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Figure 1. Our model exhibits impressive generalization ability across extensive unseen scenes. Left two columns: COCO [36]. Middle two:
SA-1B [27] (a hold-out unseen set). Right two: photos captured by ourselves. Our model works robustly in low-light environments (1st and
3rd column), complex scenes (2nd and 5th column), foggy weather (5th column), and ultra-remote distance (5th and 6th column), etc.

Abstract

This work presents Depth Anything1, a highly practical
solution for robust monocular depth estimation. Without pur-
suing novel technical modules, we aim to build a simple yet
powerful foundation model dealing with any images under
any circumstances. To this end, we scale up the dataset by
designing a data engine to collect and automatically anno-
tate large-scale unlabeled data (∼62M), which significantly
enlarges the data coverage and thus is able to reduce the
generalization error. We investigate two simple yet effective
strategies that make data scaling-up promising. First, a more
challenging optimization target is created by leveraging data
augmentation tools. It compels the model to actively seek
extra visual knowledge and acquire robust representations.
Second, an auxiliary supervision is developed to enforce
the model to inherit rich semantic priors from pre-trained
encoders. We evaluate its zero-shot capabilities extensively,
including six public datasets and randomly captured photos.
It demonstrates impressive generalization ability (Figure 1).
Further, through fine-tuning it with metric depth information
from NYUv2 and KITTI, new SOTAs are set. Our better depth
model also results in a better depth-conditioned ControlNet.
Our models are released here.

The work was done during an internship at TikTok.
1While the grammatical soundness of this name may be questionable,

we treat it as a whole and pay homage to Segment Anything [27].

1. Introduction

The field of computer vision and natural language processing
is currently experiencing a revolution with the emergence of
“foundation models” [6] that demonstrate strong zero-/few-
shot performance in various downstream scenarios [45, 59].
These successes primarily rely on large-scale training data
that can effectively cover the data distribution. Monocular
Depth Estimation (MDE), which is a fundamental problem
with broad applications in robotics [66], autonomous driv-
ing [64, 80], virtual reality [48], etc., also requires a foun-
dation model to estimate depth information from a single
image. However, this has been underexplored due to the
difficulty of building datasets with tens of millions of depth
labels. MiDaS [46] made a pioneering study along this di-
rection by training an MDE model on a collection of mixed
labeled datasets. Despite demonstrating a certain level of
zero-shot ability, MiDaS is limited by its data coverage, thus
suffering disastrous performance in some scenarios.

In this work, our goal is to build a foundation model for
MDE capable of producing high-quality depth information
for any images under any circumstances. We approach this
target from the perspective of dataset scaling-up. Tradition-
ally, depth datasets are created mainly by acquiring depth
data from sensors [18, 55], stereo matching [15], or SfM [33],
which is costly, time-consuming, or even intractable in partic-
ular situations. We instead, for the first time, pay attention to
large-scale unlabeled data. Compared with stereo images or

1

https://depth-anything.github.io
https://github.com/LiheYoung/Depth-Anything


labeled images from depth sensors, our used monocular unla-
beled images exhibit three advantages: (i) (simple and cheap
to acquire) Monocular images exist almost everywhere, thus
they are easy to collect, without requiring specialized de-
vices. (ii) (diverse) Monocular images can cover a broader
range of scenes, which are critical to the model generaliza-
tion ability and scalability. (iii) (easy to annotate) We can
simply use a pre-trained MDE model to assign depth labels
for unlabeled images, which only takes a feedforward step.
More than efficient, this also produces denser depth maps
than LiDAR [18] and omits the computationally intensive
stereo matching process.

We design a data engine to automatically generate depth
annotations for unlabeled images, enabling data scaling-up
to arbitrary scale. It collects 62M diverse and informative im-
ages from eight public large-scale datasets, e.g., SA-1B [27],
Open Images [30], and BDD100K [82]. We use their raw
unlabeled images without any forms of labels. Then, in or-
der to provide a reliable annotation tool for our unlabeled
images, we collect 1.5M labeled images from six public
datasets to train an initial MDE model. The unlabeled im-
ages are then automatically annotated and jointly learned
with labeled images in a self-training manner [31].

Despite all the aforementioned advantages of monocular
unlabeled images, it is indeed not trivial to make positive use
of such large-scale unlabeled images [73, 90], especially in
the case of sufficient labeled images and strong pre-training
models. In our preliminary attempts, directly combining la-
beled and pseudo labeled images failed to improve the base-
line of solely using labeled images. We conjecture that, the
additional knowledge acquired in such a naive self-teaching
manner is rather limited. To address the dilemma, we pro-
pose to challenge the student model with a more difficult
optimization target when learning the pseudo labels. The
student model is enforced to seek extra visual knowledge
and learn robust representations under various strong pertur-
bations to better handle unseen images.

Furthermore, there have been some works [9, 21] demon-
strating the benefit of an auxiliary semantic segmentation
task for MDE. We also follow this research line, aiming to
equip our model with better high-level scene understanding
capability. However, we observed when an MDE model is
already powerful enough, it is hard for such an auxiliary
task to bring further gains. We speculate that it is due to
severe loss in semantic information when decoding an im-
age into a discrete class space. Therefore, considering the
excellent performance of DINOv2 in semantic-related tasks,
we propose to maintain the rich semantic priors from it with
a simple feature alignment loss. This not only enhances the
MDE performance, but also yields a multi-task encoder for
both middle-level and high-level perception tasks.

