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Figure 1: ExampleNet, an interface to explore the commonalities and variations in relevant neural network models built by 
other GitHub developers: (1) a faceted browser to identify relevant models, (2) the distribution of various layers used by other 
developers, (3) an overview diagram of various model structures, and (4) the distribution of hyperparameters used by others. 

ABSTRACT 
Many programmers want to use deep learning due to its superior 
accuracy in many challenging domains. Yet our formative study flter the corpus down to projects tackling similar           tasks and com-
with ten programmers indicated that, when constructing their own pare design choices made by others. We evaluated           ExampleNet in
deep neural networks (DNNs), they often had a             difcult time choos- a within-subjects study with sixteen participants. Compared with
ing appropriate model structures and hyperparameter values. This the control condition (i.e., online search), participants using         Ex-

paper presents ExampleNet—a novel interactive visualization sys- ampleNet were able to inspect more online examples, make more 
data-driven design decisions, and make fewer design mistakes. tem for exploring common and uncommon design choices in a 

large collection of open-source DNN projects. ExampleNet provides 

a holistic view of the distribution over model structures and hy-
perparameter settings in the corpus of DNNs, so users can easily 
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1 INTRODUCTION 
In recent years, a particular form of machine learning (ML)—deep 
neural networks (DNNs)—has gained a lot of attention. More and 
more programmers now want to learn and tinker with deep learning 
models, mainly through online tutorials and blogs [4]. As tutorials 
and blogs tend to only include a few simple examples for illustration 
purposes, programmers often struggle to identify appropriate model 
architectures for their own usage scenarios. When seeing a specifc 
design choice in an example model, they often wonder how common 
this design choice is, how suitable is it for their own tasks and 
datasets, and what other options are available. 

In a formative study with ten participants, we found that most 
participants (9/10) said they searched online for tutorials, blogs, 
and example models when building their own models. However, 
searching online often makes them feel overwhelmed because of 
the enormous amount of online resources. All of them complained 
about the difculty of searching and navigating online examples to 
fnd desired, relevant, easy-to-understand models. They expressed 
their needs to understand the network structures and hyperpa-
rameters used by other developers on related tasks and datasets. 
However, due to the tremendous resources available online, they are 
unable to quickly search, navigate, and assess such neural network 
design decisions using online search. 

In addition to the information needs that these aspiring DNN pro-
grammers described to us in the formative study, we also consulted 
relevant theory, i.e., Variation Theory [16], a theory about how hu-
mans efectively learn concepts, like “what is a DNN?” directly from 
examples. Variation Theory suggests that, for every object of learn-
ing, there are critical dimensions of variation and critical values 
along that dimension that learners need to discern. These critical 
dimensions and values become discernable by showing examples 
that are similar and diferent to it along these critical dimensions. 
For example, an English speaker may be told that there are tones in 
tonal languages that change the meaning of a word, but until they 
hear two words that are identical except for the tone, they cannot 
discern what the concept of a tone refers to. Similarly, they may not 
be able to discern a particular tone until they hear multiple words 
that share the same tone but vary in other ways. In the context of 
building DNNs, they may need to see many similar and diferent 
examples of DNNs to understand all the diferent dimensions (e.g., 
types of layers, sequences of layers, etc.) that they can play with 
while constructing their own DNNs without it ceasing to be a DNN. 
Once they can discern these dimensions of variation, they may also 
want to anchor their initial choices on the common design choices 
of others, while knowing that they can vary these choices at least 
as far as the revealed uncommon choices. 

Based on those identifed information needs and the relevant 
theory, we summarize three design principles. First, our system 
should help users understand the relevance of any example DNN 
to their own task. Second, our system needs to help users compare 
and contrast DNN examples on the basis of the design decisions 
they care about, e.g., model type and structure, hyperparameter 
values for the network and individual chosen layers, etc. Third, our 

system needs to help users see commonalities and variations of 
these design choices over a large sample of available DNN examples. 

