
ReactGenie: A Development Framework for Complex Multimodal
Interactions Using Large Language Models

Jackie Junrui Yang
jackiey@stanford.edu
Stanford University
Stanford, CA, USA

Yingtian Shi
shiyt0313@gmail.com
Tsinghua University

Beijing, China

Yuhan Zhang
zhangyh@stanford.edu
Stanford University
Stanford, CA, USA

Karina Li
karinali@stanford.edu
Stanford University
Stanford, CA, USA

Daniel Wan Rosli
danwr@stanford.edu
Stanford University
Stanford, CA, USA

Anisha Jain
anishaj037@gmail.com
Independent Researcher

USA

Shuning Zhang
zhang-sn19@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Tianshi Li
tia.li@northeastern.edu
Northeastern University

Boston, MA, USA

James A. Landay
landay@stanford.edu
Stanford University
Stanford, CA, USA

Monica S. Lam
lam@cs.stanford.edu
Stanford University
Stanford, CA, USA

ABSTRACT
By combining voice and touch interactions, multimodal interfaces
can surpass the efficiency of either modality alone. Traditional mul-
timodal frameworks require laborious developer work to support
rich multimodal commands where the user’s multimodal command
involves possibly exponential combinations of actions/function
invocations. This paper presents ReactGenie, a programming frame-
work that better separatesmultimodal input from the computational
model to enable developers to create efficient and capable multi-
modal interfaces with ease. ReactGenie translates multimodal user
commands into NLPL (Natural Language Programming Language),
a programming language we created, using a neural semantic parser
based on large-language models.The ReactGenie runtime interprets
the parsed NLPL and composes primitives in the computational
model to implement complex user commands. As a result, React-
Genie allows easy implementation and unprecedented richness
in commands for end-users of multimodal apps. Our evaluation
showed that 12 developers can learn and build a non-trivial Re-
actGenie application in under 2.5 hours on average. In addition,
compared with a traditional GUI, end-users can complete tasks
faster and with less task load using ReactGenie apps.

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642517

CCS CONCEPTS
• General and reference → Design; • Software and its engi-
neering → Graphical user interfaces; Object oriented frameworks; •
Information systems→ Multimedia and multimodal retrieval; •
Human-centered computing → User interface programming.

KEYWORDS
multimodal interactions, development frameworks, programming
framework, large-language model, natural language processing

ACM Reference Format:
Jackie Junrui Yang, Yingtian Shi, Yuhan Zhang, Karina Li, Daniel Wan
Rosli, Anisha Jain, Shuning Zhang, Tianshi Li, James A. Landay, and Mon-
ica S. Lam. 2024. ReactGenie: A Development Framework for Complex
Multimodal Interactions Using Large Language Models. In Proceedings
of the CHI Conference on Human Factors in Computing Systems (CHI ’24),
May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 23 pages.
https://doi.org/10.1145/3613904.3642517

1 INTRODUCTION
Multimodal interactions, combining multiple different input and
output modalities, such as touch, voice, and graphical user inter-
faces (GUIs), offer increased flexibility, efficiency, and adaptabil-
ity for diverse users and tasks [52]. However, the development of
multimodal applications remains challenging for developers due
to the complexity of managing multimodal commands and han-
dling the low-level control logic for interactions. Existing frame-
works [12, 14, 32, 41, 42, 49, 50] often require developers tomanually
handle these complexities, significantly increasing development
costs and time. The voice modality, in particular, presents a unique
challenge due to the compositionality and expressiveness of natural

https://orcid.org/0000-0002-2064-5231
https://orcid.org/0000-0001-8733-7041
https://orcid.org/0009-0000-7720-9329
https://orcid.org/0009-0002-2711-5185
https://orcid.org/0009-0005-5625-8312
https://orcid.org/0009-0003-4819-529X
https://orcid.org/0000-0002-4145-117X
https://orcid.org/0000-0003-0877-5727
https://orcid.org/0000-0003-1520-8894
https://orcid.org/0000-0002-7626-6468
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3613904.3642517
https://doi.org/10.1145/3613904.3642517
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642517&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

ReactGenie Runtime

Defined States

Order.GetActiveCart().addItems(items:O
rder.OrderHistory().matching(field:.re
staurant,value:Restaurant.current())
[0].items)

!

Define Object-
Oriented States

Taco Bell

Taco 3/3
Order

Restaurant

Mr Sun 3/3
Order

Crunchwrap
FoodItem

Quesadilla
FoodItem

Taro boba
FoodItem

Define
UI Components

Restaurant
ItemView

OrderItem
View

Food
Thumbnail

“Reorder my last meal
from this restaurant.”

Developer-Coded GUI Generated Multimodal UI

Semantic
Parser

Input
UI Mapping

NLPL

Output
UI Mapping

 ①

 ②

④

Taco Bell
Restaurant

New Taco
Order

Taco 3/3
Order

UI Reference

Result③

Figure 1: ReactGenie allows developers to easily build multimodal applications by better-separating interfaces (UI components)
from computational models (object-oriented state). The demo (two screenshots) shows the user performing a multimodal
(speech + touch) command (left screenshot), with the system executing the command by parsing the voice, understanding
the reference in touch, and presenting the user with the appropriate UI interface and text feedback (right screenshot). (Left)
ReactGenie provides this new yet familiar interface to create a GUI by defining states (data and logic) and UI components
(transformation from data to UI representation). (Right) ReactGenie automatically generates a natural semantic parser from
developer-defined states and generates input and output UI mappings from developer-defined UI components. ReactGenie can
then execute rich multimodal commands by composing the methods and properties of states and presenting the results using
existing UI components.

language. Sub-par implementations often greatly reduce the expres-
siveness of these multimodal interfaces. Various systems [28, 53]
can automatically handle voice commands by converting them to
UI actions, but they are prone to error and do not allow developers
to fully control the app’s behavior.

The research described in this paper aims to provide developers
with a simple programming abstraction (see Figure 1) by hiding the
complexity of natural language understanding and supporting the
composition of different modalities automatically. Our goal is to
enable users to access off-screen content/actions and complete tasks
that normally involve multiple GUI taps in a single multimodal
command, as illustrated in Figure 2. This flexibility is achieved
with little additional effort from developers compared to traditional
GUI apps. This approach encourages the adoption of multimodal
interactions and makes multimodal interactions more accessible to
end-users.

This paper presents ReactGenie1, a declarative programming
framework for developing multimodal applications. The core con-
cept behind ReactGenie is a better abstraction that separates the
multimodal input and output interfaces from the underlying compu-
tation models. ReactGenie uses an object-oriented state abstraction
to represent the computation model of the app and uses declarative
UI components to represent the UI. Users’ compound multimodal
commands are translated into a composition of multiple function

1project website (including source code): https://jya.ng/reactgenie, https://hci.stanford.
edu/research/reactgenie/

calls using large language models (LLMs), e.g., to find the referred
object/objects and make the right state change.

Existing declarative UI state management frameworks, such as
Redux [6], use a single global state store to manage all of the state
changes of the UI. The straightforward way to implement rich mul-
timodal user commands in these existing frameworks is by making
many imperative-style function calls. However, these function calls
require the error-prone creation of many intermediate variables to
store return values that are then used in the next function call as the
programmer traverses the complex state stored in the monolithic
object. These intermediate variables commonly cause missing ref-
erences to variables when the neural semantic parser translates the
user’s natural language input into code [36]. In contrast, the object-
oriented state abstraction in ReactGenie encourages componentized
classes instead of a single global state store. The componentized
classes result in smaller objects, each equipped with methods for
relevant operations. This design supports multiple chained method
calls/property accesses (method chaining) and provides a straight-
forward representation of the user’s command with no need for
intermediate variables (as shown in the example NLPL command
in Figure 1). This allows ReactGenie to accurately compose the
methods and properties of existing states needed for executing rich
multimodal commands.

With ReactGenie, developers build graphical interfaces using
a development workflow similar to a typical React + Redux [5]
application. To add multimodality, the developer simply adds a few
annotations to their code and example parses (pairs of expected

https://jya.ng/reactgenie
https://hci.stanford.edu/research/reactgenie/
https://hci.stanford.edu/research/reactgenie/

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

end-user voice command examples and the corresponding function
calls). These command examples indicate what methods/proper-
ties can be used in voice and how. By using the extracted class
definitions and example parses from the developer’s state code, Re-
actGenie creates a parser that leverages an LLM [17] to translate the
user’s natural language to a new domain-specific language (DSL),
NLPL, Natural Language Programming Language. Combined with
a custom-designed interpreter, ReactGenie can seamlessly handle
multimodal commands and present the results in the graphical UI
that the developer builds as usual.

As shown in Figure 1 left, developers can define both object-
oriented state abstraction classes to handle data changes and UI
components that explicitly map the state to the UI. Similar to React,
when the user interacts with the app, the app’s state will be up-
dated, and the UI will be re-rendered. What sets ReactGenie apart
is its unique ability to support rich multimodal input, as shown in
Figure 1 right.

The main contributions of this research are as follows:

• ReactGenie, a multimodal app development framework
based on an object-oriented state abstraction that is easy
for developers to learn and use and generates apps that sup-
port rich multimodal interactions.

• A programming language, NLPL, used to represent user’s
multimodal commands. This involves the design of the high-
level annotation of user-accessible functions, the automatic
generation of a natural semantic parser using LLMs that
targets NLPL, a new DSL for rich multimodal commands,
and an interpreter that executes NLPL. These systems sup-
port automatic and accurate handling of natural language
understanding in ReactGenie.

• Evaluations of ReactGenie:
– For developers, we demonstrated its expressiveness

through building three representative demo apps in dif-
ferent domains, its low development cost by comparing
it with GPT-3 function calling, and its usability and learn-
ability through a study with 12 developers successfully
building a demo app.

– For end-users, we measured the parser accuracy to be 90%
with elicited commands from 50 participants and evaluated
the usability of apps built using ReactGenie in a user study
with 16 participants. We found users had a reduced cogni-
tive load when using an app with ReactGenie-supported
multimodal interactions compared to using a graphical
user interface (GUI) app. They also preferred the multi-
modal app to the GUI-based app.

1.1 Targeted Interactions
ReactGenie supports rich interactions that are complex for current
computer systems, but are intuitive for users. One example of a rich
multimodal interaction is shown in the center of Figure 1: the user
says, “Reorder my last meal from this restaurant” while touching the
restaurant displayed on the screen. Such commands are common in
human-to-human communication. Still, they involve multiple steps
(retrieving the history of orders from the restaurant, creating an
order, and adding food to the order) for the app. These commands

are complex to implement today as they require combining inputs
from both modalities and/or composition of different features.

ReactGenie supports a typical family of gesture + speech multi-
modal interactions. This aligns with one of the categories of speech
and gesture multimodal applications proposed by Sharon Oviatt’s
seminal work [9]: The recognition modes ReactGenie supports are
simultaneous and individual modes, meaning that ReactGenie sup-
ports users to use either speech-only interactions, gesture-only
interactions, or both interactions at the same time (“What is the last
time I ordered from this [touch on a restaurant] restaurant”). The
supported gesture input type is touch/pen input, and the size of the
gesture vocabulary is a deictic selection. This means that ReactGenie
focuses on scenarios where the user’s gesture input resolves object
references through pointing in a multimodal command. The size
of speech vocabulary is arbitrary human sentences, and the type of
linguistic processing is large-language model processing. The last
two terms are new types we invented to better describe ReactGe-
nie’s support for rich commands and the use of highly generalizable
large-language models. Following Oviatt’s original classification,
ReactGenie would be classified as large vocabulary and statistical
language processing. ReactGenie uses late semantic fusion to fuse
input from different modalities, which means the system integrates
and interprets the meaning of inputs from multiple modalities only
after each input has been independently processed and understood.

With ReactGenie, the developer simply provides a small amount
of additional information associated with each input method and
function. Our system supports the full compositionality of input
modalities and functions by automatically translating a user com-
mand into one of exponentially many possible action sequences.
The richness of user interaction afforded by our system is unprece-
dented, as traditional multimodal programming frameworks require
developers to hard-code every combination of features supported.

ReactGenie lets the programmer simply describe the functional-
ity of their code, including actions they support and the relationship
between UI and data. This allows ReactGenie to handle these rich
multimodal commands in arbitrary combinations of actions with-
out requiring direct developer input. The example in Figure 1 is
supported by:

(1) ReactGenie first translates the user’s voice command to the
NLPL code. For example, the user refers to an element in
the UI by voice (“this restaurant”), and the semantic parser
generates a special reference Restaurant.current().

(2) ReactGenie extracts the tap point from the UI and uses the UI
component code to map the tap point back to a state object
Restaurant(name:"TacoBell").

(3) With the parsed DSL and UI context, ReactGenie’s interpreter
can execute the generated NLPL using developer-defined
states. It first retrieves the most recent order from “Taco
Bell”, designated as “Taco 3/3”. Then, it creates a new order,
designated as “New Taco”. Finally, the interpreter adds all
the food items from “Taco 3/3” to “New Taco” and returns
the new order.

(4) ReactGenie passes the return value of the NLPL statement
to the output UI mapping module. Because the return value
is an Order object, ReactGenie searches in the developer’s
UI component code to find a corresponding representation

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

(Output UI Mapping) to present the result to the user. React-
Genie also generates a text response using the LLM based on
the user’s input, parsed NLPL, and the return value: “Your
cart is updated with the same order from this restaurant as
the last time.”

During this process, the ReactGenie framework uses its knowl-
edge about the developer’s app to automatically understand a mul-
timodal compositional command, compose actions to execute, and
find the appropriate interface to present the results to the user. This
pipeline allows ReactGenie to handle more commands than prior
frameworks with little developer input.

2 RELATEDWORK
In this section, we review related work on multimodal interaction
systems, Graphical and Voice UI frameworks, and multimodal in-
teraction frameworks.

2.1 Multimodal Interaction Systems
Many researchers have proposed multimodal interaction systems.
The earliest multimodal interaction systems, such as Bolt’s “Put-
that-there”, were developed in the 1980s [15]. They demonstrated
that users can interact with a computer using voice and gestures.
QuickSet [21] further demonstrated use cases of multimodal in-
teraction on a mobile device and showed military and medical
applications.

