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Figure 1. Our method colorizes sketch images based on a reference image and allows to edit the results sequentially using arbitrary text
inputs with specified degrees. “+” and “-” denote the target text and anchor text for our text-based latent interpolation, respectively.

Abstract

Recently, diffusion models have demonstrated their ef-

fectiveness in generating extremely high-quality images and
have found wide-ranging applications, including automatic
sketch colorization. However, most existing models use text
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to guide the conditional generation, with fewer attempts ex-
ploring the potential advantages of using image tokens as
conditional inputs for networks. As such, this paper exhaus-
tively investigates image-guided models, specifically target-
ing reference-based sketch colorization, which aims to col-
orize sketch images using reference color images. We in-
vestigate three critical aspects of reference-based diffusion
models: the shortcomings compared to text-based counter-
parts, the training strategies, and the capability in zero-
shot, sequential text-based manipulation. We introduce two
variations of an image-guided latent diffusion model us-
ing different image tokens from the pre-trained CLIP im-
age encoder, and we propose corresponding manipulation
methods to adjust their results sequentially using weighted
text inputs. We conduct comprehensive evaluations of our
models through qualitative and quantitative experiments,
as well as a user study. Code link: https://github.
com/ydk-tellurion/colorizeDiffusion.

1. Introduction
Anime-style images have gained worldwide popularity

over the past few decades thanks to their diverse color com-
position and captivating character design, but the process
of colorizing sketch images remains laborious and time-
consuming. Yet, swift advancements to diffusion models
[17, 60] now enable large generative models to create re-
markably high-quality images across a variety of domains,
including anime style. While effective conditional diffusion
models predominantly focus on text-based generation, few
specialize in reference-based colorization, a complex gener-
ation task that utilizes both a reference and a sketch image.
As such, this paper focuses on reference-based colorization
by thoroughly analyzing a major challenge in the training of
related models, examining the selection of reference condi-
tions, exploring training strategies for relevant neural net-
works, and proposing two zero-shot text-based manipula-
tion methods using tokens from pre-trained CLIP encoders.

A salient issue in multi-conditioned generation is the po-
tential conflict between input conditions, which might not
significantly impact methods using sketch and text condi-
tions, as users are less likely to invoke contradictory con-
ditions and can readily modify the text when such conflicts
occur. Yet, this problem widely exists in reference-based
colorization, because both sketch and reference images con-
tain varied object identity information with potentially in-
compatible contents.

However, text-based models also exhibit several limi-
tations when compared to image-guided methods, one of
which is their inability to transfer features accurately from a
reference image and to reflect the progressive changes in re-
sults for weighted text inputs [19,41,43], such as transition-
ing from “blue hair: 0.5” to “blue hair: 1.5.” These prob-

lems arise due to the lack of image-based cross-attention
modules, and the discrete representations of text embed-
dings. When trained using image-based cross-attention
modules and image features that adapt in response to the
confidence of corresponding attributes, such as hair color,
image-guided models [11,26,31,38,40,57] could effectively
mitigate this problem.

Given that anime-style images [6] are more sensitive
to color variations and encapsulate ample visual attributes
within each image, they are suitable to aid in analyzing the
proposed reference-based generation and text-based manip-
ulation methods. Our research demonstrates that reference-
based models, leveraging image tokens from pre-trained
CLIP encoders as conditions, are capable of progressively
adapting their outputs in response to weighted text inputs.

Through rigorous experimentation with ablation mod-
els and baselines, we empirically prove the effectiveness
of the proposed methods in reference-based colorization,
style transfer, and text-based manipulation. We further con-
ducted a user study to evaluate the proposed methods sub-
jectively.

The contributions of this paper can be summarized as
follows:

• We conduct a comprehensive investigation into the appli-
cation of image-guided latent diffusion models to sketch
colorization, especially of the distribution problem and
training strategies.

• We design two zero-shot manipulation methods for the
proposed reference-based models.

The following sections of this paper are organized as fol-
lows: Section 2 briefly reviews related works, including La-
tent Diffusion Models (LDMs), neural style transfer, and
image colorization. Section 3 outlines the workflow of pop-
ular LDMs, describes a significant challenge called the “dis-
tribution problem,” and introduces the proposed reference-
based training and zero-shot manipulation methods. Section
4 presents several ablation studies and experimental com-
parisons with baselines, and Section 5 draws conclusions
for this paper. Additional qualitative results related to the
distribution problem, discussed in Sections 3 and 4, respec-
tively, are included in the appendix for reference.

2. Related Work

Our work focuses on reference-based sketch coloriza-
tion, an important subfield of image generation. We utilize
the score-based generative model as our neural backbone,
which is widely known as the diffusion model. Our training
methods and overall pipeline are designed following
previous style transfer and colorization methods, pursuing
pixel-level correspondence and fidelity to the input sketch
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image.

Latent Diffusion Models. Diffusion probabilistic Models
(DMs) [17] are a class of latent variable models inspired
by considerations from nonequilibrium thermodynam-
ics [48]. Compared with Generative Adversarial Nets
(GANs) [4, 5, 13, 24, 25], DMs excel at generating highly
realistic images across various contexts. However, the
autoregressive denoising process, typically computed
using a deep U-Net network [42], incurs substantial
computational costs for both training and inference, which
limits further applications. To address this limitation,
LDM [41], also known as StableDiffusion (SD), employ a
two-stage synthesis and carry out the diffusion/denoising
process within a highly compressed latent space to reduce
computational costs significantly. Concurrently, many
efficient samplers have been proposed to accelerate the
denoising process [34, 35, 49, 50]. In this paper, we adopt a
pre-trained text-based SD model as our neural backbone,
utilize DPM++ [35] as the default sampler, and employ
classifier-free guidance [7, 18] to strengthen the reference-
based performance.

