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Abstract

We present ShapeFormer, a transformer-based network
that produces a distribution of object completions, condi-
tioned on incomplete, and possibly noisy, point clouds. The
resultant distribution can then be sampled to generate likely
completions, each exhibiting plausible shape details while
being faithful to the input.

To facilitate the use of transformers for 3D, we intro-
duce a compact 3D representation, vector quantized deep
implicit function (VODIF), that utilizes spatial sparsity to
represent a close approximation of a 3D shape by a short
sequence of discrete variables. Experiments demonstrate
that ShapeFormer outperforms prior art for shape comple-
tion from ambiguous partial inputs in terms of both comple-
tion quality and diversity. We also show that our approach
effectively handles a variety of shape types, incomplete pat-
terns, and real-world scans.

1. Introduction

Shapes are typically acquired with cameras that probe
and sample surfaces. The process relies on line of sight,
and, at best, can obtain partial information from the visi-
ble parts of objects. Hence, sampling complex real-world
geometry is inevitably imperfect, resulting in varying sam-
pling densities and missing parts. This problem of surface
completion has been extensively investigated over multiple
decades [4]. The central challenge is to compensate for in-
complete data by inspecting non-local hints in the observed
data to infer missing parts using various forms of priors.

Recently, deep implicit function (DIF) has emerged as
an effective representation for learning high-quality surface
completion. To learn shape priors, earlier DIFs [12,43,49]
encode each shape using a single global latent vector.
Combining a global code with region-specific local latent
codes [13,14,22,27,37,51] can faithfully preserve geomet-
ric details of the input in the completion. However, when
presented with ambiguous partial input, for which multiple
plausible completions are possible (see Fig. 1), the deter-
ministic nature of local DIF usually fails to produce mean-
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Figure 1. ShapeFormer predicts multiple completions for a real-
world scan of a sports car (left column), a chair with missing parts
(middle column), and a partial point cloud of human lower legs
(right column). The input point clouds are superimposed with the
generated shapes to emphasize the faithfulness of the completion
to the input point cloud.
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ingful completions for unseen regions. A viable alternative
is to combine generative models to handle the input uncer-
tainty. However, for representations that contain huge sta-



tistical redundancy, as in the case of current local methods,
such combination [58] excessively allocates model capacity
towards perceptually irrelevant details [21,25].

We present ShapeFormer, a transformer-based autore-
gressive model that learns a distribution over possible shape
completions. We use local codes to form a sequence of dis-
crete, vector quantized features, which greatly reduces the
representation size, while keeping the underlying structure.
Applying transformer-based generative models toward such
sequences of discrete variables have been shown to be ef-
fective for progressive image generation [2, 10] and various
image synthesis tasks [10, 23, 54] including pluralistic im-
age completion [65].

However, directly deploying transformers to 3D feature
grids leads to a sequence length cubic in the feature reso-
lution. Since transformers have an innate quadratic com-
plexity on sequence length, only using overly coarse fea-
ture resolution, while feasible, can barely represent mean-
ingful shapes. To mitigate the complexity, we first intro-
duce Vector Quantized Deep Implicit Functions (VQDIF),
a novel 3D representation which is both compact and struc-
tured, that can represent complex 3D shapes with accept-
able accuracy, while being rather small in size. The core
idea is to sparsely encode shapes as a sequences of discrete
2-tuples, each representing both the position and content of
a non-empty local feature. These sequences can be decoded
to deep implicit functions from which high-quality surfaces
can subsequently be extracted. Due to the sparse nature of
3D shapes, such encoding reduces the sequence length from
cubic to quadratic in the feature resolution, thus enabling
effective combination with generative models.

ShapeFormer completes shapes by generating complete
sequences, conditioned on the sequence for partial observa-
tion. It is trained by sequentially predicting the conditional
distribution of both location and content over the next el-
ement. Unlike image completion [65], where the model
is trained with the BERT [2, 20] objective to only predict
for unseen regions, in the 3D shape completion setting,
the input features may also come from both noisy and in-
complete observations, and keeping them intact necessarily
yields noisy results. Hence, in order to generate whole com-
plete sequences from scratch while being faithful to the par-
tial observations, we adapt the auto-regressive objective and
prepend the partial sequence to the complete one to achieve
conditioning. This strategy has been proved effective for
conditional synthesis for both text [4 1] and images [23].

We demonstrate the ability of ShapeFormer to produce
diverse high-quality completions for ambiguous partial ob-
servations for various shape types, including CAD models
and human bodies; for various incomplete sources such as
real world scans with missing parts.

