
DreamWalker: Substituting Real-World
Walking Experiences with a Virtual Reality

Jackie (Junrui) Yang1,2, Christian Holz1, Eyal Ofek1, Andrew D. Wilson1

1Microsoft Research, Redmond, WA, USA 2Stanford University, Stanford, CA, USA
jackiey@stanford.edu, {cholz, eyalofek, awilson}@microsoft.com

A B C

Figure 1. DreamWalker is a virtual reality system that enables users to walk in (A) an uncontrolled, previously unscanned outdoor world while (B)
real-walking and staying immersed inside a large virtual reality environment. (C) In real-time, DreamWalker fuses two RGB depth sensors, Windows
Mixed Reality’s inside-out tracking, and GPS position frames in its positioning system to compute a walking map and guide the user through the
space collision-free. This debug image results from DreamWalker’s tracking, showing the detected ad-hoc and dynamic obstacles (people) as cubes
and cylinders, respectively, and illustrates our three tracking sources: depth height map (rendered as a point cloud), GPS coordinates (purple), and
Windows Mixed Reality tracking coordinates (cyan). Yellow lines represent DreamWalker’s matches between coordinates to compensate for drift across
tracking sources.

ABSTRACT
We explore a future in which people spend considerably more
time in virtual reality, even during moments when they tran-
sition between locations in the real world. In this paper, we
present DreamWalker, a VR system that enables such real-
world walking while users explore and stay fully immersed
inside large virtual environments in a headset. Provided with a
real-world destination, DreamWalker finds a similar path in a
pre-authored VR environment and guides the user while real-
walking the virtual world. To keep the user from colliding with
objects and people in the real-world, DreamWalker’s tracking
system fuses GPS locations, inside-out tracking, and RGBD
frames to 1) continuously and accurately position the user in
the real world, 2) sense walkable paths and obstacles in real

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’19, October 20–23, 2019, New Orleans, LA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
https://doi.org/10.1145/3332165.3347875

time, and 3) represent paths through a dynamically changing
scene in VR to redirect the user towards the chosen destina-
tion. We demonstrate DreamWalker’s versatility by enabling
users to walk three paths across the large Microsoft campus
while enjoying pre-authored VR worlds, supplemented with a
variety of obstacle avoidance and redirection techniques. In
our evaluation, 8 participants walked across campus along a
15-minute route, experiencing a lively virtual Manhattan that
was full of animated cars, people, and other objects.

Author Keywords
VR; Real-walking; Redirection; Tracking; Inside-out; GPS.

INTRODUCTION
The latest wave of mobile technologies has been pushing vir-
tual reality (VR) systems into the consumer market. Customers
can now readily get their hands on affordable standalone de-
vices on the go [10, 16], unleashed from stationary and cum-
bersome tracking systems and the headsets used in former
decades. Current headsets track the user’s motions inside-out,
relying only on sensors inside the headset and thus allow the
user to freely move about their surroundings.

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1093

https://www.christianholz.net
https://www.christianholz.net
https://doi.org/10.1145/3332165.3347875
mailto:permissions@acm.org
mailto:awilson}@microsoft.com
mailto:jackiey@stanford.edu

Application developers are seizing the opportunity and are
releasing a manifold of content to consumers. Starting with
popular games [22], collaborative environments [11] and pro-
ductivity applications were quick to follow [2]. Major software
development companies, too, have announced porting their
offerings to VR [41].

Therefore, we believe that future computer users will spend
significantly more time in VR, where they remain immersed
in entertainment, education, and work environments for long
periods of time. It is entirely possible that future VR users may
interrupt their VR sessions merely to accomplish real-world
activities such as bathroom breaks or going to sleep.

We also believe that future VR users will still partake in real-
world activities despite experiencing prolonged VR sessions.
Until such a future arrives, people will at the very least retain
the need to repeatedly visit various physical places, be it com-
muting to work, walking to the grocery store, or traveling to
remote destinations.

In this paper, we explore to what extent the sometimes mun-
dane experience of such real-world activities can be substi-
tuted by entertaining VR experiences. We choose walking task
that we still expect future users to perform—albeit immersed
in VR while actually walking in the real world. We present
DreamWalker, a VR system that guides users through the large
outdoor real-world to target destinations while enabling them
to explore a virtual world through real-walking.

DreamWalker: Real-Walking a Virtual Reality
Figure 1 shows DreamWalker in operation. A company em-
ployee needs to walk to a different building across campus,
a task he carries out multiple times a week. To spice up his
routine walk, he exits the building, puts on DreamWalker’s
mobile VR system (Figure 1a), selects a target destination in
the system on a map, and enters the virtual world. The system
places him in Manhattan’s downtown area in VR (b), full of
tall buildings, traffic, people standing, walking, and running
into various directions—a seemingly wide-open space, infi-
nite, and ready for exploration. The user starts walking and is
guided by an arrow. Cars move and people run, but the user
finds ways to follow the arrow’s navigation, thereby follow-
ing and crossing virtual streets, squares, and parks—all while
using real-walking as the sole locomotion technique inside
VR.

Behind the (VR) scenes, DreamWalker ensures that the user
safely reaches their real-world destination through visual
(re)direction at normal walking speeds, detecting obstacles
along the way and presenting corresponding VR objects to
prevent collisions. DreamWalker fuses the data streams from
two RGB depth cameras, optical inside-out tracking, and GPS
position data in real-time to detect the user’s surrounding 3D
obstacles and other people. DreamWalker tracks the user’s 3D
environment (Figure 1c) and continuously updates a map of
walkable areas that is registered with real-world coordinates
and landmarks, such as buildings and walkable paths. Dream-
Walker then represents real-world obstacles through static and
animated virtual elements and predicts the path forward based
on walkable spaces to navigate the user through VR.

In this paper, we make four specific contributions:

1. a real-time tracking and positioning system that accurately
maintains the user’s real-world location while walking in previ-
ously unseen and unscanned physical environments, achieved
by fusing Windows Mixed Reality’s inside-out tracking, fil-
tered low-accuracy GPS positions, and RGB depth frames,

2. an obstacle detection system that extracts surrounding static
and dynamic physical objects from the moving head-mounted
RGB depth sensor on-the-fly while walking, achieved through
spatially registering, filtering, and classifying depth environ-
ments without the need for pre-scanning the environment,

3. three obstacle avoidance and redirection rendering tech-
niques that guide users through two large pre-authored virtual
environments with different affordances (e.g., available spaces,
turns, path widths), populated with static and dynamic objects
that map to real-world obstacles, and

4. a feasibility evaluation with 8 participants who real-walked
a virtual and animated Manhattan scene and rated Dream-
Walker’s experience as immersive and enjoyable.

Taken together, DreamWalker’s novelty is in the experience
it enables through its real-time outdoor tracking system, per-
forming redirected walking beyond controlled rooms [38] or
empty flat soccer fields [21]. DreamWalker works in unseen
large-scale, uncontrolled and public areas on contiguous paths
in the real-world that are void of moving vehicles.

RELATED WORK
DreamWalker is related to work in three categories: Wide-
area Augmented Reality/Virtual Reality, obstacle detection
and environment construction, as well as redirected walking.

Wide-area Augmented Reality and Virtual Reality
A number of research and commercial projects have imple-
mented Augmented Reality (AR) systems in large uncontrolled
environments. As users look at the world around them through
AR displays, they can naturally navigate and avoid obstacles.
However, the view of the real world also limits the scope of
the applications that are supported.

For example, Human Pacman [8] implemented a mixed reality
game that blends virtual objects into real environments. The
paper reports that walking inside the real world gave users a
high level of sensory gratification in the game. Pokémon Go is
a GPS-based mobile AR game that entices the user to interact
with various location-based game elements while walking.
Previous research also shows the risks of injury even when the
physical environment is visible [32].

VR isolates the user from the surrounding world and allows for
a complete visual overhaul of the surroundings. The resulting
lack of physical feedback has confined most implementations
to a controlled and mostly empty indoor environment [44].
Researchers have developed collision avoidance techniques
between multiple users in the same space, such as by chang-
ing players’ appearances [27] or by redirecting users during
game play to prevent overlapping physical spaces [19]. Re-
alityCheck [12] strikes a balance between both worlds and

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1094

https://www.christianholz.net/dreamwalker.html

selectively shows real-world objects such as furniture as part
of a situated VR experience inside a room.

Procedural generation
Other research has investigated techniques for users to avoid
real-world collisions while in VR. A popular technique is pro-
cedurally generating virtual geometry based on the known
physical environment. Oasis leverages a pre-scanned repre-
sentation of a space to generate a virtual environment inside
[33], creating a 1:1 mapping with obstacles in the real world.
Keller et al. integrate the user’s surrounding game room into
the virtual reality experience and enable real-walking within
[15]. VR arcades, such as the Void [43], allow users to walk
in a wide spaces while in VR. These arcades thereby provide
passive props for the use of passive feedback during dedi-
cated gaming experiences. These examples use controlled
indoor environments where all obstacles were either cleared
or registered with the system before use.

