature Extraction Module(N) 0.583 2.378 0.134 0.425
Feature Upscaling(*) 0.389 1.583 0.093 0.414

Mask Prediction Module(N) 1.324 5.123 0.262 1.040
Blending(*) 0.814 3.135 0.132 0.615

Foveated Reconstruction
Partition(*) 0.312 1.151 0.121 0.424

Patch Reconstruction(N) 5.256 21.183 1.093 4.061
Assembly(*) 0.301 0.871 0.107 0.321

FovSR Total 9.867 38.946 2.099 8.018

High Quality FullSR Total 21.121 85.333 3.732 14.167
FovSR Reduction Ratio 53.28% 54.36% 43.76% 43.40%

The comparison of runtime and GFLOPs (giga floating point of operations) of our methods and others in fullsize and foveated
super-resolution are shown in Table 4 on the GTX 1080Ti for 1080p target resolution. Our method can achieve better fullsize
and foveated image quality in a shorter runtime and with less computations. It is worth noting that the speed-up achieved in our
method, relative to full image super-resolution, is not fixed and can be adjusted based on different foveation maps. In Table 4,
we present a specific frame from the Village scene along with a representative gaze point and foveation map generated using
the method proposed in Tursun et. al.15. After thresholding and discretization, the foveation map is transformed into a three-
level foveation pattern as shown in the blue outlined regions containing several image patches. The regions can be in arbitrary
shapes and we refer to as free form foveated super-resolution (Ours-FreeForm). In traditional foveated super-resolution methods
like FovMLS and FOCAS that without our partition and assembly scheme, maintaining the quality requirements for all regions
necessitates the use of either circum-rectangles (FovA - highlighted in green) or circumcircle (FovB - highlighted in red) as
the foveation map. The corresponding runtime for these foveation patterns is shown in Table 4. It can be seen that our method
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provides more freedom and flexibility in choosing foveation maps of any shape, thereby maximizing the potential for reducing
computational workload.

T A B L E 4 Time and computation comparison of our method and others on GTX 1080Ti for fullsize and foveated super-
resolution with a target resolution of 1080p. The figures shows a rendered image with its foveation map and three foveation
strategies. FovA (Green), FovB (Red) and FreeForm (Blue) stand for foveation strategies as described in Section 4.4 with
corresponding reconstruction time listed. For foveated super-resoution, the time and GFLOPs of FovMLS and FOCAS are
tested with FovA pattern. For GFLOPs, we only count the operations of neural modules of each method. The unit of time is
millisecond (ms).

Time of Fullsize Super-Resolution EDSR MLS RRN NSRR Ours-FullSR-H
156.732 220.982 54.655 74.985 21.121

GFLOPs of Fullsize Super-Resolution EDSR MLS RRN NSRR Ours-FullSR-H
1020.4 1055.4 435.6 339.5 123.8

Time of Foveated Super-Resolution FovMLS FOCAS Ours-FovA Our-FovB Ours-FreeForm
22.829 23.508 12.295 11.614 9.867

GFLOPs of Foveated Super-Resolution FovMLS FOCAS Ours-FovA Our-FovB Ours-FreeForm
105.8 185.8 48.4 44.5 39.1

4.5 User Study

We conducted a psychophysical experiment to evaluate the perceptual quality of our foveated super-resolution results (Ours-
FovSR) in comparison with our full super-resolution results (Ours-FullSR), the ground truth at full resolution (GT), and the
results obtained using two other foveated super-resolution methods, FOCAS and FovMLS. To ensure a precise comparison and
eliminate the variability in gaze behavior across different trials, we constructed each set of stimuli using static stereo foveated
images, as depicted in Figure 4. For each test scene, we selected two frames along with their corresponding gaze for subjective
evaluation.