Neural Style Transfer. First proposed in [12], Neural
Style Transfer (NST) has now become a widely adopted
technique compatible with many effective generative
models. Reference-based colorization, which aims to
transfer colors and textures from reference images to sketch
images, can be viewed as a subclass of multi-domain style
transfer. However, compared to traditional network-based
NST methods [4, 5, 20, 23, 66], which typically train
networks using feature-level restrictions, reference-based
colorization requires a higher level of color correspon-
dence with the reference while maintaining fidelity to the
sketch inputs. Consequently, our method is developed
based on the principles of conditional image-to-image
translation [22] to ensure pixel-level correspondence be-
tween the sketch and colorized results. We also demonstrate
the efficiency of our approach to sketch-based style transfer.

Image Colorization. Developing automatic colorization
algorithms has been a popular topic in the image genera-
tion field for years, and many effective methods have been
developed for this purpose, all of which can be divided
into traditional [9, 10, 37, 52] or Deep Learning (DL)-based
methods [22, 63] according to the adoption of deep neural
networks. Our work is highly related to DL-based meth-
ods, as they have been proven effective in generating high-
quality images and controlling outputs using various con-
ditional inputs. According to the conditions, existing DL-
based methods can be categorized into three types: text-
based [27,60,67], user-guided [61,64], and reference-based
[1, 30, 51, 56]. Text-based methods adopt text tags/prompts

Figure 2. We generated different combinations of reference-based
results using ControlNet lineart anime + IP-Adapter v1.5 [57,62],
our shuffle-0drop model, and shuffle-noisy model. We can observe
that ip-adapter and shuffle-0drop generated incompatible texture.

as hints to guide colorization, and they are the most popular
subclass nowadays, owing to sufficient pre-trained Text-to-
Image (T2I) models, as well as many effective plug-in mod-
ules and fine-tuning methods [19, 43, 60]. However, most
text-based models cannot precisely adjust the scale of spe-
cific prompts or transfer features from references without
training; meanwhile, user-guided methods require users to
specify colors manually for each region using color spots
or spray [61], assuming the user has a basic knowledge of
line art. Yan et al. investigated the possibility of combining
image and text tag conditions, but it was ineffective at gen-
erating backgrounds and at handling complex references,
like many other GAN-based methods [5, 30]. To overcome
the limitations of reference-based methods, we comprehen-
sively investigate the application of image-guided LDMs
and propose novel manipulation methods to enable text-
based control.

3. Method

In this section, we briefly outline the workflow of LDMs
in Section 3.1 and present the formulation of the so-called
“distribution problem” that arises when applying LDMs to
reference-based sketch colorization in Section 3.2. We pro-
pose various training strategies to tackle the data limitation
and the distribution problem in Sections 3.3 and 3.4, and
we design two zero-shot text-based manipulation methods
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Figure 3. Ideal latent distributions and sampling process of
reference-based colorization, where s0 and r0 denote specific in-
stances of the sketch and reference, respectively.

for the proposed reference-based models in Sections 3.5 and
3.6, respectively.

3.1. Latent Diffusion and Denoising

1. Train a Variational AutoEncoder (VAE) [29] on the target
image domain, comprising an encoder E and a decoder D
for perceptual compression and decompression, respec-
tively.

2. The encoder E compresses an image y into latent repre-
sentations z0 = E(y) based on a scaling factor f , which
is defined as f = H

h = W
w , where (H,W ) and (h,w) de-

note the (height, width) of the input image and the latent
representations, respectively. We set the scaling factor to
8 following popular SD models.

3. Autoregressively add noise ϵ ∼ N (0, 1) to z0 through
zt = αtz0 + βtϵ, where t denotes the timestep, zt the
noisy representations, and αt and βt the hyper-parameters
that control the noise schedule. This forward process is
called diffusion and it is a fixed-length Markovian process
with T steps in total, where T is set to 1, 000 in practice.
The denoising U-Net θ learns to predict the noise ϵ at the
t-step using the following function:

L(θ) = EE(y),ϵ,t,c[∥ϵ− ϵθ(zt, t, c)∥22], (1)

where c denotes the guiding condition.

4. The denoising U-Net predicts ϵt to denoise z′T to z′0 au-
toregressively during the inference stage, where z′T is
usually a noise map sampled from a normal distribution.

5. Decompress the final latent representation to obtain the
image output y′ using the decoder D, expressed as y′ =
D(z′0).

Note that only steps 4 and 5 are undertaken during infer-
ence.

Figure 4. Illustration of the latent distribution and representations
involved in the reference-based fine-tuning and sampling. The
guidance scale is used for sampling with classifier-free guidance
during inference. A higher guidance scale moves the denoised rep-
resentations closer to the corresponding distribution, while longer
training and a higher reference drop rate drag the optimized distri-
bution pθ(z|y, s, r) in the respective directions.

3.2. Distribution Problem

Because image-guided colorization primarily relies on
reference images for color and texture generation, we in-
troduce a significant challenge in this task, termed the “dis-
tribution problem.” It can be defined as follows: given a tar-
get image domain p(y), its corresponding latent distribution
p(z|y), and two conditions c1, c2, how does a generative
model prioritize c1 and c2 when it is trained on the target
distribution y ∼ p(z|y, c), where c1, c2 ∈ c? In the context
of guided sketch colorization, where c1 and c2 represent the
sketch image s and the guiding text/image r, respectively, it
is preferable for the generated image to adhere more closely
to the sketch rather than the reference image, especially for
semantic regions. This problem is also reported in [60, Fig.
28] as a case of mistaken recognitions.

Unlike text- or user-guided colorization, where conflict-
ing conditions are less likely to arise during inference, ref-
erence images often introduce elements absent in the sketch
images. For example, using character-centric images to col-
orize landscape sketches may lead to pronounced discrep-
ancies, such as erroneously adding eyes and hair to non-
human sketches. As illustrated in Figure 2, image-guided
networks are likely to generate visually unpleasant results.
More examples of the distribution problem are included in
the appendix.

