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Figure 1. DreamWalker is a virtual reality system that enables users to walk in (A) an uncontrolled, previously unscanned outdoor world while (B) 
real-walking and staying immersed inside a large virtual reality environment. (C) In real-time, DreamWalker fuses two RGB depth sensors, Windows 
Mixed Reality’s inside-out tracking, and GPS position frames in its positioning system to compute a walking map and guide the user through the 
space collision-free. This debug image results from DreamWalker’s tracking, showing the detected ad-hoc and dynamic obstacles (people) as cubes 
and cylinders, respectively, and illustrates our three tracking sources: depth height map (rendered as a point cloud), GPS coordinates (purple), and 
Windows Mixed Reality tracking coordinates (cyan). Yellow lines represent DreamWalker’s matches between coordinates to compensate for drift across 
tracking sources. 

ABSTRACT 
We explore a future in which people spend considerably more 
time in virtual reality, even during moments when they tran-
sition between locations in the real world. In this paper, we 
present DreamWalker, a VR system that enables such real-
world walking while users explore and stay fully immersed 
inside large virtual environments in a headset. Provided with a 
real-world destination, DreamWalker finds a similar path in a 
pre-authored VR environment and guides the user while real-
walking the virtual world. To keep the user from colliding with 
objects and people in the real-world, DreamWalker’s tracking 
system fuses GPS locations, inside-out tracking, and RGBD 
frames to 1) continuously and accurately position the user in 
the real world, 2) sense walkable paths and obstacles in real 
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time, and 3) represent paths through a dynamically changing 
scene in VR to redirect the user towards the chosen destina-
tion. We demonstrate DreamWalker’s versatility by enabling 
users to walk three paths across the large Microsoft campus 
while enjoying pre-authored VR worlds, supplemented with a 
variety of obstacle avoidance and redirection techniques. In 
our evaluation, 8 participants walked across campus along a 
15-minute route, experiencing a lively virtual Manhattan that 
was full of animated cars, people, and other objects. 

Author Keywords 
VR; Real-walking; Redirection; Tracking; Inside-out; GPS. 

INTRODUCTION 
The latest wave of mobile technologies has been pushing vir-
tual reality (VR) systems into the consumer market. Customers 
can now readily get their hands on affordable standalone de-
vices on the go [10, 16], unleashed from stationary and cum-
bersome tracking systems and the headsets used in former 
decades. Current headsets track the user’s motions inside-out, 
relying only on sensors inside the headset and thus allow the 
user to freely move about their surroundings. 
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Application developers are seizing the opportunity and are 
releasing a manifold of content to consumers. Starting with 
popular games [22], collaborative environments [11] and pro-
ductivity applications were quick to follow [2]. Major software 
development companies, too, have announced porting their 
offerings to VR [41]. 

Therefore, we believe that future computer users will spend 
significantly more time in VR, where they remain immersed 
in entertainment, education, and work environments for long 
periods of time. It is entirely possible that future VR users may 
interrupt their VR sessions merely to accomplish real-world 
activities such as bathroom breaks or going to sleep. 

We also believe that future VR users will still partake in real-
world activities despite experiencing prolonged VR sessions. 
Until such a future arrives, people will at the very least retain 
the need to repeatedly visit various physical places, be it com-
muting to work, walking to the grocery store, or traveling to 
remote destinations. 

In this paper, we explore to what extent the sometimes mun-
dane experience of such real-world activities can be substi-
tuted by entertaining VR experiences. We choose walking task 
that we still expect future users to perform—albeit immersed 
in VR while actually walking in the real world. We present 
DreamWalker, a VR system that guides users through the large 
outdoor real-world to target destinations while enabling them 
to explore a virtual world through real-walking. 

DreamWalker: Real-Walking a Virtual Reality 
Figure 1 shows DreamWalker in operation. A company em-
ployee needs to walk to a different building across campus, 
a task he carries out multiple times a week. To spice up his 
routine walk, he exits the building, puts on DreamWalker’s 
mobile VR system (Figure 1a), selects a target destination in 
the system on a map, and enters the virtual world. The system 
places him in Manhattan’s downtown area in VR (b), full of 
tall buildings, traffic, people standing, walking, and running 
into various directions—a seemingly wide-open space, infi-
nite, and ready for exploration. The user starts walking and is 
guided by an arrow. Cars move and people run, but the user 
finds ways to follow the arrow’s navigation, thereby follow-
ing and crossing virtual streets, squares, and parks—all while 
using real-walking as the sole locomotion technique inside 
VR. 

Behind the (VR) scenes, DreamWalker ensures that the user 
safely reaches their real-world destination through visual 
(re)direction at normal walking speeds, detecting obstacles 
along the way and presenting corresponding VR objects to 
prevent collisions. DreamWalker fuses the data streams from 
two RGB depth cameras, optical inside-out tracking, and GPS 
position data in real-time to detect the user’s surrounding 3D 
obstacles and other people. DreamWalker tracks the user’s 3D 
environment (Figure 1c) and continuously updates a map of 
walkable areas that is registered with real-world coordinates 
and landmarks, such as buildings and walkable paths. Dream-
Walker then represents real-world obstacles through static and 
animated virtual elements and predicts the path forward based 
on walkable spaces to navigate the user through VR. 

In this paper, we make four specific contributions: 

1. a real-time tracking and positioning system that accurately 
maintains the user’s real-world location while walking in previ-
ously unseen and unscanned physical environments, achieved 
by fusing Windows Mixed Reality’s inside-out tracking, fil-
tered low-accuracy GPS positions, and RGB depth frames, 

2. an obstacle detection system that extracts surrounding static 
and dynamic physical objects from the moving head-mounted 
RGB depth sensor on-the-fly while walking, achieved through 
spatially registering, filtering, and classifying depth environ-
ments without the need for pre-scanning the environment, 

3. three obstacle avoidance and redirection rendering tech-
niques that guide users through two large pre-authored virtual 
environments with different affordances (e.g., available spaces, 
turns, path widths), populated with static and dynamic objects 
that map to real-world obstacles, and 

4. a feasibility evaluation with 8 participants who real-walked 
a virtual and animated Manhattan scene and rated Dream-
Walker’s experience as immersive and enjoyable. 

Taken together, DreamWalker’s novelty is in the experience 
it enables through its real-time outdoor tracking system, per-
forming redirected walking beyond controlled rooms [38] or 
empty flat soccer fields [21]. DreamWalker works in unseen 
large-scale, uncontrolled and public areas on contiguous paths 
in the real-world that are void of moving vehicles. 

RELATED WORK 
DreamWalker is related to work in three categories: Wide-
area Augmented Reality/Virtual Reality, obstacle detection 
and environment construction, as well as redirected walking. 

Wide-area Augmented Reality and Virtual Reality 
A number of research and commercial projects have imple-
mented Augmented Reality (AR) systems in large uncontrolled 
environments. As users look at the world around them through 
AR displays, they can naturally navigate and avoid obstacles. 
However, the view of the real world also limits the scope of 
the applications that are supported. 