In summary, our contributions include: (i) a novel DIF
representation based on sequences of discrete variables

that compactly represents satisfactory approximations of
3D shapes; (ii) a transformer-based autoregressive model
that uses our new representation to predict multiple high-
quality completed shapes conditioned on the partial input;
and (iii) state-of-the-art results for multi-modal shape com-
pletion in terms of completion quality and diversity. The
FPD score on PartNet is improved by at most 1.7 compared
with prior multi-modal method cGAN [68].

2. Related Work

Shape reconstruction and completion. 3D reconstruction
is a longstanding ill-posed problem in computer vision and
graphics. Traditional methods can produce faithful recon-
struction from complete input such as point cloud [4], or
images [20]. Recently, neural network-based methods have
demonstrated an impressive performance toward recon-
struction from partial input [30], where the unseen regions
are completed with the help of data priors. They can be
classified according to their output representation, such as
voxels, meshes, point clouds, and deep implicit functions.
Since voxels can be processed or generated easily through
3D convolutions thanks to their regularity, they are com-
monly used in earlier works [17,19,31,57]. However, since
their cubic complexity toward resolution, the predicted
shapes are either too coarse or too heavy in size for later
applications. While meshes are more data-efficient, due to
the difficulty of handling mesh topology, mesh-based meth-
ods have to either use shape template [40,55,66], limiting to
a single topology, or produce self-intersecting meshes [29].
Point clouds, in contrast, do not have such a problem and
are popularly used lately [ 1,24, 60,69, 70]. However, point
clouds need to be non-trivially post-processed using classi-
cal methods [5, 35, 38, 39] to recover surfaces due to their
sparse nature. Recent works that represent shapes as deep
implicit functions have been shown to be effective for high-
quality 3D reconstruction [12,43,49]. By leveraging local
priors, follow-up works [14,22,27,42,51] can further im-
prove the fidelity of geometric details. However, most cur-
rent methods are not effective toward ambiguous input due
to their deterministic nature. Other methods handle such in-
put by leveraging generative models. They learn the condi-
tional distribution of complete shapes represented as either
a single global code [68], which, due to their lack of spatial
structure, leads to completions misaligned with the input,
or raw point cloud [72], which, due to its statistical redun-
dancy, is only effective for completing simple shapes with
a limited number of points. In this paper, we show how
building generative models upon our new compact; struc-
tured representation enables multi-modal high-quality re-
construction for complex shapes.

Autoregressive models and Transformers. Autoregres-
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Figure 2. Overview of our shape completion approach. Given a partial point cloud P, possibly from a depth image, as input, our VQDIF
encoder first converts it to a sparse feature sequence zo...x —1, replacing them with the indices of their nearest neighbor e; in a learned
dictionary D, forming a sequence of discrete 2-tuples consisting of the coordinate (pink) and the quantized feature index (blue). We refer
to this partial sequence as Sp (drawn with dashed lines). The ShapeFormer then takes Sp as input and models the conditional distribution
p(Sc|Sp). Autoregressive sampling yields a probable complete sequence Sc. Finally, the VQDIF decoder converts the sequence Sc¢ to
a deep implicit function, from which the surface reconstruction M can be extracted. To show the faithfulness of our reconstructions, we

super-impose the input point cloud on them.

sive models are generative models that aim to model dis-
tributions of high dimensional data by factoring the joint
probability distribution to a series of conditional distribu-
tions via the chain rule [3]. Using neural networks to pa-
rameterize the conditional distribution has been proved to
be effective [28,61] in general, and more specifically to im-
age generation [ 1,48, 63]. Transformers [64], known for
their ability to model long-range dependencies through self-
attentions, have shown the power of autoregressive models
in natural languages [7,52], image generation [10,50]. Con-
trary to deterministic masked auto-encoders [32], Trans-
formers can produce diverse image completions [65] that
are sharp in masked regions by adopting the BERT [20]
training objective. In the 3D domain, autoregressive models
have been used to learn the distribution of point clouds [58,

] and meshes [45]. However, due to the lack of efficient
representation, these models can only generate small point
clouds or meshes restricted to 1024 vertices. In contrast,
by eliminating statistical redundancy, a compressed discrete
representation enables generative models to focus on data
dependencies at a more salient level [54, 62] and recently
allows high-resolution image synthesis [23, 53]. Follow-up
works utilize data sparsity to obtain even more compact rep-
resentations [21,46]. We explore this direction in the con-
text of surface completion.