Our contributions are summarized as follows:

• We highlight the value of data scaling-up of massive,

cheap, and diverse unlabeled images for MDE.

• We point out a key practice in jointly training large-
scale labeled and unlabeled images. Instead of learning
raw unlabeled images directly, we challenge the model
with a harder optimization target for extra knowledge.

• We propose to inherit rich semantic priors from pre-
trained encoders for better scene understanding, rather
than using an auxiliary semantic segmentation task.

• Our model exhibits stronger zero-shot capability than
MiDaS-BEiTL-512 [5]. Further, fine-tuned with metric
depth, it outperforms ZoeDepth [4] significantly.

2. Related Work
Monocular depth estimation (MDE). Early works [23, 37,
51] primarily relied on handcrafted features and traditional
computer vision techniques. They were limited by their re-
liance on explicit depth cues and struggled to handle complex
scenes with occlusions and textureless regions.

Deep learning-based methods have revolutionized monoc-
ular depth estimation by effectively learning depth represen-
tations from delicately annotated datasets [18, 55]. Eigen
et al. [17] first proposed a multi-scale fusion network to
regress the depth. Following this, many works consistently
improve the depth estimation accuracy by carefully design-
ing the regression task as a classification task [3, 34], in-
troducing more priors [32, 54, 76, 83], and better objective
functions [68, 78], etc. Despite the promising performance,
they are hard to generalize to unseen domains.

Zero-shot depth estimation. Our work belongs to this re-
search line. We aim to train an MDE model with a diverse
training set and thus can predict the depth for any given im-
age. Some pioneering works [10, 67] explored this direction
by collecting more training images, but their supervision is
very sparse and is only enforced on limited pairs of points.

To enable effective multi-dataset joint training, a mile-
stone work MiDaS [46] utilizes an affine-invariant loss to
ignore the potentially different depth scales and shifts across
varying datasets. Thus, MiDaS provides relative depth infor-
mation. Recently, some works [4, 22, 79] take a step further
to estimate the metric depth. However, in our practice, we
observe such methods exhibit poorer generalization ability
than MiDaS, especially its latest version [5]. Besides, as
demonstrated by ZoeDepth [4], a strong relative depth es-
timation model can also work well in generalizable metric
depth estimation by fine-tuning with metric depth informa-
tion. Therefore, we still follow MiDaS in relative depth
estimation, but further strengthen it by highlighting the value
of large-scale monocular unlabeled images.

Leveraging unlabeled data. This belongs to the research
area of semi-supervised learning [31, 56, 90], which is pop-
ular with various applications [71, 75]. However, existing
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works typically assume only limited images are available.
They rarely consider the challenging but realistic scenario
where there are already sufficient labeled images but also
larger-scale unlabeled images. We take this challenging di-
rection for zero-shot MDE. We demonstrate that unlabeled
images can significantly enhance the data coverage and thus
improve model generalization and robustness.

3. Depth Anything
Our work utilizes both labeled and unlabeled images to
facilitate better monocular depth estimation (MDE). For-
mally, the labeled and unlabeled sets are denoted as Dl =
{(xi, di)}Mi=1 and Du = {ui}Ni=1 respectively. We aim to
learn a teacher model T from Dl. Then, we utilize T to
assign pseudo depth labels for Du. Finally, we train a stu-
dent model S on the combination of labeled set and pseudo
labeled set. A brief illustration is provided in Figure 2.

3.1. Learning Labeled Images

This process is similar to the training of MiDaS [5, 46].
However, since MiDaS did not release its code, we first
reproduced it. Concretely, the depth value is first transformed
into the disparity space by d = 1/t and then normalized
to 0∼1 on each depth map. To enable multi-dataset joint
training, we adopt the affine-invariant loss to ignore the
unknown scale and shift of each sample:

Ll =
1

HW

HW∑
i=1

ρ(d∗i , di), (1)

where d∗i and di are the prediction and ground truth, respec-
tively. And ρ is the affine-invariant mean absolute error loss:
ρ(d∗i , di) = |d̂∗i − d̂i|, where d̂∗i and d̂i are the scaled and
shifted versions of the prediction d∗i and ground truth di:

d̂i =
di − t(d)

s(d)
, (2)

where t(d) and s(d) are used to align the prediction and
ground truth to have zero translation and unit scale:

t(d) = median(d), s(d) =
1

HW

HW∑
i=1

|di − t(d)|. (3)

To obtain a robust monocular depth estimation model, we
collect 1.5M labeled images from 6 public datasets. Details
of these datasets are listed in Table 1. We use fewer labeled
datasets than MiDaS v3.1 [5] (12 training datasets), because
1) we do not use NYUv2 [55] and KITTI [18] datasets to
ensure zero-shot evaluation on them, 2) some datasets are
not available (anymore), e.g., Movies [46] and WSVD [61],
and 3) some datasets exhibit poor quality, e.g., RedWeb (also
low resolution) [67]. Despite using fewer labeled images,

Dataset Indoor Outdoor Label # Images

Labeled Datasets

BlendedMVS [77] ✓ ✓ Stereo 115K
DIML [13] ✓ ✓ Stereo 927K
HRWSI [68] ✓ ✓ Stereo 20K
IRS [62] ✓ Stereo 103K
MegaDepth [33] ✓ SfM 128K
TartanAir [63] ✓ ✓ Stereo 306K