In this paper, we introduce ExampleNet—a novel interactive visu-
alization interface that (1) provides users a holistic view to explore 
common and uncommon design decisions, such as neural network 
architectures and hyperparameters, in a large collection of deep 
learning projects, (2) allows users to quickly flter a corpus of DNNs 
down to a subset that tackles similar tasks, and (3) compare and con-
trast the design decisions made by other developers represented in 
that corpus. The faceted browser (Figure 1 ①) in ExampleNet assists 
users in quickly selecting and fltering by the model’s metadata. The 
overview diagram of model structures (Figure 1 ③) aggregates and 
aligns the structure of various models in a single view so that users 
can compare and contrast the commonalities and variations of lay-
ers and their arrangement. ExampleNet also includes the summative 
distribution of layer types (Figure 1 ②) for users to explore common 
layers used by others. The distribution of hyperparameters (Figure 1 
④) shows the diferent hyperparameter values from a large number 
of models so that users can have a comprehensive understanding 
of common and uncommon hyperparameter settings. 

We conducted a within-subjects user study with sixteen DL pro-
grammers of various levels of expertise in computer vision and 
natural language process. Participants were asked to complete two 
DL tasks by using either online search or ExampleNet to design 
neural network structures and hyperparameter settings. We found 
that when using ExampleNet, participants (1) navigated more on-
line examples, (2) made more data-driven design decisions, such 
as using more types of layers and hyperparameters, and (3) made 
fewer design mistakes, e.g., leaving out an activation function or 
loss function, setting the epoch to an unworkably large value, etc. 
The value of ExampleNet is perhaps best described by some of the 
participants themselves: “ExampleNet gives a summary of all models 
for every specifc machine learning task, and users can have a big 
picture of the neural network construction choices.” (P3); “The visu-
alization of model architecture is also quite informative in showing 
what are some common architectures shared across diferent projects, 
while also shows how each network difers from one another.” (P7). 

Our contributions are: 
• A formative study that discovers the obstacles and needs of 
DL programmers when designing a deep neural network 

• An implementation of this interactive visualization for a set 
of deep learning projects on GitHub 

• A within-subjects user study that demonstrates the useful-
ness of ExampleNet to DL programmers when designing their 
own neural networks 

2 RELATED WORK 

2.1 Learning Barriers in Deep Learning 
Cai and Guo did a large survey with 645 software developers about 
their desire to learn ML and the learning hurdles they face [4]. 
They found that developers’ desire to use ML frameworks extended 
beyond simply wanting help with APIs: “developers desired ML 
frameworks to teach them not only how to use the API, but also 
the implicit best practices and concepts that would enable them 
to efectively apply the framework to their particular problems.” 
This motivates our focus on high-level design choices of building 
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neural networks rather than low-level implementation details such 
as API usage. In addition, they also found out that online tutorials 
and blogs often only ofer a limited set of examples, falling short of 
helping users identify an appropriate model architecture for their 
own tasks. As a result, developers were left to make many design 
decisions at their own discretion, e.g., “how many convolution 
layers do I need?”, “what dropout rate or optimizer should I use?”. 

Some other studies and surveys have also investigated program-
mers’ practice of applying machine learning. Amershi et al. did a 
case study at Microsoft and found that AI is completely diferent 
from traditional software applications [1]. For example, machine 
learning applications have more complex data; model customiza-
tion and reuse require more complex skills; and AI components are 
more difcult to process as separate modules. Yang et al. pointed 
out that most non-experts simply use pre-trained ML models as 
black-box tools and integrate them into their own applications, 
which sometimes leads to difcult or unrealistic learning goals [30]. 
Patel et al. identifed three major obstacles of applying ML as a 
tool in software development, such as the difculty of using ML in 
an iterative and exploratory way [17]. Dove et al. [5]and Yang et 
al. [29] probed the challenges that UX designers face in working 
with ML. Both of them found that UX designers have difculties 
understanding ML, its capabilities, and its limitations. 