3. Method

We model the shape completion problem as mapping a
partial point cloud P € RV*3 to a complete, watertight
surface mesh M which matches the cloud. Since this is
an ill-posed problem, we seek to estimate the probabilistic
distribution of such mesh p(M|P) utilizing the power of

Transformers. Instead of working directly on point clouds,
meshes, or feature grids, we approximate shapes as short
discrete sequences (see Sec. 3.1) to greatly reduce both the
number of variables and the variable bit size, which en-
ables Transformers to complete complex 3D shapes (see
Sec. 3.2).

With such compact representation, the conditional dis-
tribution becomes p(S¢|Sp), where Sp and S¢ are the se-
quence encoding of the partial point cloud and the com-
plete shape, respectively. Once such distribution is mod-
eled, we can sample multiple complete sequences S¢, from
which different surface reconstructions M can be obtained
through decoding. This process is illustrated in Fig. 2.

3.1. Compact sequence encoding for 3D shapes

We propose VQDIF, whose goal is to approximate 3D
shapes with a shape dictionary, with each entry describing a
particular type of local shape part inside a cell of volumet-
ric grid G with resolution R. With such a dictionary, shapes
can be encoded as short sequences of entry indices, describ-
ing the local shapes inside all non-empty grid cells, enabling
transformers to model the global dependencies more effec-
tively.

We design an auto-encoder architecture to achieve this.
The encoder E first maps the input point cloud to a 64 res-
olution feature grid with local-pooled PointNet and then
downsample it to resolution R. Unlike the previous strat-
egy for image synthesis [23], the encoder parameters are
carefully set to have the least receptive field, reducing the
number of non-empty features to the number of sparse vox-
els of the voxelized input point cloud P at resolution R.
Then these non-empty features are flattened to a sequence
of length K in row-major order. Since these features are



sparse, we record their locations with their flattened index
{c;i 1K: 61. Other orderings are also possible, but they are
not as effective as row-major order for learning sequence
distribution [23].

Following the idea of neural discrete representation
learning [62], we compress the bit size of the feature
sequence {zi}fial through vector quantization, that is,
clamping it to its nearest entry in a dictionary D of V em-
beddings {e;}}_, and we save the indices of these entries:

= argmin; ¢ [z — €. (1)
Thus, we get a compact sequence of discrete 2-tuples rep-
resenting the 3D shape S = {(c;,v;)}X . Finally, the
decoder projects this sequence back to a feature grid and,
through a 3D-Unet [18], decodes it to a local deep implicit
function f [51], whose iso-surface is the surface reconstruc-

tion M of P.

Training. We train the VQDIF by simultaneously mini-
mizing the reconstruction loss and updating the dictionary
using exponential moving averages [62], where dictionary
embeddings are gradually pulled toward the encoded fea-
tures. Also, we also adopt commitment 10ss Lcommic [02]
to encourage the encoded features z; to stay close to their
nearest entry e,,, in the dictionary, with index v;, thus keep-
ing the range of the embeddings bounded. We define the
loss as,
1 K—1
comm1t Z - Sg ev, )27 (2)

1=0

where sg stands for stop gradient operator which prevents
the embedding being affected by this loss.

The full training objective for VQDIF is the combination
of reconstruction 1oss of L¢ommic With weighting factor 53:

£VQDIF = Xl) OZ) + B'Ccommll (3)

Here, T is the size of the target set and BCE is the binary
cross-entropy loss which measures the discrepancy between
the predicted and the ground truth occupancy o; at target
point x;. During training, we select the target set 7, =
{x]-'} and its occupancy values T, = {o,_,'} in a similar
fashion to prior work [43].

3.2. Sequence generation for shape completion

We autoregressively model the distribution p(S¢|Sp), by
predicting the distribution of the next element conditioned
on the previous elements. We also factor out the tuple dis-
tribution for each element: p(c;,v;) = p(c;)p(vile;) . The

Figure 3. The architecture of the ShapeFormer. The partial se-
quence Sp (dashed boxes) and the complete one Sc (solid boxes)
both appended with an end token are concatenated before send-
ing their locations, c; (pink) and values v; (blue), to a Coordinate
Transformer to predict the next location c¢; 1. The Value Trans-
former takes both c;+1 and the former Transformer’s output em-
bedding to predict the next value viy1.

final factored sequence distribution is as follows:

K-1
9) = H pCi va
=0

Pe; = p(C'L‘C<i7 Vi, S’Pa 9)
Pu; = p(Vile<i, v<i, Sp; ).

p(Sc|Sp;

Here, 0 indicates model parameters and p., and p,, are the
distributions of the coordinate and the index value of the
i-th element of S¢, conditioned on previously generated el-
ements and the partial sequence Sp. Note that p,, is also
conditioned on the current coordinate c;.