We delve into this problem at the latent distribution level,
and the ideal distributions and sampling are visualized in
Figure 3. For a given reference r0 and sketch s0, the
sampled latent representation z0 is achieved by projecting
the embedding plane p(z|y, r0) onto p(z|y, s0), ensuring
z0 ∈ p(z|y, s0) for generating reasonable results. However,
to obtain substantial and semantically well-paired training
data, sketch and reference images are produced from the
original color images, sharing the same ground truth struc-
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Figure 5. Our training pipelines. We propose two variations of reference-based models: CLS and Attention. For the Attention model,
we introduce two training strategies, namely, deformation and shuffle training. Deformed images and sketch images are generated before
training begins. Here, orange and green lines illustrate the respective data flows for the CLS model and the Attention model. While shuffle
and deformation training are strategies specific to the Attention model, noisy training serves as a solution to the distribution problem, where
the noisy training performs diffusion on the local tokens and is combined with either shuffle training or deformation training.

ture information at the latent level, so the ground truth color
images can be easily reconstructed using either s or r, lead-
ing to an overlapped region p(z|y, s, r) in the latent distri-
butions p(z|y, r) and p(z|y, s). Thus, we can restate the
distribution problem as follows: how can we train a dual-
conditioned generative model to prioritize s over r using
only one ground truth dataset, whose instances belong to
p(z|y, s) and p(z|y, r), with p(z|y, r) ⊂ p(z|y, s)?

For simplicity, we collapse the visualization into 2D and
illustrate the actual latent distributions in Figure 4. Be-
cause the information entropy of r is typically lower than
that of s and noisy representations zt during training, the
denoised latent distribution pθ(z|y, s, r) obtained during in-
ference (marked by the black oval in Figure 4) usually tends
to get closer to p(z|y, r) rather than p(z|y, s). This results
in colorized outputs containing numerous identities specific
to the reference image, leading to a suboptimal visual per-
formance. In addition, the guidance scale of classifier-free
guidance, which is widely used in denoising DM outputs,
also has a strong influence on the distribution problem. To
mitigate this issue, we employ dual classifier-free guidance,
which adjusts the position of the sampled representation in
the latent space.

3.3. Reference-based Training

Our reference-based models are fine-tuned from the
Waifu Diffusion [14], and a pre-trained CLIP Vision Trans-
former (ViT) from OpenCLIP-H [3, 21, 39, 46] is used to
extract image tokens from reference images and remains
frozen during training. For a 224 × 224 image, the CLIP
ViT outputs 257 tokens, comprising 256 local tokens and
1 CLS token. The CLS token encapsulates the semantic
information of the reference image, whereas local tokens

hold both structural and semantic content. We propose two
reference-based models, CLS and Attention, differentiated
by their token usage. The CLS model leverages only the
CLS token, replacing all cross-attention modules in the la-
tent U-Net with fully-connected layers, so it is a prompt-
based model and less likely to suffer from the distribution
problem; Attention models employ all local tokens for gen-
eration guidance, maintaining the architecture similar to SD
v2.1 [41], the effectiveness of which in conditional genera-
tion has been demonstrated by various applications [43,60].

Figure 5 illustrates our pipeline for reference-based fine-
tuning, where we employ trainable convolutional layers in
the denoising U-Net to downscale sketch inputs to the la-
tent level. Following [60], these downscaled features are
added to the forward features instead of being concatenated.
Because the CLS token excludes structure information, the
CLS model uses ground truth color images as reference in-
puts during training. However, the training of Attention
models requires additional preprocessing for the reference
inputs, so we accordingly propose two strategies to obtain
the reference inputs and train the Attention model:

1. Deformation training: To tackle the data limitation,
a common solution adopted by [30, 56, 61] is to generate
reference images from ground truth color images using im-
age deformation algorithms. In this paper, we utilize [45] to
produce reference images before training.

2. Latent shuffle training: Generating reference im-
ages can be time-consuming and storage-intensive. Inspired
by [8, 54], we propose latent shuffle training, which swaps
the sequence of local tokens before inputting them into the
U-Net, as shown in Figure 5. Note that the latent shuffle
breaks the connection between neighbouring tokens, which
strengthens the transfer ability of cross-attention modules
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Figure 6. Our inference pipeline. The image tokens are edited before being input into the denoising U-Net. Illustrated results were
generated by the Attention model at a resolution of 768× 768.

but degrades the image composition of the generated re-
sults.

The diffusion loss for fine-tuning is defined as follows:

L(θ) = EE(y),ϵ,t,s,r[∥ϵ− ϵθ(zt, t, s, τϕ(r))∥22], (2)

where ϕ and τϕ denote the CLIP ViT and extracted to-
kens, respectively. Compared to deformation-trained coun-
terparts, shuffle-trained models can generate results with a
more vivid texture, but they are more likely to suffer from
the distribution problem. Therefore, most of our models
were trained using latent shuffle to demonstrate the effec-
tiveness of the proposed methods in mitigating the distri-
bution problem, and we recommend adopting deformation-
based training if possible.

3.4. Solutions to the Distribution Problem

To mitigate the distribution problem among Attention
models, it is necessary to drag the denoised representations
to p(z|y, s), as explained in Section 3.2. To achieve this, we
propose three solutions to designing the network aware of
the distribution p(z|y, s).

The first method, termed dropping training, randomly
drops reference inputs during training with a drop rate much
higher than 0.2, a suggested value in [18]. This slows
down the optimization of cross-attention modules, enabling
the network to generate pθ(zt|zt+1, s, t) (corresponding to
p(z|y, s) in Section 3.2). Default reference drop rates are
empirically set to 0.75 for deformation training and 0.8 for
shuffle training.