2.2 Example-based Programming Learning 
As the Internet accumulates a large volume of code and code-related 
artifacts, many programmers now resort to online resources while 
writing code [3, 20, 22, 28]. Sadowski et al. found that Google de-
velopers issued an average of 12 online code search queries per 
weekday [20]. Brandt et al. observed that, when writing code, pro-
grammers typically started with searching for relevant tutorials 
and then used the code examples in these tutorials as the scafold 
for their own implementations [3]. Head et al. proposed an interac-
tive approach that extracts runnable code examples from GitHub 
projects [10]. 

Stack Overfow (SO) is a popular site for asking and answering 
programming questions. Wu et al. surveyed SO users to investigate 
the remaining barriers of programming when fnding assistance on 
the site. Among 453 respondents, 65% said they had to manually 
adapt SO examples to ft their own usage scenarios, 44% found 
some examples hard to understand, and 32% complained about the 
low quality of some examples. Besides, Zhang et al. identifed the 
needs of API designers and discussed how community-generated 
API usage data can be leveraged to address those needs [32]. The 
results of our formative study on learning DL are highly consistent 
with these previous fndings: 1) participants always searched for 
examples before building their own neural network models, and 
2) participants found it difcult to identify desired information 
from many search results and assess their relevance for their own 
usage scenario. On the other hand, our participants expressed more 
interest in fnding out high-level design choices such as the model 
structure, rather than learning low-level implementation details 
such as how to make a particular API call. 

2.3 Deep Neural Network Visualization 
Many neural network visualization tools have been proposed 
to support diferent activities in neural network development. 

TensorBoard [27] and Sony’s Neural Network Console [24] provide 
visualizations for a single network and its layer parameters. They 
are primarily designed to facilitate model training, providing dif-
ferent features to monitor the training process. Other visualization 
tools, such as LSTMVis [26] and TensorFlow Playground [23], are 
designed to increase the interpretability of a pre-trained model, by 
visualizing the weight updates and hidden layers in the model. 

ExampleNet difers from these visualization tools in three per-
spectives. First, unlike TensorBoard and Sony’s Neural Network 
Console, which focus more on assisting users to debug and train a 
better model, ExampleNet targets the model design phase, in which 
developers can explore and discover various design choices of model 
structures and hyperparameter settings. Second, these visualization 
tools only represent a single model at a time. They do not allow 
users to easily compare and contrast multiple models, let alone the 
distribution of their design choices over an entire corpus of DNN 
models. Third, visualization tools such as LSTMVis and Tensor-
Flow Playground visualize aspects of the model for interpretability 
purposes. However, they do not render hyperparameter settings, 
which are essential for beginners to design a runnable model. 

2.4 Interfaces for Exploring Collections of 
Code and Tutorial Examples 

Previous work has explored diferent ways of visualizing large 
collections of examples for D3 visualization [11], API usage exam-
ples [6], website design [13], and Photoshop tutorials [12]. Hoque 
et al. [11] present an approach for searching and exploring difer-
ent visualization styles for a large number of D3 visualizations. 
Similar to Hoque et al. ’s approach, the Adaptive Ideas Web design 
tool [14] uses an example gallery for users to choose and adapt web-
site design ideas. Apart from these two interfaces, Delta [12] uses 
thumbnail images to visualize the workfows in multiple PhotoShop 
tutorials from diferent aspects. All of these interfaces visualize the 
examples in a stacked and grouped view, which is hard to directly 
compare and contrast the commonalities and variations of critical 
aspects of DNNs, such as the sequence of layers. In ExampleNet, 
we use a Sankey diagram to visualize each model side by side in a 
single view, with the option to align similar layers across models. 
In this way, users can have a bird’s-eye view of the common and 
uncommon model architectures and how they difer. 