Recent work has explored different applications of multimodal
interaction, including care-taking of older adults [48, 51], photo
editing [38], and digital virtual assistants [33]. Researchers have
also explored different devices and environments for multimodal
interaction, including augmented reality [59], virtual reality [39, 56],
wearables [16], and the Internet of Things [25, 34, 55, 58].

These projects have demonstrated the great potential of mul-
timodal interaction systems. However, multimodal systems still
have limited adoption in the real world due to the development
complexity they currently require.

2.2 Graphical UI frameworks
ReactGenie is built on top of an existing graphical UI framework to
provide a familiar development experience. Model–view–controller
(MVC) [35] is the traditional basis of UI development frameworks
and is used in frameworks such as Microsoft’s Windows Forms [29],
and Apple’s UIKit [1]. The model stores data while the controller
manages GUI input and updates the GUI view based on data changes.
Typically implemented in object-oriented programming languages,
MVC can be compared to a shadow play, where objects (controllers)
manipulate GUIs and data to maintain synchronization. However,
updating the model with alternative modalities, such as voice, is
not feasible due to the strong entanglement between models and
GUI updates.

Garnet [43, 45], a user interface development environment in-
troduced in the late 1980s, is another notable approach to GUI
development. Garnet introduced concepts like data binding, which
allows the GUI to be updated automatically when the data changes.
It also tries abstracting the GUI state away from the presentation
using interactors [44]. While interactors allow the UI state to be
rewired and thus to be updated using another modality like voice

or gesture [37], they do not enable manipulation of more abstract
states (e.g., foods in a delivery order) that are not directly mapped
to a single UI control.

Declarative UI frameworks, such as React [2], Flutter [3], and
SwiftUI [7], are a more recent approach to UI development. With
declarative UI frameworks, programmers write functions to trans-
form data into UI interfaces, and the system automatically manages
updates. To ease the management of states that may be updated
by and reflected on multiple UI interfaces, centralized state man-
agement frameworks, such as Redux [6], Flux [10], and Pinia [4],
are often used together with these declarative UI frameworks. They
provide a single source of truth for the application state and allow
state updates to be reflected across all presented UIs. This approach
can be likened to an overhead projector, where the centralized state
represents the writing and the transform functions represent the
lens projecting the UI to the user. While this approach improves
separation and UI updating, it sacrifices the object-oriented nature
of the data model. This centralized state works well with button
pushes but comes short in dynamically composing multiple actions
to support rich multimodal commands.

ReactGenie reintroduces object-orientedness to centralized state
management systems by representing the state as a sum of all
class instances in the memory. Developers can declare classes and
describe actions as member functions of the classes. ReactGenie cap-
tures all instantiated classes and stores them in a central state. This
more modularized model is analogous to actors (class instances) in a
movie set, with views (UI components) acting as cameras capturing
different angles of the centralized state. In this way, ReactGenie
enables rich action composition through type-checked function
calls. Furthermore, developers can tag specific cameras to point at
certain objects, enabling automatic UI updates from state changes.
These features allow ReactGenie apps to easily support the com-
positionality of multimodal input and enable the interleaving of
multimodal input with other graphical UI actions.

2.3 Voice UI frameworks
Commercial voice or chatbot frameworks, such as Amazon Lex,
Google Dialogflow, and Rasa, are designed to handle natural lan-
guage understanding and generation. These frameworks allow de-
velopers to define intents and entities and then train the model to
recognize the intents and entities from the user’s input. In this con-
text, intents refer to categories of the user’s action, such as making
a reservation or asking for weather information, and one action
can only be mapped to one intent. Intents are usually mapped to
different programming implementations to handle commands in
the corresponding intent categories. These frameworks require a
complete redevelopment of an application to support voice-only
input. Frameworks such as Alexa Skills Kit and Google Actions
allow developers to extend existing applications to support voice
input. However, these still require manual work to build functions
only for voice, and the visual UI updates are limited to simple text
and a few pre-defined UI elements. Additionally, the one-intent-
one-implementation nature of the intent-based architecture limits
the compositionality of the voice commands.

Research-focused voice/natural language frameworks, such as
Genie [19, 54] and other semantic parsers [13, 46], are designed to

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Off-screen content Off-screen action Multiple actions/content

“Show me the lock in
the same room.”

“Share this video.”

“Share this account.”

“Share this comment.”

…

! !!

“Reorder what I
ordered last time.”

Figure 2: ReactGenie’s targeted interaction scenarios.

support better compositionality of voice commands. However, given
that today’s app development is primarily geared toward mobile
and graphical interfaces, these frameworks require extra work from
the developer and do not support multimodal features. ReactGenie
improves this experience by integrating the development of voice
and graphical UIs, allowing developers to extensively reuse existing
code and support multimodal interactions.

2.4 Multimodal Interaction Frameworks
Prior work has also proposed multimodal interaction frameworks
that allow developers to build multimodal applications. One of the
earliest works is presented by Cohen et al. [20]. It includes ideas
like forming the user’s voice command as a function call and using
the user’s touch point as a parameter to the function call. Later,
researchers created standards [23, 24] and frameworks [12, 14, 32,
41, 42, 49, 50] to help developers build apps that can handle multiple
inputs across different devices. Although these frameworks provide
scaffolding for developers to build multimodal applications, they
mostly treated voice as an event source that can trigger functions
the developer has to explicitly implement for voice. Developers also
have to manually update the UI to reflect the result of the voice
command. This manual process limits voice commands to simple
single-action commands and makes it difficult for developers to
build richer multimodal applications.

Recently, there are research projects on generating voice com-
mands by learning from demonstration [27, 40, 47], extracting from
graphical user interfaces with large language models [28, 53], or
building multimodal applications using existing voice skills [57].
The first approach still requires developers to manually create
demonstrations for each action and limits the compositionality
of the voice commands. The second approach is useful for accessi-
bility purposes, but it relies on the features being easily extractable
from the GUI. It is uncertain how well the first two approaches
can generalize to more complex UI tasks that require multiple UI
actions. The third approach is constrained by what is provided by

the voice skills and, traditionally, these have been limited due to
the added development effort.

In comparison, ReactGenie leverages the existing GUI devel-
opment workflow and requires only minimal annotations to the
code to generate multimodal applications. Having access to the
full object-oriented state programming codebase, ReactGenie can
handle the natural complexity of multimodal input, compose the
right series of function calls, and update the UI to reflect the result
automatically.

3 SYSTEM DESIGN
In this section, we first define the design goals of the framework.
Then, we describe the theory of operation that addresses the de-
sign goals. Finally, we discuss the implementation of the system
components and workflow.

3.1 Design goals
Our design goals include aspects of the interaction design of React-
Genie apps as well as the design of the framework itself.

3.1.1 Interaction Design. ReactGenie is primarily designed to en-
hance user interaction with mobile applications, but the concept
should also apply to apps on other platforms. Today, mobile applica-
tions are well-optimized for touch and graphical interactions. Users
can use the graphical interface to see content on the screen and
use touch to access actions on the screen. To further enhance the
user’s performance and reduce cognitive load, ReactGenie focuses
on supporting interactions that often involve touch actions used
together with a voice command.

Here is a series of example commands in interactions with a food
ordering app between user A and their friend user B:

C1 Aknowswhat theywant, so A says, “Showmewhat I ordered
last week fromMcDonald’s.”The app responds with the order
history.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

C2 A wants to add a previously ordered food into the cart (not
available on UI). A says, “Order this hamburger,” with a tap
on the “Big Mac” entry in the order history, and the app adds
a “Big Mac” to the shopping cart.

C3 B wants to order something different, so they tap on the
restaurant to view the menu.

C4 B doesn’t like beef, so they say, “Show me food without beef,”
the app displays options accordingly.

C5 B says, “Order a meal with this sandwich,” with a tap on the
“McChicken sandwich,” the app adds a McChicken meal to
the cart.

This interaction demonstrates the power of these multimodal
commands where voice and touch are used interchangeably or
in conjunction. These commands can be categorized into three
interaction design goals (see Figure 2):

I1 Access off-screen content (C1, C4): For example, the user is
looking at the smart home app and notices abnormal motion
on the smart home app’s living room security camera. So they
can talk to the smart home app, “Show me the lock status
history in the same room of this device.” This interaction
usually requires multiple GUI navigation steps (go to the
device’s room page, navigate to the door lock section, check
door lock history) to access the content.

I2 Access off-screen actions (C2): For example, the user says,
“Share this creator/comment” while watching a YouTube
video. Some actions are hidden behind a menu or a button,
and some are not accessible at all on mobile devices.

I3 Combine multiple actions/content (C5): For example, the
user says, “Order what I ordered last time” while looking at
a food delivery app. This usually requires the user to go back
and forth between an order detail page and a menu page.

The common theme among these interactions is that they require
the multimodal interaction framework to understand the content
and actions available in the app. For content, the framework needs
to know what is the content on the screen, how to access it, and
how to represent returned content (from user-initiated commands)
to show the retrieved content. For actions, the framework needs to
know the list of available actions and how to render changes on the
user interface after the action is triggered. Finally, the framework
needs to translate the user’s intent, which may be rich, into possibly
a series of actions and content displays.

With ReactGenie, apps will have a microphone button on the
screen. When the user taps on the button, the user can say their
command and refer to the content on the screen by tapping it. The
app will then parse the voice command and touch input and exe-
cute the corresponding actions to help the user with the scenarios
described above.

3.1.2 Framework Design. To translate the content and actions in
the user’s rich multimodal intent, ReactGenie needs to obtain infor-
mation about the app’s capabilities from the code. The design goal
for ReactGenie is to do this in a way that causes minimal disruption
for the application developer.

Without a proper framework for multimodal apps, the developer
must design their own mechanisms to handle voice, handle the
complexity of multimodal commands, and maintain control of the

app’s behavior. Our goals for the ReactGenie framework include
handling these issues:

F1 Maintain the expressiveness of the developer for their
GUI appearances and specific app functionality.

F2 Reduce development cost by maximizing the reuse of
existing GUI code and hiding the complexity of handling
multimodal commands from developers.

F3 Ease the learning curve by providing a similar program-
ming experience to existing GUI frameworks.

3.2 Theory of Operation
ReactGenie presents an object-oriented state programming model
to the developer. State code, in the context of GUI development,
refers to the part of the application that manages the data and logic
that determine the state of the user interface. The global state store
in Redux is typically represented as a tree of stored variables and
the associated functions to transform them. The concept of state in
declarative UIs is similar to the model in the model-view-controller
(MVC) programming models.

As mentioned in Section 2.2, in frameworks like React, UI devel-
opment is moving towards separating the UI from the state. Devel-
opers define functions (components) that convert the state into UI.
Each UI component receives part of the state and renders the UI in
an HTML-like format. Components can sometimes render a part of
their state using another component in a compositional way (e.g.,
a restaurant menu component can use menu item components to
render each food item, and the restaurant menu components host a
list to organize the menu item components). Therefore, there is a
unidirectional data flow from the state to the UI so that the state
update is automatically reflected on the UI without any additional
code from the developers. In comparison, in a typical MVC para-
digm, the controller simultaneously updates the model (state) and
the UI to keep them in sync. The unidirectional data flow feature
in declarative UIs (compared to MVC) allows data to be updated
outside of GUI input because data updates are no longer entangled
with UI update code in MVC’s controller code. This feature allows
ReactGenie to use multimodal commands to change the same state
and update the UI accordingly, maximizing the reuse of existing
GUI code (F2).

However, in these existing declarative UI frameworks, the state
is represented by a single global data store. This data store contains
a tree-like data structure with all the content and status of the
app (state) and a list of functions to manipulate the state data. The
functions usually contain parameters for indexing into the state
object and parameters to further specify the actions. For example, an
ADD_FOOD_TO_ORDER action needs to have the parameters of food_-
id, order_id, and quantity. This works well for GUI design, as
developers can implement an action for each button press, and each
button in the GUI stores the corresponding ID that it needs to call
when pressed. However, this makes it difficult to handle typical
multimodal commands, which require composing multiple actions
(I3). To translate a user command of “Add two hamburgers to a
new order”, an example translated program in React-Redux would
be:

// create the order
dispatch(CREATE_ORDER())

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

React-Redux’s Monolithic State Implementation ReactGenie’s Object-Oriented State Implementation

export const orderReducer = (state = {orders: []}, action: any) => {
 switch (action.type) {
 case FETCH_ORDERS:
 return {...state, orders: fetchOrdersFromServer()};
 case CREATE_ORDER:
 const newOrder =
 {id: state.orders.length + 1, items: [], date: Date.now()}
 return {...state,orders: [...state.orders,newOrder]};
 case ADD_FOOD_TO_ORDER:
 const {foodId} = action.payload;
 const updatedOrders = state.orders.map((order) => {
 if (order.id === state.orders.length) {
 return {
 ...order,items: [...order.items, {id: foodId}]
 };
 }
 updateServer();
 return order;
 });
 return {...state,orders: updatedOrders,};
 default:
 return state;
 }
};

@GenieClass("Past order or a shopping cart")
class Order extends DataClass {
 @GenieKey()
 public orderId: string;
 @GenieProperty("Items in the order")
 public orderItems: FoodItem[];
 @GenieProperty("When order is created")
 public orderDate: DateTime;
 constructor({orderId, orderItems, orderDate}: {orderId: string,
orderItems: FoodItem[], orderDate: DateTime}) {
 super({orderId, orderItems}); this.orderId = orderId;
this.orderItems = orderItems; this.dateTime = DateTime();
 }
 @GenieFunction()
 All(): Order[] {
 return fetchOrdersFromServer();
 }
 @GenieFunction("Create a new order")
 static CreateOrder(): Order {
 return new Order({orderId: randomId(), orderItems: []});
 }
 @GenieFunction("Add an item to the order")
 addItem({foodItem}: {foodItem: FoodItem}) {
 this.orderItems.push(foodItem); updateServer();
 }
}
// Example parses omitted here, see appendix

Figure 3: A comparison between state code in React-Redux and in ReactGenie. (Left) Part of an example state code in Redux.
Data is stored in the state variable, and the state can be mutated by the actions defined. These actions (stored in a Reducer) do
not have explicit types, and they directly manipulate the state, so no return values are defined. Note that the return values of
case statements in a Reducer indicate the new state variable after the state changes; actions do not have return values. Due
to its monolithic design, it is hard to compose functions together to achieve some multimodal actions. (Right) Part of an
example state code in ReactGenie. Automatically managed by ReactGenie, the state is composed of all the instantiated objects’
DataClasses. Actions in the state code are defined as methods of the class. All the methods have explicit parameter types and
return types. These functions can be composed together to achieve multimodal actions.