Different approaches have been applied to build a trans-
former model that can predict tuple sequences. Instead of
flattening them [58], which in our case doubles the sequence
length, we stack two decoder-only transformers to predict
the p., and p,, respectively in a similar way to prior works
[21,46,67], as illustrated in Fig. 3. Unlike in the image
completion case [65], where the partial sequence is strictly
a part of the complete sequence so that only the missing re-
gions need to be completed. For our case, however, due to
the noise or incompleteness of local observations, we would
like to predict complete sequences from scratch to fix such
data deficiencies. And thanks to the autoregressive struc-
ture of the decoder-only transformer, we can achieve con-
ditioning by simply prepending Sp before S¢ to generate
complete sequences that are in coordination with the par-
tial one. We also append an additional end token to both
sequences to help learning.

Training and inference. The training objective of Shape-
Former is to maximize the log-likelihood given both S¢

and Sp: LspapeFormer = — 1og p(Sc|Sp; 0). After the model
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Figure 4. Visual comparison with prior shape completion methods on the ShapeNet dataset. Our method can better handle ambiguous scans
and produce completions that are more faithful on both observed and unseen regions. More examples are in the supplementary material.

is trained, ShapeFormer performs shape completion by se-
quentially sampling the next element of the complete se-
quence until an end token ([END]) is encountered. Given
the partial sequence, we alternatively sample the new co-
ordinate and value index using top-p sampling [34], where
only a few top choices, for which the sum of probabilities
exceeds a threshold p,,, are kept, and the remaining proba-
bility mass is redistributed across them. Also, we mask out
the invalid choices for coordinate to guarantee a monotonic
row-major order.

4. Results and Evaluation

In this section, we demonstrate our methods outperforms
prior art for shape completion from ambiguous scans and
part-level incompleteness (Sec. 4.1) Then we show our ap-
proach can effectively handle a variety of shape types, scans
of out-of-distribution shapes, and real-world scans from the
Redwood dataset [15] (Sec. 4.2). Lastly, we show our
VQDIF representation has a significantly smaller size com-
pared with prior DIFs while achieving similar reconstruc-

SCAN AMBIGUITY Low HiGH
Method CD] F11t FPDJ | CD] F11t FPDJ
OccNet [43] 148 632 034 | 279 504 3.12
ConvONet [51] 081 729 023 | 3.14 604 285
IF-Net [14] 0.79 738 0.25 184 51.5 3.66
PoinTr [69] 0.80 70.1 0.23 | 3.11 593 3.29
cGAN [68] 1.33 621 136 | 349 593 255
Ours 0.74 703 024 | 472 605 145
Ours* 073 714 022 | 469 60.7 1.83
VQDIF-only 0.79 738 025 | 3.07 603 3.14

Table 1. Quantitative results on ShapeNet with different scan am-
biguity. Ours: top-p=0.4 sampling, Ours*: top-p=0 sampling.

tion accuracy (Sec. 4.3).

Throughout all these experiments, we use feature reso-
Iution R = 16 for VQDIF and set its loss balancing factor
B = 0.01. We also set the vocabulary of the dictionary D
to be V' = 4096. We use 20 and 4 blocks for Coordinate
and Value Transformers, respectively. All of these blocks
have 16 heads self-attention, and the embedding dimension
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Figure 5. Visual comparison for multi-modal shape completion of Table, Chair, and Lamp categories on PartNet. We can produce diverse

completions that better align with the input.

is 1024. We find that a maximum sequence length of 812
is enough for all of our experiments. We set the default
probability factor p = 0.4 for sampling. Further implemen-
tation details such as architecture and training statistics are
provided in the supplementary. Code will be released on
acceptance.