For example, Human Pacman [8] implemented a mixed reality 
game that blends virtual objects into real environments. The 
paper reports that walking inside the real world gave users a 
high level of sensory gratification in the game. Pokémon Go is 
a GPS-based mobile AR game that entices the user to interact 
with various location-based game elements while walking. 
Previous research also shows the risks of injury even when the 
physical environment is visible [32]. 

VR isolates the user from the surrounding world and allows for 
a complete visual overhaul of the surroundings. The resulting 
lack of physical feedback has confined most implementations 
to a controlled and mostly empty indoor environment [44]. 
Researchers have developed collision avoidance techniques 
between multiple users in the same space, such as by chang-
ing players’ appearances [27] or by redirecting users during 
game play to prevent overlapping physical spaces [19]. Re-
alityCheck [12] strikes a balance between both worlds and 
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selectively shows real-world objects such as furniture as part 
of a situated VR experience inside a room. 

Procedural generation 
Other research has investigated techniques for users to avoid 
real-world collisions while in VR. A popular technique is pro-
cedurally generating virtual geometry based on the known 
physical environment. Oasis leverages a pre-scanned repre-
sentation of a space to generate a virtual environment inside 
[33], creating a 1:1 mapping with obstacles in the real world. 
Keller et al. integrate the user’s surrounding game room into 
the virtual reality experience and enable real-walking within 
[15]. VR arcades, such as the Void [43], allow users to walk 
in a wide spaces while in VR. These arcades thereby provide 
passive props for the use of passive feedback during dedi-
cated gaming experiences. These examples use controlled 
indoor environments where all obstacles were either cleared 
or registered with the system before use. 

Perhaps closest to DreamWalker is our previous system 
VRoamer, which procedurally generates corridors and places 
pre-authored virtual rooms as the user real-walks open build-
ing spaces [7]. Although VRoamer also operates on previ-
ously unseen environments, it requires indoor environment 
with planar floors and large-enough obstacles. DreamWalker’s 
approach replaces VRoamer’s tracking pipeline by dynami-
cally detecting obstacles lower than ground including slopes, 
obstacles with small heights such as street curbs, non-planar 
vertical obstacles, and tracks people standing and walking 
around the user. DreamWalker additionally fuses it with GPS 
frames and correcting for drift in each of the three tracking 
sources. 

With DreamWalker, we take real-walking to the next level, 
enabling users to walk inside uncontrolled outdoor environ-
ments while simultaneously retrofitting a pre-authored virtual 
environment to the physical world. This makes a given vir-
tual environment walkable in contrast to making a walkable 
physical environment virtual. 

Redirected Walking 
DreamWalker redirects the user using content in VR to pre-
vent collisions with real-world obstacles. Redirected walking 
has been actively researched, starting with demonstrations to 
induce unintentional direction changes in users’ walks by im-
perceptibly rotating the virtual scene [24]. Follow-up work 
has evaluated the limits of tolerable redirection, such as inves-
tigations into allowable ranges of rotation and translational 
gains [36] and experiments on acoustic-based redirection [31]. 

Alternatively, researchers have produced virtual distractions 
to subtly redirect the user. Chen et al. elicited head motions 
from the user through such distractors [5], while VMotion 
introduced novel visibility control techniques that temporarily 
switch the user’s view and thus allow for redirections that 
are seamlessly integrated into virtual experiences [34, 35]. 
Langbehn et al. leveraged users’ blink events, during which 
they changed the environment [17], while Sun et al. exploited 
eye gaze saccades to hide rotational gains [38]. Other research 
has investigated how to apply redirected walking in real life 
(e.g., in irregular rooms [4, 14, 13]). Other related efforts have 
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Figure 2. Overview of DreamWalker’s system. 

investigated techniques to position the virtual world to more 
easily fit it into a small tracking space [42, 37]. 

Building on related techniques, but deviating from previous 
implementations, DreamWalker utilizes redirected walking to 
safely keep the user on differing virtual and real outdoor paths 
at the same time. 

Obstacle detection and environment reconstruction 
For environment reconstruction, related work has fused RGB 
depth images into 3D spaces (e.g., using SLAM [3, 23]). Oasis 
uses this to allow users to scan a physical environment and 
generates a VR environment inside [33]. Also related is pre-
liminary environment mapping for redirected walking, which 
constructs a map of obstacles in the user’s tracking space 
for later redirection [14]. Regarding obstacles, both previous 
projects consider anything above ground level as an obstruc-
tion. In DreamWalker, this assumption does not apply due to 
changing altitudes and inclinations in outdoor environments. 

Research on autonomous vehicles has explored sensing modal-
ities to detect obstacles around cars, such as by recognizing 
them using LIDAR depth data [9], RGB depth images [47], 
or from RGB input alone[39]. Car-based sensors benefit from 
statically mounted cameras with a steady perspective. Dream-
Walker, however, uses head-mounted sensors that move as the 
user looks around and shake during walking. 

DREAMWALKER’S SYSTEM DESIGN 
DreamWalker is a tracking and navigation system that guides 
users through VR environments using real-walking while redi-
recting them to reach a real-world destination. In order to 
achieve this, DreamWalker implements three main compo-
nents in its system as outlined in Figure 2: Path planning, 
Real-time environment detection, and a “Run” time. 

The input for path planning is a given real-world path and 
the virtual world that the user intends to real-walk in. Path 
planning then finds paths in the virtual world that match the 
real-world path as closely as possible, choosing the path with 
the lowest error. DreamWalker “resolves” the remaining differ-
ences during runtime through redirection and slight variation 
of the user’s virtual walking speed. Path planning identifies 
the locations where to apply such corrections and populates 
the virtual world with static objects that will prevent colli-
sions with real-world obstacles that are known a priori from 
mapping data (e.g., buildings, streets, etc.). 
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Figure 3. DreamWalker’s mobile virtual reality system, including sen-
sors, computing platform, and display device. 

Our real-time environment detection and runtime systems 
operate while walking to guide the user along the path. Dream-
Walker integrates three signal sources: 1) For 6-DOF inside-
out tracking, DreamWalker builds on the Windows Mixed 
Reality system, which provides a relative position trace that 
begins drifting noticeably after ˜100 feet. 2) For absolute po-
sitioning, DreamWalker uses a dual band GPS sensor, which 
provides a coarse real-world location at low update rates. 3) 
DreamWalker uses two RGB depth cameras to obtain real-
time information about the user’s immediate surroundings 
and obstacles. DreamWalker’s positioning system fuses and 
reconciles the data from all sources in real-time to estimate 
the user’s precise real-world location and redirects them in 
the virtual world to stay on the planned path. DreamWalker 
dynamically represents detected obstacles in VR to create an 
experience that matches the dynamic nature of the real world. 

Types of obstacles and their representation 
DreamWalker’s goal is preventing the user from colliding 
with obstacles. The tracking system must therefore detect 
obstacles reliably, in real time, and represent them to the user 
by generating virtual objects. We categorize obstacles based 
on the phase of operation in which they are detected: 

1. Static obstacles are obstacles represented in map data 
whose location is known at path planning time, such as build-
ing facades, columns, walls, staircases, fences, and other non-
walkable surfaces such as streets, intersections, patches of 
grass and so on. To prevent users from walking into such 
obstacles, DreamWalker blocks access to them by placing sta-
tionary virtual objects such as facades, cars, tables, hot dog 
stands, trashcans, barriers etc. 