// find the id of the created order
const order_id = store.orders.last().id
// find the food id of hamburger
const food_id = store.foods.

filter(food => food.name === 'hamburger')[0].id
// add food to order
dispatch(ADD_FOOD_TO_ORDER(order_id, food_id, 2))

This process involves the creation ofmultiple intermediary variables
and queries to the state object. When the neural semantic parser
generates code for this process, we have found that LLMs will often
generate a line of code referencing an intermediary variable that
has not been declared before, causing an error in response to the
user’s query. The problem is that even if we have already created a
new order, we would have to retrieve the order ID from the state
object, save it in an intermediary variable, and feed that ID into
the imperative style actions. This issue is solved in ReactGenie by
applying concepts of object-oriented programming where an order
can be represented by a separate object that has both the data and
all of the relevant actions (e.g., adding a food item to the order)
associated with the object, so a retrieved order can directly be used
to call the add food item action.

So, ReactGenie introduces the object-oriented programming
model to componentize the state of a declarative UI app. In
componentizing the state object, developers implement smaller
objects containing its relevant content stored in properties and
actions defined as methods. This componentized design allows
ReactGenie to translate a typical multimodal command into a
single statement with method chaining. Using the example above,

the user’s command can be translated as: Order.CreateOrder
().addFoodItem(foodItem:FoodItem.All().matching(field
:.name,value:"hamburger"),quantity:2. With ReactGenie’s
state abstraction, LLMs can generate code that directly calls
addFoodItem after creating the new order. These methods are also
strictly typed, which helps the natural semantic parser develop
the correct combination of methods with fewer runtime errors.
This succinctness improves the accuracy of the neural semantic
parser that translates the user’s natural language command to
executable code. Furthermore, as the GUI and voice modality
share the same content and state, this representation supports
interchangeability in user input modality for each part of the rich
multimodal command.

In practice, to work with ReactGenie’s object-oriented state
abstraction, the developer identifies the user-accessible content
(object or object properties) and actions (functions) with the
GenieProperty and GenieFunction annotations, respectively,
along with an example of how it may be referred to in English
as shown in Figure 3 right. The GUI is programmed using compo-
sitional components (similar to other declarative UI frameworks
described above) rendered from the user-accessible state objects.
This allows the internal state to be rendered to the user in a GUI.
The high-level model of ReactGenie resembles popular GUI de-
velopment frameworks (React + Redux), which makes it easy for
developers to learn and use (F3). ReactGenie automatically han-
dles the retrieval of content (objects/properties) off-screen (I1), the
execution of actions off-screen (I2), and combinations of the two
(I3). In this way, voice and multimodal commands will be handled

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

System output

State

Components

Runtime
Transpilation & Initialization Time

State
Annotations

Component
Wrapper

Semantic Parser

Response
Generator

Input/Output
UI Mapping

Generated Prompt

Class definition

Example parses

User input

Voice

Touch

Semantic Parser

NLPL Interpreter

Input UI Mapping

State

Content in UI Output UI Mapping

Text

Touch
Points

Referred
Instance

NLPL

Function &
Property

Response
Generator

Feedback in
Text

Component

Return
Value

Chained
Execution
Steps

Developer’s code

@GenieClass("Email address")
class Email extends HelperClass {
 @GenieProperty("Email address")
 public email: string;
 constructor({email}: {email: string}) {
 super({email}); this.email = email;
 }
}

@GenieClass("Signature Request")
class SharedDoc extends DataClass {
 @GenieKey()
 public signatureRequestId: string;
 @GenieProperty("Recipient of the signature request")
 public recipient: Email;
 @GenieProperty("Document to be signed")
 public document: Document;

 constructor({signatureRequestId: string, recipient: Email,
document: Document}) {
 }

 @GenieFunction("Create a new shared document")
 static CreateSharedDoc({recipient: Email, document: Document}):
SharedDoc {
 return new SharedDoc();
 }
}
// Example parses omitted here, see appendix

const EmailView =
GenieComponent("EmailV
iew”, (email: Email)
=> { return
 <View>{email.email
 </View>
});

const ShareDocView =
GenieComponent(“ShareDoc”, (sharedDoc:
ShareDoc) => { return
 <View>
 <DocumentView doc={sharedDoc.document}/>
 <EmailView email={sharedDoc.email}/>
 </View>
});

const MainView = () => {
 const docs = multiSelector(()=> ShareDoc.All())
 return <View>
 {docs.map((doc)=><ShareDocView sharedDoc={doc}/>)}
 </View>
}

HelperClass

GenieComponent

DataClass

GenieComponent

ReactComponent

Figure 4: Overview of the ReactGenie system: (Left) Developers write object-oriented state code for programming content and
actions and define the UI as cascading components. (Right top) ReactGenie operates at transpilation and initialization time to
generate runtime modules. (Right bottom) Developer modules, generated modules, and ReactGenie modules come together to
process rich multimodal commands from the user. This workflow is similar to regular GUI development, maximizes code reuse,
and allows full control of the app behavior.

by LLM-generated programs and touch commands can be handled
in the traditional way where developers write programs to handle
each individual user input event.

By reusing a programming model similar to existing UI frame-
works, ReactGenie allows developers to control the look and feel of
their app to a similar degree as typical declarative UI frameworks.
Meanwhile, developers can also control what function the end-
users can access in multimodal interactions through whether or not
to add annotations. Hence, developers have full control over the
functionality of the app. These designs help developers maintain
full control of their app while enjoying the benefits multimodal
interaction offers to end-users (F1).

3.3 The Developer’s Programming Model
From the developers’ point of view, using ReactGenie is similar to
any declarative UI framework. They need to implement the state
code that provides the content and actions supported in the app.
They also need to specify the UI components that translates current
state classes into UI interfaces that the user can see and manipulate.
Table 1 provides a list of functions and annotations that developers
need to provide for ReactGenie (see Figure 4 left for an example).

In Section 3.5, we will describe in detail the right side of Figure 4,
which is how the ReactGenie system uses the developer-supplied
code described in this section, (1) transpiles (source-to-source com-
piles) it into ReactGenie modules (Right top), and (2) uses the gener-
ated ReactGenie modules to handle end-users’ input (Right bottom).

3.3.1 State Code. Developers provide the content and actions in
an app through ReactGenie’s object-oriented state model, imple-
mented in TypeScript2. As with all object-oriented programming
models, ReactGenie’s state code includes the definition and im-
plementation of classes. Classes have declarations, methods, and
properties, which can be labeled as GenieClass, GenieFunction,
and GenieProperty. These annotations in the state code (or State
Annotations for short) indicate that they are user-accessible via mul-
timodal commands. All ReactGenie annotations have an optional
parameter that denotes the purpose of that class/function/property,
similar to comments in code. These code annotations or decorators
in TypeScript are tags written before the class, method, and prop-
erty declarations. This allows the relevant annotation code to be
executed at initialization time to transform the capabilities of the
annotated classes or methods.

2https://www.typescriptlang.org/

https://web.archive.org/web/20240228110208/https://www.typescriptlang.org/

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 1: Annotations and Functions for programming ReactGenie.

Annotation/Function Location Type Parameters Purpose

GenieClass DataClass/
HelperClass

Annotation comment (optional): describing
the class’s purpose.

Indicates the class to be user-accessible through
multimodal interactions, essential for determin-
ing which parts of the code are relevant to the
multimodal experience.

GenieFunction DataClass/
HelperClass

Annotation comment (optional): describing
the function’s purpose.

Tags a method to be exposed to multimodal
interaction, marking this method as something
the user may call directly.

GenieProperty DataClass/
HelperClass

Annotation comment (optional): describing
the property’s purpose.

Exposes the property for multimodal interac-
tion, letting users interact with this property
through multimodal commands.

GenieKey DataClass Annotation None required. Identifies a unique ID property that uniquely
identifies an instancewithin aDataClass, crucial
for managing and retrieving data instances.

constructor DataClass/
HelperClass

Function Varies based on class require-
ments.

Initializes a DataClass instance with required
data, setting up the basic data structure of an
object.

GenieComponent UI Component Wrapper
Function

target: DataClass or Helper-
Class to be displayed.
component: The UI compo-
nent to be wrapped.

Wraps a UI component and maps it to a Data-
Class or HelperClass instance, telling how to
present data/state visually and enable touch ref-
erences in multimodal interactions.

All states that are accessible via multimodal interactions must
be declared as instances of the DataClass and HelperClass pro-
vided by ReactGenie. A DataClass stores the app’s data, and a
HelperClass provides definitions to ease the user’s interaction
with the data. The properties of a DataClass can be of TypeScript
primitive types, a DataClass, or a HelperClass.

Figure 4 left shows an example of a document signing app; ex-
amples of each class are shown in the top left. As shown in the
figure, the SharedDoc DataClass tracks the lifecycle of a docu-
ment’s signature request. An Email class is a HelperClass that
helps manage users’ email addresses. ReactGenie also has system-
provided HelperClass such as DateTime and TimeDelta to help
developers manage date, time, and period of time. The introduc-
tion of the HelperClass class not only allows developers to define
helper functions but also helps with type-checking, which is use-
ful for developers to write less buggy code and for ReactGenie’s
semantic parser to generate more correct NLPL.

All DataClasses start with the class declaration, which begins
with the GenieClass annotation and then the class name and a re-
quired inheritance of DataClass. See the first two lines of ShareDoc
in Figure 4. Developers need to implement one method and one
property:

(1) constructormethod:The constructor of the class initializes
the instance with all the required data.

(2) id property: A unique identifier of the instance, annotated
by the GenieKey.

Developers can also implement additional functions and prop-
erties to complete the DataClass. If developers want the user
to be able to use the functionality directly, they need to add

the GenieFunction and GenieProperty annotation. An exam-
ple of that can be found in Figure 4 left (see document and
the CreateSharedDoc in SharedDoc). Sometimes, developers may
want to implement internal housekeeping functions, such as clear-
ing the application cache or managing internal database transac-
tions. Those functions/properties should not be annotated and will
not be called by ReactGenie.

The HelperClass allows developers to define new types
that can be used in the DataClass. A specific example is the
ReactGenie-supplied DateTime HelperClass. It can support op-
erations like offsetting the time by a certain amount or set-
ting the year/month/day/hour/minute/second/day of the week
to a certain value. It allows commands such as “last Thursday”
to be translated to “DateTime.Current.offset(week:-1).set
(weekOfTheDay:4)”. The developer can define other HelperClass
instances to support more complex operations such as length
unit conversion. Similarly, the HelperClass needs to have a
GenieClass annotation and needs to inherit from HelperClass.
The HelperClass only requires a constructor method that takes
the data as input and initializes the instance. ReactGenie will also
generate a Current property for the HelperClass that returns the
instance that is being referred to by the user. ReactGenie does not
keep track of the instances of HelperClass separately in memory,
but instead, they will be part of the DataClass that uses them.

For both DataClass and HelperClass, the developer can de-
fine a description method to customize the string representation
of the instance for response generation. By default, ReactGenie
will generate a JSON-like representation using all the instance’s
properties.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

Finally, developers need to provide example parses for the
DataClass and HelperClass. Example parses or few-shot exam-
ples are pairs of expected end-user voice command examples and
the corresponding translated NLPL. Developers provide them as
few-shot examples for ReactGenie’s neural semantic parser. These
examples are helpful for the parser to learn about what the app
is about and the syntax of NLPL. In practice, around 10 example
parses are sufficient. Developers do not have to cover all use cases,
and ReactGenie’s semantic parser can automatically generalize to
most of the app’s features and user expressions.

3.3.2 Built-in Dataclass Methods. ReactGenie automatically gener-
ate three methods for each DataClass:

(1) All method: For voice inputs, the user needs to refer to all
or a select set of instances of certain objects. A static All
method is provided that returns an array of all the instances
of the DataClass. There are built-in functions that support
filtering array elements based on value or value ranges, sort-
ing based on an order on a property, and extract an element
by its index.

(2) Get method: A static method that takes an id as input and
returns the instance with the corresponding id.

(3) Current property: A static method that returns the instance
that is being referred to by the user. This is automatically
annotated with GenieProperty.

Like many of the common state management frameworks, when
any of the properties of a DataClass instance are changed, UI com-
ponents on screen that refer to that property will be automatically
re-rendered with the most up-to-date data. This ensures that the UI
is always in sync with what is being represented in the state.

ReactGenie automatically maintains the instances of DataClass
in memory to form the app’s state. DataClass can be backed up
remotely, which is common in modern app development.

3.3.3 Component/UI Code. ReactGenie developers need to define
the GUI (as shown in the three code boxes in the bottom left of Fig-
ure 4) as a set of functional components3, similar with React. These
components can refer to each other to facilitate reuse. It is common
for every single instance of a DataClass or HelperClass to be
represented by a component. For example, EmailView represents
an Email instance, while SharedDocView represents a SharedDoc
instance. Therefore, ReactGenie introduces a special wrapper func-
tion (or Component Wrapper for short) called GenieComponent
to show that explicit mapping. Instead of the arbitrary parame-
ters of a normal functional component, components wrapped by
GenieComponent take a DataClass or HelperClass instance as
input. GenieComponent allows the ReactGenie runtime to under-
stand which component is mapped to which instance in memory
to facilitate reference by touch. It also allows ReactGenie to render
the result of the user’s request using the developer-defined com-
ponent. While defining GenieComponent, the developer can also
specify an optional title and priority (both can be a method of the
state instance) for the interface, which is relevant for choosing the
interface to render multimodal command responses.