Perhaps closest to DreamWalker is our previous system
VRoamer, which procedurally generates corridors and places
pre-authored virtual rooms as the user real-walks open build-
ing spaces [7]. Although VRoamer also operates on previ-
ously unseen environments, it requires indoor environment
with planar floors and large-enough obstacles. DreamWalker’s
approach replaces VRoamer’s tracking pipeline by dynami-
cally detecting obstacles lower than ground including slopes,
obstacles with small heights such as street curbs, non-planar
vertical obstacles, and tracks people standing and walking
around the user. DreamWalker additionally fuses it with GPS
frames and correcting for drift in each of the three tracking
sources.

With DreamWalker, we take real-walking to the next level,
enabling users to walk inside uncontrolled outdoor environ-
ments while simultaneously retrofitting a pre-authored virtual
environment to the physical world. This makes a given vir-
tual environment walkable in contrast to making a walkable
physical environment virtual.

Redirected Walking
DreamWalker redirects the user using content in VR to pre-
vent collisions with real-world obstacles. Redirected walking
has been actively researched, starting with demonstrations to
induce unintentional direction changes in users’ walks by im-
perceptibly rotating the virtual scene [24]. Follow-up work
has evaluated the limits of tolerable redirection, such as inves-
tigations into allowable ranges of rotation and translational
gains [36] and experiments on acoustic-based redirection [31].

Alternatively, researchers have produced virtual distractions
to subtly redirect the user. Chen et al. elicited head motions
from the user through such distractors [5], while VMotion
introduced novel visibility control techniques that temporarily
switch the user’s view and thus allow for redirections that
are seamlessly integrated into virtual experiences [34, 35].
Langbehn et al. leveraged users’ blink events, during which
they changed the environment [17], while Sun et al. exploited
eye gaze saccades to hide rotational gains [38]. Other research
has investigated how to apply redirected walking in real life
(e.g., in irregular rooms [4, 14, 13]). Other related efforts have

Height map

Path planning Environment Sensing

Real world
Positioning

Static Obstacle
Representation

Ad-hoc / Dynamic
Obstacle

Representation

Path in
virtual world Obstacle Maps

“Run” Time

VR Scene User Position

Figure 2. Overview of DreamWalker’s system.

investigated techniques to position the virtual world to more
easily fit it into a small tracking space [42, 37].

Building on related techniques, but deviating from previous
implementations, DreamWalker utilizes redirected walking to
safely keep the user on differing virtual and real outdoor paths
at the same time.

Obstacle detection and environment reconstruction
For environment reconstruction, related work has fused RGB
depth images into 3D spaces (e.g., using SLAM [3, 23]). Oasis
uses this to allow users to scan a physical environment and
generates a VR environment inside [33]. Also related is pre-
liminary environment mapping for redirected walking, which
constructs a map of obstacles in the user’s tracking space
for later redirection [14]. Regarding obstacles, both previous
projects consider anything above ground level as an obstruc-
tion. In DreamWalker, this assumption does not apply due to
changing altitudes and inclinations in outdoor environments.

Research on autonomous vehicles has explored sensing modal-
ities to detect obstacles around cars, such as by recognizing
them using LIDAR depth data [9], RGB depth images [47],
or from RGB input alone[39]. Car-based sensors benefit from
statically mounted cameras with a steady perspective. Dream-
Walker, however, uses head-mounted sensors that move as the
user looks around and shake during walking.

DREAMWALKER’S SYSTEM DESIGN
DreamWalker is a tracking and navigation system that guides
users through VR environments using real-walking while redi-
recting them to reach a real-world destination. In order to
achieve this, DreamWalker implements three main compo-
nents in its system as outlined in Figure 2: Path planning,
Real-time environment detection, and a “Run” time.

The input for path planning is a given real-world path and
the virtual world that the user intends to real-walk in. Path
planning then finds paths in the virtual world that match the
real-world path as closely as possible, choosing the path with
the lowest error. DreamWalker “resolves” the remaining differ-
ences during runtime through redirection and slight variation
of the user’s virtual walking speed. Path planning identifies
the locations where to apply such corrections and populates
the virtual world with static objects that will prevent colli-
sions with real-world obstacles that are known a priori from
mapping data (e.g., buildings, streets, etc.).

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1095

Samsung Odyssey
(Windows Mixed Reality) Xiaomi Mi 8

(for dual-band GPS)

2x Intel Realsense D425 backpack PC (RGB depth cameras) (HP OMEN)
Windows Mixed Realitycontroller

additional
batteries

Figure 3. DreamWalker’s mobile virtual reality system, including sen-
sors, computing platform, and display device.

Our real-time environment detection and runtime systems
operate while walking to guide the user along the path. Dream-
Walker integrates three signal sources: 1) For 6-DOF inside-
out tracking, DreamWalker builds on the Windows Mixed
Reality system, which provides a relative position trace that
begins drifting noticeably after ˜100 feet. 2) For absolute po-
sitioning, DreamWalker uses a dual band GPS sensor, which
provides a coarse real-world location at low update rates. 3)
DreamWalker uses two RGB depth cameras to obtain real-
time information about the user’s immediate surroundings
and obstacles. DreamWalker’s positioning system fuses and
reconciles the data from all sources in real-time to estimate
the user’s precise real-world location and redirects them in
the virtual world to stay on the planned path. DreamWalker
dynamically represents detected obstacles in VR to create an
experience that matches the dynamic nature of the real world.

Types of obstacles and their representation
DreamWalker’s goal is preventing the user from colliding
with obstacles. The tracking system must therefore detect
obstacles reliably, in real time, and represent them to the user
by generating virtual objects. We categorize obstacles based
on the phase of operation in which they are detected:

1. Static obstacles are obstacles represented in map data
whose location is known at path planning time, such as build-
ing facades, columns, walls, staircases, fences, and other non-
walkable surfaces such as streets, intersections, patches of
grass and so on. To prevent users from walking into such
obstacles, DreamWalker blocks access to them by placing sta-
tionary virtual objects such as facades, cars, tables, hot dog
stands, trashcans, barriers etc.

2. Ad-hoc obstacles are physical obstacles that are not known
at path planning time, but interfere with walkable areas and
must thus be discovered on the fly. Ad-hoc obstacles are
stationary but often are only recognizable when they are well
in the field of view of the user, such as parked cars, trashcans,
road blocks, pillars or even smaller obstacles such as potholes
or drinking cans. While these ad-hoc obstacles do not move,
their potentially only late discovery requires DreamWalker to
represent them using virtual elements that dynamically appear,
such as virtual characters or traffic cones.

3. Dynamic obstacles are not known during path planning
time either and must also be detected on the fly. Unlike ad-hoc
obstacles, dynamic obstacles might move around or towards
the user, for example other pedestrians, dogs, bikes, and cars.
Similar to ad-hoc obstacles, DreamWalker represents dynamic
obstacles as virtual characters that move within the virtual
world to match the motion of their real-world counterparts.

Implementation and system components
DreamWalker runs on the HP OMEN Gaming Backpack with
a GTX 1080 (Figure 3). The Windows Mixed Reality sys-
tem provides inside-out tracking on a Samsung Odyssey VR
headset, updating sensed 6D locations at 90 Hz. Empirically,
we measured 1 m of drift over a course of just 30 m through
the inside-out tracking alone. Two Intel RealSense 425 cam-
eras provide RGB depth images, slightly angled and rotated
90 degrees to achieve a large field of view (86◦ × 98◦). We

built a custom adapter1 for the backpack computer that con-
verts Thunderbolt 3 to four USB 3 ports and thus supports the
bandwidth required to stream both RGB depth cameras at a
resolution of 640×480 (depth) and 640×480 (RGB) at 30 Hz.
Finally, GPS data comes from the sensor inside a Xiaomi Mi
8 phone, which features dual band (L1/L5) GPS and updates
the real-world location with a theoretical accuracy of 0.3 m at
1 Hz (though, empirically, the actual accuracy was ˜5 meters).

We implemented DreamWalker in Unity 2018.2. While the
core system runs at approximately 45 Hz, Windows Mixed
Reality implements asynchronous time warp to interpolate
frames and produces visuals at 90 Hz.

To experiment on a large area that is representative of real
environments, we tested DreamWalker on Microsoft’s large
Redmond, WA campus. Using Openstreetmap data, we ver-
ified the accuracy of the annotated streets, paths, areas, and
facades using satellite imagery and corrected them in Open-
streetmap when necessary. We also verified the correctness of
path labels such as staircases vs. ramps and finally retrieved
the contiguous network of traffic-free paths shown in Figure 4.
The campus is a suitable testing ground, with paths and roads
that contain plenty of ad-hoc obstacles (e.g., tables, chairs,
benches, lanterns, pillars, trees) and standing and walking peo-
ple. Figure 4 highlights the three campus paths we show in
our video figure (taking 8–15 minutes to walk), including the
path participants walked during the evaluation (dotted, taking
on average 15 minutes).