2. Ad-hoc obstacles are physical obstacles that are not known 
at path planning time, but interfere with walkable areas and 
must thus be discovered on the fly. Ad-hoc obstacles are 
stationary but often are only recognizable when they are well 
in the field of view of the user, such as parked cars, trashcans, 
road blocks, pillars or even smaller obstacles such as potholes 
or drinking cans. While these ad-hoc obstacles do not move, 
their potentially only late discovery requires DreamWalker to 
represent them using virtual elements that dynamically appear, 
such as virtual characters or traffic cones. 

3. Dynamic obstacles are not known during path planning 
time either and must also be detected on the fly. Unlike ad-hoc 
obstacles, dynamic obstacles might move around or towards 
the user, for example other pedestrians, dogs, bikes, and cars. 
Similar to ad-hoc obstacles, DreamWalker represents dynamic 
obstacles as virtual characters that move within the virtual 
world to match the motion of their real-world counterparts. 

Implementation and system components 
DreamWalker runs on the HP OMEN Gaming Backpack with 
a GTX 1080 (Figure 3). The Windows Mixed Reality sys-
tem provides inside-out tracking on a Samsung Odyssey VR 
headset, updating sensed 6D locations at 90 Hz. Empirically, 
we measured 1 m of drift over a course of just 30 m through 
the inside-out tracking alone. Two Intel RealSense 425 cam-
eras provide RGB depth images, slightly angled and rotated 
90 degrees to achieve a large field of view (86◦ × 98◦). We 

built a custom adapter1 for the backpack computer that con-
verts Thunderbolt 3 to four USB 3 ports and thus supports the 
bandwidth required to stream both RGB depth cameras at a 
resolution of 640×480 (depth) and 640×480 (RGB) at 30 Hz. 
Finally, GPS data comes from the sensor inside a Xiaomi Mi 
8 phone, which features dual band (L1/L5) GPS and updates 
the real-world location with a theoretical accuracy of 0.3 m at 
1 Hz (though, empirically, the actual accuracy was ˜5 meters). 

We implemented DreamWalker in Unity 2018.2. While the 
core system runs at approximately 45 Hz, Windows Mixed 
Reality implements asynchronous time warp to interpolate 
frames and produces visuals at 90 Hz. 

To experiment on a large area that is representative of real 
environments, we tested DreamWalker on Microsoft’s large 
Redmond, WA campus. Using Openstreetmap data, we ver-
ified the accuracy of the annotated streets, paths, areas, and 
facades using satellite imagery and corrected them in Open-
streetmap when necessary. We also verified the correctness of 
path labels such as staircases vs. ramps and finally retrieved 
the contiguous network of traffic-free paths shown in Figure 4. 
The campus is a suitable testing ground, with paths and roads 
that contain plenty of ad-hoc obstacles (e.g., tables, chairs, 
benches, lanterns, pillars, trees) and standing and walking peo-
ple. Figure 4 highlights the three campus paths we show in 
our video figure (taking 8–15 minutes to walk), including the 
path participants walked during the evaluation (dotted, taking 
on average 15 minutes). 

We tested DreamWalker with two pre-authored virtual envi-
ronments that we downloaded from an online store. The first 
virtual world is downtown New York City 2, a large, walkable 
area with plenty of visual features, such as diverse and tall 
buildings, moving cars and buses, people on the sidewalks as 
well as stands, posters, and other features. The second world 
is Unity’s Viking Village3, a detailed ancient village area with 
narrow paths and turns, wooden buildings, beaches, and many 

1Custom adapter to mount depth cameras to the VR headset: 
https://aka.ms/dreamwalker_models 
2Manhattan Lower Part01 Low Poly on Turbosquid: 
https://www.turbosquid.com/3d-models/m/1074847 
3Viking village on Unity Asset store: 
https://assetstore.unity.com/packages/essentials/ 
tutorial-projects/viking-village-29140 
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Figure 4. Campus map of contiguous traffic-free paths with the three 
paths users walked (dotted line walked during the study). Dream-
Walker’s path planning system searches paths resembling (A) the real-
world path provided from a map routing system in (B) the graph of vir-
tual paths. During the matching phase, we consider acceptable redirec-
tion in motion speed-up, slow-down, and rotation redirection. 

virtual obstacles, including fences, barrels, and stacks of ma-
terial. Note that although DreamWalker can map an outdoor 
walk with an indoor world, we chose to map to virtual outdoor 
models as it is hard to remained entertained while walking 
only indoor VR scenes for the duration of ten or more minutes. 
It may also affect walking speeds. 

PART 1: PATH PLANNING AND OBSTACLE POPULATION 
DreamWalker’s first prompts the user for a destination in the 
real world and then obtains a route from a routing service (e.g., 
Google Maps) as a series of GPS coordinates as shown in 
Figure 4a. DreamWalker then fits this series to the walkable 
path network of a virtual environment (Figure 4b). We explain 
DreamWalker’s path planning at the example of the Battery 
Park area of Manhattan, which is composed of streets, parks, 
squares—all plausible walking paths suitable for our use-case. 

Finding a matching virtual path 
Given the real-world GPS series, DreamWalker finds a resem-
bling path in the virtual world. We denote the real-world path 
as the series P = {Pi|i ∈ 1..n} of n − 1 linear segments. Al-
though the real-world path and the virtual world path may have 
curvature in some cases, DreamWalker’s path planning algo-
rithm automatically breaks them into line segments. A curve 
with strong curvature is broken into multiple line segments, 
while a low curvature path is mapped to a single segment. 
The factor cdi f f encourages a mapping of paths with similar 
curvatures. 

The virtual world is represented as a graph G = (V,E), where 
each edge e ∈ E is linear and may have different widths (e.g., 
because of varying sidewalks or paths through parks). The 
quality of matching routes results from three factors: 

1) Length scale: The length of the virtual walk should not 
vary from the actual distance by more than 33%. We assign a 
cost of 0 for matching a path segment if it maps to a virtual 
segment within this scale; otherwise, we assign a cost of the 
change in length beyond this amount, normalized by the length 
of the whole segment. The total cost of the path clen results 
from the sum of the squares of all segment costs. 

2) Difference: Paths may have variations in shape (e.g., to 
avoid obstacles), but local differences between the two paths 
must not extend into a street. We define the cost per segment 
as the maximum distance between the linear segment mapped 
to the virtual world and the matching virtual path. The total 

cost of these differences cdi f f is the sum of the squares of each 
segment match cost. 

3) Redirection: While the global shape of paths may differ, 
changes in curvature along the path should not exceed 45°. 
Beyond this angle, redirection becomes obvious to the user 
and may instead be substituted by scripted distractions [37]. 
DreamWalker tries to minimize the number of redirections 
cdir (similar to the limits reported in prior work [28]). 