Unlabeled Datasets

BDD100K [82] ✓ None 8.2M
Google Landmarks [65] ✓ None 4.1M
ImageNet-21K [50] ✓ ✓ None 13.1M
LSUN [81] ✓ None 9.8M
Objects365 [53] ✓ ✓ None 1.7M
Open Images V7 [30] ✓ ✓ None 7.8M
Places365 [88] ✓ ✓ None 6.5M
SA-1B [27] ✓ ✓ None 11.1M

Table 1. In total, our Depth Anything is trained on 1.5M labeled
images and 62M unlabeled images jointly.

our easy-to-acquire and diverse unlabeled images will com-
prehend the data coverage and greatly enhance the model
generalization ability and robustness.

Furthermore, to strengthen the teacher model T learned
from these labeled images, we adopt the DINOv2 [43] pre-
trained weights to initialize our encoder. In practice, we
apply a pre-trained semantic segmentation model [70] to de-
tect the sky region, and set its disparity value as 0 (farthest).

3.2. Unleashing the Power of Unlabeled Images

This is the main point of our work. Distinguished from prior
works that laboriously construct diverse labeled datasets,
we highlight the value of unlabeled images in enhancing
the data coverage. Nowadays, we can practically build a
diverse and large-scale unlabeled set from the Internet or
public datasets of various tasks. Also, we can effortlessly
obtain the dense depth map of monocular unlabeled images
simply by forwarding them to a pre-trained well-performed
MDE model. This is much more convenient and efficient
than performing stereo matching or SfM reconstruction for
stereo images or videos. We select eight large-scale public
datasets as our unlabeled sources for their diverse scenes.
They contain more than 62M images in total. The details are
provided in the bottom half of Table 1.

Technically, given the previously obtained MDE teacher
model T , we make predictions on the unlabeled set Du to
obtain a pseudo labeled set D̂u:

D̂u = {(ui, T (ui))|ui ∈ Du}Ni=1. (4)

With the combination set Dl ∪ D̂u of labeled images and
pseudo labeled images, we train a student model S on it.
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Figure 2. Our pipeline. Solid line: flow of labeled images, dotted line: unlabeled images. We especially highlight the value of large-scale
unlabeled images. The S denotes adding strong perturbations (Section 3.2). To equip our depth estimation model with rich semantic priors,
we enforce an auxiliary constraint between the online student model and a frozen encoder to preserve the semantic capability (Section 3.3).

Following prior works [74], instead of fine-tuning S from T ,
we re-initialize S for better performance.

Unfortunately, in our pilot studies, we failed to gain im-
provements with such a self-training pipeline, which indeed
contradicts the observations when there are only a few la-
beled images [56]. We conjecture that, with already suffi-
cient labeled images in our case, the extra knowledge ac-
quired from additional unlabeled images is rather limited.
Especially considering the teacher and student share the
same pre-training and architecture, they tend to make similar
correct or false predictions on the unlabeled set Du, even
without the explicit self-training procedure.

To address the dilemma, we propose to challenge the stu-
dent with a more difficult optimization target for additional
visual knowledge on unlabeled images. We inject strong per-
turbations to unlabeled images during training. It compels
our student model to actively seek extra visual knowledge
and acquire invariant representations from these unlabeled
images. These advantages help our model deal with the open
world more robustly. We introduce two forms of perturba-
tions: one is strong color distortions, including color jittering
and Gaussian blurring, and the other is strong spatial dis-
tortion, which is CutMix [84]. Despite the simplicity, the
two modifications make our large-scale unlabeled images
significantly improve the baseline of labeled images.

We provide more details about CutMix. It was originally
proposed for image classification, and is rarely explored in
monocular depth estimation. We first interpolate a random
pair of unlabeled images ua and ub spatially:

uab = ua ⊙M + ub ⊙ (1−M), (5)

where M is a binary mask with a rectangle region set as 1.
The unlabeled loss Lu is obtained by first computing

affine-invariant losses in valid regions defined by M and
1−M , respectively:

LM
u = ρ

(
S(uab)⊙M, T (ua)⊙M

)
, (6)

L1−M
u = ρ

(
S(uab)⊙ (1−M), T (ub)⊙ (1−M)

)
, (7)

where we omit the
∑

and pixel subscript i for simplicity.
Then we aggregate the two losses via weighted averaging:

Lu =

∑
M

HW
LM
u +

∑
(1−M)

HW
L1−M
u . (8)

We use CutMix with 50% probability. The unlabeled
images for CutMix are already strongly distorted in color,
but the unlabeled images fed into the teacher model T for
pseudo labeling are clean, without any distortions.

3.3. Semantic-Assisted Perception

There exist some works [9, 21, 28, 72] improving depth es-
timation with an auxiliary semantic segmentation task. We
believe that arming our depth estimation model with such
high-level semantic-related information is beneficial. Be-
sides, in our specific context of leveraging unlabeled images,
these auxiliary supervision signals from other tasks can also
combat the potential noise in our pseudo depth label.