We tested DreamWalker with two pre-authored virtual envi-
ronments that we downloaded from an online store. The first
virtual world is downtown New York City 2, a large, walkable
area with plenty of visual features, such as diverse and tall
buildings, moving cars and buses, people on the sidewalks as
well as stands, posters, and other features. The second world
is Unity’s Viking Village3, a detailed ancient village area with
narrow paths and turns, wooden buildings, beaches, and many

1Custom adapter to mount depth cameras to the VR headset:
https://aka.ms/dreamwalker_models
2Manhattan Lower Part01 Low Poly on Turbosquid:
https://www.turbosquid.com/3d-models/m/1074847
3Viking village on Unity Asset store:
https://assetstore.unity.com/packages/essentials/
tutorial-projects/viking-village-29140

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1096

https://assetstore.unity.com/packages/essentials
https://www.turbosquid.com/3d-models/m/1074847
https://aka.ms/dreamwalker_models

2

3

1

2

3

1

BA 200ft
Figure 4. Campus map of contiguous traffic-free paths with the three
paths users walked (dotted line walked during the study). Dream-
Walker’s path planning system searches paths resembling (A) the real-
world path provided from a map routing system in (B) the graph of vir-
tual paths. During the matching phase, we consider acceptable redirec-
tion in motion speed-up, slow-down, and rotation redirection.

virtual obstacles, including fences, barrels, and stacks of ma-
terial. Note that although DreamWalker can map an outdoor
walk with an indoor world, we chose to map to virtual outdoor
models as it is hard to remained entertained while walking
only indoor VR scenes for the duration of ten or more minutes.
It may also affect walking speeds.

PART 1: PATH PLANNING AND OBSTACLE POPULATION
DreamWalker’s first prompts the user for a destination in the
real world and then obtains a route from a routing service (e.g.,
Google Maps) as a series of GPS coordinates as shown in
Figure 4a. DreamWalker then fits this series to the walkable
path network of a virtual environment (Figure 4b). We explain
DreamWalker’s path planning at the example of the Battery
Park area of Manhattan, which is composed of streets, parks,
squares—all plausible walking paths suitable for our use-case.

Finding a matching virtual path
Given the real-world GPS series, DreamWalker finds a resem-
bling path in the virtual world. We denote the real-world path
as the series P = {Pi|i ∈ 1..n} of n − 1 linear segments. Al-
though the real-world path and the virtual world path may have
curvature in some cases, DreamWalker’s path planning algo-
rithm automatically breaks them into line segments. A curve
with strong curvature is broken into multiple line segments,
while a low curvature path is mapped to a single segment.
The factor cdi f f encourages a mapping of paths with similar
curvatures.

The virtual world is represented as a graph G = (V,E), where
each edge e ∈ E is linear and may have different widths (e.g.,
because of varying sidewalks or paths through parks). The
quality of matching routes results from three factors:

1) Length scale: The length of the virtual walk should not
vary from the actual distance by more than 33%. We assign a
cost of 0 for matching a path segment if it maps to a virtual
segment within this scale; otherwise, we assign a cost of the
change in length beyond this amount, normalized by the length
of the whole segment. The total cost of the path clen results
from the sum of the squares of all segment costs.

2) Difference: Paths may have variations in shape (e.g., to
avoid obstacles), but local differences between the two paths
must not extend into a street. We define the cost per segment
as the maximum distance between the linear segment mapped
to the virtual world and the matching virtual path. The total

cost of these differences cdi f f is the sum of the squares of each
segment match cost.

3) Redirection: While the global shape of paths may differ,
changes in curvature along the path should not exceed 45°.
Beyond this angle, redirection becomes obvious to the user
and may instead be substituted by scripted distractions [37].
DreamWalker tries to minimize the number of redirections
cdir (similar to the limits reported in prior work [28]).

The quality rating for a match of routes results from the con-
volution of these three factors, so that match cost is:

�
2 2 2cmatch = wlen · clen +wdi f f · cdi f f +wdir · cdir

We use wlen, wdi f f ,wdir to balance between the constraints.

To find and fit a virtual-world path Q to the given real-world
path P, DreamWalker implements a greedy search for candi-
date virtual paths. At each iteration, we start by generating a
plausible mapping of each of the path vertices Pi to a matching
vertex Vi in the graph, where the distance between [Vi,Vi+1] is
within the length scale of the corresponding real-world path
segment. Figure 4 shows one example solution generated
by DreamWalker’s path planning algorithm, starting with a
real-world path provided from a map routing system P (A),
the virtual graph G (B), and ending with the closest match Q
(highlighted path in (B)) that produces the lowest cost while
considering redirection. For our examples, a path P including
each of its segments mapped to a series of segments in G after
5000 iterations (˜5 minutes on a Core i5), generating possible
matches and choosing the mapping with minimal cost.

Our path planning is different from others, as it fits the sim-
ilarity of two paths while computing acceptable redirection.
Since the search space is vast, DreamWalker implements ran-
dom walk and greedy search. The algorithm currently requires
precomputation and reuse during operation, but we believe
that this can be sped up through simulated annealing in the
future, reusing previously found sub paths, and iterating only
on the rest of the path vertices. The duration of execution also
depends on the virtual environment; VR worlds with wider
open spaces allow for much easier and faster routing due to
the lower number of constraints on finding virtual paths.

Note that since we have constraints on the scale, difference,
and redirection, path planning may not always produce an
acceptable match of paths in the virtual world given a path
in the real world and a virtual scene. We believe this can be
mitigated in the future when a large VR repository can be
made for DreamWalker, and the user can select from scenes
that have a good match for the path in the real world.

Static obstacle population
After obtaining a suitable mapping of the real-world route
to a virtual route, we populate the virtual environment with
objects along the walking path. To achieve a naturalistic blend
between the obstacles and the virtual environment, we have
authored one model with obstacles that fill up all paths for
every virtual environment. We place virtual objects that can
be used to represent static obstacles on every path as described
above, such as roadblocks, trucks, poster stands, and so on.

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1097

Color Image
with depth

WMR
Tracking

Height mapColor map

Global height
map

Global height
gradient map

Global color
map

Global color
gradient map

Height
gradient map

Global
ground map

Global wall map
(ad-hoc

obstacles)

each depth
camera frame

each VR frame

Dynamic
obstacles

iterative
flood fill

latency
correction

YOLO

Figure 5. DreamWalker’s environment sensing and processing pipeline.

We also add dynamic elements to the scene to make the virtual
environment more vibrant, such as walking people and driving
cars and buses. After the user selects a path and a virtual
world, DreamWalker retrieves the shape of the virtual route,
and removes any obstacles that collide with the user’s route as
well as any traffic that crosses it.

This step generalizes beyond the example of Manhattan and
applies to any virtual world with walkable paths, such as
Viking Village.

PART 2: REAL-TIME ENVIRONMENT DETECTION
DreamWalker detects obstacles and thus potential trip hazards
based on head-worn, forward-facing sensors. In contrast to
related work in robotics, we have no control over the motion
of these sensors, as they are part of a mobile setup with limited
computational power and sensing range.

DreamWalker’s real-time environment detection component
produces two signals for our runtime system (Figure 2: a
height map and a path map (i.e., walkable paths)) that feed
into our positioning and redirection system as well as a global
wall map (containing the locations of obstacles) and dynamic
obstacles that serve as input into our VR obstacle rendering
engine (shown in Algorithm 1). Our environment detection
continuously integrates the two depth and the two RGB im-
ages from the Intel Realsense cameras and aligns them with
the transformations provided by the Windows Mixed Reality
(WMR) optical inside-out tracking that DreamWalker corrects
for drift.

Fusing RGB depth frames into the tracking space
By processing the RGB depth stream, DreamWalker detects
two types of non-walkable areas, both of which qualify as
ad-hoc obstacles (Figure 5). First, some non-walkable areas
preclude walking simply by physically obstructing the path
and thus produce a distinct height difference compared to
the surrounding ground, such as benches, pillars, or walls.
Second, other non-walkable areas have a similar height as the
surrounding ground, but differ in texture and color, such as
grass patches, dirt roads, or sidewalk strips.

ad-hoc obstacle dynamic obstacle
(person)

static obstacle

Figure 6. The three types of obstacles that DreamWalker’s environment
recognition system detects and tracks during the user’s walk.