The quality rating for a match of routes results from the con-
volution of these three factors, so that match cost is: 

� 
2 2 2cmatch = wlen · clen +wdi f f · cdi f f +wdir · cdir 

We use wlen, wdi f f ,wdir to balance between the constraints. 

To find and fit a virtual-world path Q to the given real-world 
path P, DreamWalker implements a greedy search for candi-
date virtual paths. At each iteration, we start by generating a 
plausible mapping of each of the path vertices Pi to a matching 
vertex Vi in the graph, where the distance between [Vi,Vi+1] is 
within the length scale of the corresponding real-world path 
segment. Figure 4 shows one example solution generated 
by DreamWalker’s path planning algorithm, starting with a 
real-world path provided from a map routing system P (A), 
the virtual graph G (B), and ending with the closest match Q 
(highlighted path in (B)) that produces the lowest cost while 
considering redirection. For our examples, a path P including 
each of its segments mapped to a series of segments in G after 
5000 iterations (˜5 minutes on a Core i5), generating possible 
matches and choosing the mapping with minimal cost. 

Our path planning is different from others, as it fits the sim-
ilarity of two paths while computing acceptable redirection. 
Since the search space is vast, DreamWalker implements ran-
dom walk and greedy search. The algorithm currently requires 
precomputation and reuse during operation, but we believe 
that this can be sped up through simulated annealing in the 
future, reusing previously found sub paths, and iterating only 
on the rest of the path vertices. The duration of execution also 
depends on the virtual environment; VR worlds with wider 
open spaces allow for much easier and faster routing due to 
the lower number of constraints on finding virtual paths. 

Note that since we have constraints on the scale, difference, 
and redirection, path planning may not always produce an 
acceptable match of paths in the virtual world given a path 
in the real world and a virtual scene. We believe this can be 
mitigated in the future when a large VR repository can be 
made for DreamWalker, and the user can select from scenes 
that have a good match for the path in the real world. 

Static obstacle population 
After obtaining a suitable mapping of the real-world route 
to a virtual route, we populate the virtual environment with 
objects along the walking path. To achieve a naturalistic blend 
between the obstacles and the virtual environment, we have 
authored one model with obstacles that fill up all paths for 
every virtual environment. We place virtual objects that can 
be used to represent static obstacles on every path as described 
above, such as roadblocks, trucks, poster stands, and so on. 
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Figure 5. DreamWalker’s environment sensing and processing pipeline. 

We also add dynamic elements to the scene to make the virtual 
environment more vibrant, such as walking people and driving 
cars and buses. After the user selects a path and a virtual 
world, DreamWalker retrieves the shape of the virtual route, 
and removes any obstacles that collide with the user’s route as 
well as any traffic that crosses it. 

This step generalizes beyond the example of Manhattan and 
applies to any virtual world with walkable paths, such as 
Viking Village. 

PART 2: REAL-TIME ENVIRONMENT DETECTION 
DreamWalker detects obstacles and thus potential trip hazards 
based on head-worn, forward-facing sensors. In contrast to 
related work in robotics, we have no control over the motion 
of these sensors, as they are part of a mobile setup with limited 
computational power and sensing range. 

DreamWalker’s real-time environment detection component 
produces two signals for our runtime system (Figure 2: a 
height map and a path map (i.e., walkable paths)) that feed 
into our positioning and redirection system as well as a global 
wall map (containing the locations of obstacles) and dynamic 
obstacles that serve as input into our VR obstacle rendering 
engine (shown in Algorithm 1). Our environment detection 
continuously integrates the two depth and the two RGB im-
ages from the Intel Realsense cameras and aligns them with 
the transformations provided by the Windows Mixed Reality 
(WMR) optical inside-out tracking that DreamWalker corrects 
for drift. 

Fusing RGB depth frames into the tracking space 
By processing the RGB depth stream, DreamWalker detects 
two types of non-walkable areas, both of which qualify as 
ad-hoc obstacles (Figure 5). First, some non-walkable areas 
preclude walking simply by physically obstructing the path 
and thus produce a distinct height difference compared to 
the surrounding ground, such as benches, pillars, or walls. 
Second, other non-walkable areas have a similar height as the 
surrounding ground, but differ in texture and color, such as 
grass patches, dirt roads, or sidewalk strips. 

ad-hoc obstacle dynamic obstacle
(person) 

static obstacle 

Figure 6. The three types of obstacles that DreamWalker’s environment 
recognition system detects and tracks during the user’s walk. 

To detect and track non-walkable areas, DreamWalker con-
structs a height map from the depth image during operation. 
We start this process by projecting each RGB depth frame 
from the Intel cameras into the WMR tracking space in the 
form of point clouds. We then project these points onto a 
ground plane, which results in the height map and the color 
map. We downsample these projections to height and color 
images in which one pixel corresponds to 10 cm × 10 cm 
and 5 cm  × 5 cm, respectively, for the purpose of memory re-
duction and speed of computation. DreamWalker implements 
custom shaders for these projections to produce color maps 
and two depth maps. To obtain a nearly-complete color map, 
our system renders triangles constructed from adjacent pixels. 
For the height maps, we extract the highest and the lowest 
point in the point cloud within the region of this pixel and 
produce a projection of highest and lowest points, respectively. 
We then define the gradient of a pixel as the maximum differ-
ence between the highest point and the lowest point for each 
pixel as well as adjacent pixels, resulting in the height gra-
dient map. DreamWalker individually performs this process 
for each RGB depth frame, each of which is inherently noisy 
and thus not suitable to directly generate obstacles. Having 
computed a color map, height map, and height gradient map, 
DreamWalker aligns consecutive maps using the WMR track-
ing and temporal filtering. We finally derive the global color 
gradient map from the global color map. 

Obstacle extraction 
The final step of DreamWalker’s environment detection system 
is generating the path map (i.e., the map of walkable paths) 
and the wall map, which encodes the locations where Dream-
Walker’s runtime system must position virtual obstacles. The 
accuracy of the wall map is crucial for creating a compelling 
and collision-preventing virtual environment for the user. 

Therefore, DreamWalker extracts real-world obstacles from 
the global height gradient map, not the global height map 
itself. The global height map is prone to misalignments due 
to small inaccuracies in pitch reported by the WMR headset, 
which generate large height gaps in between the aligned local 
height map and existing global height map. For example, 1◦ 

of misalignment may result in a height difference of 4 inches 
just 15 feet away—a sizable obstacle that would result in a 
false-positive VR representation. The global height gradient 
map is less prone to this error because when computing this 
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map, we only compare heights within a local height map and 
only use the difference in fusing them. 

Extracting virtual representations based on the global height 
gradient map and thus extracting them from the edges of 
real-world obstacles is sufficient to prevent collisions. This 
is because large areas of non-walkable obstacles require a 
representation in VR solely in locations closest to the user— 
those that the user would risk walking into. 