3https://react.dev/learn/your-first-component

3.4 NLPL
We use a neural network to translate natural language commands
into NLPL, a domain-specific language (DSL) we created. We feed
the large-language model the automatically-extracted developer’s
class skeleton (only declaration and type information, no implemen-
tations to save tokens, and reduce distractions), developer-supplied
few-shot examples, and the user’s current voice command and ask
it to generate NLPL code for understanding the user’s intention.

We do not generate JavaScript directly because the expressive-
ness of JavaScript may cause unintended changes to the app’s be-
havior (contradicting F1). We cannot use a simple intent classifier,
such as the one used by traditional voice assistants, because of the
complexity of our user’s multimodal commands.TheDSL interpreter
module runs the generated NLPL code and calls the correspond-
ing methods in the developer’s state definition code (called state
code in the following sections). This also allows ReactGenie to han-
dle users’ verbal references for simultaneous touch input through
special reference functions (see Section 3.5.2).

The NLPL is designed to meet these language design goals:

L1 Easy to generate: LLMs can generate syntactically correct
NLPL code.

L2 Robust against generation errors: LLMs can generate seman-
tically correct NLPL code.

L3 Able to express multimodal commands: NLPL can express
diverse multimodal commands.

Therefore, because of L1, NLPL has to be in a form similar to
existing programming languages that LLMs are trained on. To help
with L2, we also want NLPL to be strongly typed. We tried a syn-
tax similar to TypeScript, but we noticed the LLM-based semantic
parser occasionally generated the correct parameters but in the
wrong order. Therefore, we decided to use a syntax similar to Swift,
a strongly typed language that requires parameter names to be
specified in the function call.

To support the expressiveness of human languages L3, a simple
data formatting language such as JSON is not enough. JSON is
good at representing structured data and is sometimes used to
represent simple intent with a single function call and parameters.
However, the user’s commands can consist of multiple method
invocations and represent complex logic flow, so we looked at the
language structures of what people may say to a ReactGenie app.
When interacting with a virtual assistant, people typically utter an
imperative or interrogative sentence.

An imperative sentence must have a verb and an object.
Some more complex imperative sentences can have object modi-
fiers and verb modifiers. For example, “[Change the background
color](verb) of [all the yellow](object modifier) [textboxes](object)
[to orange](verb modifier)”. Objects can be translated to func-
tion calls to retrieve the corresponding objects, e.g., “this food” -
>Food.Current() and “textboxes” ->TextBox.All(). Object mod-
ifiers can be translated to SQL-like operations, e.g., “food with
a rating above 3” ->Food.All().between(field:.rating,from
:3), “all the yellow textboxes” ->TextBox.All().equals(field
:.color,value:"yellow"). Note that we did not use SQL syn-
tax because SQL does not have easy support for calling func-
tions of objects, so it would have trouble translating verbs/ac-
tions. Verb and verb modifiers are translated to function calls.

https://web.archive.org/web/20240229091735/https://react.dev/learn/your-first-component

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

For example, changing the background color to orange would be
.setBackgroundColor(color:"orange").

We also avoid supporting lambda expressions, variable decla-
ration, and control flow statements to avoid reference errors to
increase robustness (L2) in translation and reduce complexity. For
lambda expressions, NLPL automatically distributes function calls
to individual elements of objects to support plural objects: “make
all textboxes orange” ->TextBox.All().setBackgroundColor
(color:"orange"). For variable declaration, we use method chain-
ing to avoid reference errors. This is because, in early testing, we
found that OpenAI Codex frequently refers to undeclared variables.
Prior work on building a target language for a neural semantic
parser also observed similar problems [18, 36]. For control flow
statements, we can use function call distributions for for-loops and
use the SQL-like syntax described above for if-statements.

In an interrogative sentence, the verb matters less (typically, the
verb is just “is”), and there are still object and object modifiers. We
can translate the object and the object modifiers similarly: “When
is [the last time](subject) [I ordered from this restaurant](subject
modifier)” ->Order.All().equals(field:.restaurant,value
:Restaurant.Current()).sort(field:.date,ascending
:false)[0].date.

Human languages are flexible and do not always have to follow
the exact grammar. Still, an LLM can automatically compose the
NLPL features above to accommodate the user’s request as long as
the features are in the developer’s program. The full grammar of
NLPL is listed in Appendix A. We implemented the DSL interpreter
module using the peggy4 parser generator.

3.5 SystemWorkflow
As shown in Figure 4 right, ReactGenie provides libraries that auto-
matically perform actions during two phases of the development
and usage process: 1) transpilation and initialization time and 2)
runtime.

At transpilation and initialization time (Figure 4 right top), Re-
actGenie uses the annotations in the state code to generate LLM
prompts containing class definitions and example parses for the
semantic parser and response generator modules (Section 3.5.1).
ReactGenie also reads the component wrapper code to determine
the mapping between the components and the state objects for the
input and output UI mapping modules (Section 3.5.2).

At runtime (Figure 4 right bottom), ReactGenie processes the
user’s multimodal voice and touch input. The voice part is trans-
lated to NLPL using the semantic parser, and the touch points are
translated to the referred state instances using the input UI map-
ping module. Knowing the NLPL and the referred state instances,
the NLPL interpreter can call the relevant methods and properties
in the developer’s state code to achieve the user’s request. The
NLPL interpreter records the final return value and the interme-
diary execution steps from executing each part of the composed
method-chaining statement. ReactGenie further uses the final re-
turn value to generate text feedback for the user. It also uses the
execution steps to graphically present the answer to a query-type
request or the effect of an action-type request.

4https://peggyjs.org/

Note that Transpilation is a source-to-source translation pro-
cess from the TypeScript the developer writes to Javascript that
the machine executes. Typically, a TypeScript app is transpiled to
JavaScript to run in a mobile app or a browser. However, during
the transpilation process, the metadata, like typing and function
parameter names, are removed. The metadata lost in transpilation
is required by ReactGenie to create a large language model-based
semantic parser/response generator and the UI mapping. Therefore,
we built our transpliation plugins to use the developer’s code be-
fore transpilation to generate the modules that ReactGenie uses at
runtime.

3.5.1 Transpilation and Initialization for State Code. ReactGe-
nie uses a custom transpiler plugin that generates extra meta-
data for @GenieProperty, and @GenieFunction of DataClass and
HelperClass.

We use in-context learning to implement the semantic parser
and the response generator. During initialization of the app, Re-
actGenie will load injected metadata from state classes (classes in
state code) to generate a base prompt shared by both the semantic
parser and the response generator. LLMs work by generating text
continuations given a paragraph of previous text. The provided pre-
vious text is often called the prompt. By controlling the prompt, we
change the information the LLM has access to and guide the LLM
to do what we want (generate the corresponding NLPL of the user’s
command). ReactGenie’s generated prompt contains two parts: 1)
The class definitions contain all the DataClass and HelperClass
method and property definitions with the implementation stripped
out. It is rendered in a format similar to Swift syntax. 2) The exam-
ple parses provided by the developer are also included as few-shot
examples.

The user input is then appended to the generated prompt and
used in the LLM-based semantic parser for NLPL translation. The
response generator prompts the LLM with the generated prompt,
the user input, the parsed NLPL, and the description of the return
value from the execution of NLPL to produce a short text response.

We built the semantic parser using the OpenAI Codex model
code-davanci-2 and the response generator using the OpenAI
GPT 3.5 model text-davanci-3.

3.5.2 Transpilation and Initialization for UI Code. At initialization
time, we also process GenieComponent functions to save a map-
ping between the GenieComponent and the GenieClass that they
are representing. We generate input and output UI mapping mod-
ules from this information. We monitor the bounding box of all
GenieComponents for input mapping. When the user touches the
screen while expressing a multimodal command, ReactGenie will
use the bounding box information to determine which component
the user is pointing to.

It is common for multiple UI components to cover the area
where the user taps on the screen. For example, in Figure 1, all
the FoodThumbnail components overlap with the OrderItemView
components. ReactGenie allows the user to use their voice to disam-
biguate the reference: If the user mentions food, such as “this food”
(FoodItem.Current()), or actions that can only be done with food,
like “what is the price for this” (FoodItem.Current().price), Re-
actGenie will use the FoodItem object and vice versa. In the special

https://web.archive.org/web/20240215190544/https://peggyjs.org/

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

case where multiple components of the same type cover the tapped
area, ReactGenie uses the one with the smallest bounding box.

Another common scenario is that if one object is clearly in the
“foreground” of the graphical UI, the user may naturally refer to
it as “this” without explicitly specifying the component via touch.
So, when the user refers to a state class and either there is no
touch point, or the touch point does not match any component
representing that class, ReactGenie will use the largest component
on the screen representing that class as the reference.

We also use GenieComponent to generate output UI mapping
modules.We gather all the GenieComponents with supplied priority
and title and group them by the state class they represent. When
the result of the executed NLPL is a state class instance, ReactGenie
enumerates through all the GenieComponents representing that
class and renders the one with the highest priority.

There are two types of execution results. The first type is for
query-type requests where the translated NLPL returns an instance
that can be rendered by a GenieComponent. This is common when
the user asks to either retrieve some data “what are my most recent
orders from this restaurant?” or to perform some action with a
clear result “what vegetarian food does this restaurant offer?”. In
that case, rendering the result on the screen would be intuitive. So,
when the return value can be represented by a GenieComponent,
ReactGenie will always find the highest priority GenieComponent
and render it.

The second type is for action-type requests where the trans-
lated NLPL returns a value that cannot be rendered by a
GenieComponent. For example, if the user asks to “add a ham-
burger to the cart” (NLPL: Order.GetActiveCart().addItem(
[Food.Named("hamburger")]), it would return void which can-
not be rendered. For these actions, the return value is less important,
and the user is more interested in the side effects of the action (e.g.,
the cart has been updated). In that case, ReactGenie will back trace
the chained execution steps and find the last renderable result is the
return value of Order.GetActiveCart() (i.e., an instance of a cart).
ReactGenie will also check all the currently visible components
to see if there is any that already represent the same instance of
that cart on screen. ReactGenie would only render this result if the
current page has no component representing the same instance.
For example, when the user is already on a restaurant page where
they can see an indicator of the number of items in the cart (e.g.,
the cart icon with a counter also represents the cart instance), it
would be redundant to show the cart again. However, if the user is
on the past order page where they cannot see any representation
of the cart, it would be useful to show the cart to ensure the user
understands the action being performed.

3.5.3 Runtime. Like normal React or React-Native apps, when
users interact with buttons and visual controls, the app calls the
corresponding methods to update data in the state instances. In
turn, the state instances trigger the GenieComponents to update
their UI.

As shown in the bottom right of Figure 4, the multimodal in-
teractions are handled through developer modules (Section 3.3),
the NLPL modules (Section 3.4), and the generated modules (Sec-
tion 3.5.1), collectively. When the user touches the microphone
button on the UI, ReactGenie starts listening to the user’s voice

command and intercepts all touch events on the screen. From this,
we gather two inputs: the user’s voice command and the touch
point(s). We use speech recognition from Azure to transcribe the
user’s speech to text. The voice command transcript is then passed
to the semantic parser module to generate the NLPL code. The
touch point(s) are passed to the input UI mapping module to de-
termine which component and state instance the user can refer
to. Both pieces of information are then passed to the NLPL inter-
preter to execute the NLPL code with the corresponding relevant
state instance. ReactGenie uses the methods and properties of the
developer-provided state classes to execute the NLPL code. After
the execution, we record both the final return value and the inter-
mediate values during execution. ReactGenie uses the return value
and the parsed DSL to generate a text response using the response
generator. ReactGenie also passes execution steps to the output UI
mapping module to determine whether and how to render the result
on the screen. Finally, the text response and the rendered UI are
used to generate Feedback in Text and Content in UI.

4 FRAMEWORK EVALUATION
We first evaluate the development framework by checking whether
our design goals have been reached.

F-RQ1 How expressive is the ReactGenie framework? (F1)
F-RQ2 How much time is needed for expert developers to develop

multimodal apps using ReactGenie compared with existing
frameworks? (F2)

F-RQ3 How easy is it to learn and use ReactGenie to develop
multimodal apps for novice developers? (F3)

4.1 Expressiveness of the Framework
To answer whether ReactGenie can support the expressiveness of
mobile apps (F-RQ1), we built three example apps across three
major categories of apps: food & drink, social networking, and
business in different interface styles, as shown in Figure 5. The
implementation statistics are shown in Table 2.

4.1.1 ReactGenieFoodOrdering. ReactGenieFoodOrdering is a food
ordering app that allows users to order food from a restaurant. It
allows users to browse menus, manage shopping carts, and check
order history. For example, users can say “Reorder my last order”,
click on a food item and say “Add three of this tomy cart”, or click on
the restaurant and say “Show me the menu of this restaurant”. The
app is comprised of 2689 lines of code, with only 88 (3%) related to
building the multimodal UI. Note that every example parse provided
by the developer takes four lines of code, and every GenieClass,
GenieFunction, and GenieProperty annotation takes just one line
of code.

4.1.2 ReactGenieSocial. ReactGenieSocial is a social networking
app that allows users to post pictures, comment on pictures, and
share pictures with friends. It allows users to browse, interact with,
and share posts. For example, users can say “Show me posts from
John”, “Can you show me posts from Mark that have been liked
before?”, or click on the screen and say “Share this post with Emma”.
The app is comprised of 1034 lines of code, with only 49 (5%) related
to building the multimodal UI.

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

ReactGenieFoodOrdering ReactGenieSocial ReactGenieSign

ReactGenieSign - NDA Management
ReactGenieSocial

Figure 5: Example apps built with ReactGenie. Left: ReactGenieFoodOrdering, a food ordering app. Middle: ReactGenieSocial,
a social networking app. Right: ReactGenieSign, a business app for distributing and collecting signed NDAs.