Therefore, we made an initial attempt by carefully assign-
ing semantic segmentation labels to our unlabeled images
with a combination of RAM [86] + GroundingDINO [38] +
HQ-SAM [26] models. After post-processing, this yields a
class space containing 4K classes. In the joint-training stage,
the model is enforced to produce both depth and segmenta-
tion predictions with a shared encoder and two individual
decoders. Unfortunately, after trial and error, we still could
not boost the performance of the original MDE model. We
speculated that, decoding an image into a discrete class space
indeed loses too much semantic information. The limited
information in these semantic masks is hard to further boost
our depth model, especially when our depth model has es-
tablished very competitive results.

Therefore, we aim to seek more informative semantic sig-
nals to serve as auxiliary supervision for our depth estimation
task. We are greatly astonished by the strong performance
of DINOv2 models [43] in semantic-related tasks, e.g., im-
age retrieval and semantic segmentation, even with frozen
weights without any fine-tuning. Motivated by these clues,
we propose to transfer its strong semantic capability to our
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Method Encoder
KITTI [18] NYUv2 [55] Sintel [7] DDAD [20] ETH3D [52] DIODE [60]

AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1

MiDaS v3.1 [5] ViT-L 0.127 0.850 0.048 0.980 0.587 0.699 0.251 0.766 0.139 0.867 0.075 0.942

Depth Anything
ViT-S 0.080 0.936 0.053 0.972 0.464 0.739 0.247 0.768 0.127 0.885 0.076 0.939
ViT-B 0.080 0.939 0.046 0.979 0.432 0.756 0.232 0.786 0.126 0.884 0.069 0.946
ViT-L 0.076 0.947 0.043 0.981 0.458 0.760 0.230 0.789 0.127 0.882 0.066 0.952

Table 2. Zero-shot relative depth estimation. Better: AbsRel ↓ , δ1 ↑. We compare with the best model from MiDaS v3.1. Note that MiDaS
does not strictly follow the zero-shot evaluation on KITTI and NYUv2, because it uses their training images. We provide three model scales
for different purposes, based on ViT-S (24.8M), ViT-B (97.5M), and ViT-L (335.3M), respectively. Best, second best results.

depth model with an auxiliary feature alignment loss. The
feature space is high-dimensional and continuous, thus con-
taining richer semantic information than discrete masks. The
feature alignment loss is formulated as:

Lfeat = 1− 1

HW

HW∑
i=1

cos(fi, f
′
i), (9)

where cos(·, ·) measures the cosine similarity between two
feature vectors. f is the feature extracted by the depth model
S, while f ′ is the feature from a frozen DINOv2 encoder.
We do not follow some works [19] to project the online
feature f into a new space for alignment, because a randomly
initialized projector makes the large alignment loss dominate
the overall loss in the early stage.

Another key point in feature alignment is that, semantic
encoders like DINOv2 tend to produce similar features for
different parts of an object, e.g., car front and rear. In depth
estimation, however, different parts or even pixels within the
same part, can be of varying depth. Thus, it is not beneficial
to exhaustively enforce our depth model to produce exactly
the same features as the frozen encoder.

To solve this issue, we set a tolerance margin α for the
feature alignment. If the cosine similarity of fi and f ′

i has
surpassed α, this pixel will not be considered in our Lfeat.
This allows our method to enjoy both the semantic-aware
representation from DINOv2 and the part-level discrimina-
tive representation from depth supervision. As a side effect,
our produced encoder not only performs well in downstream
MDE datasets, but also achieves strong results in the seman-
tic segmentation task. It also indicates the potential of our
encoder to serve as a universal multi-task encoder for both
middle-level and high-level perception tasks.

Finally, our overall loss is an average combination of the
three losses Ll, Lu, and Lfeat.

4. Experiment
4.1. Implementation Details

We adopt the DINOv2 encoder [43] for feature extraction.
Following MiDaS [5, 46], we use the DPT [47] decoder for

depth regression. All labeled datasets are simply combined
together without re-sampling. In the first stage, we train a
teacher model on labeled images for 20 epochs. In the second
stage of joint training, we train a student model to sweep
across all unlabeled images for one time. The unlabeled
images are annotated by a best-performed teacher model
with a ViT-L encoder. The ratio of labeled and unlabeled
images is set as 1:2 in each batch. In both stages, the base
learning rate of the pre-trained encoder is set as 5e-6, while
the randomly initialized decoder uses a 10× larger learning
rate. We use the AdamW optimizer and decay the learning
rate with a linear schedule. We only apply horizontal flipping
as our data augmentation for labeled images. The tolerance
margin α for feature alignment loss is set as 0.15. For more
details, please refer to our appendix.

4.2. Zero-Shot Relative Depth Estimation

As aforementioned, this work aims to provide accurate
depth estimation for any image. Therefore, we compre-
hensively validate the zero-shot depth estimation capability
of our Depth Anything model on six representative unseen
datasets: KITTI [18], NYUv2 [55], Sintel [7], DDAD [20],
ETH3D [52], and DIODE [60]. We compare with the best
DPT-BEiTL-512 model from the latest MiDaS v3.1 [5], which
uses more labeled images than us. As shown in Table 2,
both with a ViT-L encoder, our Depth Anything surpasses
the strongest MiDaS model tremendously across extensive
scenes in terms of both the AbsRel (absolute relative error:
|d∗−d|/d) and δ1 (percentage of max(d∗/d, d/d∗) < 1.25)
metrics. For example, when tested on the well-known au-
tonomous driving dataset DDAD [20], we improve the Ab-
sRel (↓) from 0.251 → 0.230 and improve the δ1 (↑) from
0.766 → 0.789.