To detect and track non-walkable areas, DreamWalker con-
structs a height map from the depth image during operation.
We start this process by projecting each RGB depth frame
from the Intel cameras into the WMR tracking space in the
form of point clouds. We then project these points onto a
ground plane, which results in the height map and the color
map. We downsample these projections to height and color
images in which one pixel corresponds to 10 cm × 10 cm
and 5 cm × 5 cm, respectively, for the purpose of memory re-
duction and speed of computation. DreamWalker implements
custom shaders for these projections to produce color maps
and two depth maps. To obtain a nearly-complete color map,
our system renders triangles constructed from adjacent pixels.
For the height maps, we extract the highest and the lowest
point in the point cloud within the region of this pixel and
produce a projection of highest and lowest points, respectively.
We then define the gradient of a pixel as the maximum differ-
ence between the highest point and the lowest point for each
pixel as well as adjacent pixels, resulting in the height gra-
dient map. DreamWalker individually performs this process
for each RGB depth frame, each of which is inherently noisy
and thus not suitable to directly generate obstacles. Having
computed a color map, height map, and height gradient map,
DreamWalker aligns consecutive maps using the WMR track-
ing and temporal filtering. We finally derive the global color
gradient map from the global color map.

Obstacle extraction
The final step of DreamWalker’s environment detection system
is generating the path map (i.e., the map of walkable paths)
and the wall map, which encodes the locations where Dream-
Walker’s runtime system must position virtual obstacles. The
accuracy of the wall map is crucial for creating a compelling
and collision-preventing virtual environment for the user.

Therefore, DreamWalker extracts real-world obstacles from
the global height gradient map, not the global height map
itself. The global height map is prone to misalignments due
to small inaccuracies in pitch reported by the WMR headset,
which generate large height gaps in between the aligned local
height map and existing global height map. For example, 1◦

of misalignment may result in a height difference of 4 inches
just 15 feet away—a sizable obstacle that would result in a
false-positive VR representation. The global height gradient
map is less prone to this error because when computing this

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1098

�

�

map, we only compare heights within a local height map and
only use the difference in fusing them.

Extracting virtual representations based on the global height
gradient map and thus extracting them from the edges of
real-world obstacles is sufficient to prevent collisions. This
is because large areas of non-walkable obstacles require a
representation in VR solely in locations closest to the user—
those that the user would risk walking into.

DreamWalker generates the path map from the global height
gradient map through a flood fill starting at the user’s location
and only filling in areas where the color and height gradients
are below a threshold. Because flood fill is unsuitable for par-
allelization, we leverage the fact that the global gradient map
remains relatively consistent over time, because all ad-hoc
obstacles are stationary in the real world. Thus, we merely
perform an iterative flood fill, which usually advances the pre-
vious flood fill for 4 pixels per RGB depth update. Whenever
our flood fill now cannot fill into an area, we mark that pixel
as an obstacle in the wall map.

Next, we classify contiguous regions of colored areas in this
synthetic RGB image based on predefined RGB distributions,
such as green or red, as these areas tend to demarcate sidewalks
from other parts of the pavement. For those areas that produce
a sufficient score during the matching, we additionally mark
them as non-walkable in the path map.

To detect dynamic obstacles, we process both RGB images
for people and other moving objects. DreamWalker inte-
grates YOLO’s real-time object classification [25] in a separate
thread, which reports 2D boxes of detected objects at 15 Hz.
We project them into the environment using the closest dis-
tance in the depth images within a 10 × 10 pixel area of a
YOLO box, our environment detection adds their locations to
the wall map and reports them to the runtime system. This
ensures that moving pedestrians get represented in VR and
can thus be avoided by the user.

We refined DreamWalker’s tracking and detection system ex-
tensively for over a month during daily walks. These walks led
across various public and uncontrolled settings, including side-
walks full of pedestrians, campus areas, squares, underpasses,
each time in unseen areas to verify proper operation. While
developing our obstacle detection, we experimented with state-
of-the-art computer vision algorithms for self-driving cars,
which unfortunately proved unsuitable for our purposes. Since
LIDAR is impractical in DreamWalker due to weight and nec-
essary computation, we tested RGB-based detectors, including
Dilated Residual Networks [45], MultiNet/KittiSeg [39], and
FCN/VGG [18]. They were unreliable at accurately segment-
ing walkable areas (i.e., paths on campus), most likely because
they were trained on road views for cars, trucks, bikes, but not
the branches, curbs, poles DreamWalker must detect.

PART 3: DREAMWALKER’S RUNTIME SYSTEM
DreamWalker’s runtime implements three subsystems: 1) The
positioning subsystem determines the user’s accurate position
in the real world. 2) The redirection subsystem compensates
for drift between virtual world and real-world tracking by
applying additional redirection according to the planned path

(Part 1). 3) Obstacle representation produces virtual objects to
guide the user and prevent collisions.

Positioning system
The goal of the positioning system (pseudo code shown in
Algorithm 2) is to produce a rigid transform T that maps loca-
tions and orientations from the inside-out tracking space Torigin
to world coordinates Tgps. Most important is the horizontal
correction of the user’s position (i.e., Unity coordinates X-Z
axis or latitude-longitude for GPS).

The positioning system receives two types of input: the user’s
position puser/gps,in real-world GPS coordinates Tgps and rela-
tive WMR inside-out locations. In contrast to GPS’ coarse but
globally grounded measurements, WMR tracking measures
differential changes of positions and orientations. Its current
orientation Tuser/origin is an accumulation of transformations
from an arbitrary initial coordinate system at the beginning of
the path, Torigin, to the current coordinate system around the
user Tuser. As time progress, accumulated error may generate
a drift of Tuser relative to the global coordinate system.

A naïve solution is to fit a rigid transformation between a
history of recent GPS locations and corresponding user loca-
tions. In practice, the GPS positions puser/gps DreamWalker
collects have systematic offsets from the user’s true position
due to multi-path effects, atmospheric effects, etc. For ex-
ample, when walking along buildings in the real world, the
received GPS coordinates may have a constant offset either
towards the street or a location inside the building. The re-
sulting transformation would create a path outside of the true
walkable area and thus would increase risk of collisions.

To derive an accurate transformation during runtime, we lever-
age the assumption that the user is always walking on the
planned path. This allows us to transform the WMR inside-
out tracking position history [puser/origin] using the estimated
transform of the naïve method above to derive [p]. We user/gps
then accurately align the result with the part of the planned
path [ppath] that the user has already walked (p) using user/gps
an iterative closest point matching algorithm. This alignment
produces a correction matrix Thistory, mapping the estimated
GPS transformation to a more accurate GPS transformation.
We denote this target rigid transform as T2 = T1 ∗ Thistory.

While T2 now accurately maps locations across the user’s path,
inaccuracies may still occur along the path, and thus in a
direction that most likely contains physical obstacles next to
the user, such as buildings. Such behavior could occur after
walking a long and straight path segment, for example, just
before turning right at an intersection in the real world. Since
Thistory transforms the user’s location history to the already-
walked path, it only corrects inaccuracies perpendicular to
the user’s walking direction. When reaching a turn on the
planned path, for example at an intersection, the system cannot
accurately determine where and when the user should make
this turn using only this transformation, because locations
parallel to the current walking direction are inaccurate. We
thus complement our previous transformations with another
correction matrix T3, which we generate based on the global
height map that we assembled in the previous section. We

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1099

first project the user’s future path onto this height map and
search for the best fit in the possible transformation space of
[T −1 ∗ Tf uture] across offsets in the two horizontal dimensions
as well as rotation offsets. Through a custom compute shader,
we obtain the total height changes along each one of these
possible paths. Since the path originated from DreamWalker’s
path planning, we know that it traverses the world across a
flat ground, meaning a low total change in heights during
this search. We thus pick the transform Tf uture ∈ [Tf uture]
with the lowest total height change, and apply this correction
to the original transform T2. As a result of this correction,
we obtain an accurate transformation that compensates for
inaccuracies and jumps in both dimensions of the GPS updates:
T3 f uture ∗ T2. In the remainder of this section, we use T3 as= T −1

the transform that accurately maps coordinates from the WMP
inside-out tracking space Torigin to the GPS space Tgps.

Redirection system
During runtime, DreamWalker tracks the user’s position in
two reference systems: where the user is physically located
(as reported by the positioning system described above) and
the location in the virtual world. While the user traverses both
reference systems through walking, DreamWalker ensures
that the visuals presented to the user result in their accurately
walking the real world without collisions. In the case of a
discrepancy between both reference systems, DreamWalker
applies a gradual correction of the VR rendering to implicitly
redirect the user’s walk without their noticing (i.e., similar to
related redirected walking systems [24]). Below, we explain
how DreamWalker smoothly adapts its space transformations
to smoothly guide the user (back) towards the planned path
(pseudo code shown in Algorithm 3).

Redirection method
DreamWalker implements redirected walking by limiting trans-
formation changes according to the user’s actual viewport mo-
tion. The transformation matrix T derived above may include
large differences frame to frame and may even change when
the user performs no motion, for example because of inaccu-
rate GPS updates. Resulting changes in the visual experience
may thus be confusing or discomforting to the user.