DreamWalker generates the path map from the global height 
gradient map through a flood fill starting at the user’s location 
and only filling in areas where the color and height gradients 
are below a threshold. Because flood fill is unsuitable for par-
allelization, we leverage the fact that the global gradient map 
remains relatively consistent over time, because all ad-hoc 
obstacles are stationary in the real world. Thus, we merely 
perform an iterative flood fill, which usually advances the pre-
vious flood fill for 4 pixels per RGB depth update. Whenever 
our flood fill now cannot fill into an area, we mark that pixel 
as an obstacle in the wall map. 

Next, we classify contiguous regions of colored areas in this 
synthetic RGB image based on predefined RGB distributions, 
such as green or red, as these areas tend to demarcate sidewalks 
from other parts of the pavement. For those areas that produce 
a sufficient score during the matching, we additionally mark 
them as non-walkable in the path map. 

To detect dynamic obstacles, we process both RGB images 
for people and other moving objects. DreamWalker inte-
grates YOLO’s real-time object classification [25] in a separate 
thread, which reports 2D boxes of detected objects at 15 Hz. 
We project them into the environment using the closest dis-
tance in the depth images within a 10 × 10 pixel area of a 
YOLO box, our environment detection adds their locations to 
the wall map and reports them to the runtime system. This 
ensures that moving pedestrians get represented in VR and 
can thus be avoided by the user. 

We refined DreamWalker’s tracking and detection system ex-
tensively for over a month during daily walks. These walks led 
across various public and uncontrolled settings, including side-
walks full of pedestrians, campus areas, squares, underpasses, 
each time in unseen areas to verify proper operation. While 
developing our obstacle detection, we experimented with state-
of-the-art computer vision algorithms for self-driving cars, 
which unfortunately proved unsuitable for our purposes. Since 
LIDAR is impractical in DreamWalker due to weight and nec-
essary computation, we tested RGB-based detectors, including 
Dilated Residual Networks [45], MultiNet/KittiSeg [39], and 
FCN/VGG [18]. They were unreliable at accurately segment-
ing walkable areas (i.e., paths on campus), most likely because 
they were trained on road views for cars, trucks, bikes, but not 
the branches, curbs, poles DreamWalker must detect. 

PART 3: DREAMWALKER’S RUNTIME SYSTEM 
DreamWalker’s runtime implements three subsystems: 1) The 
positioning subsystem determines the user’s accurate position 
in the real world. 2) The redirection subsystem compensates 
for drift between virtual world and real-world tracking by 
applying additional redirection according to the planned path 

(Part 1). 3) Obstacle representation produces virtual objects to 
guide the user and prevent collisions. 

Positioning system 
The goal of the positioning system (pseudo code shown in 
Algorithm 2) is to produce a rigid transform T that maps loca-
tions and orientations from the inside-out tracking space Torigin 
to world coordinates Tgps. Most important is the horizontal 
correction of the user’s position (i.e., Unity coordinates X-Z 
axis or latitude-longitude for GPS). 

The positioning system receives two types of input: the user’s 
position puser/gps,in real-world GPS coordinates Tgps  and rela-
tive WMR inside-out locations. In contrast to GPS’ coarse but 
globally grounded measurements, WMR tracking measures 
differential changes of positions and orientations. Its current 
orientation Tuser/origin is an accumulation of transformations 
from an arbitrary initial coordinate system at the beginning of 
the path, Torigin, to the current coordinate system around the 
user Tuser. As time progress, accumulated error may generate 
a drift of Tuser relative to the global coordinate system. 

A naïve solution is to fit a rigid transformation between a 
history of recent GPS locations and corresponding user loca-
tions. In practice, the GPS positions puser/gps DreamWalker 
collects have systematic offsets from the user’s true position 
due to multi-path effects, atmospheric effects, etc. For ex-
ample, when walking along buildings in the real world, the 
received GPS coordinates may have a constant offset either 
towards the street or a location inside the building. The re-
sulting transformation would create a path outside of the true 
walkable area and thus would increase risk of collisions. 

To derive an accurate transformation during runtime, we lever-
age the assumption that the user is always walking on the 
planned path. This allows us to transform the WMR inside-
out tracking position history [puser/origin] using the estimated 
transform of the naïve method above to derive [p ]. We  user/gps  
then accurately align the result with the part of the planned 
path [ppath] that the user has already walked (p ) using user/gps  
an iterative closest point matching algorithm. This alignment 
produces a correction matrix Thistory, mapping the estimated 
GPS transformation to a more accurate GPS transformation. 
We denote this target rigid transform as T2 = T1 ∗ Thistory. 

While T2 now accurately maps locations across the user’s path, 
inaccuracies may still occur along the path, and thus in a 
direction that most likely contains physical obstacles next to 
the user, such as buildings. Such behavior could occur after 
walking a long and straight path segment, for example, just 
before turning right at an intersection in the real world. Since 
Thistory transforms the user’s location history to the already-
walked path, it only corrects inaccuracies perpendicular to 
the user’s walking direction. When reaching a turn on the 
planned path, for example at an intersection, the system cannot 
accurately determine where and when the user should make 
this turn using only this transformation, because locations 
parallel to the current walking direction are inaccurate. We 
thus complement our previous transformations with another 
correction matrix T3, which we generate based on the global 
height map that we assembled in the previous section. We 
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first project the user’s future path onto this height map and 
search for the best fit in the possible transformation space of 
[T −1 ∗ Tf uture] across offsets in the two horizontal dimensions 
as well as rotation offsets. Through a custom compute shader, 
we obtain the total height changes along each one of these 
possible paths. Since the path originated from DreamWalker’s 
path planning, we know that it traverses the world across a 
flat ground, meaning a low total change in heights during 
this search. We thus pick the transform Tf uture  ∈ [Tf uture] 
with the lowest total height change, and apply this correction 
to the original transform T2. As a result of this correction, 
we obtain an accurate transformation that compensates for 
inaccuracies and jumps in both dimensions of the GPS updates: 
T3 f uture  ∗ T2. In the remainder of this section, we use T3 as= T −1 

the transform that accurately maps coordinates from the WMP 
inside-out tracking space Torigin to the GPS space Tgps. 

Redirection system 
During runtime, DreamWalker tracks the user’s position in 
two reference systems: where the user is physically located 
(as reported by the positioning system described above) and 
the location in the virtual world. While the user traverses both 
reference systems through walking, DreamWalker ensures 
that the visuals presented to the user result in their accurately 
walking the real world without collisions. In the case of a 
discrepancy between both reference systems, DreamWalker 
applies a gradual correction of the VR rendering to implicitly 
redirect the user’s walk without their noticing (i.e., similar to 
related redirected walking systems [24]). Below, we explain 
how DreamWalker smoothly adapts its space transformations 
to smoothly guide the user (back) towards the planned path 
(pseudo code shown in Algorithm 3). 

Redirection method 
DreamWalker implements redirected walking by limiting trans-
formation changes according to the user’s actual viewport mo-
tion. The transformation matrix T derived above may include 
large differences frame to frame and may even change when 
the user performs no motion, for example because of inaccu-
rate GPS updates. Resulting changes in the visual experience 
may thus be confusing or discomforting to the user. 