The second method is called noisy training, and it is
identified by the brown switch in Figure 5. It performs dif-
fusion on local tokens, dynamically increasing information
entropy according to the timestep t. Therefore, its objective
function is formulated as follows:

L(θ) = EE(y),ϵ,t,s,r[∥ϵ− ϵθ(zt, t, s, τϕ,t(r))∥22], (3)

where τϕ,t(r) = αtτϕ(r) + βtϵr and ϵr ∼ N (0, 1). Com-
pared with other solutions, this method eliminates the dis-
tribution problem but falls short of maintaining similarity
with references, leading to a higher variance in the results.

Dropping reference conditions degrades the style trans-
fer ability, becoming less effective after sufficient train-
ing. As illustrated in Figure 4, the pθ(z|y, s, r) gradually
shifts toward the p(z|y, r) as the training duration increases.
Therefore, we design dual-conditioned training to overcome
this limitation.

The key goal of the dropping training is to enable the
network to generate ϵt satisfying zt ∈ pθ(zt|zt+1, s, t). In
our proposed dual-conditioned diffusion training, we penal-
ize the difference between the sketch-based results and the
ground truth, rather than dropping references. The dual-
conditioned loss is accordingly organized as follows:

L(θ) = EE(y),ϵ,ϵ′,t,s,r[∥ϵ− ϵθ(zt, t, s, τϕ(r))∥22+
λ∥ϵ′ − ϵ′θ(z

′
t, t, s)∥22],

(4)

where zt and z′t are diffused from z0 using different noise
ϵ and ϵ′, respectively, and λ is set to 4 by default. Note
that each batch travels the forward pass twice in the dual-
conditioned training, so it takes approximately 1.6 times
longer than other solutions. Models trained using the drop-
ping, noisy, and dual-conditioned methods are referred to as
the Drop model, Noisy model, and Dual model in the fol-
lowing sections, respectively. Qualitative results concern-
ing the distribution problem are included in the appendix.

3.5. Global Text-Based Manipulation

Compared to T2I models, adjusting the semantic infor-
mation of guiding conditions is more difficult for reference-
based networks. We accordingly adopt a zero-shot and text-
based manipulation for the proposed CLS model. DALL-E-
2 [40] has demonstrated that an image-guided model using
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Input: CLS token: v⃗cls;
Normalized embeddings of target prompts:

e⃗[1..N ];
Normalized embeddings of anchor prompts:

a⃗[1..N ];
Target scales: target scale[1..N ];
Enhance flags: enhance[1..N ]

for i = 1, 2, .., N do
if a⃗[i] is not null then

if enhance[i] is true then
v⃗cls ← v⃗cls − (v⃗cls · a⃗[i]) ∗ a⃗[i]
v⃗cls ←
v⃗cls+(target scale[i]− v⃗cls · e⃗[i])∗ e⃗[i]

end
else

v⃗cls ←
v⃗cls + target scale[i] ∗ (e⃗[i]− a⃗[i])

end
end
else

if enhance[i] is true then
v⃗cls ← v⃗cls + target scale[i] ∗ e⃗[i]

end
else

v⃗cls ←
v⃗cls+(target scale[i]− v⃗cls · e⃗[i])∗ e⃗[i]

end
end

end
return v⃗cls

Algorithm 1: Sequential global manipulation.

CLIP encoders can modify outputs based on text embed-
ding. Therefore, we can adjust image embeddings to align
with the target degree of visual attributes specified by texts
before inputting them into the denoising U-Net θ. The in-
ference pipeline is illustrated in Figure 6.

Our proposed method incorporates the normalized text
embedding into the image embedding. We denote the ex-
tracted image tokens (previously represented as τϕ(r)) and
normalized text embeddings as vectors v⃗ and e⃗, respectively.
The modified CLS token v⃗mcls can be calculated as:

v⃗mcls =

{
v⃗cls + target scale ∗ e⃗ enhance

v⃗cls + (target scale− v⃗cls · e⃗) ∗ e⃗ not enhance
,

(5)
where target scale and enhance are user-defined param-
eters. Similar to DALL-E-2, the manipulation can be im-
proved through the normalized embedding of an anchor
text, termed a⃗. The first method, where enhance is false,
calculates v⃗mcls with the anchor text as:

v⃗mcls = v⃗cls + target scale ∗ (e⃗− a⃗). (6)

Figure 7. Visualization of dscaleAB corresponding to the texts
“the girl’s red eyes” (upper) and “the girl’s green hair” (lower),
respectively. The first and second columns show the source im-
ages A and B used to generate image tokens, and the third column
shows the histograms of dscaleAB , calculated between local to-
kens, with the dscaleAB

cls (global dscale) shown at the top.

The global manipulation can be further enhanced by first
eliminating the anchor attribute using a⃗ before adding e⃗.
This step is taken when enhance is activated and the CLS
token v⃗′cls is then calculated as:

v⃗′mcls = v⃗cls − (v⃗cls · a⃗) ∗ a⃗,
v⃗mcls = v⃗′mcls + (target scale− v⃗′mcls · e⃗) ∗ e⃗.

(7)

The sequential manipulation of v⃗cls is shown in Algorithm
1. Target scales ranging in [4, 15] can generate reasonable
results, and examples of how to perform the global zero-
shot manipulation are included in Section 4.

3.6. Local Text-Based Manipulation

As Attention models employ local tokens as conditions,
global manipulation becomes ineffective due to the absence
of spatial information. Accordingly, we propose a semi-
automatic algorithm for local tokens to accomplish manip-
ulation. Importantly, to ensure the capability of accepting
arbitrary text as input, the proposed local manipulation re-
mains zero-shot.