To our best knowledge, Examplore [6] is the only work that 
aligns and aggregates a large collection of examples in a single 
view. Examplore uses a pre-defned code skeleton to visualize API 
usage examples, which cannot be directly reused for visualizing 
DNNs. It is difcult to defne a particular skeleton that includes all 
the various architectures. In ExampleNet, instead of designing such 
a skeleton, we present a diferent approach—directly visualizing the 
model structures in a Sankey diagram and using a local alignment 
algorithm to further align them by layer types. 

3 FORMATIVE STUDY 

3.1 Participants 
We conducted a formative study with 10 graduate students (6 fe-
males and 4 males) who have taken a deep learning class at Harvard 
University. Three participants have more than fve years of pro-
gramming experience, six have two to fve years of programming ex-
perience, and one has one-year experience. As for machine learning 
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experience, half of them have two to fve years of experience, three 
have only one year of experience, and two only have one semester 
of experience. Nine of the ten participants have used TensorFlow 
before, and four of the ten participants have used PyTorch. They 
have worked on diferent kinds of deep learning projects such as 
image recognition, object detection, and natural language process-
ing. Participants were compensated with a $15 Amazon gift card 
for their time. 

3.2 Methodology 
We conducted a 45-min semi-structured interview with each par-
ticipant. During the interview, we frst asked about their learning 
experiences with neural networks. Specifcally, we asked what kinds 
of neural network projects they have worked on, what kinds of chal-
lenges they faced, and what kinds of online resources they found 
useful. We also asked whether and how often they searched for 
examples when building neural networks, what information cues 
they intended to discover from those examples, and what kinds of 
difculties they experienced. 

Finally, we showed them TensorBoard [27], a popular neural 
network visualization tool. TensorBoard visualizes neural network 
layers and low-level computational operations such as additions of 
tensors as a datafow graph. All ten participants said they had used 
TensorBoard before. We asked them what they liked and disliked 
about TensorBoard and whether it can surface those information 
cues they wished to discover from examples of neural networks. 

During the interview, we encouraged participants to contextual-
ize their answers based on their recent experience of learning and 
building deep learning models. Two authors coded participants’ 
responses to each question and then categorized them following 
the card sorting method [15]. We synthesize our major fndings in 
the next section. 

3.3 Participants’ Responses 
3.3.1 Learning and Building Neural Networks.   
search and adapt example neural networks on GitHub rather than 
building a neural network from scratch. Nine of ten participants 
said the frst thing they would do was to search for GitHub projects 
that perform similar tasks on similar datasets. For example, P8 
said, “when I need to process images, I will search CNN and other 
keywords in GitHub, and identify similar projects to see what other 
people have done with images.” When asked about how they decide 
which GitHub project to follow or reuse, participants said they 
cared the most about the relevance to their own tasks and datasets. 
After they have decided on a GitHub project, they adapt the model 
structure to ft their own data. P7 mentioned, “based on our data, we 
may change our (network) structure and add few more layers behind 
or in front of the original network.” 

3.3.2 The Information Needs of Deep Learning Programmers. Ta-
ble 1 lists the common information cues our participants wished to 
discover from GitHub examples when designing neural networks. 
First, eight participants wished to get a holistic view of diferent 
neural networks for similar tasks (N1, N5). P4 said, “when I searched 
for models with the same task, I can only browse one example at a 
time, and I cannot compare other related examples at the same time.” 
In particular, fve participants emphasized that they did not want to 

Programmers often

investigate all projects returned by GitHub Search but only those 
processing similar tasks and datasets as their own (N7). However, 
it is cumbersome to assess the relevance of a GitHub project. P7 
explained, “there is a project about some kinds of NLP tasks, but I 
don’t know what kind of datasets they are using, or what kind of data 
format. I have to search in the documents to look for the datasets.” 
Hence, participants wished to have some tool support for distilling 
information such as tasks and training data from GitHub projects 
to help them make quick assessment. 