In each frame fn, we record the current transform Tcurrent [n]
as well as the user’s transform Tuser/origin[n] from the WMR
inside-out tracking origin. In each following frame fn+1, we
obtain the ideal transform T [n +1] from our positioning sys-
tem as well as the user’s new WMR transform from the origin
Tuser/origin[n +1].

We determine how much the user moves frame-to-frame in the
GPS space Mexpected [n + 1] = Tuser/origin[n + 1] ∗ Tcurrent [n]−
Tuser/origin[n] ∗ Tcurrent [n]. The amount of this actual mo-
tion corresponds to the visual changes the system must pro-
duce to satisfy the user’s expectations. If DreamWalker
now directly applied the transform from the positioning sys-
tem, the user’s transform would amount to Tuser/origin[n +
1] ∗ Tn+1 and thus a (visual) movement of Mtarget [n + 1] =
Tuser/origin[n +1]∗ Tn+1 − Tuser/origin[n]∗ Tcurrent [n]. Assuming
that the transform Tcurrent [n + 1] results from this frame, the
movement the user will experience in response to this frame

amounts to Mactual [n+1] = Tuser/origin[n+1]∗Tcurrent [n+1]−
Tuser/origin[n]∗ Tcurrent [n].

Having computed the movements, the challenge is to produce
a pleasant motion in VR. The actual movement Mactual [n +1]
must be within the human detection threshold of the expected
movement Mexpected [n + 1] while remaining close to the tar-
get movement Mtarget [n +1]. Thus, we generate the range of
movements that are acceptable around the expected movement
Mexpected [n +1] and scale the target movement Mtarget [n +1]
back to be within that threshold, resulting in the actual move-
ment Mactual [n + 1] following this frame. With this actual
movement, we compute the transform of this frame by revers-
ing the movement equation: Tcurrent [n + 1] = (Tuser/origin[n +
1])−1 ∗ (Tuser/origin[n] ∗ Tcurrent [n] + Mtarget [n + 1]). Dream-
Walker generates the acceptable movement in line with the
redirection limits set in path planning.

Naïvely relying purely on estimated position may yield in-
consistent transformations frame to frame, thus discomforting
the user. Therefore, the implementation detailed above allows
DreamWalker to provide a smooth experience to the user while
gradually redirecting them towards the more accurate position.

Mapping the real-world position into the virtual world
Using the corresponding control points in the real world and
the virtual world that we place during path planning as de-
scribed in Part 1, we need to match all intermediate locations
during runtime for smooth redirection. Our goal is to generate
a transform for every point in the real world, such that the clos-
est real-world control point maps to a location in the virtual
world with ideally no offset to the corresponding virtual con-
trol point. This entails that adjacent points in the real world
retain their spatial neighborhood relationship in the virtual
world. This transform also needs to produce continuous rota-
tions offset across the campus map, as the user may experience
sudden change of position or rotation when walking otherwise.
DreamWalker’s implementation of this feature is based on
feature-based image metamorphosis [1], transforming one set
of position to another set using “line pairs” and linear inter-
polation. We extend this approach to use the more granular
pairs of control points by connecting adjacent control points
to line segments and then matching series of them. We also
incorporate the rotation transforms mentioned above into the
matching of position pairs, treating rotation as an additional
dimension and applying the same interpolation.

Obstacle representation
Having computed the user’s position on the map, the redi-
rected viewport, and having detected obstacles around the user
as described in Part 2, DreamWalker finally fuses all this infor-
mation to curate the user’s VR experience. Since our system is
managing a virtual world that may have been populated with
animated objects and characters, additional virtual objects
need to be introduced now to represent detected obstacles.

Static obstacles: As discussed in Part 1, the path planning
system populates the virtual environment with static obstacles
based on map topography if spaces are too open in the virtual
environment (e.g., in Manhattan). This step is unnecessary
in confined virtual areas (e.g., the narrow paths in the Viking

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1100

B C DA

Figure 7. Plausibly guiding users through virtual intersections: a) op-
timal case, b) regular street crossing that can be facilitated through
stopping cars, c) mid-street crossing that requires traffic blocks, such as
firetrucks, d) diagonal crossing that requires shutting down the street.

Village). Routing a path through the virtual environment that
resembles the physical route automatically allows us to use
the facades and street object as static obstacles.

In some cases, the physical route cannot be perfectly routed
through the virtual environment while staying within the con-
straints of tolerable redirection. Instead, the path planning
system may determine a virtual route that diagonally crosses
a street—an action that is uncommon in the real world. Fig-
ure 7 shows how DreamWalker handles these cases. In the
regular case of crossing at an intersection (b), DreamWalker
simply stops the traffic to yield to pedestrians, optionally sup-
plemented by traffic lights. In the case where streets have
to be crossed midway (c), DreamWalker finds a plausible so-
lution of stopping traffic in the middle of the street, such as
by placing a firetruck or police block. If the path planning
system cannot produce a better path than a diagonal crossing
(d), DreamWalker shuts down the entire road by populating
the ends with road blocks, thus preventing virtual traffic and
allowing the user to plausibly “safely” cross the VR street.

Ad-hoc and dynamic obstacles: DreamWalker implements
three different modes of representing discovered obstacles as
shown in our video figure.

Yellow pellets inspired by Human Pacman [8] indicate the path
for the user to walk. DreamWalker generates them by thinning
the forward-filled paths in the height gradient map, eliminating
all paths except for the one closest to the real-world path
Q generated during path planning. Dynamic obstacles are
represented by moving characters, typically causing the user
to pause until they have passed. Users stay collision-free as
long as they closely follows the pellet-indicated path.

Traffic cones or rocks border the walkable path ahead. Similar
to the pellets, DreamWalker finds these cone locations by
picking the path ahead from the height gradient map and, as
part of the flood fill, generating the outside delimiters minus
a safety margin. DreamWalker then places cones or rocks in
the virtual world and represents dynamic obstacles through
animated virtual characters. This technique prevents collisions
as long as users stay within the demarcated cone area.

Animated virtual characters (“humanoids”) move into the lo-
cation of detected obstacles and guide the user towards the
destination. This visualization has the potential to appear most
“natural” and fit the virtual narrative best, it is also the most
challenging to get right [40]. Humanoids solve the need for
representing uncertain ad-hoc and dynamic obstacles while

Static
obstacles Facade

and
cars

ad-hoc
obstacles

Humanoids

dynamic
obstacles

Figure 8. DreamWalker represents static obstacles through stationary
virtual objects, such as buildings or cars. Ad-hoc and dynamic obsta-
cles are represented through animated humanoid characters that walk

 towards the location of obstacles.

giving the virtual environment a lively feeling. We briefly
describe DreamWalker’s animation of humanoids.

When the positioning system gradually changes T frame-by-
frame, humanoids placed based on the previous frame’s trans-
formation T must move to the now updated obstacle locations.
Thus, for each frame, DreamWalker updates the target loca-
tions of humanoids using the wall map and the location of
dynamic obstacles. Since many obstacles may exist in the
wall map, we only animate humanoids within a certain radius
of the user and prune obstacles such that no two humanoids
share the same direction from the user’s perspective. When
many ad-hoc obstacles in the wall map share a similar location
(e.g., sidewalk strips), DreamWalker creates a sparse set of
humanoids, giving each a “personal space” of ±1 m.

DreamWalker animates humanoids to walk towards their as-
signed target locations (Figure 8), “drafting” close-by hu-
manoids one by one to ideally keep an overall crowd moving
around the user. A humanoid’s walking speed depends on
the distance to the user; humanoids outrun the user to an ob-
stacle, but may never reach an assigned target location if it
is far enough from the user and there is no risk of collision.
To approach reasonable behavior, DreamWalker drafts only
humanoids that are visible and spawns new humanoids behind
the user. When humanoids are no longer useful to represent
obstacles, DreamWalker discards them as soon as they are
outside the user’s field of view.

In the case of insular ad-hoc obstacles (e.g., pillars or lanterns),
DreamWalker drafts a humanoid and stops them at the target
location. This idling behavior could be supplemented by ani-
mations such as tying shoelaces, playing with their phone, or
looking up in future versions.

Guiding users towards their destination in VR
DreamWalker points into the direction the user needs to fol-
low similar to a real-world navigation system, such as Google
Maps. The pointing arrow at the bottom of the user’s field
of view thereby respects discovered obstacles and points into
the direction of a walkable path in the height gradient map.
In the case of the third visualization technique, the animated
humanoids provide a perhaps even stronger cue for the walka-
ble path. The use of the arrow serves two purposes. It keeps
navigation to a minimum, revealing just enough for the user
to maintain on track. It also helps our redirected walking algo-
rithm to hide world rotations. The user needs to walk roughly
in the direction of the arrow in order to reach their destina-
tion, but can freely explore the virtual world by walking given

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1101

that they do not collide with any virtual obstacles (including
generated humanoids).