4.1. Shape completion results

Data. We consider two datasets: 1) ShapeNet [8] for
testing on partial scan and 2) PartNet [44] for testing on
part-level incompleteness; we follow the same setting as in
cGAN [68]. For ShapeNet, following prior works [12, 14,
43,51], we use 13 classes of the ShapeNet with train/val/test
split from 3D-R2N2 [17]. The data are processed and sam-
pled similarly to IMNet [12] and we create partial input for
training via random virtual scanning. For evaluation, we
first measure the ambiguity score of a partial point cloud P
to its complete counterpart C as the mean ratio of the dis-
tance of each point € C with its nearest neighbor in P
to its distance toward furthest neighbor in C. We uniformly
sample 70 viewpoints on a sphere for each shape. Then
we create two setups for the dataset according to ambiguity.
The high scan ambiguity setup selects scans with the top
half ambiguity score and vice versa. More details about this
score are provided in the supplementary material.

Metric. For the low ambiguity setting, we use Chamfer Lo
Distance (CD) and F-score%1 (FI) [59] to measure how
accurate the completion is; this is similar to the previous
setup [51]. And in order to evaluate completion quality for
high ambiguity setting, we following prior work [56] to use
pre-trained PointNet [9] classifier as a feature extractor to
compute the Fréchet Point Cloud Distance (FPD) between

Method MMD| TMD{ UHD/] FPD]
cGAN [68] 1.98 3.05 339 295
SInv. [71] 2.14 062 232 345
Ours 132 396 098 122

Table 2. Quantitative comparison for multi-modal completion on
PartNet between our method and prior works. The metrics are
averaged across all three categories (Table, Chair, Lamp) and are
scaled by 10%, 10%, 102, 10" respectively.

the set of completion results and ground truth shapes. Ad-
ditionally, for the PartNet dataset, we follow cGAN [68]
and use Unidirectional Hausdorff Distance (UHD) to mea-
sure faithfulness toward input, Total Mutual Difference
(TMD) to measure diversity, and Minimal Matching Dis-
tance (MMD) [ 1] based on CD.

Baselines. We compare our model with a global
DIF method OccNet [43], two local DIF methods Con-
vONet [51] and IF-Net [14], PoinTr [69], which adopts
Transformers without autoregressive learning, and multi-
modal completion method cGAN [68]. We also compare
our VQDIF-only model to illustrate the necessity of Shape-
Former. We train these methods for shape completion in our
dataset setting with their official implementation.

Results on ShapeNet. As shown in Fig. 4, methods in-
corporating structured local features can better preserve the
input details than those that only operate on global features
(OccNet [43], cGAN [68]) And deterministic methods tend
to produce averaged shape since they are unable to handle
multi-modality. Notice that PoinTr [69] also utilizes the
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Figure 6. Shape completion results on real-world depth scan from
Redwood dataset. ShapeFormer takes partial point clouds con-
verted from depth images and produces multiple possible comple-
tions whose variation depends on the uncertainty of viewpoints.
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Figure 7. Shape completion results on out-of-distribution shapes.
Given a scan of an unseen type of shape, ShapeFormer can produce
multiple reasonable completions by generalizing the knowledge
learned in the training set.

power of Transformers, but they can not alleviate this prob-
lem by adopting Transformers without generative modeling.
This phenomenon is more apparent for the chair example,
which has higher ambiguity. Our VQDIF-only model also
fails to produce good completion in this case. Based on
VQDIF, our ShapeFormer resolves ambiguity by factoring
the estimation into a distribution, with each sampled shape
sharp and plausible. In contrast, the multi-modal method
cGAN [68] is unable to produce high-quality shapes due to
their unstructured representation.

Further, we generate one completion per input with top-
p sampling for quantitative evaluation. As shown in Tab. 1,
our method has a much better FPD for high ambiguity
scans. Notice that F1 is more reliable than CD when am-
biguity is high since CD often treats plausible completions
as significant errors. For low ambiguity scans, our method
is also competitive toward previous state-of-the-art shape
completion methods in terms of accuracy.

Figure 8. Given partial human body parts (left column), our
method generates complete human bodies with various poses
(along the rows). Notice how these shapes preserve the poses and
geometries of the input scans.

Results on PartNet. We compare our model with cGAN
and Shapelnversion [71] on PartNet. The latter method
can also achieve multi-modal completion through GAN in-
version. The quantitative and qualitative comparisons are
shown in Tab. 2 and Fig. 5, respectively. Thanks to our
structured representation, we achieve much better faithful-
ness (UHD) and can generate more varied (TMD) high-
quality shapes (MMD and FPD) than these GAN-based
methods.

4.2. More results

Results on real scans. We further investigate how our
model pre-trained on ShapeNet can be applied to scans of
real objects. We test our model on partial point clouds
converted from RGBD scans of the Redwood 3D Scans
dataset [15]. Figure 6 shows the results for a sofa and a
table, both of them have two scans from different views.
Notice that our model sensitively captures the uncertainty
of a scan, producing a distribution of completions that are
faithful to the scan and plausible in unobserved regions. We
also show results for a sports car in Fig. 2.