In our observations, we noticed that the local tokens and
the CLS token exhibit different directional changes when
projected onto the text embedding. We define a scale called
dscale, calculated as dscaleAB

i = v⃗Ai · e⃗ − v⃗Bi · e⃗, where
A and B represent the source images from which the im-
age embeddings are extracted, and i denotes the index, with
i ∈ {cls, 1, 2, .., n} and n being the total number of local
tokens. We find that for the given text, “a girl with green
hair,” as the hair becomes greener, the projection of the
CLS token along the text embedding direction lengthens,
which can be observed from the dscalecls value, which is
illustrated in Figure 7 and labeled as global dscale on top
of the histograms. Conversely, the projections of the most
relevant local tokens decrease, while those of irrelevant to-
kens increase. This can be observed from the heatmaps
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Figure 8. Plotting wi as a function of mi in Eq. 9. We divide the
domain into five intervals to reduce the influence of the manipula-
tion on unrelated attributes.

of dscaleAB , where the most related regions are marked
in blue, indicating they have the lowest dscaleAB values,
which are negative according to the histograms. To locate
the target region for manipulation, local manipulation addi-
tionally requires a control prompt whose embedding is de-
noted as c⃗. We calculate a Position Weight Matrix (PWM)
m as:

m = F(v⃗ · c⃗), (8)

where F and v⃗ indicate the min-max normalization and lo-
cal tokens, respectively. By leveraging this PWM m, we
can simulate the change in the projection of a local token
along the direction of the target text embedding. This is
achieved using PWM ω, which is formulated as follows:

ωi =



−d ∗ r, mi ⩽ ts0

−d+ d ∗ mi−ts0
ts1−ts0

, ts0mi ⩽ ts1

0.5 ∗ d ∗ mi−ts1
ts2−ts1

, ts1 < mi ⩽ ts2

0.5 ∗ d+ 0.5 ∗ d ∗ mi−ts2
ts3−ts2

, ts2 < mi ⩽ ts3

d, mi > ts3
(9)

where mi and ωi represent the i-th element of m and ω,
respectively, with i ∈ {1, .., n}. We illustrate this function
in Figure 8. In this equation, d is computed as:

d =

{
target scale− v⃗cls · a⃗, enhance

target scale− v⃗cls · e⃗. not enhance
. (10)

The hyperparameters r and tsi in Eq. 9 denote the strength
ratio for the most pertinent areas and the thresholds for
differentiating all areas of the image, respectively. Here,
m ⩽ ts0 selects the most relevant regions; ts0 < m ⩽ ts1
identifies the positively correlated regions; ts1 < m ⩽ ts2
covers negatively correlated regions; ts2 < m ⩽ ts3 tar-
gets non-related regions; and m > ts3 randomly assigns
the highest value to certain regions to emulate the dscale
distribution. The default settings for the hyperparameters r

Input: Local tokens: v⃗; CLS token: v⃗cls;
Normalized embeddings of target prompts:

e⃗[1..N ];
Normalized embeddings of anchor prompts:

a⃗[1..N ];
Normalized embeddings of control prompts:

c⃗[1..N ];
Target scales: target scale[1..N ];
Enhance flags: enhance[1..N ];
Thresholds list: ts0,..,3[1..N ];
Strength factor: r;

for i = 1, 2, .., N do
if a⃗[i] is not null then

if enhance[i] is true then
d← target scale[i]− v⃗cls · a⃗[i]
β ← 1

end
else

d← target scale[i]− v⃗cls · e⃗[i]
β ← 0

end
m← F(v⃗ · c⃗[i])
ω ← ω(m, d, ts0,..3[i], r) according to Eq 9
v⃗ ← v⃗ + (ω + β ∗ v⃗ · a⃗) ∗ (e⃗[i]− a⃗[i])

end
else

d← target scale[i]
m← F(v⃗ · c⃗[i])
ω ← ω(m, d, ts0,..3[i], r) according to Eq 9
v⃗ ← v⃗ + ω ∗ e⃗[i]

end
end
return v⃗

Algorithm 2: Sequential local manipulation, where F
denotes min-max normalization.

and [ts0, ts1, ts2, ts3] are 2 and [0.5, 0.55, 0.65, 0.95], re-
spectively. We set four thresholds to reduce the manip-
ulation’s influence on irrelevant visual attributes as much
as possible. Experimentally, target visual attributes should
be encompassed within the regions defined by m ⩽ ts1,
while attributes intended for preservation should be within
the m > ts2 region. Thereby, we can formulate the adjust-
ment equation for the local tokens as:

v⃗′ = v⃗ + (ω + β ∗ v⃗ · a⃗) ∗ (e⃗− a⃗), (11)

where β corresponds to the enhance flag. If there is no
anchor prompt, the equation is accordingly reorganized as:

v⃗′ = v⃗ + ω ∗ e⃗. (12)

Similarly, the calculation can be expanded to enable the se-
quential manipulation of multiple text pairs, as detailed in
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Algorithm 2. Nevertheless, defining suitable thresholds for
a control prompt can be challenging. To alleviate this dif-
ficulty, we have designed an interactive user interface that
visually assists users in identifying the regions selected by
each threshold.

4. Experiment
In this section, we first introduce the details of our imple-

mentation in Section 4.1, including the environment, data,
and classifier-free guidance. We then experimentally com-
pare the proposed models in ablation studies in Section 4.2
and compare them to baselines in Section 4.3. We present
our text-based manipulation in Section 4.4, followed by the
results of a corresponding user study in Section 4.5. Frechet
Inception Distance (FID) [16, 47] estimates the distribution
distance between generated images and real images, so it
is used to evaluate the performance of generative models in
this section.

4.1. Implementation Details

Training and Testing. We implemented our models using
PyTorch and trained them on an NVIDIA DGX-Station
A100 with 4x NVIDIA A100-SXM 40G. The CLS model
was trained for seven epochs, and all the Attention models
were trained for five epochs on the training set. The training
of the Shuffle-dual model took 8 days, whereas the training
of the other models took approximately 5 days using
Distributed Data-Parallel Training (DDP) and AdamW
optimizer [28, 33]. The training settings were as follows:
learning rate = 1e-5, batch size per gpu = 10, betas = (0.9,
0.999), accumulative batches = 2, weight decay = 0.1. We
adopted Stability-AI’s official implementation of DPM++
solver, which is multi-step and second-order [34, 35], and
our default sampling steps for testing were set to 20.