EVALUATION
The purpose of this evaluation was to test DreamWalker’s
performance with inexperienced participants. Our key interest
was in determining if DreamWalker can deliver on the two
goals we started out with: preventing collisions while real-
walking an enjoyable and immersive virtual experience.

Task and Procedure
Participants’ task during each trial of the evaluation was to
put on the headset and start walking, thereby following the
direction of the arrow and avoiding static as well as dynamic
obstacles in VR. Participants finished the trial when they ar-
rived at a virtual stop sign that indicated the end of the walk.

We chose two common locations on our campus that partici-
pants walked between and obtained a GPS route between the
two from Google Maps (Path 1 in Figure 4). This route led
through a shaded tree area with changing inclination, through
open spaces, traffic-free roads, along hedges, through an over-
pass, and through a busy commons area full of chairs, tables,
pillars, umbrellas, glass facades, and people. Path planning
produced a path in Manhattan that matched the GPS trace with
acceptable redirection as described above, such that partici-
pants walked along virtual sidewalks, streets, and squares pop-
ulated with moving cars, pedestrians, and parked cars, trucks,
road blocks, benches, hot dog stands, and idling people.

Participants completed the study in two conditions, performing
one walk during each. In the first condition (‘DreamWalker’),
participants used our DreamWalker system as described in
this paper (i.e., including environment sensing, positioning,
redirection, and obstacle management) and received no instruc-
tions beyond avoiding virtual objects and following the arrow’s
direction. In the second condition (‘RGBD’), participants also
used DreamWalker, but this time only DreamWalker’s redi-
rection system was switched on in addition to blending in
the RGB depth cameras’ raw texturized meshes within an
area of five meters (same range of RGB-D data as the system
processed in ‘DreamWalker’). This allowed participants to
see the texture of the ground, upcoming obstacles (including
their height and texture), as well as objects next to them. No
humanoids or other obstacle representations were produced
during runtime in ‘RGBD’.

After each walk, participants immediately filled out the iPQ
presence questionnaire [29, 30] as well as a questionnaire
about their perceived safety and enjoyment.

Participants walked the same path in both conditions and re-
ceived no training beforehand. The order of conditions was
counterbalanced across participants. A single walk typically
took between 9 and 15 minutes (see the video figure for a
full walkthrough). We took a number of measures to en-
sure that participants were walking safely beyond their use of
DreamWalker. First, the path between the two GPS locations
did not cross any active road or area that may risk partici-
pants’ safety, though it did contain various small pillars, tactile
domes, mounts that are easy to stumble over, curbs, and so on.

Figure 9. Results of the evaluation: A) iPQ, B) perceived safety and
enjoyment, and C) walking speed.

Second, two experimenters accompanied each participant at
all times, trailing them in close proximity to either verbally or,
if need be, physically stop them from walking into obstacles
by grabbing their upper arm.

Participants
We recruited 8 participants from our institution (ages 24–51,
median = 39, 2 female). One participant had frequent prior ex-
perience with virtual reality, two participants reported having
used VR less than 5 times, whereas five participants stated that
they had never used VR before. All participants gave written
informed consent (according to the declaration of Helsinki)
and received a gift card as compensation. This study was ap-
proved by an Institutional Review Board. None of the authors
or people familiar with the project participated.

Results
We analyzed all the data logged during the study to compare
the performance of DreamWalker’s ad-hoc and dynamic ob-
stacle detection and representation with the gold standard that
is human perception and recognition of surrounding obstacles.
We implicitly also evaluated that our DreamWalker system
worked well for a variety of different users.

Figure 9 summarizes the results of the iPQ and the question-
naire. The iPQ showed higher presence for ‘DreamWalker’
in each one of the categories (including ‘General’ and ‘Sum’,
which are hidden in the chart) compared to ‘RGBD’. On aver-
age, ‘DreamWalker’ was also rated higher in entertainment as
well as in “being in the virtual world” compared to ‘RGBD’.
However, participants, on average, felt more confident and
slightly safer walking in ‘RGBD’ than in ‘DreamWalker’.

While walking, participants used a faster average walking
speed in ‘DreamWalker’ than in ‘RGBD’ (0.65 m/s, SD = 0.47
vs. 0.58 m/s, SD = 0.38). Finally, during the 9–15 minutes
of each walk, we had to correct participants’ walk an average
4.5 times (SD = 0.5) in ‘DreamWalker’ compared to 3.6 times
(SD = 0.45) in ‘RGBD’. Since user saw the same amount of
information in ‘RGBD’ as our system saw and processed in
the ‘DreamWalker’ condition. The fact that participants in the
‘DreamWalker’ condition needed only little more correction
than in ‘RGBD’ shows the effectiveness of our algorithm. We
think this will improve further with higher-res depth cameras.

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1102

DISCUSSION
Our evaluation showed that DreamWalker successfully nav-
igated participants through the real world while they experi-
enced a vastly different virtual reality, which they rated highly
enjoyable. The fact that the average walking speed in ‘Dream-
Walker’ was higher than in the baseline condition confirms
participants’ ratings in that they felt a high level of presence
in VR, which also supports our initial design goals. This be-
havior might in part be explained by participants carefully
watching the ground texture in ‘RGBD’, which resulted in
lower walking speeds but higher confidence in walking.

Upon closer inspection, the locations at which the experi-
menter had to correct some participants’ walks during the
study occurred at two distinct locations. Put differently,
DreamWalker did safely navigate participants throughout the
entire ˜15 minute walk apart from two specific spatial loca-
tions, which bears some resemblance with recent events in
self-driving cars.

We reviewed the geometry and terrain around these two loca-
tions and discovered that the narrow pavement makes a right
turn, followed by a strip of grass, and another right turn. The
challenge in navigating this terrain is correctly positioning
the user to ensure guiding the user to the correct turn. Our
environment sensing system, however, either could often not
see far enough to correctly detect and tell apart both turns,
thus aligning the first right turn with the expected, second turn
in the planned path. The resulting discrepancy between the
user turning right and the right turn in the planned real-world
path caused our navigation to point into a direction in between,
which confused some participants.

LIMITATIONS AND FUTURE WORK
Our evaluation uncovered DreamWalker’s current limitations
in addition to our own observations during continuous test-
ing. While the RGB-D data captured from the two Intel Re-
alsense D425 cameras on the headset covered a wide sensing
range, this range is still smaller than the headset’s field-of-
view. Therefore, DreamWalker may sometimes miss dynamic
obstacles coming in quickly from the side. In addition, some
locations on campus proved challenging for DreamWalker’s
segmentation approach despite a small change in RGB texture,
such as when green-brown grass patches appeared too similar
to the adjacent pavement.

Another limitation is DreamWalker’s rendering of humanoids
and their behavior, which may leave an unreliable impres-
sion despite DreamWalker’s robust obstacle detection. Our
ambition was to produce “natural” humanoid behavior, thus
spawning them outside the user’s wide field of view and con-
stantly moving them. With emerging gaze trackers in VR

headsets, DreamWalker could spawn and vanish humanoids
when outside the fovea yet within the field of view [20], which
could substantially reduce the required humanoid motion.

Participants also indicated their preference for more realistic
events in VR for increased entertainment, including car ac-
cidents, guiding policemen, stopping bikes, pets, or human
billboards that all serve as virtual obstacles. We believe future
versions can improve on DreamWalker by providing better
crowd dynamics and more diverse appearances as well as
idle animations for humanoids. While current DreamWalker
users are instructed to avoid contact with all virtual objects
to prevent collisions, future versions could implement pas-
sive haptic feedback this way (e.g., sitting on a chair [33]
or touching passive objects through gaze-inferred intentions
[6]). Since DreamWalker enables users to explore large, out-
door spaces through walking, its tracking system could also
serve for large-space training systems for users with visual
impairments rendering haptic feedback [46].

Finally, complete safety is an obvious limitation of using
DreamWalker in practice. We addressed this by always ac-
companying a DreamWalker user, much like self-driving cars
require drivers to be able to intervene. Participants reported
feeling safe in our study, but it is harder to establish that
DreamWalker is safe. Organizations such as OSHA or WHO
formulate safety as the number of incidents (i.e., near misses
and accidents) over a period of time [26], and objectively com-
pare industries that way to determine the effectiveness of their
safety measures.

CONCLUSIONS
We have presented DreamWalker, a VR tracking system that al-
lows users to navigate virtual experiences through real-walking
real-world outdoor spaces. DreamWalker fuses RGB depth,
inside-out, and GPS tracking in real-time to accurately register
the virtual world with the real world. Using redirected walking
to align two paths, one in the coordinates of either world, and
an obstacle detection system, DreamWalker guides the user
through VR using static and animated virtual objects in the
scene that cause the user to adjust their walk. In our evaluation
with inexperienced participants, each participant confidently
walked for 15 minutes in DreamWalker, which showed the
potential of our system to make repetitive real-world walking
tasks more entertaining.