Second, most participants expressed a desire to understand the 
high-level design decisions in related models in GitHub (N2, N3, 
N4, N6). Eight participants were interested in identifying the struc-
ture of neural networks (N2). However, it is difcult to identify 
model structures from GitHub projects. P4 complained, “sometimes 
there are thousands of lines of source code in several diferent fles, 
so you can barely have a clear overview of what the model looks 
like.” Nine participants wanted to understand the “tricks” used by 
other programmers to improve their model performance (N3). In 
addition, participants wanted to compare the hyperparameters in 
diferent models (N4) and identify the common choices made by 
other programmers (N6). 

Participants also mentioned several information cues such as 
runnability and model accuracy, which are important for them to 
decide which model to follow (N8, N9). Participants put more trust 
in the design choices made within models with high accuracy. Yet 
if a highly accurate model requires many GPUs and takes a lot of 
time to train, they were less willing to follow and experiment with 
the model. Finally, several participants wanted to know what kinds 
of data preprocessing steps, e.g., standardization, one-hot encoding, 
etc., were performed in the projects (N10). 

3.3.3 The Challenges of Identifying Desired Information. When 
asked about the difculty of discovering those information cues, 
seven participants said they were overwhelmed by searching and 
navigating through related projects. P3 said, “sometimes [GitHub] 
gives us too many other details that you will not use.” P4 added 
that “the README fles are so rough and do not describe what they 
are doing in their repo.” Eight participants complained about the 
difculty of assessing the relevance and quality of GitHub projects 
in the search results. P4 said, “even though we can sort the results 
in GitHub, I still need to go through each result to further identify 
whether it is related to what I am doing.” P8 said, “only looking at the 
title or description [of a GitHub project] is not enough. I still need to 
check the README fle or read the code directly to know what exactly 
they are doing.” 

Four participants mentioned the difculty of comparing and 
contrasting diferent GitHub projects. P4 said that “after I found 
a suitable example, I’m still not sure what other people will do. For 
example, whether other people will use the same layer here, or whether 
other people will use the same value of this parameter.” As a result, 
participants found it difcult to decide which GitHub project to use. 
P8 said “I don’t know which model is a better match for my task, and 
there is no place to compare them.” 

Four participants were concerned about the lack of runtime infor-
mation in GitHub projects. P5 said “I think building the environment 
is the most difcult. Every time after you download a GitHub repo, 
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Information Needs Participants 
N1. What are diferent neural networks for similar tasks and datasets? P1, P2, P3, P4, P6, P7, P8, P10 
N2. I want to quickly fnd out the structure of a model in a project. P1, P2, P3, P4, P6, P8, P9, P10 
N3. What kinds of “tricks” (e.g., attention, dropout) have other programmers used? P1, P2, P3, P4, P5, P6, P7, P8, P10 
N4. Is my hyperparameter setting similar to those in popular projects? P1, P2, P3, P4, P5, P6, P7, P8, P10 
N5. What kinds of models are often used for specifc datasets and tasks? P1, P2, P3, P4, P6, P7, P8, P10 
N6. What are the common hyperparameters set by others? P2, P3, P4, P5, P6, P7, P8, P9, P10 
N7. Do these projects use similar datasets and perform similar tasks as mine? P1, P2, P3, P4, P5 
N8. Is this model runnable? How easy? What is the running environment? P1, P3, P7, P9, P10 
N9. What is the accuracy of the model? How long does it take to train? P1, P2, P5, P10 
N10. How do others pre-process their data before feeding to a model? P1, P2, P6, P7 

Table 1: The common information cues that participants wish to discover 

[you] need a lot of time to make it work. And it may take a week, or 
two weeks longer depending on the environment it uses.” 

3.3.4 What They Like or Dislike about TensorBoard. Seven of the 
ten participants did not like TensorBoard. They pointed out two 
main reasons. First, a lot of critical information they wished to 
know about a neural network was not displayed in TensorFlow. 
For example, P3, P4, and P6 all expected to see the task and dataset 
information to assess the relevance of an example model to their 
own goal. Second, the visualization in TensorBoard shows many 
low-level operations that participants did not care about. P3 men-
tioned that “even some low-level operations such as addition and 
matrix multiplication are represented in the graph.” On the other 
hand, the other three participants liked TensorBoard, since it shows 
the high-level structure of a neural network, such as layers and 
activation functions. P9 said, "the fow is clear, and the structure 
is very important to me. Compared with reading through thousand 
lines of codes, this is much better." P3 also considered TensorBoard 
helpful since “it distinguishes layers and functions in diferent colors 
and blocks, making it easy for people to understand.” 