During the study, participants wore HTC Vive Pro Eye headsets and were seated to view the stereo images. The target gaze
position was indicated by a red cross on the stimuli images. Participants were instructed to keep their gaze around the cross
throughout the experiment. To ensure consistent and reliable gaze behavior, eye tracking was employed to monitor participants’
gaze direction. If participants failed to fix their gaze on the target position, the images would temporarily black out. A total of
12 volunteers (3 females, mean age = 24.3) participated in and completed the study. All participants had a normal or corrected-
to-normal vision and were unaware of the specific intention of the study. During each test trial, participants were presented
with image pair A for a duration of 2 seconds, followed by a black screen for 0.75 seconds, and then image pair B for another 2
seconds. Subsequently, the participants were asked to perform a two-alternative-forced-choice (2AFC) to choose the better pair
with better overall image quality and then score the difference between the two pairs from 1 (significant perceptual difference),
2 (minimal perceptual difference), 3 (perceptually identical). Based on the choice of A v.s. B, the score can be interpreted
as a perceptual score of A with regard to B ranging from -2 to 2 where 0 represents equal quality. Several warm-up trials
were conducted initially to familiarize participants with the procedure. Totally 96 trials for each intended comparison were
conducted. Between trails, participants were free to relax as much as they wanted. The sequence of trials were randomized for
every participant.
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F I G U R E 5 The result of user study. (a) The choice ratio of 2AFC. Each bar represents the ratio of choice explained under it.
The p value of binomial test is also listed. (b) A box plot of perceptual score of our FovSR with regard to others. The perceptual
score of A v.s. B means, taking B as a reference, how much the A is perceptually better than B, where 0 means the user has no
certain preference.

The results in Figure 5 show that it is a random choice between FovSR v.s. FullSR (p = 0.12, binom. test), FovSR v.s. GT (p
= 0.08), FullSR v.s. GT (p = 0.18) showing that our foveated super-resolution is perceptually identical statistically as ground
truth and full image super-resolution. And our foveated super-resolution is preferred significantly over the other methods we
compared (p<0.05) while the perceptual quality of FOCAS and FovMLS is similar (p=0.26). We further check the perceptual
quality of our foveated super-resolution and find that it is slightly worse than ground truth but much better the other two. It also
shows equal quality as full super-resolution, proving that our foveation strategy is effective.

4.6 Analysis and ablation study

Here we analyze the necessity of several essential designs of our method that help us to get a better super-resolution quality.
The reported average quality scores are tested with the test set of the City scene, all with the full high-quality super-resolution
output. All analyses in this section follow the same setting.

4.6.1 Historical neural feature

Unlike classical temporal supersampling methods that typically store and maintain raw color buffers as the key historical data,
our method introduces the concept of maintaining and updating a 12-channel historical neural feature from frame to frame.
This feature comprises raw color and depth information in the first 4 channels and learned deep features extracted from FEM.
To ascertain the necessity of this additional deep feature in our method, we conduct an ablation experiment where we only
maintain and update the color and depth buffer while adjust the input channel of MPM and RCM accordingly. As shown in
Figure 6 (a), the characters are noisy, indicating that the details are not properly restored when the network is trained without
this neural feature. The numerical results demonstrate the improvements gained from utilizing the historical neural feature in
Table 5 comparing “Our-H” with “w/o neural feature”.
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4.6.2 Temporal Neural Masking

Effective temporal accumulation necessitates a reliable filtering method to eliminate invalid and outdated samples while avoid-
ing accumulating potential errors. This aspect is particularly crucial and challenging for super-resolution tasks. To evaluate the
effectiveness of our mask prediction module, we compare it with a simple handcrafted filtering mechanism. In this mechanism,
we reconstruct the depth of the previous frame using the current depth buffer11. By comparing the warped reconstructed depth
with the current depth, we apply a threshold to identify and mask out geometrically invalid samples. For the rectification of the
historical neural feature, we calculate the Axis-Aligned Bounding Box (AABB) for each channel of the current upscaled feature
Ft within a 3 × 3 neighborhood. Subsequently, we straightforwardly clamp the warped historical feature WFR

t–1 values within
the determined bounding box. By replacing our neural mask prediction module with this manual solution, the performance of
our method experiences a significant decrease, as shown in Table 5 which demonstrate that our neural masking scheme is nec-
essary for our method to achieve better super-resolution quality. In Figure 6, a decrease of visual quality can been seen when
comparing “Our-H” with “w/o neural masking”.