Besides, our ViT-B model is already clearly superior to
the MiDaS based on a much larger ViT-L. Moreover, our
ViT-S model, whose scale is less than 1/10 of the MiDaS
model, even outperforms MiDaS on several unseen datasets,
including Sintel, DDAD, and ETH3D. The performance
advantage of these small-scale models demonstrates their
great potential in computationally-constrained scenarios.

It is also worth noting that, on the most widely used MDE
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Method
Higher is better ↑ Lower is better ↓

δ1 δ2 δ3 AbsRel RMSE log10

AdaBins [3] 0.903 0.984 0.997 0.103 0.364 0.044
DPT [47] 0.904 0.988 0.998 0.110 0.357 0.045

P3Depth [44] 0.898 0.981 0.996 0.104 0.356 0.043
SwinV2-L [40] 0.949 0.994 0.999 0.083 0.287 0.035

AiT [42] 0.954 0.994 0.999 0.076 0.275 0.033
VPD [87] 0.964 0.995 0.999 0.069 0.254 0.030

ZoeDepth∗ [4] 0.951 0.994 0.999 0.077 0.282 0.033

Ours 0.984 0.998 1.000 0.056 0.206 0.024

Table 3. Fine-tuning and evaluating on NYUv2 [55] with our
pre-trained MDE encoder. We highlight best, second best results,
as well as most discriminative metrics. ∗: Reproduced by us.

benchmarks KITTI and NYUv2, although MiDaS v3.1 uses
the corresponding training images (not zero-shot anymore),
our Depth Anything is still evidently superior to it without
training with any KITTI or NYUv2 images, e.g., 0.127 vs.
0.076 in AbsRel and 0.850 vs. 0.947 in δ1 on KITTI.

4.3. Fine-tuned to Metric Depth Estimation

Apart from the impressive performance in zero-shot relative
depth estimation, we further examine our Depth Anything
model as a promising weight initialization for downstream
metric depth estimation. We initialize the encoder of down-
stream MDE models with our pre-trained encoder parameters
and leave the decoder randomly initialized. The model is
fine-tuned with correponding metric depth information. In
this part, we use our ViT-L encoder for fine-tuning.

We examine two representative scenarios: 1) in-domain
metric depth estimation, where the model is trained and
evaluated on the same domain (Section 4.3.1), and 2) zero-
shot metric depth estimation, where the model is trained on
one domain, e.g., NYUv2 [55], but evaluated in different
domains, e.g., SUN RGB-D [57] (Section 4.3.2).

4.3.1 In-Domain Metric Depth Estimation

As shown in Table 3 of NYUv2 [55], our model outperforms
the previous best method VPD [87] remarkably, improving
the δ1 (↑) from 0.964 → 0.984 and AbsRel (↓) from 0.069
to 0.056. Similar improvements can be observed in Table 4
of the KITTI dataset [18]. We improve the δ1 (↑) on KITTI
from 0.978 → 0.982. It is worth noting that we adopt the
ZoeDepth framework for this scenario with a relatively ba-
sic depth model, and we believe our results can be further
enhanced if equipped with more advanced architectures.

4.3.2 Zero-Shot Metric Depth Estimation

We follow ZoeDepth [4] to conduct zero-shot metric depth
estimation. ZoeDepth fine-tunes the MiDaS pre-trained en-

Method
Higher is better ↑ Lower is better ↓

δ1 δ2 δ3 AbsRel RMSE RMSE log

AdaBins [3] 0.964 0.995 0.999 0.058 2.360 0.088
DPT [47] 0.959 0.995 0.999 0.062 2.573 0.092

P3Depth [44] 0.953 0.993 0.998 0.071 2.842 0.103
NeWCRFs [83] 0.974 0.997 0.999 0.052 2.129 0.079
SwinV2-L [40] 0.977 0.998 1.000 0.050 1.966 0.075
NDDepth [54] 0.978 0.998 0.999 0.050 2.025 0.075
GEDepth [76] 0.976 0.997 0.999 0.048 2.044 0.076

ZoeDepth∗ [4] 0.971 0.996 0.999 0.054 2.281 0.082

Ours 0.982 0.998 1.000 0.046 1.896 0.069

Table 4. Fine-tuning and evaluating on KITTI [18] with our
pre-trained MDE encoder. ∗: Reproduced by us.

coder with metric depth information from NYUv2 [55] (for
indoor scenes) or KITTI [18] (for outdoor scenes). There-
fore, we simply replace the MiDaS encoder with our bet-
ter Depth Anything encoder, leaving other components un-
changed. As shown in Table 5, across a wide range of unseen
datasets of indoor and outdoor scenes, our Depth Anything
results in a better metric depth estimation model than the
original ZoeDepth based on MiDaS.