ACKNOWLEDGMENTS
We thank all the participants of our study for their time and
useful comments after evaluating our system. We also thank
Mike Sinclair and Anthony Steed for their comments as well
as Lex Story for his help with the assembly mounts.

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1103

�

�

APPENDIX

Algorithm 1 Environment Sensing
1: procedure EACHCAMERAFRAME
2: colorimg ← Color Image from Depth Camera
3: depthimg ← Depth Image from Depth Camera
4: trackingdata ← Tracking data from WMR
5: yoloobjects ← YOLO process colorimg
6: dynamicobstacles ← map yolobojects on to depthimg
7: pointcloud ← synthesis colorimg depthimg
8: colormap, heightmap ← transform pointcloud by trackingdata
9: globalcolormap ← average(globalcolormap,colormap)

10: globalcolorgradient ← gradient of globalcolormap
11: heightgradient ← gradient of heightmap
12: globalheightgradient ← average(globalheightgradient, heightgradient)

13: procedure EACHVRFRAME
14: floodfillmap ← iterative flood fill globalheightgradient,globalcolorgradient, globalcolormap
15: globalpathmap ← Ground level > threshold in floodfillmap
16: globalwallmap ← Region with high gradient and adjacent to ground floodfillmap

17: procedure ITERATIVEFLOODFILL
18: for each pixel p do
19: iswall ← globalheightgradient and globalcolorgradient < threshold
20: isgrass ← globalcolormap with in a range
21: if iswall and isgrass then
22: floopfillmap[p] ← 0
23: else
24: floopfillmap[p] ← 2 ∗ sum floodfillmap[q],where q denotes the pixels surrounding p

Algorithm 2 Positioning System
1: procedure EACHVRFRAME
2: [puser/origin] ← WMR tracking history
3: [puser/gps] ← GPS tracking history
4: T1 ← Fit rigid transform[puser/origin], [puser/gps]
5: [puser/gps] ← T1 ∗ [puser/origin]
6: [ppath] ← planned path
7: Thistory ← Iterative closest point[puser/gps], [ppath]
8: T2 ← T1 ∗ Thistory
9: for A small transform Tf uture do

10: [p f uture] ← Next 10 points on path
11: value ← sum pathmap on all [T2

−1 ∗ Tf uture ∗ p f uture]

12: Tf uture ← Tf uture with largest value
= T −113: T3 f uture ∗ T2

Algorithm 3 Redirection System
1: procedure EACHVRFRAME
2: Mactual [n + 1] ← Tuser/origin[n + 1] ∗ Tcurrent [n + 1] − Tuser/origin[n] ∗ Tcurrent [n]
3: Mtarget [n + 1] ← scale back within limit Mactual [n + 1]
4: Tcurrent [n + 1] ← (Tuser/origin[n + 1])−1 ∗ (Tuser/origin[n] ∗ Tcurrent [n]+ Mtarget [n + 1])

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1104

REFERENCES
[1] Thaddeus Beier and Shawn Neely. 1992. Feature-based

image metamorphosis. ACM SIGGRAPH Computer
Graphics 26, 2 (jul 1992), 35–42. DOI:
http://dx.doi.org/10.1145/142920.134003

[2] Bigscreen. 2014. https://bigscreenvr.com/. (2014).

[3] Tomasz Byczkowski and Jochen Lang. 2009. A
Stereo-Based System with Inertial Navigation for
Outdoor 3D Scanning. In 2009 Canadian Conference on
Computer and Robot Vision. IEEE. DOI:
http://dx.doi.org/10.1109/crv.2009.40

[4] Haiwei Chen, Samantha Chen, and Evan Suma
Rosenberg. 2018. Redirected Walking in Irregularly
Shaped Physical Environments with Dynamic Obstacles.
In 2018 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR). IEEE. DOI:
http://dx.doi.org/10.1109/vr.2018.8446563

[5] Haiwei Chen and Henry Fuchs. 2017. Supporting free
walking in a large virtual environment. In Proceedings
of the Computer Graphics International Conference on -
CGI '17. ACM Press. DOI:
http://dx.doi.org/10.1145/3095140.3095162

[6] Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje
Benko, and Andrew D. Wilson. 2017. Sparse Haptic
Proxy: Touch Feedback in Virtual Environments Using a
General Passive Prop. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 3718–3728.
DOI:http://dx.doi.org/10.1145/3025453.3025753

[7] Lung-Pan Cheng, Eyal Ofek, Christian Holz, and
Andrew D. Wilson. 2019. VRoamer: Generating
On-The-Fly VR Experiences While Walking inside
Large, Unknown Real-World Building Environments. In
2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE.

[8] Adrian David Cheok. 2010. Human Pacman: A Mobile
Augmented Reality Entertainment System Based on
Physical, Social, and Ubiquitous Computing. In Art and
Technology of Entertainment Computing and
Communication. Springer London, 19–57. DOI:
http://dx.doi.org/10.1007/978-1-84996-137-0_2

[9] Jan Effertz and Jörn Marten Wille. 2011. Vehicle
Architecture and Robotic Perception for Autonomous
Driving in Urban Environments. In Experience from the
DARPA Urban Challenge. Springer London, 209–239.
DOI:http://dx.doi.org/10.1007/978-0-85729-772-3_9

[10] Oculus Go. 2018. Oculus. https://www.oculus.com/go/.
(2018).

[11] Rec Room® — Against Gravity. 2018.
https://www.againstgrav.com/rec-room/. (2018).

[12] Jeremy Hartmann, Christian Holz, Eyal Ofek, and
Andrew D. Wilson. 2019. RealityCheck: Blending
Virtual Environments with Situated Physical Reality. In
Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 347, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300577

[13] Christian Hirt, Markus Zank, and Andreas Kunz. 2017.
Real-time wall outline extraction for redirected walking.
In Proceedings of the 23rd ACM Symposium on Virtual
Reality Software and Technology - VRST '17. ACM
Press. DOI:http://dx.doi.org/10.1145/3139131.3143416

[14] Christian Hirt, Markus Zank, and Andreas Kunz. 2018.
Preliminary Environment Mapping for Redirected
Walking. In 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). IEEE. DOI:
http://dx.doi.org/10.1109/vr.2018.8446262

[15] M. Keller and F. Exposito. 2018. Game Room Map
Integration in Virtual Environments for Free Walking. In
2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). 763–764. DOI:
http://dx.doi.org/10.1109/VR.2018.8446385

[16] VIVE™ | VIVE Focus Developer Kit. 2018. https:
//developer.vive.com/eu/vive-focus-for-developer/.
(2018).

[17] Eike Langbehn, Frank Steinicke, Markus Lappe,
Gregory F. Welch, and Gerd Bruder. 2018. In the blink
of an eye. ACM Transactions on Graphics 37, 4 (jul
2018), 1–11. DOI:
http://dx.doi.org/10.1145/3197517.3201335

[18] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
2015. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[19] Sebastian Marwecki, Maximilian Brehm, Lukas Wagner,
Lung-Pan Cheng, Florian 'Floyd' Mueller, and Patrick
Baudisch. 2018. VirtualSpace - Overloading Physical
Space with Multiple Virtual Reality Users. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems - CHI '18. ACM Press.
DOI:http://dx.doi.org/10.1145/3173574.3173815

[20] Sebastian Marwecki, Andrew D. Wilson, Eyal Ofek,
Mar Gonzalez-Franco, and Christian Holz. 2019.
Mise-Unseen: Using Eye-Tracking to Hide Virtual
Reality Scene Changes in Plain Sight. In Proceedings of
the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). ACM, New York,
NY, USA, 13.

[21] Quake VR on soccer field. 2019.
https://www.youtube.com/watch?v=acEz98Ol8NI. (2019).

[22] Fallout 4 VR on Steam. 2017.
https://store.steampowered.com/agecheck/app/611660/.
(2017).