Results on out-of-distribution objects. We further eval-
uate ShapeFormer’s generalization by testing scans of un-
seen types of shapes on our trained model of Sec. 4.1. We
pick the novel shapes from the "Famous" dataset collected
by Erler et al. [22] which includes many famous geome-
tries for testing, such as the "Utah teapot," and apply virtual
scan to get the partial point cloud. Fig. 7 demonstrates our
ShapeFormer can grasp general concepts such as symme-
try or hollow and filled. Even the model is only trained on
the 13 ShapeNet categories, without ever seeing any cups
or teapot, it can still successfully produce multiple reason-
able completions from the partial scan. Moreover, in the
second row, we see the completions of a one side scan of a
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CD 3.56 0.98 043 190 0.98 0.55
F1 682 89.0 9718 715 88.1 96.4
len. 1 323 1283 57 217 889
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Table 3. Auto-encoding results for objects in ShapeNet. len.
stands for the length of the representation flattened into a se-
quence.
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Figure 9. The relation between representation size and reconstruc-
tion accuracy. With higher feature resolution, our VQDIF achieves
satisfactory accuracy while keeping a rather small byte size.

cup contain two distinct features: the cups might be solid or
empty. These examples show the ShapeFormer’s potential
for general-purpose shape completion, where once we have
it trained, we can apply it for all types of shapes.

Results on human shapes. In addition to CAD models,
we qualitatively evaluate our completion results on scans of
human shapes (D-FAUST dataset [6]) using the same set-
ting as Niemeyer et al. [47]. This data is challenging due
to the thin structures of the human body and the wide va-
riety of poses. To simulate part level incompleteness, we
randomly select a point from the complete cloud and only
keep neighboring points within a ball of a fixed radius as
partial input. Fig. 8 shows examples of our results. We can
see that our completions keep the pose of the observed body
parts and generate various possible poses for the unobserved
body parts.

4.3. Surface reconstruction with VQDIF

Our final experiment evaluates the representation size
and reconstruction accuracy of VQDIF. We compare
VQDIF of different feature resolutions (Oursg, Oursyg,
Ourszs) with OccNet, ConvONet, IF-Net, which are re-
trained to auto-encode the complete shape with their re-
leased implementations. As shown in Fig. 9, Oursss
achieves similar accuracy to state-of-the-art local implicit
approach IF-Net while being significantly smaller in size

Input OccNet  Ours-8 ConvONet Ours-16 IFNet  Ours-32

kk

f f
W AW W %»" ) gy e

Figure 10. Results for auto-encoding complete shapes. Our
VQDIF in different feature resolutions achieves better or similar
results compared to the prior DIF methods.

»

thanks to the sparse and discrete features of VQDIF. The
minimum receptive field of our encoder keeps the feature as
local as possible, which greatly reduces the feature amount.
Then the multi-dimensional feature vectors are quantized
and can be referred to using a single integer index, which
further reduces the size. The accuracy loss is only salient for
lower feature resolution, as seen in the w/o quant. compar-
ison, where we train VQDIF without vector quantization.
These together allow transformers to learn the relationships
between local shape parts effectively. We adopt Ours¢ for
ShapeFormer since it only has an average sequence length
of 217 (see Tab. 3) and its accuracy is already comparable
with ConvONet (see Fig. 10).

5. Conclusions

We have presented ShapeFormer, a transformer-based
architecture that learns a conditional distribution of comple-
tions, from which multiple plausible completed shapes can
be sampled. By explicitly modeling the underlying distribu-
tion, our method produces sharp output instead of regress-
ing to the mean producing an averaged blurred out result.
To facilitate generative learning for 3D shape, we propose a
new 3D representation VQDIF that can significantly com-
press the shapes into short sequences of sparse, discrete lo-
cal features, which in turn enables producing better results,
both in terms of quality and diversity, than previous gener-
ative methods.

The major factor limiting our method to be applied in
fields like robotics is the sampling speed, which is currently
20 seconds per generated complete shape. In the future,
we would also like to explore utilizing a more efficient at-
tention mechanism to allow Transformers to learn VQDIF
with smaller size, producing even higher quality comple-
tions. Moreover, the current method is generic, leverag-
ing advances in language models. More research is required
to include geometric or physical reasoning in the process
to better deal with ambiguities.
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