4.4. Fine-tuned to Semantic Segmentation

In our method, we design our MDE model to inherit the
rich semantic priors from a pre-trained encoder via a sim-
ple feature alignment constraint. Here, we examine the
semantic capability of our MDE encoder. Specifically, we
fine-tune our MDE encoder to downstream semantic segmen-
tation datasets. As exhibited in Table 7 of the Cityscapes
dataset [15], our encoder from large-scale MDE training
(86.2 mIoU) is superior to existing encoders from large-scale
ImageNet-21K pre-training, e.g., Swin-L [39] (84.3) and
ConvNeXt-XL [41] (84.6). Similar observations hold on the
ADE20K dataset [89] in Table 8. We improve the previous
best result from 58.3 → 59.4.

We hope to highlight that, witnessing the superiority of
our pre-trained encoder on both monocular depth estimation
and semantic segmentation tasks, we believe it has great
potential to serve as a generic multi-task encoder for both
middle-level and high-level visual perception systems.

4.5. Ablation Studies

Unless otherwise specified, we use the ViT-L encoder for
our ablation studies here.

Zero-shot transferring of each training dataset. In Ta-
ble 6, we provide the zero-shot transferring performance of
each training dataset, which means that we train a relative
MDE model on one training set and evaluate it on the six
unseen datasets. With these results, we hope to offer more
insights for future works that similarly aim to build a general
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Method
SUN RGB-D [57] iBims-1 [29] HyperSim [49] Virtual KITTI 2 [8] DIODE Outdoor [60]

AbsRel (↓) δ1 (↑) AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1

ZoeDepth [4] 0.520 0.545 0.169 0.656 0.407 0.302 0.106 0.844 0.814 0.237
Depth Anything 0.500 0.660 0.150 0.714 0.363 0.361 0.085 0.913 0.794 0.288

Table 5. Zero-shot metric depth estimation. The first three test sets in the header are indoor scenes, while the last two are outdoor scenes.
Following ZoeDepth, we use the model trained on NYUv2 for indoor generalization, while use the model trained on KITTI for outdoor
evaluation. For fair comparisons, we report the ZoeDepth results reproduced in our environment.

Training set
KITTI [18] NYUv2 [55] Sintel [7] DDAD [20] ETH3D [52] DIODE [60] Mean

AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1 AbsRel δ1

BlendedMVS [77] 0.089 0.918 0.068 0.958 0.556 0.689 0.305 0.731 0.148 0.845 0.092 0.921 0.210 0.844
DIML [13] 0.099 0.907 0.055 0.969 0.573 0.722 0.381 0.657 0.142 0.859 0.107 0.908 0.226 0.837
HRWSI [68] 0.095 0.917 0.062 0.966 0.502 0.731 0.270 0.750 0.186 0.775 0.087 0.935 0.200 0.846
IRS [62] 0.105 0.892 0.057 0.970 0.568 0.714 0.328 0.691 0.143 0.845 0.088 0.926 0.215 0.840
MegaDepth [33] 0.217 0.741 0.071 0.953 0.632 0.660 0.479 0.566 0.142 0.852 0.104 0.910 0.274 0.780
TartanAir [63] 0.088 0.920 0.061 0.964 0.602 0.723 0.332 0.690 0.160 0.818 0.088 0.928 0.222 0.841

All labeled data 0.085 0.934 0.053 0.971 0.492 0.748 0.245 0.771 0.134 0.874 0.070 0.945 0.180 0.874

Table 6. Examine the zero-shot transferring performance of each labeled training set (left) to six unseen datasets (top). Better performance:
AbsRel ↓ , δ1 ↑. We highlight the best, second, and third best results for each test dataset in bold, underline, and italic, respectively.

Method Encoder mIoU (s.s.) m.s.

Segmenter [58] ViT-L [16] - 82.2
SegFormer [70] MiT-B5 [70] 82.4 84.0

Mask2Former [12] Swin-L [39] 83.3 84.3
OneFormer [24] Swin-L [39] 83.0 84.4
OneFormer [24] ConvNeXt-XL [41] 83.6 84.6

DDP [25] ConvNeXt-L [41] 83.2 83.9

Ours ViT-L [16] 84.8 86.2

Table 7. Transferring our MDE pre-trained encoder to Cityscapes
for semantic segmentation. We do not use Mapillary [1] for pre-
training. s.s./m.s.: single-/multi-scale evaluation.

monocular depth estimation system. Among the six training
datasets, HRWSI [68] fuels our model with the strongest
generalization ability, even though it only contains 20K im-
ages. This indicates the data diversity counts a lot, which
is well aligned with our motivation to utilize unlabeled im-
ages. Some labeled datasets may not perform very well, e.g.,
MegaDepth [33], however, it has its own preferences that
are not reflected in these six test datasets. For example, we
find models trained with MegaDepth data are specialized at
estimating the distance of ultra-remote buildings (Figure 1),
which will be very beneficial for aerial vehicles.

Effectiveness of 1) challenging the student model when
learning unlabeled images, and 2) semantic constraint.
As shown in Table 9, simply adding unlabeled images with
pseudo labels does not necessarily bring gains to our model,

Method Encoder mIoU

Segmenter [58] ViT-L [16] 51.8
SegFormer [70] MiT-B5 [70] 51.0

Mask2Former [12] Swin-L [39] 56.4
UperNet [69] BEiT-L [2] 56.3

ViT-Adapter [11] BEiT-L [2] 58.3
OneFormer [24] Swin-L [39] 57.4
OneFormer [24] ConNeXt-XL [41] 57.4

Ours ViT-L [16] 59.4

Table 8. Transferring our MDE encoder to ADE20K for semantic
segmentation. We use Mask2Former as our segmentation model.

since the labeled images are already sufficient. However,
with strong perturbations (S) applied to unlabeled images
during re-training, the student model is challenged to seek
additional visual knowledge and learn more robust repre-
sentations. Consequently, the large-scale unlabeled images
enhance the model generalization ability significantly.