In each frame fn, we record the current transform Tcurrent [n] 
as well as the user’s transform Tuser/origin[n] from the WMR 
inside-out tracking origin. In each following frame fn+1, we  
obtain the ideal transform T [n +1] from our positioning sys-
tem as well as the user’s new WMR transform from the origin 
Tuser/origin[n +1]. 

We determine how much the user moves frame-to-frame in the 
GPS space Mexpected [n + 1] = Tuser/origin[n + 1] ∗ Tcurrent [n]− 
Tuser/origin[n] ∗ Tcurrent [n]. The amount of this actual mo-
tion corresponds to the visual changes the system must pro-
duce to satisfy the user’s expectations. If DreamWalker 
now directly applied the transform from the positioning sys-
tem, the user’s transform would amount to Tuser/origin[n + 
1] ∗ Tn+1 and thus a (visual) movement of Mtarget [n + 1] =  
Tuser/origin[n +1]∗ Tn+1 − Tuser/origin[n]∗ Tcurrent [n]. Assuming 
that the transform Tcurrent [n + 1] results from this frame, the 
movement the user will experience in response to this frame 

amounts to Mactual [n+1] = Tuser/origin[n+1]∗Tcurrent [n+1]− 
Tuser/origin[n]∗ Tcurrent [n]. 

Having computed the movements, the challenge is to produce 
a pleasant motion in VR. The actual movement Mactual [n +1] 
must be within the human detection threshold of the expected 
movement Mexpected [n + 1] while remaining close to the tar-
get movement Mtarget [n +1]. Thus, we generate the range of 
movements that are acceptable around the expected movement 
Mexpected [n +1] and scale the target movement Mtarget [n +1] 
back to be within that threshold, resulting in the actual move-
ment Mactual [n + 1] following this frame. With this actual 
movement, we compute the transform of this frame by revers-
ing the movement equation: Tcurrent [n + 1] = (Tuser/origin[n + 
1])−1 ∗ (Tuser/origin[n] ∗ Tcurrent [n] + Mtarget [n + 1]). Dream-
Walker generates the acceptable movement in line with the 
redirection limits set in path planning. 

Naïvely relying purely on estimated position may yield in-
consistent transformations frame to frame, thus discomforting 
the user. Therefore, the implementation detailed above allows 
DreamWalker to provide a smooth experience to the user while 
gradually redirecting them towards the more accurate position. 

Mapping the real-world position into the virtual world 
Using the corresponding control points in the real world and 
the virtual world that we place during path planning as de-
scribed in Part 1, we need to match all intermediate locations 
during runtime for smooth redirection. Our goal is to generate 
a transform for every point in the real world, such that the clos-
est real-world control point maps to a location in the virtual 
world with ideally no offset to the corresponding virtual con-
trol point. This entails that adjacent points in the real world 
retain their spatial neighborhood relationship in the virtual 
world. This transform also needs to produce continuous rota-
tions offset across the campus map, as the user may experience 
sudden change of position or rotation when walking otherwise. 
DreamWalker’s implementation of this feature is based on 
feature-based image metamorphosis [1], transforming one set 
of position to another set using “line pairs” and linear inter-
polation. We extend this approach to use the more granular 
pairs of control points by connecting adjacent control points 
to line segments and then matching series of them. We also 
incorporate the rotation transforms mentioned above into the 
matching of position pairs, treating rotation as an additional 
dimension and applying the same interpolation. 

Obstacle representation 
Having computed the user’s position on the map, the redi-
rected viewport, and having detected obstacles around the user 
as described in Part 2, DreamWalker finally fuses all this infor-
mation to curate the user’s VR experience. Since our system is 
managing a virtual world that may have been populated with 
animated objects and characters, additional virtual objects 
need to be introduced now to represent detected obstacles. 

Static obstacles: As discussed in Part 1, the path planning 
system populates the virtual environment with static obstacles 
based on map topography if spaces are too open in the virtual 
environment (e.g., in Manhattan). This step is unnecessary 
in confined virtual areas (e.g., the narrow paths in the Viking 
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Figure 7. Plausibly guiding users through virtual intersections: a) op-
timal case, b) regular street crossing that can be facilitated through 
stopping cars, c) mid-street crossing that requires traffic blocks, such as 
firetrucks, d) diagonal crossing that requires shutting down the street. 

Village). Routing a path through the virtual environment that 
resembles the physical route automatically allows us to use 
the facades and street object as static obstacles. 

In some cases, the physical route cannot be perfectly routed 
through the virtual environment while staying within the con-
straints of tolerable redirection. Instead, the path planning 
system may determine a virtual route that diagonally crosses 
a street—an action that is uncommon in the real world. Fig-
ure 7 shows how DreamWalker handles these cases. In the 
regular case of crossing at an intersection (b), DreamWalker 
simply stops the traffic to yield to pedestrians, optionally sup-
plemented by traffic lights. In the case where streets have 
to be crossed midway (c), DreamWalker finds a plausible so-
lution of stopping traffic in the middle of the street, such as 
by placing a firetruck or police block. If the path planning 
system cannot produce a better path than a diagonal crossing 
(d), DreamWalker shuts down the entire road by populating 
the ends with road blocks, thus preventing virtual traffic and 
allowing the user to plausibly “safely” cross the VR street. 

Ad-hoc and dynamic obstacles: DreamWalker implements 
three different modes of representing discovered obstacles as 
shown in our video figure. 

Yellow pellets inspired by Human Pacman [8] indicate the path 
for the user to walk. DreamWalker generates them by thinning 
the forward-filled paths in the height gradient map, eliminating 
all paths except for the one closest to the real-world path 
Q generated during path planning. Dynamic obstacles are 
represented by moving characters, typically causing the user 
to pause until they have passed. Users stay collision-free as 
long as they closely follows the pellet-indicated path. 

Traffic cones or rocks border the walkable path ahead. Similar 
to the pellets, DreamWalker finds these cone locations by 
picking the path ahead from the height gradient map and, as 
part of the flood fill, generating the outside delimiters minus 
a safety margin. DreamWalker then places cones or rocks in 
the virtual world and represents dynamic obstacles through 
animated virtual characters. This technique prevents collisions 
as long as users stay within the demarcated cone area. 

Animated virtual characters (“humanoids”) move into the lo-
cation of detected obstacles and guide the user towards the 
destination. This visualization has the potential to appear most 
“natural” and fit the virtual narrative best, it is also the most 
challenging to get right [40]. Humanoids solve the need for 
representing uncertain ad-hoc and dynamic obstacles while 

Static 
obstacles Facade 

and 
cars 

ad-hoc 
obstacles 

Humanoids 

dynamic 
obstacles 

Figure 8. DreamWalker represents static obstacles through stationary 
virtual objects, such as buildings or cars. Ad-hoc and dynamic obsta-
cles are represented through animated humanoid characters that walk 

     towards the location of obstacles.

giving the virtual environment a lively feeling. We briefly 
describe DreamWalker’s animation of humanoids. 