Dataset. We used Danbooru 2021 [6] as our original
dataset to produce corresponding sketch and reference
images. The sketch images were generated by jointly using
SketchKeras [32] and Anime2Sketch [55], where as the
total training set includes 4M+ triples of (sketch, reference,
color) images, at a resolution of 5122. All quantitative
evaluations were taken on a subset of Danbooru 2021,
including 48,000+ ground truth tags and (sketch, color)
image pairs. Samples of the training data are included in
the supplementary materials.

Dual Classifier-Free Guidance. Leveraging our dual-
conditioned SD models, we can concurrently apply two
forms of classifier-free guidance during inference. Both
employ zero as the negative input. The guidance scales for
reference-based and sketch-based guidance are denoted as
GS and SGS, respectively, in subsequent sections.

Increasing the resolution for inference and applying
Adaptive Instance Normalization (AdaIN) [20] as well as
attention injection [15, 53, 65] could also enhance the qual-
ity of the generated images. Details can be found in the
appendix.

4.2. Ablation study

Training Strategy and Architecture. We first evaluate
two strategies introduced in Section 3.3. As shown in Table
1 and Figure 9, Attention models trained with different
strategies achieved equivalent qualitative and quantitative
results, demonstrating a better ability to transfer features
than the CLS model. It can be observed that with higher
guidance scales, the Deform-0drop model achieved lower
FID scores compared to the Shuffle-0drop model, indicat-
ing that it performed better at avoiding the distribution
problem. The Dual model achieved suboptimal FID scores
compared to the other models, which we assume was due
to the inappropriate λ value in Eq. 4. Though the Noisy
model achieved the best score due to its effectiveness in
eliminating the distribution problem, it outputs images
with a higher variance, meaning more rounds are likely
needed before obtaining results that correspond highly to
the reference.

Guidance Scale and Drop Rate. We estimated the genera-
tion performance of ablation models under different GSs, as
shown in Table 1. Most of our training followed the official
implementation of SD and did not abandon conditions dur-
ing training. The quantitative results indicate that adopting
drop rates much higher than 0.2, which is suggested in [18],
did not worsen the quality of generated images in reference-
based colorization.

Training Epoch. The training duration also strongly in-
fluences the distribution problem, as indicated in Figure
4, where the distribution pθ(z|y, s, r) gradually shifts to
p(z|y, r) as training continues. Qualitative evaluations re-
garding the training epoch are included in our appendix,
which better reflect the distribution problem. Note that
all attention-based models in our paper were trained for 5
epochs by default to balance style transfer and colorization.

4.3. Comparison to baseline

We compare our method to two baselines. The first base-
line [56] effectively colorizes figure images but falls short
when intricate backgrounds are involved, which is a com-
mon issue among GAN-based generative models. Our sec-
ond baseline, ControlNet [36, 60], is an extension module
introducing a conditional input for a pre-trained SD model.
We adopted Multi-ControlNet: lineart lineart anime + Ref-
erence (simplified as Multi-ControlNet) for reference-based
sketch colorization, and following the ControlNet-lineart-
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Figure 9. Qualitative comparison to baselines and ablation models. Results (a)-(e) are real sketch images, with sketches (a),(b) by our
human artist and (c)-(e) from [59]. The resolution of most results is 7682, except for [56], which is 5122.

anime guidelines, we employed Anything v3, a personalized
model for anime style images [19, 58] as its SD backbone.

As ControlNet is based on T2I SD, we adopted (“master-
piece, best quality, ultra-detailed, illustration”) as positive
prompts and (“lowres, cropped, worst quality, low quality”)
as negative prompts in all its generations.

Qualitative Comparison. As Figure 9 illustrates, Yan et
al.’s method struggles with colorization, especially when
the reference includes diverse backgrounds. Although
Multi-ControlNet demonstrates an impressive generation
performance due to the well fine-tuned Anything v3 [19],
it falls short of maintaining color similarity with the refer-
ences. For column (b) in Figure 9, due to the complex com-
position of the reference, we used a sketch guidance value
of 1.5 and the attention injection to generate the results.

Because Multi-ControlNet incorporates three reference-
based configurations, we generated Multi-ControlNet’s
results using all three methods, showcasing the best ones
in this paper. All results generated by other configurations,
along with high-resolution images, are included in the

supplementary materials.

Style Transfer. Both our models and Multi-ControlNet
can facilitate reference-based style transfer when combined
with a line extractor. As Figure 10 illustrates, our model
transfers texture and color from the reference, while
Multi-ControlNet manages to reconstruct the identities of
the references in its generation domain. As our model is
trained for high-fidelity sketch colorization, the quality of
our results is decided by the sketch, occasionally yielding
inferior segmentation compared to Multi-ControlNet. More
examples and high-resolution images are provided in the
supplementary materials.