App Name FoodOrdering Social Sign

DataClass Order, FoodItem, Restaurant Post, User, Message User, Document, SignatureRequest
HelperClass OrderItem EmailAddress
GenieComponent 11 7 6
OtherComponents 8 2 3
GenieFunction 22 8 11
GenieProperty 18 10 16
State Code (lines) 835 449 421
Component Code (lines) 1854 585 446
Examples (count) 11 6 6

Table 2: Implementation statistics for demo apps. We listed all the DataClass, HelperClass, and the number of GenieComponent
and GenieFunction used in the apps. We also listed the number of lines of code for the state and component code and the
number of example parses provided for the voice parser.

4.1.3 ReactGenieSign. ReactGenieSign is a business app that man-
ages NDAs and contracts. It allows users to create documents, share
documents with clients for signing, and manage clients. For exam-
ple, users can say “Show me the signature request from John”, click
on the email address and say “Only show me requests from this
email”, or click on the email address and say “Share the document
in the most recent signature request to this email”. The app is com-
prised of 867 lines of code, with only 51 (6%) related to building the
multimodal UI.

4.1.4 Summary. Implementing the three apps in distinct domains
that support a wide range of multimodal commands demonstrates

the expressiveness of ReactGenie. While building these demo apps,
we noticed that different UIs are naturally decomposed into com-
ponents that represent different ReactGenie state instances, which
made it easy to decompose the UI into GenieComponents. We were
also able to lay out the graphical UI in the most appropriate way
and then decompose the UI layout into individual components rep-
resenting different state classes for UI mapping purposes. We also
noticed that only a small fraction (5% on average) of the code must
be written to handle multimodal interactions. This is particularly
impressive since defining multimodal interactions can be intricate
and typically requires substantial code to support.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

4.2 Development Time: Expert Evaluation
To evaluate the development time required for ReactGenie apps
(F-RQ1), we conducted an expert evaluation comparing the time
to build apps with ReactGenie to the time required for building
similar features with baseline tools.

4.2.1 Study Design. There is no readily available multimodal frame-
work that adds multimodal capabilities to a multimodal app that has
comparable capabilities to ReactGenie. Therefore, we used GPT-3
function calling5 and React to implement the baseline app. GPT-3
function calling is a service supported by large language models
that can convert natural language into function calls. We chose it as
the baseline because a developer can use it to translate users’ voice
commands into function calls defined in the app, which makes it
the closest off-the-shelf solution to help with the multimodal app
development tasks that ReactGenie supports.

For the GPT-3 function-calling condition, we used a typical React-
Redux architecture where there is no object-oriented state abstrac-
tion and the UI state is stored in amonolithic data store. For example,
in the function-calling condition, the developer would implement
an action on the monolithic data store called RATE_FOOD(food_-
name:string,rating:number) and pass the same function to the
GPT-3.5-turbo endpoint as a function candidate.When the user says
“Rate the hamburger five star”, GPT returns a function call action
that it wants to call RATE_FOOD(hamburger,5), and the developer
can execute the function for the monolithic state.

In the study, we asked an expert user6 of ReactGenie to build a
multimodal timer app (ReactGenieTimer, Figure 6 right). The timer
app allows users to create timers and start/stop timers with voice
and touch.

We asked the developer to first write the part of the app that
is agnostic to ReactGenie (the boilerplate code), such as the React
UI code, CSS files, and basic configurations. From there, we timed
how long the expert developer finished the multimodal app with
ReactGenie. From the same starting point, we also timed how long
the expert developer could implement similar features with GPT-3
function calling.

4.2.2 Results. The implementation of both versions of the app
starts with a boilerplate project that contains the framework-
agnostic part of the code (337 lines of code). The expert developer
took 45 minutes to complete the ReactGenie multimodal app and
added 159 lines of code to complete the app. In comparison, it took
the same developer 177 minutes to implement similar functionality
with GPT-3 function calling and an additional 523 lines of code.
Within that period of time, 52 minutes and 166 lines of code were
spent on implementing the basic react-redux-based state manage-
ment.

The additional code and time for GPT-3 function calling is due
to the following:

(1) The developer needs to provide the function signature
to the model manually, and when the model thinks a
function call is necessary, the developer needs to call the
corresponding function call.

5https://openai.com/blog/function-calling-and-other-api-updates
6The expert developer was the first author of this paper.

(2) The developer needs to build extra convenient func-
tions for GPT-3. Since GPT-3 can only call one function at a
time, it has trouble executing actions like “Start the exercise
timer” because that involves two steps: 1) retrieve the timer
called exercise, and 2) start the retrieved timer. For GPT-3
to work, the developer has to implement a function that can
start a timer by its name.

Even with the additional lines of code, the GPT-3 function calling
version lacks a few significant benefits of the ReactGenie version:

(1) It cannot support references by touch due to a lack of the
UI mapping module. For example, it cannot support “Start
this timer.” while tapping on a timer.

(2) It cannot support rich commands unless explicitly pro-
vided by the app developer. For example, it cannot support
“Pause all timers with less than two minutes left.”

(3) It cannot navigate to the relevant page after executing a
command due to the lack of UI mapping. For example, when
the user says “Start the cooking timer” while the cooking
timer is not currently on the page, the app will not show the
user the cooking timer visually.

The 3.9x time used and 3.3x lines of code to implement similar
features in the baseline condition show that ReactGenie drastically
reduced the implementation time for developers to build multi-
modal apps. In addition, the missing features in the GPT version
also demonstrate the usefulness of ReactGenie for expressive mul-
timodal app development.

4.3 Usability and Learnability: Developer
Studies

To evaluate the usability and learnability of ReactGenie (F-RQ3),
we conducted an IRB-approved user study asking novice developers
to build multimodal applications with our framework. Considering
that developers cannot complete multimodal applications within
an acceptable time frame through direct API calls, our study was
focused on the framework-specific part of the implementation to
measure the usability of ReactGenie for building multimodal apps.
We also evaluated developers’ comprehension of the framework.

4.3.1 Study Design. The study was facilitated using a remote desk-
top to ensure all participants completed the coding tasks in the
same environment. During the study, the experimenter introduced
the study goals and explained study-related concepts such as multi-
modal apps since most participants did not have multimodal devel-
opment experience. Then, the experimenter helped the developer
connect to the remote experimental environment via video confer-
encing software.

Themain study process contains two parts: the first, where devel-
opers learned ReactGenie and the second, where they built an app
in ReactGenie. In the first part, participants familiarized themselves
with ReactGenie by creating a multimodal counter application (Re-
actGenieCounter, Figure 6 left) guided by a tutorial. In the second
part, participants were asked to leverage their knowledge from
the example counter app development to construct a multimodal
timer application (the same ReactGenieTimer app described in Sec-
tion 4.2) independently. To make it feasible to complete the tasks
within an acceptable amount of time and to ensure that participants

https://web.archive.org/web/20240229092505/https://openai.com/blog/function-calling-and-other-api-updates

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

ReactGenieTimerReactGenieCounter

Figure 6: The ReactGenieCounter and ReactGenieTimer apps built in the developer study. The ReactGenieCounter app allows
users to create counters and increment/decrement counters. The ReactGenieTimer app allows users to create/edit/delete timers
and start/stop timers. Both apps support a variety of multimodal commands.

could focus on using the ReactGenie framework to implement mul-
timodal features, we provided boilerplate code with the basic GUI
implementation (similar to what was built by the expert developer
in Section 4.2) for the two development tasks.

During the study, participants were required to complete a React-
Genie comprehension quiz and a post-study survey that recorded
their demographic information and asked them to fill out the SUS
usability scale [8] and the NASA-TLX cognitive load scale [31].
Finally, we have a short interview about their experience using
the framework. We recorded the audio and the developer’s screen
during the entire process with the user’s permission. Each user
received a $60 gift card as compensation after the study.

4.3.2 Participants. We recruited developers with React develop-
ment experience to ensure they could handle the non-multimodal-
related coding tasks beyond what ReactGenie is designed for. There-
fore, we designed a quiz with seven programming questions and
deployed a recruitment screener. These questions cover basic React
skills (such as how to use a React component, and how to manipu-
late state in React) and basic object-oriented programming skills
(e.g., what is this pointer, and how to write class constructors).
Only developers who answered at least five of the seven questions
correctly were invited to participate in the study.

We recruited 12 participants (10 males and two females) in the re-
mote user study by distributing the recruitment screener link using
a convenience sample. Our participants include student developers
and professional developers with an average age of 23.8 (f = 3.43).
All participants had React development experience; ten developers

also had TypeScript development experience. The most experienced
developer had seven years of React development experience.

4.3.3 Results. All participants successfully built the applications
within 150 minutes.The average completion time was 109.7 minutes
(f = 24.19), with 42.3 minutes (f = 14.90) for the first phase and
67.3 minutes (f = 17.52) for the second phase.This shows that devel-
opers with React and object-oriented programming experience can
quickly learn and use the ReactGenie framework, illustrating the
framework’s ease of learning and high usability. The user with the
shortest task completion time needed only 82 minutes to complete
both tasks.

Almost all participants (11/12) answered the seven post-task quiz
questions correctly. A single participant got one question wrong re-
lated to predefining the interface. This shows that developers could
develop a multimodal app and correctly understand how the Re-
actGenie code they wrote corresponds to the multimodal features,
which suggests the design of the ReactGenie framework is easy
to understand. The main parts that participants found relatively
difficult to understand are the GUI declarations and providing exam-
ple parses. Participants said it took them more time to understand
the GenieComponent function and how to bind data types to the
corresponding interfaces. Regarding example editing, participants
thought it was hard to determine what should be included in the
examples. Although participants found these parts difficult to un-
derstand, they could use ReactGenie smoothly after learning and
testing their apps. Participant 11 said, “ReactGenie incorporates

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

natural language to UI building, and it is not hard to do that when
programming.”

We evaluated ReactGenie’s usability using a part of the seven-
point SUS scale. ReactGenie received high SUS scores in terms of
ease of use (` = 6.16, f = 0.58), enjoyable (` = 6.08, f = 0.79),
intuitive (` = 6.08, f = 0.90), and willing to use (` = 6.08, f = 0.79).
Participant 10 says, “(ReactGenie was) easy to pick up if you know
React.” At the end of the experiment, participant 12 commented
that he enjoyed programming with ReactGenie and asked if there
was any library he could use to access ReactGenie in his daily
programming. All participants agreed that ReactGenie is easy to
use (medium 6 out of 7 points Likert scale), and all participants were
willing to use ReactGenie to build real-life multimodal applications
(medium 6 out of 7 points Likert scale). The average NASA-TLX
score for the overall study was 21.99 out of 100 (the lower, the
better), showing the practicality and low usage burden to program
with ReactGenie.

5 INTERACTION EVALUATION
We evaluated the interaction provided by the ReactGenie frame-
work through two aspects: the performance of the generated neural
semantic parser and the overall user experience of a ReactGenie
app.

5.1 Parser Performance
To understand how well the ReactGenie parser works with in-
formation extracted from the developer’s code, we elicited com-
mands from crowd workers for the ReactGenieFoodOrdering app
and tested our parser. Specifically, we would like to know:

RQ1 What percentage of the commands 1) is achievable with a
single UI interaction on screen, 2) fall into the three targeted
interactions mentioned in Section 3.1, or 3) are out of scope
of ReactGenie.

RQ2 How accurate the parser is when parsing commands in the
targeted interactions.

5.1.1 Elicitation. We wanted to obtain multimodal commands that
users may use in a real-world scenario.We adopted a similar method
as described as Cloudlicit [11]. We provided the user with three
screenshots (restaurant listing page, restaurant menu page, and
past orders page) of the US’s two most popular food ordering apps:
DoorDash and UberEats. In our pilot study, we found that many
participants’ thoughts on what they can do in these apps are limited
to what’s on-screen and what they think the current generation
of voice assistants can do. Therefore, we showed the final study
participants 12 videos randomly, containing four videos for each of
the three categories of interactions being executed on a different
app (home page of the Apple app store). Among these 12 videos, we
also ensured half involved only voice and the other half contained
voice and touch.

We recruited 50 participants from Prolific, a crowdsourcing plat-
form. We used the balanced sample options when finding partici-
pants, so we had 25 female and 25 male participants. The age range
of the participants was 20 to 79, with a median age of 29. The
survey took approximately five minutes, and we paid $2 for each
participant.

From these 50 participants, we obtained 300 commands. We
filtered out 12 unclear or unrelated responses to the survey. For
example, one participant wrote “various good foods to order or view
that can be good” as a command. After filtering, 288 commands
remained in the dataset.

5.1.2 RQ1: Percentages of categories of commands. We classify the
commands into three categories:

(1) Simple UI interaction: The command can be achieved with
a single UI interaction on screen. For example, “Look at
the Curry Up Now Menu” when the restaurant is visible on
screen.

(2) Within the three targeted interaction categories: The
command falls into the three targeted interactionsmentioned
in Section 3.1. For example, one participant wrote “Order me
two big macs and large fries fromMcdonald’s for pickup.” With
a GUI, this command would typically be achieved via multi-
ple taps to find the restaurant, add the foods, and configure
the delivery options.

(3) Out of scope of ReactGenie: The command is out of scope
of ReactGenie. For example, “How do I repeat past orders?”.
ReactGenie tries to help people complete complex tasks, but
it does not have built-in knowledge about how to use the UI
of the app.

Two researchers collaboratively labeled 30 commands to get a
rubric for the rest of the commands. They then labeled the rest of
the commands (258 commands) using the rubric separately. Both la-
belers labeled the same label for 224 commands and different labels
for 34 commands. Because the labels have a skewed distribution, we
used Gwet’s AC1 [30] to measure the inter-rater reliability. The AC1
score is 0.83, which means the labels are highly consistent. They
resolved the disagreement and got a final label for each command.

From this analysis, we found that 100 of the elicited commands
were simple UI interactions, 172 commands fell into the three tar-
geted interactions, and 16 commands were out of the scope of
ReactGenie.

This shows that users can come up with tasks beyond just simple
UI interactions even when the type of multimodal interfaces that
ReactGenie supports are not available in commercial apps. It may
also hint at user interest in the types of interactions that we propose
here.