When the positioning system gradually changes T frame-by-
frame, humanoids placed based on the previous frame’s trans-
formation T must move to the now updated obstacle locations. 
Thus, for each frame, DreamWalker updates the target loca-
tions of humanoids using the wall map and the location of 
dynamic obstacles. Since many obstacles may exist in the 
wall map, we only animate humanoids within a certain radius 
of the user and prune obstacles such that no two humanoids 
share the same direction from the user’s perspective. When 
many ad-hoc obstacles in the wall map share a similar location 
(e.g., sidewalk strips), DreamWalker creates a sparse set of 
humanoids, giving each a “personal space” of ±1 m.  

DreamWalker animates humanoids to walk towards their as-
signed target locations (Figure 8), “drafting” close-by hu-
manoids one by one to ideally keep an overall crowd moving 
around the user. A humanoid’s walking speed depends on 
the distance to the user; humanoids outrun the user to an ob-
stacle, but may never reach an assigned target location if it 
is far enough from the user and there is no risk of collision. 
To approach reasonable behavior, DreamWalker drafts only 
humanoids that are visible and spawns new humanoids behind 
the user. When humanoids are no longer useful to represent 
obstacles, DreamWalker discards them as soon as they are 
outside the user’s field of view. 

In the case of insular ad-hoc obstacles (e.g., pillars or lanterns), 
DreamWalker drafts a humanoid and stops them at the target 
location. This idling behavior could be supplemented by ani-
mations such as tying shoelaces, playing with their phone, or 
looking up in future versions. 

Guiding users towards their destination in VR 
DreamWalker points into the direction the user needs to fol-
low similar to a real-world navigation system, such as Google 
Maps. The pointing arrow at the bottom of the user’s field 
of view thereby respects discovered obstacles and points into 
the direction of a walkable path in the height gradient map. 
In the case of the third visualization technique, the animated 
humanoids provide a perhaps even stronger cue for the walka-
ble path. The use of the arrow serves two purposes. It keeps 
navigation to a minimum, revealing just enough for the user 
to maintain on track. It also helps our redirected walking algo-
rithm to hide world rotations. The user needs to walk roughly 
in the direction of the arrow in order to reach their destina-
tion, but can freely explore the virtual world by walking given 
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that they do not collide with any virtual obstacles (including 
generated humanoids). 

EVALUATION 
The purpose of this evaluation was to test DreamWalker’s 
performance with inexperienced participants. Our key interest 
was in determining if DreamWalker can deliver on the two 
goals we started out with: preventing collisions while real-
walking an enjoyable and immersive virtual experience. 

Task and Procedure 
Participants’ task during each trial of the evaluation was to 
put on the headset and start walking, thereby following the 
direction of the arrow and avoiding static as well as dynamic 
obstacles in VR. Participants finished the trial when they ar-
rived at a virtual stop sign that indicated the end of the walk. 

We chose two common locations on our campus that partici-
pants walked between and obtained a GPS route between the 
two from Google Maps (Path 1 in Figure 4). This route led 
through a shaded tree area with changing inclination, through 
open spaces, traffic-free roads, along hedges, through an over-
pass, and through a busy commons area full of chairs, tables, 
pillars, umbrellas, glass facades, and people. Path planning 
produced a path in Manhattan that matched the GPS trace with 
acceptable redirection as described above, such that partici-
pants walked along virtual sidewalks, streets, and squares pop-
ulated with moving cars, pedestrians, and parked cars, trucks, 
road blocks, benches, hot dog stands, and idling people. 

Participants completed the study in two conditions, performing 
one walk during each. In the first condition (‘DreamWalker’), 
participants used our DreamWalker system as described in 
this paper (i.e., including environment sensing, positioning, 
redirection, and obstacle management) and received no instruc-
tions beyond avoiding virtual objects and following the arrow’s 
direction. In the second condition (‘RGBD’), participants also 
used DreamWalker, but this time only DreamWalker’s redi-
rection system was switched on in addition to blending in 
the RGB depth cameras’ raw texturized meshes within an 
area of five meters (same range of RGB-D data as the system 
processed in ‘DreamWalker’). This allowed participants to 
see the texture of the ground, upcoming obstacles (including 
their height and texture), as well as objects next to them. No 
humanoids or other obstacle representations were produced 
during runtime in ‘RGBD’. 

After each walk, participants immediately filled out the iPQ 
presence questionnaire [29, 30] as well as a questionnaire 
about their perceived safety and enjoyment. 

Participants walked the same path in both conditions and re-
ceived no training beforehand. The order of conditions was 
counterbalanced across participants. A single walk typically 
took between 9 and 15 minutes (see the video figure for a 
full walkthrough). We took a number of measures to en-
sure that participants were walking safely beyond their use of 
DreamWalker. First, the path between the two GPS locations 
did not cross any active road or area that may risk partici-
pants’ safety, though it did contain various small pillars, tactile 
domes, mounts that are easy to stumble over, curbs, and so on. 

Figure 9. Results of the evaluation: A) iPQ, B) perceived safety and 
enjoyment, and C) walking speed. 

Second, two experimenters accompanied each participant at 
all times, trailing them in close proximity to either verbally or, 
if need be, physically stop them from walking into obstacles 
by grabbing their upper arm. 

Participants 
We recruited 8 participants from our institution (ages 24–51, 
median = 39, 2 female). One participant had frequent prior ex-
perience with virtual reality, two participants reported having 
used VR less than 5 times, whereas five participants stated that 
they had never used VR before. All participants gave written 
informed consent (according to the declaration of Helsinki) 
and received a gift card as compensation. This study was ap-
proved by an Institutional Review Board. None of the authors 
or people familiar with the project participated. 

Results 
We analyzed all the data logged during the study to compare 
the performance of DreamWalker’s ad-hoc and dynamic ob-
stacle detection and representation with the gold standard that 
is human perception and recognition of surrounding obstacles. 
We implicitly also evaluated that our DreamWalker system 
worked well for a variety of different users. 

Figure 9 summarizes the results of the iPQ and the question-
naire. The iPQ showed higher presence for ‘DreamWalker’ 
in each one of the categories (including ‘General’ and ‘Sum’, 
which are hidden in the chart) compared to ‘RGBD’. On aver-
age, ‘DreamWalker’ was also rated higher in entertainment as 
well as in “being in the virtual world” compared to ‘RGBD’. 
However, participants, on average, felt more confident and 
slightly safer walking in ‘RGBD’ than in ‘DreamWalker’. 

While walking, participants used a faster average walking 
speed in ‘DreamWalker’ than in ‘RGBD’ (0.65 m/s, SD = 0.47 
vs. 0.58 m/s, SD = 0.38). Finally, during the 9–15 minutes 
of each walk, we had to correct participants’ walk an average 
4.5 times (SD = 0.5) in ‘DreamWalker’ compared to 3.6 times 
(SD = 0.45) in ‘RGBD’. Since user saw the same amount of 
information in ‘RGBD’ as our system saw and processed in 
the ‘DreamWalker’ condition. The fact that participants in the 
‘DreamWalker’ condition needed only little more correction 
than in ‘RGBD’ shows the effectiveness of our algorithm. We 
think this will improve further with higher-res depth cameras. 