Sketch Fidelity. Both our models and Multi-ControlNet
can adjust the outputs’ sketch fidelity according to respec-
tive hyperparameters, Sketch Guidance Scale (SGS) and
control strength. We here qualitatively compare their dif-
ferences in reference-based generation. As visualized in
Figure 11, our guidance excels in maintaining color simi-
larity with the original result (scale = 1) when increasing
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Ablation study
Model GS-1 GS-2 GS-3 GS-5 GS-10
Deform-0 15.8590 10.8875 13.9459 20.7550 36.4256
Deform-0.75 17.4646 12.9854 11.7067 11.7067 15.5636
Shuffle-0 15.6971 10.3265 13.8398 22.1181 41.4941
Shuffle-0.8 15.2748 10.5986 9.1956 9.2383 12.0642
Noisy-0 15.5723 10.4629 9.0724 8.9314 11.5719
Dual-0 18.8059 13.6929 13.2995 14.7224 25.2262
CLS 13.5240 15.4600 19.9103 26.2609 41.8732

Baseline
ControlNet, Text-based, GS-9 19.8511

†ControlNet, Text-based, GS-9, Shuffle 26.8437
‡Multi-ControlNet-attn AdaIN, Reference-based, GS-9 22.2365
‡Multi-ControlNet-attn only, Reference-based, GS-9 21.0125

‡Multi-ControlNet-AdaIN only, Reference-based, GS-9 48.7509
[56] 26.1816

Table 1. FID scores achieved by various ablation models and baselines. Lower scores indicate better quality of generated images.
{Deform,Shuffle, Noisy, Dual} and {0, 0.75, 0.8} indicate the corresponding training method and the reference drop rate applied to train
the respective Attention models. Meanwhile, {GS-1, GS-2,GS-3,GS-5,GS-10} represent the respective guidance scales for each validation.
The best score is highlighted in bold. †: Texts were randomly matched to unrelated sketch images during validation; ‡: Results were
generated using the DPM++ 2M SDE Karras sampler rather than DPM++.

Figure 10. Comparison of style transfer outputs at 5122. All results of Multi-ControlNet were generated using both attention injection and
AdaIN, while ours were synthesized by the Shuffle-0.8drop model using either attention injection alone or both injection and AdaIN.

the scale.

Quantitative Comparison. Table 1 shows the FID scores
of baselines. For reference-based baselines, color images
were shuffled to colorize unrelated sketch images. As [56]
is incapable of transferring complex features, it suffers less
from the distribution problem and, thus, achieves a rel-

atively lower FID. The gap between the two ControlNet
results signifies the considerable effect of the distribution
problem on text-based generation. Meanwhile, compared
to the baselines, especially Multi-ControlNet, our models
more effectively manage distribution issues while steadily
generating superior colorized images.
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Figure 11. Reference-based results generated using different
sketch guidance weights and real sketch from our artist.

Figure 12. Global manipulation results using different target texts.
Target scale and guidance scale were set to 10 and 3, respectively.

Figure 13. Local manipulation using the Attention-Deform-
0.75drop model, with a guidance scale of 2, and a real sketch im-
age. The stratified heatmap displays the regions selected by each
threshold in Eq. 9.

4.4. Text-Based Manipulation

Global Manipulation. Two qualitative experiments were
conducted to evaluate the controllability of the CLS model,

Figure 14. Illustration of the local manipulation. Stratified
heatmaps corresponding to respective control texts in each step
are listed under the input parameters. The results were generated
at 7682 using a real sketch, the Attention-Deform-0drop model,
and guidance scale 2.

where Figure 1 shows the results of our sequential global
manipulation, which also demonstrates the effectiveness
of progressive change. We continue to show that global
manipulation can also adjust highly abstract notions in
Figure 12.

Local Manipulation. Unlike global manipulation, which
relies solely on CLS token, local manipulation necessitates
a PWM to adjust local tokens adaptively according to their
association to the control text, leading to a more difficult
manipulation. Figure 13 demonstrates that local manipu-
lation can progressively adjust a specific visual attribute,
while Figure 14 showcases sequential manipulation, alter-
ing backgrounds and hair color in sequential steps. Both
figures adopt real sketch images.

Though our method effectively adjusts visual attributes,
a significant challenge arises from the proposed local ma-
nipulation. Observing the heatmaps in Figure 14, which
were generated from projections on the control text embed-
ding, reveals substantial errors in segmentation, complicat-
ing the manipulation process.

4.5. User study

We implemented a user interface and invited 16 volun-
teers to experience our demo. Participants were required to
test reference-based colorization and text-based manipula-
tion for all proposed models. The average testing time for
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Figure 15. User study results. The radar charts show the average
scores of four evaluations, and the bar chart showcases the distri-
bution of user rating.

each individual exceeded 1 hour. After testing, we solicited
participants’ ratings across four dimensions:

Quality: Quality of generated images.

Similarity: Similarity with the reference image.

Usability: Ease of use.

Controllability: Correspondence between manipulated
results and target texts.

The results, as shown in Figure 15, indicate overall satis-
faction with image quality, control, and similarity. How-
ever, the relatively lower usability score demonstrates that
the proposed manipulation requires further refinement to
achieve simplicity. Materials used in our user study are in-
cluded in the supplementary materials.

5. Conclusion

In this paper, we presented a thorough examination of
the application of reference-based SD to sketch coloriza-
tion, and we analyzed how the distribution problem leads to
inferior outputs compared to text-based models. Leveraging
a pre-trained CLIP, we proposed two strategies for training
reference-based colorization SD and two kinds of zero-shot
sequential manipulation methods. Our experimental results,
including qualitative/quantitative evaluations and user stud-
ies, validate the effectiveness of our reference-based col-
orization and text-based manipulation methods. However,
our work has four primary limitations:

1. Achieving precise segmentation based solely on the con-
trol text is challenging in the proposed local manipula-
tion. In addition, adjustments without self-adaptive train-
able modules struggle to replicate the real changes of to-
kens, especially for embeddings determined by multiple
tokens, such as “daytime” and “night.”

2. Because our manipulation is based on conditions rather
than on forward representations, it is inevitable that some
semantically unrelated visual attributes will be changed
because they are colorized based on the manipulated re-
gions in the reference. This can be observed in Figure 14,
where the color of the right suitcase is changed.

3. It is challenging for the proposed models to achieve
visually appealing results that are equivalent to well-
personalized T2I models [19, 43].

4. OpenCLIP ViT takes images at 224×224 as inputs during
training, a highly compressed resolution that hinders the
learning of vivid strokes and detailed backgrounds, such
as the lines and houses in The Starry Night.