Moreover, with our used semantic constraint Lfeat, the
power of unlabeled images can be further amplified for the
depth estimation task. More importantly, as emphasized in
Section 4.4, this auxiliary constraint also enables our trained
encoder to serve as a key component in a multi-task visual
system for both middle-level and high-level perception.

Comparison with MiDaS trained encoder in downstream
tasks. Our Depth Anything model has exhibited stronger
zero-shot capability than MiDaS [5, 46]. Here, we further
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Figure 3. Qualitative results on six unseen datasets.

Ll Lu S Lfeat KI NY SI DD ET DI

✓ 0.085 0.053 0.492 0.245 0.134 0.070
✓ ✓ 0.085 0.054 0.481 0.242 0.138 0.073
✓ ✓ ✓ 0.081 0.048 0.469 0.235 0.134 0.068
✓ ✓ ✓ ✓ 0.076 0.043 0.458 0.230 0.127 0.066

Table 9. Ablation studies of: 1) challenging the student with strong
perturbations (S) when learning unlabeled images, and 2) semantic
constraint (Lfeat). Limited by space, we only report the AbsRel
(↓) metric, and shorten the dataset name with its first two letters.

Method
NYUv2 KITTI Cityscapes ADE20K

AbsRel δ1 AbsRel δ1 mIoU mIoU

MiDaS 0.077 0.951 0.054 0.971 82.1 52.4
Ours 0.056 0.984 0.046 0.982 84.8 59.4

Table 10. Comparison between our trained encoder and MiDaS [5]
trained encoder in terms of downstream fine-tuning performance.
Better performance: AbsRel ↓ , δ1 ↑ , mIoU ↑ .

compare our trained encoder with MiDaS v3.1 [5] trained
encoder in terms of the downstream fine-tuning performance.
As demonstrated in Table 10, on both the downstream depth
estimation task and semantic segmentation task, our pro-
duced encoder outperforms the MiDaS encoder remarkably,
e.g., 0.951 vs. 0.984 in the δ1 metric on NYUv2, and 52.4
vs. 59.4 in the mIoU metric on ADE20K.

Comparison with DINOv2 in downstream tasks. We have
demonstrated the superiority of our trained encoder when
fine-tuned to downstream tasks. Since our finally produced
encoder (from large-scale MDE training) is fine-tuned from
DINOv2 [43], we compare our encoder with the original
DINOv2 encoder in Table 11. It can be observed that our
encoder performs better than the original DINOv2 encoder
in both the downstream metric depth estimation task and
semantic segmentation task. Although the DINOv2 weight
has provided a very strong initialization (also much better
than the MiDaS encoder as reported in Table 10), our large-
scale and high-quality MDE training can further enhance it

Ours MiDaS Ours MiDaS

Figure 4. We compare our depth prediction with MiDaS. Meantime,
we use ControlNet to synthesize new images from the depth map
(the last row). First row: input image, second row: depth prediction.

Encoder
NYUv2 KITTI ADE20K

AbsRel (↓) δ1 (↑) AbsRel δ1 mIoU (↑)

DINOv2 0.066 0.973 0.058 0.971 58.8
Ours 0.056 0.984 0.046 0.982 59.4

Table 11. Comparison between the original DINOv2 and our pro-
duced encoder in terms of downstream fine-tuning performance.

impressively in downstream transferring performance.

4.6. Qualitative Results

We visualize our model predictions on the six unseen datasets
in Figure 3. Our model is robust to test images from various
domains. In addition, we compare our model with MiDaS
in Figure 4. We also attempt to synthesis new images con-
ditioned on the predicted depth maps with ControlNet [85].
Our model produces more accurate depth estimation than
MiDaS, as well as better synthesis results, although the Con-
trolNet is trained with MiDaS depth. For more accurate
synthesis, we have also re-trained a better depth-conditioned
ControlNet based on our Depth Anything, aiming to provide
better control signals for image synthesis and video editing.
Please refer to our project page for more qualitative results
on video editing [35] with our Depth Anything.

5. Conclusion
In this work, we present Depth Anything, a highly practical
solution to robust monocular depth estimation. Different
from prior arts, we especially highlight the value of cheap
and diverse unlabeled images. We design two simple yet
highly effective strategies to fully exploit their value: 1)
posing a more challenging optimization target when learning
unlabeled images, and 2) preserving rich semantic priors
from pre-trained models. As a result, our Depth Anything
model exhibits excellent zero-shot depth estimation ability,
and also serves as a promising initialization for downstream
metric depth estimation and semantic segmentation tasks.
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6. More Implementation Details

We resize the shorter side of all images to 518 and keep the
original aspect ratio. All images are cropped to 518×518
during training. During inference, we do not crop images
and only ensure both sides are multipliers of 14, since the
pre-defined patch size of DINOv2 encoders [43] is 14. Eval-
uation is performed at the original resolution by interpolating
the prediction. Following MiDaS [5, 46], in zero-shot eval-
uation, the scale and shift of our prediction are manually
aligned with the ground truth.