[23] Brian Peasley and Stan Birchfield. 2013. Replacing
Projective Data Association with Lucas-Kanade for
KinectFusion. In 2013 IEEE International Conference
on Robotics and Automation. IEEE. DOI:
http://dx.doi.org/10.1109/icra.2013.6630640

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1105

https://www.christianholz.net/vroamer.html
http://dx.doi.org/10.1109/icra.2013.6630640
https://store.steampowered.com/agecheck/app/611660
https://www.youtube.com/watch?v=acEz98Ol8NI
https://DOI:http://dx.doi.org/10.1145/3173574.3173815
http://dx.doi.org/10.1145/3197517.3201335
https://developer.vive.com/eu/vive-focus-for-developer
http://dx.doi.org/10.1109/VR.2018.8446385
http://dx.doi.org/10.1109/vr.2018.8446262
https://DOI:http://dx.doi.org/10.1145/3139131.3143416
http://dx.doi.org/10.1145/3290605.3300577
https://www.againstgrav.com/rec-room
https://www.oculus.com/go
https://DOI:http://dx.doi.org/10.1007/978-0-85729-772-3_9
http://dx.doi.org/10.1007/978-1-84996-137-0_2
https://DOI:http://dx.doi.org/10.1145/3025453.3025753
http://dx.doi.org/10.1145/3095140.3095162
http://dx.doi.org/10.1109/vr.2018.8446563
http://dx.doi.org/10.1109/crv.2009.40
https://bigscreenvr.com
http://dx.doi.org/10.1145/142920.134003

[24] Sharif Razzaque, Zachariah Kohn, and Mary C Whitton.
2001. Redirected walking. 9 (2001), 105–106.

[25] Joseph Redmon. 2013–2016. Darknet: Open Source
Neural Networks in C. http://pjreddie.com/darknet/.
(2013–2016).

[26] Occupational Safety, Health Administration, and others.
2016. Improve Tracking of Workplace Injuries and
Illnesses. Final rule. Federal register 81, 92 (2016),
29623.

[27] Anthony Scavarelli and Robert J. Teather. 2017. VR
Collide! Comparing Collision-Avoidance Methods
Between Co-located Virtual Reality Users. In
Proceedings of the 2017 CHI Conference Extended
Abstracts on Human Factors in Computing Systems -
CHI EA '17. ACM Press. DOI:
http://dx.doi.org/10.1145/3027063.3053180

[28] P. Schmitz, J. Hildebrandt, A. C. Valdez, L. Kobbelt, and
M. Ziefle. 2018. You Spin my Head Right Round:
Threshold of Limited Immersion for Rotation Gains in
Redirected Walking. IEEE Transactions on Visualization
and Computer Graphics 24, 4 (April 2018), 1623–1632.
DOI:http://dx.doi.org/10.1109/TVCG.2018.2793671

[29] Thomas Schubert, Frank Friedmann, and Holger
Regenbrecht. 1999. Embodied Presence in Virtual
Environments. Visual Representations and
Interpretations (1999), 269–278. DOI:
http://dx.doi.org/10.1007/978-1-4471-0563-3_30

[30] Thomas Schubert, Frank Friedmann, and Holger
Regenbrecht. 2001. The Experience of Presence: Factor
Analytic Insights. Presence: Teleoperators and Virtual
Environments 10, 3 (Jun 2001), 266–281. DOI:
http://dx.doi.org/10.1162/105474601300343603

[31] Stefania Serafin, Niels C. Nilsson, Erik Sikstrom,
Amalia De Goetzen, and Rolf Nordahl. 2013. Estimation
of detection thresholds for acoustic based redirected
walking techniques. In 2013 IEEE Virtual Reality (VR).
IEEE. DOI:http://dx.doi.org/10.1109/vr.2013.6549412

[32] Maeve Serino, Kyla Cordrey, Laura McLaughlin, and
Ruth L. Milanaik. 2016. Pokémon Go and augmented
virtual reality games. Current Opinion in Pediatrics 28,
5 (oct 2016), 673–677. DOI:
http://dx.doi.org/10.1097/mop.0000000000000409

[33] Misha Sra, Sergio Garrido-Jurado, and Pattie Maes.
2017. Oasis: Procedurally Generated Social Virtual
Spaces from 3D Scanned Real Spaces. IEEE
Transactions on Visualization and Computer Graphics
(2017), 1–1. DOI:
http://dx.doi.org/10.1109/tvcg.2017.2762691

[34] Misha Sra, Sergio Garrido-Jurado, and Chris Schmandt.
2016. Procedurally generated virtual reality from 3D
reconstructed physical space. Proceedings of the 22nd
ACM Conference on Virtual Reality Software and
Technology - VRST ’16 (2016). DOI:
http://dx.doi.org/10.1145/2993369.2993372

[35] Misha Sra, Xuhai Xu, Aske Mottelson, and Pattie Maes.
2018. VMotion. In Proceedings of the 2018 on
Designing Interactive Systems Conference 2018 - DIS
'18. ACM Press. DOI:
http://dx.doi.org/10.1145/3196709.3196792

[36] Frank Steinicke, Gerd Bruder, Jason Jerald, Harald
Frenz, and Markus Lappe. 2008. Analyses of human
sensitivity to redirected walking. In Proceedings of the
2008 ACM symposium on Virtual reality software and
technology - VRST '08. ACM Press. DOI:
http://dx.doi.org/10.1145/1450579.1450611

[37] Evan A. Suma, Zachary Lipps, Samantha Finkelstein,
David M. Krum, and Mark Bolas. 2012. Impossible
Spaces: Maximizing Natural Walking in Virtual
Environments with Self-Overlapping Architecture. IEEE
Transactions on Visualization and Computer Graphics
18, 4 (April 2012), 555–564. DOI:
http://dx.doi.org/10.1109/TVCG.2012.47

[38] Qi Sun, Arie Kaufman, Anjul Patney, Li-Yi Wei, Omer
Shapira, Jingwan Lu, Paul Asente, Suwen Zhu, Morgan
Mcguire, and David Luebke. 2018. Towards virtual
reality infinite walking. ACM Transactions on Graphics
37, 4 (jul 2018), 1–13. DOI:
http://dx.doi.org/10.1145/3197517.3201294

[39] Marvin Teichmann, Michael Weber, Marius Zoellner,
Roberto Cipolla, and Raquel Urtasun. 2018. Multinet:
Real-time joint semantic reasoning for autonomous
driving. In 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 1013–1020.

[40] Daniel Thalmann. 2007. Crowd Simulation. American
Cancer Society. DOI:
http://dx.doi.org/10.1002/9780470050118.ecse676

[41] Tom Warren The Verge. 2018. Microsoft is bringing the
SharePoint work environment to virtual reality headsets.
https://www.theverge.com/2018/5/21/17376422/
microsoft-sharepoint-spaces-mixed-reality-virtual-\
reality-features. (2018).

[42] Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas,
and Evan A. Suma. 2013. Flexible spaces: Dynamic
layout generation for infinite walking in virtual
environments. In 2013 IEEE Symposium on 3D User
Interfaces (3DUI). IEEE. DOI:
http://dx.doi.org/10.1109/3dui.2013.6550194

[43] The VOID. 2016. https://www.thevoid.com/. (2016).

[44] David Waller, Eric Bachmann, Eric Hodgson, and
Andrew C. Beall. 2007. The HIVE: A huge immersive
virtual environment for research in spatial cognition.
Behavior Research Methods 39, 4 (nov 2007), 835–843.
DOI:http://dx.doi.org/10.3758/bf03192976

[45] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser.
2017. Dilated Residual Networks. In Computer Vision
and Pattern Recognition (CVPR).

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1106

https://DOI:http://dx.doi.org/10.3758/bf03192976
https://www.thevoid.com
http://dx.doi.org/10.1109/3dui.2013.6550194
https://www.theverge.com/2018/5/21/17376422
http://dx.doi.org/10.1002/9780470050118.ecse676
http://dx.doi.org/10.1145/3197517.3201294
http://dx.doi.org/10.1109/TVCG.2012.47
http://dx.doi.org/10.1145/1450579.1450611
http://dx.doi.org/10.1145/3196709.3196792
http://dx.doi.org/10.1145/2993369.2993372
http://dx.doi.org/10.1109/tvcg.2017.2762691
http://dx.doi.org/10.1097/mop.0000000000000409
https://DOI:http://dx.doi.org/10.1109/vr.2013.6549412
http://dx.doi.org/10.1162/105474601300343603
http://dx.doi.org/10.1007/978-1-4471-0563-3_30
https://DOI:http://dx.doi.org/10.1109/TVCG.2018.2793671
http://dx.doi.org/10.1145/3027063.3053180
http://pjreddie.com/darknet

[46] Yuhang Zhao, Cynthia L. Bennett, Hrvoje Benko,
Edward Cutrell, Christian Holz, Meredith Ringel Morris,
and Mike Sinclair. 2018. Enabling People with Visual
Impairments to Navigate Virtual Reality with a Haptic
and Auditory Cane Simulation. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article

116, 14 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173690

[47] Yaguang Zhu, Baomin Yi, and Tong Guo. 2016. A
Simple Outdoor Environment Obstacle Detection
Method Based on Information Fusion of Depth and
Infrared. Journal of Robotics 2016 (2016), 1–10. DOI:
http://dx.doi.org/10.1155/2016/2379685

Session 9A: Walking, Jumping, Roaming

UIST '19, October 20–23, 2019, New Orleans, LA, USA

1107

http://dx.doi.org/10.1155/2016/2379685
http://dx.doi.org/10.1145/3173574.3173690