Our future work will primarily focus on designing small-
scale fine-tuning for T2I models [2, 44] to enable high-
quality reference-based generation. In addition, we intend
to identify a more suitable λ value for Eq. 4. The cur-
rent value, which has not been thoroughly examined, re-
sulted in suboptimal outcomes in ablation studies, as illus-
trated in Table 1. We also aim to enhance the controllability
of local manipulation through three potential methods: 1)
introducing a trainable module for adaptive PWM compu-
tation; 2) directly modifying features during the denoising
process; and 3) designing advanced interactive systems to
assist users in the selection of regions for local manipula-
tion.
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A. Improvement on Generation
We introduce several important suggestions that can

further improve the generation performance.

Resolution. Increasing the image resolution significantly
improves reference-based sketch colorization. Sketch im-
ages in higher resolution provide detailed strokes and richer
semantic information. Experimentally, optimal inference
results often manifest at 1.5x the training resolution, e.g.,
training at 5122 and inferring at 7682. Real color im-
ages created by experienced artists contain numerous vi-
sual attributes that are difficult to transfer fully. However,
reference-based models always manage to generate all these
attributes in the sketch image, leading to overly saturated
colors. Utilizing a larger resolution during inference can ef-
fectively moderate these reference features, yielding more
appealing results.

As CLIP-ViT adopts inputs at a resolution of 2242 and
a fixed-length positional embedding, we must pre-process
the inputs when generating images in a higher resolution.
Given Rtr and Rinf as training and inference resolutions,
respectively, and f =

Rinf

Rtr
, the reference image and

positional embedding are interpolated to (224f, 224f) and
256f2 + 1, respectively. Here, Rtr = 512 for all proposed
models, as they were trained with 5122 images.

Attention injection and AdaIN. Our implementation of at-
tention injection and AdaIN is similar to Multi-ControlNet
[36], and both techniques could be adopted to improve our
generated results. We briefly introduce here how the atten-
tion injection is adapted to our reference-based colorization
models. As illustrated in Figure 1, we utilize a sketch ex-
tracted from the reference image as the sketch input for the
inversion xR chain. Given the intermediate hidden states
hR obtained from the xR chain, and hG from the genera-
tion xG chain, we concatenate them as hG

c for computing
K and V in self-attention modules, calculated as:

Q = Wq · hG, K = Wk · hG
c , V = Wv · hG

c , where

hG
c = hR ⊕ hG

(13)
where, Wq,Wk and Wv denote the weight matrix for Q,K
and V , respectively.

B. Further discussion of Distribution problem
The training period has a strong influence on colorization

and style transfer due to the distribution problem. We gen-
erated several results of colorization using different shuffle-
based models, as shown in Figure 2 and Figure 3. It can be
observed that the Shuffle-0drop model erroneously gener-
ates eyes in the right part of the results, starting from epoch

Table 1. Rates of the different training methods. The term “distri-
bution” indicates the ability to mitigate the distribution problem.
Note that deformation training must generate reference images,
and dual-conditioned training takes 1.6 times longer than other so-
lutions. As the variance in the Noisy model is higher than that of
other methods, we rate it based on its best and worst results, re-
spectively. †: Based on the best results. ‡: Based on the worst
results.

Distribution Colorization Style transfer
Training strategy

Deformation medium good medium
Shuffle very bad medium good

Solution to the distribution problem
Drop good good medium

†Noisy very good very good medium
‡Noisy very good medium bad
Dual medium medium good

0 drop bad bad good

3, and the drop model synthesizes hair in the left part of the
results starting at epoch 5; only the Noisy model can col-
orize the sketch reasonably all the time.

Two examples are shown in Figure 4 to demonstrate the
differences between the four shuffle-based models. Com-
pared to low-level fidelity sketch colorization, high-fidelity
models struggle to recover missing parts reasonably if they
suffer from the distribution problem. As visualized in the
(a) part in Figure 4, both the Drop model and the Noisy
model successfully recover the eyes with vivid strokes
and texture without sketch-based guidance, while the Dual
model and the 0drop model fail. Corner cases are also pre-
sented in the same figure, where the SGS is set to 5. It can
be observed that the 0drop model still cannot generate clear
edges of the eyes. A typical example of using sketch guid-
ance to mitigate the distribution problem is provided in the
(b) part, where the 0drop model continues to fail at remov-
ing the mistakenly generated eyes.

In addition, several style transfer results are shown in
Figure 5 to demonstrate the necessity of longer training.
Combined with Figure 2 and Figure 3, we find that both
0drop and 0.8drop models are unable to generate vivid tex-
ture until the epoch at which they begin to encounter the
distribution problem, which occured at epoch 3 and epoch
5, respectively. However, as the 0.8drop model can mitigate
the distribution problem with sketch guidance and resam-
pling, it is more likely to generate better results than the
0drop model.

Summary. As many different training methods have been
introduced in this paper, we rate their overall performance
based on applications, shown in Table 1. Here, the evalua-
tion of colorization stresses color, while that of style trans-
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Figure 1. Illustration of our attention injection. The injected result is generated by the shuffle-0.8drop model. We adopt [55] as our default
line extractor.

fer relies on texture and stroke. We suggest adopting noisy
training if a higher variance in the generated results is ac-
ceptable.
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Figure 2. To better observe the distribution problem, we used extremely high reference guidance scales to generate the colorized results.
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Figure 3. Colorization results without reference inputs, where we can find that the 0drop model fails to generate texture that is faithful to
the sketch as the training continues. We use a sketch guidance scale of 1.3 and the same seed for all models in this test.
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Figure 4. (a) Style transfer results for observing the distribution problem. High-fidelity models that suffer from the distribution problem
struggle to reconstruct the missing parts of the sketch; (b) Using sketch guidance to mitigate the distribution problem. The Dual model
removes the human eyes with sketch guidance while the 0drop model fails to do so.

.
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Figure 5. Sketch-based style transfer results. We generated the images with and without attention injection, respectively.
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