5.1.3 RQ2: Accuracy of the parser. We tested the parser on the
172 commands that fall into the three targeted interactions. We
ran the parser based on the ReactGenieFoodOrdering app and read
the generated NLPL to see if the parses are correct. While work-
ing on labeling the correctness, we also noticed that many of the
commands are not supported by our simple demo app, e.g., ReactGe-
nieFoodOrdering only knows delivery fees for different restaurants,
but not estimated delivery times. So we also labeled whether the
feature that the command tries to use is supported by ReactGe-
nieFoodOrdering.

Our analysis showed that 101 commands are supported by Re-
actGenieFoodOrdering, and 71 commands are not supported. Some
features that are missing from ReactGenieFoodOrdering are 1) top-
pings/customization of a food item; 2) reviews of a restaurant or a
food item; and 3) delivery time estimates for restaurants.

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

From the 101 commands supported by ReactGenieFoodOrdering,
we found that 91 commands are parsed correctly by the parser, and
ten are not. Therefore, on this dataset, the parser has an accuracy
of 90%. A parser accuracy of 90% should be considered very high
compared to prior work on neural semantic parsers’ accuracy on
compound commands [19]. Seven of the ten incorrect parses would
result in syntax errors (such as used .first() rather than NLPL
supported [0]) or runtime errors (such as ordering the last meal
from “A” has been translated to order the food called “A”, thus the
system will not be able to find “A” as a food). Three of the incorrect
parses would be helpful but not give the desired behavior. For
example, “Find me the closest pizza restaurant” was translated to
“find the closest restaurant”. None of the errors resulted in behavior
completely different from the user’s expectations.

We also looked at the 71 commands that are not supported
by ReactGenieFoodOrdering. These commands mention fea-
tures that are not in the ReactGenieFoodOrdering app. To
our surprise, the parser also generated sensible NLPL for
the majority (38) of these commands. The ReactGenie parser
approximates the request command with available features
in the app for 24 of these commands. For example, React-
Genie parser generates Restaurant.GetRestaurant(name
:"pizzahut").getFoodItems().between(field:.price,from
:0,to:5) for the command “What deals does pizza hut have?”. In
this case, the parser approximates deals with food items that are less
than 5 USD. For 14 commands, the parser would generate function
calls and property accesses that are not supported by the app. For
example, the parser parsers “What time does Chipotle open?” to
Restaurant.GetRestaurant(name:"Chipotle").openingTime.
In this case, ReactGenieFoodOrdering does not have the property
openingTime for restaurants, but the parser is still capable enough
to generate a sensible NLPL. In the future, the ReactGenie runtime
can leverage this information to inform the user of the missing
property and potentially even suggest the developer add common
missing features to the app.

There were 33 unsupported commands that were not parsed cor-
rectly by the parser. Some of them are due to the parser generating
ungrammatical NLPL, and others use incorrect properties and meth-
ods. For example, the parser parses “Find restaurants that deliver
in less than 25 minutes.” to Restaurant.All().matching(field
:.deliveryFee,value:<25). In this case, ReactGenieFoodOrder-
ing does not know the estimated delivery time of restaurants, but
the correct parsing should be Restaurant.All().between(field
:.deliveryTime,from:0,to:25).

The results show that ReactGenie parser is a reasonably good
implementation for parsing natural language commands to NLPL
using only information extracted from the shared logic code and
the few-shot examples provided by the developer.

Another interesting metric is that 104 of the 172 commands
contain at least one touch point, but there are only 18 cases where
these touch points are required to execute the command. In many of
these commands, the user taps relevant objects, hoping that it would
help the system understand. For example, they would tap on the
“Restaurant” menu bar while saying “Show me a pizza restaurant
nearme.” Another interesting observation is that when they referred
to objects on screen, they often would not use a reference term like
“this” or “that.” Instead of saying “Reorder this order”, the participant

would say “Reorder my Mendocino Farms order from Thursday.” This
shows a potential opportunity to improve the semantic parser by
always adding the touch context even when it seems unnecessary.

5.2 Usability of Supported Interactions
We conducted a usability study with the ReactGenieFoodOrdering
app to understand if the generated multimodal UIs are useful for
end users. We measured the performance of the multimodal UIs
in terms of the time it takes to complete a task, the cognitive load,
and the usability of the experience when using the app compared
to the same app limited to using only the GUI.

5.2.1 Study Design. In the study, we asked participants to complete
a set of tasks using two variants of the ReactGenieFoodOrdering app,
one generated by ReactGenie and one limited to only the GUI. We
used awithin-subjects design, where each participant completed the
same tasks using both variants of the app. For each app variant, we
first teach the participant how to use the app using one training task.
Specifically, for the ReactGenie condition of the app, we explained
that in addition to typical touch-only interaction, they can also
tap the microphone button to initiate a speech + gesture command
when they want to. We then asked them to complete two test tasks
with the variant. After completing the two tasks, we asked them
to complete a survey about their cognitive load using the system
(using NASA-TLX [31]) and the usability of the experience (using
SUS [8]). At the end of the study, we asked the participants about
their subjective preferences between the two variants of the app
and their reasons for their preferences.

We designed one training task and two test tasks for each variant
of the app. The training tasks are to order the cheapest food item
from the menu of two different restaurants. The test tasks are re-
ordering an order from two different days (today or yesterday), and
finding the most recent order containing two different items. When
presenting these tasks, we described a scenario, what we wanted
them to do, and the expected outcome (order placed screen or a
certain screen showing a past history order). We counterbalanced
the order of the two apps and the order of the three tasks.

5.2.2 Participants. We recruited 16 participants, aged 18–30, with
a median age of 23. Eight of our participants are female, six are male,
one stated other, and one prefers not to say. One of our participants
uses food ordering daily, two use it weekly, five use it monthly,
seven use it a few times per year, and one rarely or never uses it.
All of our participants use graphical mobile interfaces daily. Two
of our participants use voice interfaces daily, four use them weekly,
two use them monthly, four use them a few times per year, and
four rarely or never use them. The study took about 30 minutes
to complete, and we compensated each participant with a 15 USD
Amazon gift card for their time.

5.2.3 Results. We computed the time it took to complete each task
using the graphical UI and the multimodal UI (see Figure 7). The
average time it took to complete each task using the graphical
UI was 63.6 seconds, while the average time it took to complete
each task using the multimodal UI was 33.6 seconds. We used a
paired t-test and found that the difference is statistically significant
(? = 0.0004, C = 3.955).

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

GUI-only ReactGenie
Condition

20

40

60

80

100

120

Ti
m

e
(s

ec
on

ds
)

Experiment Time Comparison between MMI and GUI

Figure 7: Users can complete common tasks faster (? =

0.0004, C = 3.955) with the multimodal interface (MMI) app
built with ReactGenie compared with a baseline GUI app.

We compared NASA-TLX average scores between the two condi-
tions (see Figure 8 left).The average NASA-TLX score for the graphi-
cal UI is 34.5, while the average NASA-TLX score for the multimodal
UI is 24.6 (note: lower is better). We used a Wilcoxon test and found
that the difference is statistically significant (? = 0.013, I = 21).

We compared the average SUS scores between the two conditions
(see Figure 8 right). The average SUS score for the graphical UI is
63.3, while the average SUS score for the multimodal UI is 73.0
(note: higher is better). We used a Wilcoxon test and found that the
difference is statistically significant (? = 0.031, I = 22).

11 out of 16 of our participants preferred the ReactGenie generated
multimodal UI over the graphical UI. For participants who preferred
the multimodal UI, the most common reason was that it was easier
to use (P4, P8, P13, P16). P2 mentioned that they would prefer to
use a mix of both in the real world, which is well supported by Re-
actGenie. P6 mentioned that the multimodal UI could be especially
useful when they are unfamiliar with the app. P12 mentioned that
the multimodal commands allowed them to do more complex tasks
with a clear path rather than searching and finding out how to do so
in the graphical UI. For participants who preferred the graphical UI,
the most common reason was that the speech recognition was not
accurate (P5, P7, P14). P9 and P11 mentioned that they generally
do not use voice interfaces.

5.2.4 Discussion. The results of our usability study show that the
multimodal UIs generated by ReactGenie are more efficient, have
a lower cognitive load, and have higher usability compared to the
corresponding graphical UI versions.These findings suggest that the
ReactGenie system is successful in generating multimodal UIs that
enhance the user experience, making it easier and more efficient for
users to complete tasks. All participants, when using the ReactGenie

variant of the app, used both typical touch interaction for simple
navigation and browsing and touch (optional) + speech interaction
for more complex inputs. The combination of graphical and voice
interfaces allows users to take advantage of the strengths of each
modality, resulting in a more streamlined and enjoyable experience.

6 DISCUSSION
In this section, we will characterize the properties of the multimodal
interaction supported by ReactGenie, and discuss the limitations,
future work, safety, and implications of ReactGenie.

6.1 Properties of Multimodalities in ReactGenie
We can characterize the properties of the ReactGenie interactions
using the framework proposed by Coutaz et al. [22]. ReactGenie’s
voice + (optional) touch actions are implemented using the same
functions used for graphical user interfaces. Therefore, all voice
and touch actions are equivalent, and almost no actions belong
to the assignment category, meaning that almost no actions can
only be performed using a specific modality. Note that the func-
tions only interact with the state. Commonly minute actions such
as scrolling will not be included in part of the state, so actions
like “Scroll to here” will not be supported by the voice + touch
commands. This is intentional, as scrolling is likely more efficient
using touch than voice + touch. However, in ReactGenie, devel-
opers can expose anything as part of the state. In an e-book or a
map application, where the current read position/map position is
a crucial part of the experience, developers can choose to expose
the position as part of the API. The user’s command “scroll to here”
can be translated to ReadingPosition.SetPosition(position
:ReadingPosition.Current()).

For redundancy, ReactGenie apps will only accept touch com-
mands when the microphone button is not activated and will only
accept voice + touch commands when the microphone button is
activated to achieve partial redundancy. For complementarity, Re-
actGenie primarily supports voice for actions and touch for deictic
gestures for reference. After the user clicks the microphone but-
ton, the order of touch and voice does not matter, the user can tap
first then speak, speak first then tap, or tap while speaking. The
voice and touch mode will end automatically after receiving no new
words or touches for 0.5 seconds.

6.2 Limitations and Future Work
ReactGenie is the first attempt at integrating multimodal devel-
opment into the modern declarative GUI development process. It
provides a familiar workflow, allows the reuse of state code and
UI, and can understand rich multimodal commands. However, it is
far from perfect. There are three directions that future work can
improve on 1) better voice interfaces, 2) better developer support,
and 3) support for more modalities.

6.2.1 Better Voice Interfaces. ReactGenie accepts the user’s voice
and touch input and generates text and GUI output based on the
result. We currently provide text but not voice feedback, which
is easy to change by using a commercial text-to-speech module.
However, a more significant area of improvement is in maintain-
ing natural language context. For example, if the user says, “What

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 8: Cognitive load (left) and usability (right) of the GUI vs. the ReactGenie multimodal UI.

is the best pizza restaurant?” and then asks, “What about Chi-
nese food?”, the system should be able to understand that the
user is asking about the best Chinese food instead of any Chi-
nese food restaurant. Note that ReactGenie can handle some con-
versations gracefully by using the current UI context as the con-
text for the next command. An example would be the user saying,
“Find me the cheapest hamburger at McDonald’s” and then asking,
“Order one of that” (NLPL: Order.GetActiveCart().addItems
([FoodItem.Current()])). ReactGenie would present the food
item after the first command, and when the user says the second
command, ReactGenie would know that the user is referring to the
food item presented in the GUI.

Another way to improve the reliability of the generated inter-
faces is to better leveragemultimodal commands for disambiguation.
As shown in Section 5.1.3, many of our elicited commands include
redundant information from voice and the GUI. Future work can
leverage this redundancy and provide extra GUI context to the se-
mantic parser to further push the parser’s accuracy closer to 100%.
For example, a potential path is to improve ReactGenie runtime to
extra GUI context and enhance the neural semantic parser through
prompt engineering to allow it to process the extra GUI context.

6.2.2 Better Developer Support. Although ReactGenie provides a
customizable and easy way of programmingmultimodal apps, it can
still be improved. One area that we see as a potential improvement
is to reduce the number of examples necessary and to increase the
effectiveness of the example parses. The majority of these examples
are there for teaching the parser how to generate syntactically
correct NLPL code. However, given we have the interpreter, we can
potentially use it as an example generator to teach the parser how
to generate syntactically correct NLPL code, similar to the method
used in SEMPRE [13] or Genie [19]. Another route is to fine-tune
the Codex model with the NLPL code generated by the interpreter

so that the interpreter can generate syntactically correct NLPL code
with fewer examples.

Future extensions to the ReactGenie framework can also help
developers identify potential voice commands that the user may
want to say. Using ReactGenieFoodOrdering as an example, its API
only supports 59% of the commands that we elicited from crowd
workers. Some top categories of unimplemented commands are
about delivery time (mentioned in 8 commands), food customization
options (8), discount/deal information (7), pickup/delivery support
of restaurants (6), food types (e.g., vegetarian or vegan) (6), and
calorie/health/allergy information (6). If we can implement these
commands, we can potentially reduce the number of unsupported
commands by more than 50%. Future work can consider embedding
elicitation studies directly into the app development cycle, or the
framework could record unsupported commands from actual users
and use this data as feedback to the development team to help
improve the system after the initial deployment.

6.2.3 Support More Modalities. As stated in Section 3.1, ReactGe-
nie is targeted at gesture and voice interactions, and it is optimized
for deictic gestures used for reference. Currently, ReactGenie can
support complex gestures in the regular GUI provided other gesture
interaction frameworks, but not simultaneous voice + complex ges-
ture interactions. Future frameworks can improve on supporting
more diverse gestures and modalities beyond these two categories.