Session 9A: Walking, Jumping, Roaming
 

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1102



DISCUSSION 
Our evaluation showed that DreamWalker successfully nav-
igated participants through the real world while they experi-
enced a vastly different virtual reality, which they rated highly 
enjoyable. The fact that the average walking speed in ‘Dream-
Walker’ was higher than in the baseline condition confirms 
participants’ ratings in that they felt a high level of presence 
in VR, which also supports our initial design goals. This be-
havior might in part be explained by participants carefully 
watching the ground texture in ‘RGBD’, which resulted in 
lower walking speeds but higher confidence in walking. 

Upon closer inspection, the locations at which the experi-
menter had to correct some participants’ walks during the 
study occurred at two distinct locations. Put differently, 
DreamWalker did safely navigate participants throughout the 
entire ˜15 minute walk apart from two specific spatial loca-
tions, which bears some resemblance with recent events in 
self-driving cars. 

We reviewed the geometry and terrain around these two loca-
tions and discovered that the narrow pavement makes a right 
turn, followed by a strip of grass, and another right turn. The 
challenge in navigating this terrain is correctly positioning 
the user to ensure guiding the user to the correct turn. Our 
environment sensing system, however, either could often not 
see far enough to correctly detect and tell apart both turns, 
thus aligning the first right turn with the expected, second turn 
in the planned path. The resulting discrepancy between the 
user turning right and the right turn in the planned real-world 
path caused our navigation to point into a direction in between, 
which confused some participants. 

LIMITATIONS AND FUTURE WORK 
Our evaluation uncovered DreamWalker’s current limitations 
in addition to our own observations during continuous test-
ing. While the RGB-D data captured from the two Intel Re-
alsense D425 cameras on the headset covered a wide sensing 
range, this range is still smaller than the headset’s field-of-
view. Therefore, DreamWalker may sometimes miss dynamic 
obstacles coming in quickly from the side. In addition, some 
locations on campus proved challenging for DreamWalker’s 
segmentation approach despite a small change in RGB texture, 
such as when green-brown grass patches appeared too similar 
to the adjacent pavement. 

Another limitation is DreamWalker’s rendering of humanoids 
and their behavior, which may leave an unreliable impres-
sion despite DreamWalker’s robust obstacle detection. Our 
ambition was to produce “natural” humanoid behavior, thus 
spawning them outside the user’s wide field of view and con-
stantly moving them. With emerging gaze trackers in VR 

headsets, DreamWalker could spawn and vanish humanoids 
when outside the fovea yet within the field of view [20], which 
could substantially reduce the required humanoid motion. 

Participants also indicated their preference for more realistic 
events in VR for increased entertainment, including car ac-
cidents, guiding policemen, stopping bikes, pets, or human 
billboards that all serve as virtual obstacles. We believe future 
versions can improve on DreamWalker by providing better 
crowd dynamics and more diverse appearances as well as 
idle animations for humanoids. While current DreamWalker 
users are instructed to avoid contact with all virtual objects 
to prevent collisions, future versions could implement pas-
sive haptic feedback this way (e.g., sitting on a chair [33] 
or touching passive objects through gaze-inferred intentions 
[6]). Since DreamWalker enables users to explore large, out-
door spaces through walking, its tracking system could also 
serve for large-space training systems for users with visual 
impairments rendering haptic feedback [46]. 

Finally, complete safety is an obvious limitation of using 
DreamWalker in practice. We addressed this by always ac-
companying a DreamWalker user, much like self-driving cars 
require drivers to be able to intervene. Participants reported 
feeling safe in our study, but it is harder to establish that 
DreamWalker is safe. Organizations such as OSHA or WHO 
formulate safety as the number of incidents (i.e., near misses 
and accidents) over a period of time [26], and objectively com-
pare industries that way to determine the effectiveness of their 
safety measures. 

CONCLUSIONS 
We have presented DreamWalker, a VR tracking system that al-
lows users to navigate virtual experiences through real-walking 
real-world outdoor spaces. DreamWalker fuses RGB depth, 
inside-out, and GPS tracking in real-time to accurately register 
the virtual world with the real world. Using redirected walking 
to align two paths, one in the coordinates of either world, and 
an obstacle detection system, DreamWalker guides the user 
through VR using static and animated virtual objects in the 
scene that cause the user to adjust their walk. In our evaluation 
with inexperienced participants, each participant confidently 
walked for 15 minutes in DreamWalker, which showed the 
potential of our system to make repetitive real-world walking 
tasks more entertaining. 
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APPENDIX 

Algorithm 1 Environment Sensing 
1: procedure EACHCAMERAFRAME 
2: colorimg ← Color Image from Depth Camera 
3: depthimg ← Depth Image from Depth Camera 
4: trackingdata ← Tracking data from WMR 
5: yoloobjects ← YOLO process colorimg 
6: dynamicobstacles ← map yolobojects on to depthimg 
7: pointcloud ← synthesis colorimg depthimg 
8: colormap, heightmap ← transform pointcloud by trackingdata 
9: globalcolormap ← average(globalcolormap,colormap) 

10: globalcolorgradient ← gradient of globalcolormap 
11: heightgradient ← gradient of heightmap 
12: globalheightgradient ← average(globalheightgradient, heightgradient) 

13: procedure EACHVRFRAME 
14: floodfillmap ← iterative flood fill globalheightgradient,globalcolorgradient, globalcolormap 
15: globalpathmap ← Ground level > threshold in floodfillmap 
16: globalwallmap ← Region with high gradient and adjacent to ground floodfillmap 

17: procedure ITERATIVEFLOODFILL 
18: for each pixel p do 
19: iswall ← globalheightgradient and globalcolorgradient < threshold 
20: isgrass ← globalcolormap with in a range 
21: if iswall and isgrass then 
22: floopfillmap[p] ← 0 
23: else 
24: floopfillmap[p] ← 2 ∗ sum floodfillmap[q],where q denotes the pixels surrounding p 

Algorithm 2 Positioning System 
1: procedure EACHVRFRAME 
2: [puser/origin] ← WMR tracking history 
3: [puser/gps] ← GPS tracking history 
4: T1 ← Fit rigid transform[puser/origin], [puser/gps] 
5: [puser/gps] ← T1 ∗ [puser/origin] 
6: [ppath] ← planned path 
7: Thistory ← Iterative closest point[puser/gps], [ppath] 
8: T2 ← T1 ∗ Thistory 
9: for A small transform Tf uture  do 

10: [p f uture] ← Next 10 points on path 
11: value ← sum pathmap on all [T2 

−1 ∗ Tf uture  ∗ p f uture] 

12: Tf uture  ← Tf uture  with largest value 
= T −113: T3 f uture  ∗ T2 

Algorithm 3 Redirection System 
1: procedure EACHVRFRAME 
2: Mactual [n + 1] ← Tuser/origin[n + 1] ∗ Tcurrent [n + 1] − Tuser/origin[n] ∗ Tcurrent [n] 
3: Mtarget [n + 1] ← scale back within limit Mactual [n + 1] 
4: Tcurrent [n + 1] ← (Tuser/origin[n + 1])−1 ∗ (Tuser/origin[n] ∗ Tcurrent [n]+  Mtarget [n + 1]) 
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