When fine-tuning our pre-trained encoder to metric depth
estimation, we adopt the ZoeDepth codebase [4]. We merely
replace the original MiDaS-based encoder with our stronger
Depth Anything encoder, with a few hyper-parameters mod-
ified. Concretely, the training resolution is 392×518 on
NYUv2 [55] and 384×768 on KITTI [18] to match the
patch size of our encoder. The encoder learning rate is
set as 1/50 of the learning rate of the randomly initialized
decoder, which is much smaller than the 1/10 adopted for
MiDaS encoder, due to our strong initialization. The batch
size is 16 and the model is trained for 5 epochs.

When fine-tuning our pre-trained encoder to semantic seg-
mentation, we use the MMSegmentation codebase [14]. The
training resolution is set as 896×896 on both ADE20K [89]
and Cityscapes [15]. The encoder learning rate is set as
3e-6 and the decoder learning rate is 10× larger. We use
Mask2Former [12] as our semantic segmentation model. The
model is trained for 160K iterations on ADE20K and 80K
iterations on Cityscapes both with batch size 16, without
any COCO [36] or Mapillary [1] pre-training. Other training
configurations are the same as the original codebase.

7. More Ablation Studies

All ablation studies here are conducted on the ViT-S model.

The necessity of tolerance margin for feature alignment.
As shown in Table 12, the gap between the tolerance margin
of 0 and 0.15 or 0.30 clearly demonstrates the necessity of
this design (mean AbsRel: 0.188 vs. 0.175).

Applying feature alignment to labeled data. Previously,
we enforce the feature alignment loss Lfeat on unlabeled
data. Indeed, it is technically feasible to also apply this
constraint to labeled data. In Table 13, apart from applying
Lfeat on unlabeled data, we explore to apply it to labeled
data. We find that adding this auxiliary optimization target
to labeled data is not beneficial to our baseline that does not
involve any feature alignment (their mean AbsRel values are
almost the same: 0.180 vs. 0.179). We conjecture that this is

α KITTI NYU Sintel DDAD ETH3D DIODE Mean

0.00 0.085 0.055 0.523 0.250 0.134 0.079 0.188
0.15 0.080 0.053 0.464 0.247 0.127 0.076 0.175
0.30 0.079 0.054 0.482 0.248 0.127 0.077 0.178

Table 12. Ablation studies on different values of the tolerance
margin α for the feature alignment loss Lfeat. Limited by space,
we only report the AbsRel (↓) metric here.

Lfeat Unseen datasets (AbsRel ↓) Mean
U L KITTI NYU Sintel DDAD ETH3D DIODE

0.083 0.055 0.478 0.249 0.133 0.080 0.180
✓ 0.080 0.053 0.464 0.247 0.127 0.076 0.175

✓ 0.084 0.054 0.472 0.252 0.133 0.081 0.179

Table 13. Ablation studies of applying our feature alignment loss
Lfeat to unlabeled data (U) or labeled data (L).

because the labeled data has relatively higher-quality depth
annotations. The involvement of semantic loss may interfere
with the learning of these informative manual labels. In com-
parison, our pseudo labels are noisier and less informative.
Therefore, introducing the auxiliary constraint to unlabeled
data can combat the noise in pseudo depth labels, as well as
arm our model with semantic capability.

8. Limitations and Future Works
Currently, the largest model size is only constrained to ViT-
Large [16]. Therefore, in the future, we plan to further scale
up the model size from ViT-Large to ViT-Giant, which is
also well pre-trained by DINOv2 [43]. We can train a more
powerful teacher model with the larger model, producing
more accurate pseudo labels for smaller models to learn, e.g.,
ViT-L and ViT-B. Furthermore, to facilitate real-world ap-
plications, we believe the widely adopted 512×512 training
resolution is not enough. We plan to re-train our model on a
larger resolution of 700+ or even 1000+.

9. More Qualitative Results
Please refer to the following pages for comprehensive quali-
tative results on six unseen test sets (Figure 5 for KITTI [18],
Figure 6 for NYUv2 [55], Figure 7 for Sintel [7], Figure 8
for DDAD [20], Figure 9 for ETH3D [52], and Figure 10
for DIODE [60]). We compare our model with the strongest
MiDaS model [5], i.e., DPT-BEiTL-512. Our model exhibits
higher depth estimation accuracy and stronger robustness.
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Input image Our prediction MiDaS v3.1 prediction

Figure 5. Qualitative results on KITTI. Due to the extremely sparse ground truth which is hard to visualize, we here compare our prediction
with the most advanced MiDaS v3.1 [5] prediction. The brighter color denotes the closer distance.

10



Input image Our prediction MiDaS v3.1 prediction

Figure 6. Qualitative results on NYUv2. It is worth noting that MiDaS [5] uses NYUv2 training data (not zero-shot), while we do not.
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Input image Our prediction MiDaS v3.1 prediction

Figure 7. Qualitative results on Sintel.
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Input image Our prediction MiDaS v3.1 prediction Input image Our prediction MiDaS v3.1 prediction

Figure 8. Qualitative results on DDAD.
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Input image Our prediction MiDaS v3.1 prediction

Figure 9. Qualitative results on ETH3D.
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Input image Our prediction MiDaS v3.1 prediction

Figure 10. Qualitative results on DIODE.
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