4 DESIGN PRINCIPLES & SYSTEM OVERVIEW 

4.1 Design Principles 
We summarized three design principles for a system that supports 
learning and designing neural networks, based on the information 
needs of deep learning programmers identifed in the formative 
study and the Variation Theory [16]: 
D1. Help users understand the relevance to their own tasks. 
From the formative study, the information needs (N1, N5, N7) 
indicate that DL programmers only care about projects that have 
similar tasks and datasets to their own. For example, N7 represents 
the user’s need to understand whether a neural network example 
is related to the task they are facing. Furthermore, N1 and N5 both 
indicate users are only willing to learn more about a neural network 
example when they believe that the task to which the given example 
belongs is highly relevant. Therefore, our system needs to provide a 
way to help users quickly understand whether a project is relevant. 
D2. Help users distill high-level design decisions. N2, N3, N5, 
and N6 indicate that DL programmers want to understand high-
level design decisions such as model structures and hyperparam-
eters rather than low-level implementation details. In N2, users 
want to know the information about model structures instead of 

the implementation of models. And N3, N5, N6 are the needs of 
users who want to know more about model types, hyperparameter 
settings, etc. respectively. Therefore, our system needs to help users 
easily perceive these high-level design decisions from the low-level 
code in deep learning projects. 
D3. Help users understand the commonalities and variations 
of design choices. N4, N5, N6 all indicate that DL programmers 
want to understand the common hyperparameters and model struc-
tures used for similar same tasks or datasets. Furthermore, N1, N3 
indicate that users also want to fnd the variations in neural net-
work design. For example, some users want to know alternative 
model types that handle similar tasks, and some users want to know 
diferent tricks used by diferent developers. Therefore, our system 
needs to support exploring both common and uncommon design 
decisions in neural network design. 

4.2 System Overview 
Based on the three design principles, we implemented an interactive 
visualization system called ExampleNet that helps programmers 
explore various neural network design descions in a corpus of DNN 
models. It contains three main features: 

4.2.1 Faceted Browser. In the faceted browser view (① in Figure 1), 
each facet displays the names of diferent datasets, tasks, and model 
types. Through this faceted browser, users can quickly select and 
flter the corpus of DNN models based on their own needs. The 
distribution bar next to each facet shows the number of models 
corresponding to each facet under diferent selection conditions. 
Therefore, users can directly read the length of each bar to under-
stand how frequent or infrequent each option is, given their prior 
selections. In addition, the faceted browser also renders quality-
related metrics such as project stars and forks. This allows users to 
flter models based on these proxies for quality. 

4.2.2 An Overview Diagram of Model Structures. The overview dia-
gram of model structures (③ in Figure 1) shows the large collection 
of networks at scale. Since the structure of a neural network de-
scribes the order in which data fows between layers, we follow the 
Sankey diagram design to aggregate the structures of various mod-
els in a single view. In our Sankey diagram, each fow represents 
one or more models, and each node in the fow represents a layer. 
Models are aligned based on the type and ordering of their layers. 
Model layers with the same type in the same position are merged 
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Figure 2: Align the structures of two models based on layer types 

into a single fow. For example, in Figure 2a, the frst layers of two 
models are both convolution layers, so these two convolution lay-
ers are merged into a joint layer. In this way, users can compare 
and contrast the commonalities and variations of layer choices and 
arrangements among multiple models in a single view. 