Gestures and modalities other than voice can also be used to
indicate the actions that the user wants to perform. This can be
supported by summarizing what happened using other gestures
in language and presenting them along with the user’s speech
commands. For example, suppose a user says, “Animate this box,”
and performs a move while rotating and gesturing on the screen.
In that case, we can present voice:animatethisbox and gesture
:rotateandmovefromx1,y1,tox2,y2 to the large language model
and ask the model to generate NLPL for this animation. (x1,y1 is

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

the coordinate of the gesture start coordinate, and the x2,y2 is the
gesture end coordinate.)

Another way gestures can be integrated is through a new class
called Gesture provided to the ReactGenie system to indicate the
gesture trajectory that the user performed. For example, if the user
says “Deploy soldiers along this path” in a QuickSet-like [21] sys-
tem, ReactGenie can translate it to Solders.DeployOnPath(path
:Path.FromGesture(gesture:Gesture.Current())).

Through a combination of the aforementioned methods and
utilization of the gesture recognition/modality understanding com-
ponents of prior multimodal interaction libraries [32, 49], future
work can combine the flexibility and expressiveness of ReactGenie
with different modalities.

6.3 Takeaways for Future UI Frameworks
ReactGenie demonstrated a feature-first, rather than interaction-
first, way of implementing multimodal apps. ReactGenie lets devel-
opers do what they know best: implement the features the users
want, and the framework intelligently takes care of users’ diverse
interactions using their specific way of making commands. This
is similar to modern graphical UI frameworks that, rather than
directly passing the user’s touch point and letting developers im-
plement the rest, ask developers to provide functions and pages at
a feature level. The graphical UI framework handles how to render
and convert user touch points and typical gestures to the corre-
sponding function calls. This was not easy to achieve previously for
multimodal interactions. ReactGenie made it possible because of the
power of LLM’s language-parsing capability and the expressiveness
of NLPL. Future frameworks can build on this idea to support more
modalities and be more adaptive to the user’s interaction context.

Other researchers in intelligent human interfaces can also take
advantage of how ReactGenie integrates LLMs into the human in-
teraction loop. Rather than asking developers to call LLMs in their
app, which requires them to understand prompting techniques,
ReactGenie automatically generates an interface to the LLM as a
programming framework.This program-LLM interface provides the
available functionality to the LLM and allows the LLM to call the
compound functionality of the program. Other intelligent human
interfaces, such as conversational agents or adaptive interfaces,
can also learn from this technique. They can automatically gener-
ate an interface from the developer’s code that exposes available
features and relevant context to LLMs and allows LLMs to use a
programming language (maybe NLPL) to perform their job.

6.4 Safety and Implications
ReactGenie uses a machine learning model to understand the users’
commands. This may introduce safety issues when the wrong com-
mand is interpreted and executed. In our evaluation, a pleasant
finding is that wrongly parsed commands are either not executable
or still helpful towards reaching the user’s intended goal. Further
risks can be reduced by having a more accurate semantic parser.

Also, compared with an end-to-end natural language assistant
like ChatGPT7, ReactGenie allows more control over the presented
information and performed actions. ReactGenie’s framework only
processes and shows information in the developer’s provided state

7https://openai.com/blog/chatgpt/

code and can reduce hallucinated information. One particular case
of error in our testing was when the user asked for the delivery
time, but because the app does not support delivery time estimation,
ReactGenie returned the delivery fee instead. In this case, the text
feedback mechanism can be used to inform the user of the informa-
tion that is returned. In the future, an error correction mechanism
would be useful for the user to report the error, and this may allow
the developer to fix it.

For performed actions, ReactGenie gives text feedback and ren-
ders the related UI elements to ensure the user is aware of the
command being executed, so when there is an error, the user can
easily identify and recover from it. A design decision wemade while
creating the three demo apps is not to expose non-recoverable ac-
tions to voice. For example, in the ReactGenieFoodOrdering app,
the user can browse items, add items to the cart, and go to the
checkout page via voice, but placing the order will only present
the checkout page and require the user to click the “Place Order”
button to place the order. This way, the irreversible action is only
triggered through the GUI, with little room for error. It should be
strongly recommended to developers using ReactGenie to either
not expose (via Genie annotations) functions that would create an
irreversible effect, such as payment-related or account management
functions, or add a confirmation stage via graphical user interfaces
or explicit voice commands.

Another implication of ReactGenie is the possible negative social
implications of noisy multimodal interaction. ReactGenie encour-
ages users to use voice and touch to quickly achieve their goals
without going through multiple UI actions and exploration steps.
The benefit of ReactGenie comes from the expressiveness of voice
and touch, but voice interfaces may not always be appropriate. One
possibility is to explore silent voice interfaces like those presented
by Denby et al. [26] that can be used in public spaces.

7 CONCLUSIONS
Commercial user interfaces have stagnated with the GUI for more
than a decade. Although these GUIs work well for communicat-
ing exact information (e.g., from a menu) and binary actions (e.g.,
using a button), they are not expressive enough to communicate
and collect rich multimodal information, such as the way a waiter
or waitress can obtain a person’s order from a restaurant menu.
ReactGenie attempts to break that UI stagnation by enabling devel-
opers to create multimodal UIs that allow for more expressiveness
than traditional GUIs, with little additional programming effort.
ReactGenie accomplishes this first by introducing an interaction
programming paradigm where the interaction logic is better sepa-
rated from user interface implementation and second by using a
powerful natural language understanding module that leverages
the capabilities of LLMs to execute code in the interaction logic. In
this paper, we demonstrated the easy adoption of the ReactGenie
framework for developers and tested the expressiveness, usefulness,
and accuracy of the resulting multimodal apps with end-users. In
the future, by introducing developer tools based on frameworks
like ReactGenie, and the research on the multimodal interactions
these tools enable, we hope to see humans communicating with
computers more expressively and more easily.

https://web.archive.org/web/20240228110251/https://openai.com/blog/chatgpt/

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

ACKNOWLEDGMENTS
We would like to thank the reviewers for their insightful feedback
and the participants of our user studies for their invaluable input.
We also want to acknowledge Meta Platforms, Inc., the Alfred P.
Sloan Foundation, and the Verdant Foundation for their generous
financial support. We are also grateful to Microsoft for providing
Azure AI credits, which have been instrumental in advancing our
research.

REFERENCES
[1] [n. d.]. About App Development with UIKit. https://developer.apple.com/docu-

mentation/uikit/about_app_development_with_uikit. Accessed on 2023-04-05.
[2] [n. d.]. Describing the UI. https://react.dev/learn/describing-the-ui. Accessed on

2023-04-05.
[3] [n. d.]. Introduction to declarative UI. https://docs.flutter.dev/get-started/flutter-

for/declarative. Accessed on 2023-04-05.
[4] [n. d.]. Pinia | The intuitive store for Vue.js. https://pinia.vuejs.org/. (Accessed

on 04/05/2023).
[5] [n. d.]. React Redux | React Redux. https://react-redux.js.org/. (Accessed on

02/27/2024).
[6] [n. d.]. Redux - A predictable state container for JavaScript apps. | Redux.

https://redux.js.org/. (Accessed on 04/04/2023).
[7] [n. d.]. SwiftUI. https://developer.apple.com/xcode/swiftui/. Accessed on 2023-

04-05.
[8] 1996. SUS: A 'Quick and Dirty' Usability Scale. In Usability Evaluation In Industry.

CRC Press, 207–212. https://doi.org/10.1201/9781498710411-35
[9] 2009. Human-Computer Interaction. https://doi.org/10.1201/9781420088861

[10] 2023. GitHub - facebookarchive/flux: Application Architecture for Building User
Interfaces. https://github.com/facebookarchive/flux. (Accessed on 04/04/2023).

[11] Abdullah X. Ali, Meredith RingelMorris, and JacobO.Wobbrock. 2019. Crowdlicit:
A System for Conducting Distributed End-User Elicitation and Identification
Studies. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/3290605.3300485

[12] Sean Andrist, Dan Bohus, Ashley Feniello, and Nick Saw. 2022. Developing
Mixed Reality Applications with Platform for Situated Intelligence. In 2022 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW). IEEE. https://doi.org/10.1109/vrw55335.2022.00018

[13] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL. ACL, 1533–1544. https://aclanthology.
org/D13-1160/

[14] Dan Bohus, Sean Andrist, Ashley Feniello, Nick Saw, Mihai Jalobeanu, Patrick
Sweeney, Anne Loomis Thompson, and Eric Horvitz. 2021. Platform for Situated
Intelligence. https://doi.org/10.48550/ARXIV.2103.15975

[15] Richard A. Bolt. 1980. “Put-that-there”: Voice and gesture at the graphics interface.
In Proceedings of the 7th annual conference on Computer graphics and interactive
techniques - SIGGRAPH '80. ACM Press. https://doi.org/10.1145/800250.807503

[16] Stephen Brewster, Joanna Lumsden, Marek Bell, Malcolm Hall, and Stuart Tasker.
2003. Multimodal 'eyes-free' interaction techniques for wearable devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/642611.642694

[17] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[18] Giovanni Campagna, Rakesh Ramesh, Silei Xu, Michael Fischer, and Monica S.
Lam. 2017. Almond: The Architecture of an Open, Crowdsourced, Privacy-
Preserving, Programmable Virtual Assistant. In Proceedings of the 26th Interna-
tional Conference on World Wide Web (WWW ’17). International World Wide Web
Conferences Steering Committee. https://doi.org/10.1145/3038912.3052562

[19] Giovanni Campagna, Silei Xu, MehradMoradshahi, Richard Socher, andMonica S.
Lam. 2019. Genie: a generator of natural language semantic parsers for virtual
assistant commands. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM. https://doi.org/10.
1145/3314221.3314594

[20] P. Cohen, D. McGee, S. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and L. Rosenblum.
1999. Multimodal interaction for 2D and 3D environments [virtual reality]. IEEE
Computer Graphics and Applications 19, 4 (1999), 10–13. https://doi.org/10.1109/

38.773958
[21] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt, Jay Pittman, Ira

Smith, Liang Chen, and Josh Clow. 1997. QuickSet: multimodal interaction for
distributed applications. In Proceedings of the fifth ACM international conference
on Multimedia - MULTIMEDIA '97. ACM Press. https://doi.org/10.1145/266180.
266328

[22] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford, Jon May, and
Richard M. Young. 1995. Four Easy Pieces for Assessing the Usability of Multimodal
Interaction:TheCare Properties. Springer US, 115–120. https://doi.org/10.1007/978-
1-5041-2896-4_19

[23] Deborah Dahl, Paolo Baggia, and Ken Rehor. 2003. Multimodal Architecture and
Interfaces. Technical Report NOTE-mmi-arch-20031020. W3C. https://www.w3.
org/TR/mmi-arch/

[24] Deborah A. Dahl. 2013. TheW3Cmultimodal architecture and interfaces standard.
Journal on Multimodal User Interfaces 7, 3 (apr 2013), 171–182. https://doi.org/10.
1007/s12193-013-0120-5

[25] Adrian A. de Freitas, Michael Nebeling, Xiang 'Anthony' Chen, Junrui Yang,
Akshaye Shreenithi Kirupa Karthikeyan Ranithangam, and Anind K. Dey. 2016.
Snap-To-It: A User-Inspired Platform for Opportunistic Device Interactions. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM. https://doi.org/10.1145/2858036.2858177

[26] B. Denby, T. Schultz, K. Honda, T. Hueber, J.M. Gilbert, and J.S. Brumberg. 2010.
Silent speech interfaces. Speech Communication 52, 4 (April 2010), 270–287.
https://doi.org/10.1016/j.specom.2009.08.002

[27] Michael H. Fischer, Giovanni Campagna, Euirim Choi, and Monica S. Lam. 2021.
DIY assistant: a multi-modal end-user programmable virtual assistant. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. ACM. https://doi.org/10.1145/3453483.3454046

[28] Divyansh Garg. 2023. Multi on. https://multion.ai/
[29] Andy (Steve) De George and Alex Buck2. 2023. What is windows forms - win-

dows forms .NET. https://learn.microsoft.com/en-us/dotnet/desktop/winforms/
overview/?view=netdesktop-7.0

[30] Kilem Li Gwet. 2008. Computing inter-rater reliability and its variance in the
presence of high agreement. Brit. J. Math. Statist. Psych. 61, 1 (may 2008), 29–48.
https://doi.org/10.1348/000711006x126600

[31] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (oct
2006), 904–908. https://doi.org/10.1177/154193120605000909

[32] Lode Hoste, Bruno Dumas, and Beat Signer. 2011. Mudra: a unified multimodal
interaction framework. In Proceedings of the 13th international conference on
multimodal interfaces. ACM. https://doi.org/10.1145/2070481.2070500

[33] Michael Johnston, John Chen, Patrick Ehlen, Hyuckchul Jung, Jay Lieske, Aarthi
Reddy, Ethan Selfridge, Svetlana Stoyanchev, Brant Vasilieff, and JayWilpon. 2014.
MVA:TheMultimodal Virtual Assistant. In Proceedings of the 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Association for
Computational Linguistics. https://doi.org/10.3115/v1/w14-4335

[34] Runchang Kang, Anhong Guo, Gierad Laput, Yang Li, and Xiang 'Anthony' Chen.
2019. Minuet: Multimodal Interaction with an Internet of Things. In Symposium
on Spatial User Interaction. ACM. https://doi.org/10.1145/3357251.3357581

[35] Glenn E. Krasner and Stephen T. Pope. 1988. A Cookbook for Using the Model-
View Controller User Interface Paradigm in Smalltalk-80. J. Object Oriented
Program. 1, 3 (aug 1988), 26–49.