(a) w/o neural feature (b) w/o neural masking (c) Ours-H (d) High Resolution Reference

F I G U R E 6 Visual comparison of our methods and modified ones without neural feature and neural masking. A region
containing rich details, changing shadows and moving edges are cropped from a specific frame generated by our full method
(Ours-H) and the alternative methods without neural feature, neural masking and the high resolution reference.

4.6.3 Reconstruction Module

This paper presents a reconstruct network structure with stacked ASRBs and additional skip connections. This architectural
not only enables us to generate different levels of image quality but also improves the overall image reconstruction. To validate
the contribution of these modifications, we delete the skip connections, and replace the every two ASRBs in the core of our
reconstruction module with one ResBlocks21,53. From the results shown in Table 5, we can see the improvement brought by
skip connections and the use of ASRBs.

In order to compare our design with traditional super-resolution networks, we also employ the design of EDSR and RFLN62

(the winner of main track of NTIRE 2022 Efficient Super-Resolution Challenge63) instead . To ensure a similar runtime of
different reconstruction modules, we replace our reconstruction module with 10 ResBlocks of 64 channels, 6 RFLBs (residual
local feature block) of 52 channels. The quantitative results of PSNR, SSIM are shown in Table 5. Our reconstruction module
outperforms other efficient neural networks in image quality with similar runtime.

4.7 Limitations and Future Work

While our method offers an effective solution for foveated super-resolution in VR applications compared to other methods, the
current implementation for higher resolutions on low-end desktop GPUs can be further optimized computationally. Potential
optimizations include network structural optimization, INT8 network quantization7, and hardware-specific engineering. While
we are currently targeting on PCVR devices, implementation and test of our method on mobile and standalone devices need
further efforts in the future64.

There is still room for improvement in achieving perfect super-resolution. Future investigations can explore more complex
and longer jittering sequences instead of the fixed ones used in our current work. Additionally, exploring advanced resampling
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T A B L E 5 Quality comparisons of ablation study. Results for each method are averaged across 10 test sequences in City
scene. Ours-H represents the full model of our method. We remove the FEM and maintain only color and depth temporal the
super-resolution result is shown in the column of w/o neural feature. We remove the MPM and replace the neural accumulator
with a manul solution only color and show the results in the column of w/o neural masking. We replace the reconstruction
module with some other design and the results are shown in the rest columns.

Settings Ours-H w/o neural feature w/o neural masking Reconstruction Module Replacement
w/o skip connections SRB to ResBlock 21 ResBlock b10c64 21 RFLB b6c52 62

PSNR↑ 29.36 28.71 28.50 29.20 29.13 29.25 29.12
SSIM↑ 0.9507 0.9420 0.9398 0.9491 0.9473 0.9476 0.9479

techniques beyond bilinear sampling could lead to better results. FuseSR65 achieves higher scale super-resolution (8× 8) with
the help of additional high resolution G-buffer and demodulation. This recent work indicates a future direction to further boost
our method. Since our method targets VR applications, considering stereo information from both eyes is an important aspect
that remains in future work.

5 CONCLUSIONS

In this paper, we present a novel neural foveated super-resolution method for real-time rendering in virtual reality. Our ap-
proach leverages the limitations of human vision and applies foveation to enhance the super-resolution of the rendered content.
We propose a neural accumulator that can be trained end-to-end to effectively accumulate and update temporally amortized
rendering information using visual and geometric cues inherent in the rendering pipeline. We introduce a neural reconstruc-
tion module that efficiently translates the maintained historical features into high-resolution quality. The output quality can be
flexibly controlled, allowing for precise manipulation. Additionally, we propose a partition-and-assemble scheme that enables
the generation of foveated super-resolution with customizable foveation patterns or quality distribution, maximizing compu-
tational efficiency while maintaining perceptually acceptable results. Our method surpasses existing approaches in foveated
super-resolution and holds promise in delivering perceptually high-quality visual experiences for virtual reality, mitigating
concerns about the rendering workload.
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