[36] Monica S. Lam, Giovanni Campagna, Mehrad Moradshahi, Sina J. Semnani, and
Silei Xu. 2022. ThingTalk: An Extensible, Executable Representation Language
for Task-Oriented Dialogues. https://doi.org/10.48550/ARXIV.2203.12751

[37] James A. Landay and Brad A. Myers. 1993. Extending an existing user interface
toolkit to support gesture recognition. In INTERACT '93 and CHI '93 conference
companion on Human factors in computing systems - CHI '93. ACM Press. https:
//doi.org/10.1145/259964.260123

[38] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. PixelTone: a multimodal interface
for image editing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. https://doi.org/10.1145/2470654.2481301

[39] Minkyung Lee and Mark Billinghurst. 2008. A Wizard of Oz study for an AR mul-
timodal interface. In Proceedings of the 10th international conference onMultimodal
interfaces. ACM. https://doi.org/10.1145/1452392.1452444

[40] Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building Conversational Bots from
Mobile Apps. In Proceedings of the 16th Annual International Conference on Mo-
bile Systems, Applications, and Services. ACM. https://doi.org/10.1145/3210240.
3210339

[41] David L. Martin, Adam J. Cheyer, and Douglas B. Moran. 1999. The open
agent architecture: A framework for building distributed software systems. Ap-
plied Artificial Intelligence 13, 1-2 (jan 1999), 91–128. https://doi.org/10.1080/
088395199117504

[42] Marilyn RoseMcGee-Lennon, Andrew Ramsay, DavidMcGookin, and Philip Gray.
2009. User evaluation of OIDE: a rapid prototyping platform for multimodal
interaction. In Proceedings of the 1st ACM SIGCHI symposium on Engineering
interactive computing systems. ACM. https://doi.org/10.1145/1570433.1570476

https://web.archive.org/web/20220608123928/https://developer.apple.com/documentation/uikit/about_app_development_with_uikit
https://web.archive.org/web/20220608123928/https://developer.apple.com/documentation/uikit/about_app_development_with_uikit
https://web.archive.org/web/20240229093852/https://react.dev/learn/describing-the-ui
https://web.archive.org/web/20240123180350/https://docs.flutter.dev/get-started/flutter-for/declarative
https://web.archive.org/web/20240123180350/https://docs.flutter.dev/get-started/flutter-for/declarative
https://web.archive.org/web/20240228152920/https://pinia.vuejs.org/
https://react-redux.js.org/
https://web.archive.org/web/20240228110058/https://redux.js.org/
https://web.archive.org/web/20240211150232/https://developer.apple.com/xcode/swiftui/
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781420088861
https://github.com/facebookarchive/flux
https://doi.org/10.1145/3290605.3300485
https://doi.org/10.1109/vrw55335.2022.00018
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/
https://doi.org/10.48550/ARXIV.2103.15975
https://doi.org/10.1145/800250.807503
https://doi.org/10.1145/642611.642694
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.1145/3038912.3052562
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1109/38.773958
https://doi.org/10.1109/38.773958
https://doi.org/10.1145/266180.266328
https://doi.org/10.1145/266180.266328
https://doi.org/10.1007/978-1-5041-2896-4_19
https://doi.org/10.1007/978-1-5041-2896-4_19
https://www.w3.org/TR/mmi-arch/
https://www.w3.org/TR/mmi-arch/
https://doi.org/10.1007/s12193-013-0120-5
https://doi.org/10.1007/s12193-013-0120-5
https://doi.org/10.1145/2858036.2858177
https://doi.org/10.1016/j.specom.2009.08.002
https://doi.org/10.1145/3453483.3454046
https://multion.ai/
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-7.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/overview/?view=netdesktop-7.0
https://doi.org/10.1348/000711006x126600
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/2070481.2070500
https://doi.org/10.3115/v1/w14-4335
https://doi.org/10.1145/3357251.3357581
https://doi.org/10.48550/ARXIV.2203.12751
https://doi.org/10.1145/259964.260123
https://doi.org/10.1145/259964.260123
https://doi.org/10.1145/2470654.2481301
https://doi.org/10.1145/1452392.1452444
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1145/3210240.3210339
https://doi.org/10.1080/088395199117504
https://doi.org/10.1080/088395199117504
https://doi.org/10.1145/1570433.1570476

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yang et al.

[43] B.A. Myers, D.A. Giuse, R.B. Dannenberg, B.V. Zanden, D.S. Kosbie, E. Pervin,
A. Mickish, and P. Marchal. 1990. Garnet: comprehensive support for graphical,
highly interactive user interfaces. Computer 23, 11 (Nov. 1990), 71–85. https:
//doi.org/10.1109/2.60882

[44] Brad A. Myers. 1990. A new model for handling input. ACM Transactions on
Information Systems 8, 3 (July 1990), 289–320. https://doi.org/10.1145/98188.98204

[45] Brad A. Myers, Dario Giuse, AndrewMickish, Brad Vander Zanden, David Kosbie,
Richard McDaniel, James Landay, Matthews Golderg, and Rajan Pathasarathy.
1994. The garnet user interface development environment. In Conference com-
panion on Human factors in computing systems - CHI '94. ACM Press. https:
//doi.org/10.1145/259963.260472

[46] Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale Semantic
Parsing without Question-Answer Pairs. Transactions of the Association for
Computational Linguistics 2 (dec 2014), 377–392. https://doi.org/10.1162/tacl_a_
00190

[47] Ritam Jyoti Sarmah, Yunpeng Ding, Di Wang, Cheuk Yin Phipson Lee, Toby Jia-
Jun Li, and Xiang 'Anthony' Chen. 2020. Geno: A Developer Tool for Authoring
Multimodal Interaction on Existing Web Applications. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. ACM. https:
//doi.org/10.1145/3379337.3415848

[48] Gianluca Schiavo, Ornella Mich, Michela Ferron, and Nadia Mana. 2020. Trade-
offs in the design of multimodal interaction for older adults. Behaviour & Infor-
mation Technology 41, 5 (dec 2020), 1035–1051. https://doi.org/10.1080/0144929x.
2020.1851768

[49] Marcos Serrano, Laurence Nigay, Jean-Yves L. Lawson, Andrew Ramsay, Roderick
Murray-Smith, and Sebastian Denef. 2008. The openinterface framework: a tool
for multimodal interaction.. In CHI '08 Extended Abstracts on Human Factors in
Computing Systems. ACM. https://doi.org/10.1145/1358628.1358881

[50] Wai Wa Tang, Kenneth W.K. Lo, Alvin T.S. Chan, Stephen Chan, Hong Va Leong,
and Grace Ngai. 2011. i*Chameleon: a scalable and extensible framework for mul-
timodal interaction. In CHI '11 Extended Abstracts on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/1979742.1979703

[51] Christiana Tsiourti, João Quintas, Maher Ben-Moussa, Sten Hanke, Niels Alexan-
der Nijdam, and Dimitri Konstantas. 2017. The CaMeLi Framework—A Multi-
modal Virtual Companion for Older Adults. In Studies in Computational Intelli-
gence. Springer International Publishing, 196–217. https://doi.org/10.1007/978-3-
319-69266-1_10

[52] Matthew Turk. 2014. Multimodal interaction: A review. Pattern Recognition
Letters 36 (jan 2014), 189–195. https://doi.org/10.1016/j.patrec.2013.07.003

[53] Bryan Wang, Gang Li, and Yang Li. 2022. Enabling Conversational Interaction
with Mobile UI using Large Language Models. https://doi.org/10.48550/ARXIV.
2209.08655

[54] Silei Xu, Giovanni Campagna, Jian Li, and Monica S. Lam. 2020. Schema2QA:
High-Quality and Low-Cost Q&A Agents for the Structured Web. In Proceed-
ings of the 29th ACM International Conference on Information & Knowledge
Management. ACM. https://doi.org/10.1145/3340531.3411974

[55] Jackie (Junrui) Yang, Gaurab Banerjee, Vishesh Gupta, Monica S. Lam, and
James A. Landay. 2020. Soundr: Head Position and Orientation Prediction Using
a Microphone Array. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. ACM. https://doi.org/10.1145/3313831.3376427

[56] Jackie (Junrui) Yang, Tuochao Chen, Fang Qin, Monica S. Lam, and James A.
Landay. 2022. HybridTrak: Adding Full-Body Tracking to VR Using an Off-the-
Shelf Webcam. In CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3491102.3502045

[57] Jackie (Junrui) Yang, Monica S. Lam, and James A. Landay. 2020. DoThisHere:
Multimodal Interaction to Improve Cross-Application Tasks on Mobile Devices.
In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology. ACM. https://doi.org/10.1145/3379337.3415841

[58] Jackie (Junrui) Yang and James A. Landay. 2019. InfoLED: Augmenting LED
Indicator Lights for Device Positioning and Communication. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. ACM.
https://doi.org/10.1145/3332165.3347954

[59] Chris Zimmerer, Erik Wolf, Sara Wolf, Martin Fischbach, Jean-Luc Lugrin, and
Marc Erich Latoschik. 2020. Finally on Par⁈Multimodal andUnimodal Interaction
for Open Creative Design Tasks in Virtual Reality. In Proceedings of the 2020
International Conference on Multimodal Interaction. ACM. https://doi.org/10.
1145/3382507.3418850

A GRAMMAR OF NLPL

topFvalue | all_symbol

all_symbolFindex_symbol(.all_symbol)?
index_symbolFfunction_call | symbol([int_literal])?
function_callFsymbol((parameter_list?))

parameter_listFparameter_pair(,parameter_pair)∗
parameter_pairFsymbol:value

valueFtrue | false | int_literal | float_literal | all_symbol |
accessor | ”string” | [array_value]

accessorF.value
array_valueFvalue(,value)∗

symbolF[0 − I� − /_][0 − I� − /0 − 9_]∗
int_literalF(+ | -)?[0 − 9]+

float_literalF(+ | -)?[0 − 9] ∗ .[0 − 9]+

B EXAMPLE PARSES
Here is a code excerpt from the developer-provided example parses
for ReactGenieFoodOrdering:

Order.Examples = [
{

user_utterance: "What is the total price of my
order?",

example_parsed:
"Order.GetActiveCart().getTotalPrice()",

},
{

user_utterance: "Order a burger and two fries.",
example_parsed:

"Order.GetActiveCart().addItems(items:
[OrderItem.CreateOrderItem(foodItem:
FoodItem.GetFoodItem(name: \"burger\")),
OrderItem.CreateOrderItem(foodItem:
FoodItem.GetFoodItem(name: \"fries\"),
quantity: 2)])",

},
{

user_utterance: "I would like to place an order for
pick up",

example_parsed:
"Order.GetActiveCart().setPickUp(pickup: true)",

},
{

user_utterance: "What's the cheapest item in my
order?",

example_parsed:
"Order.GetActiveCart().items.sort(field:
.foodItem.price(), ascending: true)[0]",

},
{

user_utterance: "What have I ordered last time from
mcDonalds?",

https://doi.org/10.1109/2.60882
https://doi.org/10.1109/2.60882
https://doi.org/10.1145/98188.98204
https://doi.org/10.1145/259963.260472
https://doi.org/10.1145/259963.260472
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1162/tacl_a_00190
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1145/3379337.3415848
https://doi.org/10.1080/0144929x.2020.1851768
https://doi.org/10.1080/0144929x.2020.1851768
https://doi.org/10.1145/1358628.1358881
https://doi.org/10.1145/1979742.1979703
https://doi.org/10.1007/978-3-319-69266-1_10
https://doi.org/10.1007/978-3-319-69266-1_10
https://doi.org/10.1016/j.patrec.2013.07.003
https://doi.org/10.48550/ARXIV.2209.08655
https://doi.org/10.48550/ARXIV.2209.08655
https://doi.org/10.1145/3340531.3411974
https://doi.org/10.1145/3313831.3376427
https://doi.org/10.1145/3491102.3502045
https://doi.org/10.1145/3379337.3415841
https://doi.org/10.1145/3332165.3347954
https://doi.org/10.1145/3382507.3418850
https://doi.org/10.1145/3382507.3418850

ReactGenie CHI ’24, May 11–16, 2024, Honolulu, HI, USA

example_parsed:
"Order.OrderHistory().matching(field:
.restaurant, value:
Restaurant.GetRestaurant(name:
\"mcDonalds\"))[0].items"

}
]

C PROMPT FOR NLPL PARSER
Here is an example prompt for OpenAI Codex to convert the user
command to NLPL and its expected response. Text snippets starting
with // are sent to the LLM as part of the prompt. It resembles code
comments to help the LLM understand the structure of the prompt.
To help the reader understand where different data are generated,
we added comments surrounded by <>, which are not part of the
prompt sent to the LLM.

// Here are all the functions that we have
<developer's class skeletons>
class Restaurant {

string name;
string address;
string cuisine;
float rating;

// All active restaurants
static Restaurant[] All();

// The current restaurants
static Restaurant Current();

// Get a list of foods representing the menu from a
restaurant

Food[] menu;

// Book reservations on date
Reservation get_reservation(date: DateTime)

}
...
// Examples:
<example parses>
user: get me the best restaurant in Palo Alto
parsed: Restaurant.all().matching(field: .address, value:

"Palo Alto").sort(field: .rating, ascending: false)
...

// Current User Interaction
<current user command>
user: order the same burger that I ordered at McDonald's

last time
parsed:
<expected LLM response>
Order.Current().addFoods(foods: Order.All().matching(field:

.restaurant, value: Restaurant.All().matching(field:

.name, value: "McDonald's")).sort(field: .orderTime,
ascending: false)[0].foods)

	Abstract
	1 Introduction
	1.1 Targeted Interactions

	2 Related work
	2.1 Multimodal Interaction Systems
	2.2 Graphical UI frameworks
	2.3 Voice UI frameworks
	2.4 Multimodal Interaction Frameworks

	3 System Design
	3.1 Design goals
	3.2 Theory of Operation
	3.3 The Developer's Programming Model
	3.4 NLPL
	3.5 System Workflow

	4 Framework Evaluation
	4.1 Expressiveness of the Framework
	4.2 Development Time: Expert Evaluation
	4.3 Usability and Learnability: Developer Studies

	5 Interaction Evaluation
	5.1 Parser Performance
	5.2 Usability of Supported Interactions

	6 Discussion
	6.1 Properties of Multimodalities in ReactGenie
	6.2 Limitations and Future Work
	6.3 Takeaways for Future UI Frameworks
	6.4 Safety and Implications

	7 Conclusions
	Acknowledgments
	References
	A Grammar of NLPL
	B Example parses
	C Prompt for NLPL parser