The traditional Sankey diagram design often produces a diagram 
with many overlaps among fows when visualizing many neural 
network models. The bifurcation and convergence of fows can 
easily cause confusion. Therefore, we decided to adapt the tradi-
tional design to only contain the bifurcation structure without no 
convergence. In Figure 2a, our design renders the subsequent lay-
ers of two models as they are diferent. However, the traditional 
Sankey diagram design will maximally merge these subsequent 
layers, making the two fows intertwined with each other. 

On the other hand, our adaption makes it difcult to identify 
common subsequences of layers in relatively diferent positions 
across models. In Figure 2a, after the frst joint convolution layer, 
the subsequent layers of the two models vary only by one layer: 
the second layer in the frst model is ReLU, while the second layer 
of the second model is Max Pooling. Though the second layers 
are diferent, the following layers after the second layer are quite 
similar. As the subsequent layers are visualized in separate fows, 
it is difcult for users to mentally align them and compare their 
similarities. Hence, we introduced a local alignment feature to align 
layers with the same type in relatively similar positions. Specifcally, 
we used the Smith-Waterman algorithm [18]. This algorithm frst 
determines the substitution matrix and the gap penalty scheme 
and, from that, constructs a scoring matrix. Finally, it traces back 
this scoring matrix based on the source of each score recursively 
to generate the best local alignment. Figure 2b shows the aligned 
diagram of Figure 2a. Based on the local alignment, the second layer 
(Max Pooling) of the second model is extended, so its subsequent 
layers are aligned with the same subsequence of layers in the frst 
model. 

4.2.3 The Summative Distribution of Layer Types and Hyperparame-
ters. Several summative charts show the distributions of layer types 
(② in Figure 1) and hyperparameter values (④ in Figure 1). The 
summative chart of layer types renders layer types in six categories: 
CNN, RNN, DNN, Activation Function, Loss Function, and Others. 
Table 2 shows the variety of layer types that can be recognized by 
our system. We also used the same color scheme as the overview 
diagram of model structures (③ in Figure 1). 

The hyperparameter charts (④ in Figure 1) show the distributions 
of diferent hyperparameter values and layer parameter values. 
Our system recognizes and renders 9 hyperparameters, including 
learning rate, batch size, epochs, optimizer, momentum, decay rate, 
dropout rate, number of hidden layers, and number of hidden layer 

Category Recognized Layer Types 
Convolution, Deconvolution, Max Pooling, CNN Average Pooling 

RNN LSTM, GRU, BiRNN, RNN, CRF, Attention 
DNN Input, Dense, Dropout, Flatten 
Other Embedding, Normalization 

Activation Function Argmax, ReLU, Sigmoid, Softmax, Linear, tanh 
Loss Function Cross Entropy, Reduce Mean, CTC, L2, MSE 

Table 2: The neural network layer types that are recognized 
and rendered by our current implementation. 

units. Unlike the summative chart of layer types, we use bubble 
charts to render the distribution of these hyperparameters. The 
x-axis represents the value of hyperparameters or parameters. The 
y-axis and the radius of each circle indicate how many models have 
set this value as a hyperparameter or parameter. The reason why 
we used diferent design elements to visualize the same information 
is that in some hyperparameters and parameters, many values will 
be concentrated in a small range. For example, many models set the 
learning rate to less than 0.01. If we only use the size of the circle 
to represent the number of models that use this value, there will be 
many overlapping data points. When a user hovers over a circle, 
the chart displays the number of models that use this value. 

5 USAGE SCENARIO 
Suppose Sam is a beginner in deep learning. He wants to imple-
ment a deep learning model for text classifcation. Without using 
ExampleNet, Sam searches with the keyword “text classifcation” on 
GitHub. The GitHub search engine returns 8, 899 related projects. 
Sam ranks those projects by their stars. Then he opens the project 
that received the most stars and reads its README fle to under-
stand basic information about the project. 

Sam wants to understand the structure of the neural network 
in this project, so he looks for the source code that implements it. 
Since he is a beginner in deep learning, he struggles to glean what 
he needs from the hundreds of lines of code. Even after attempting 
to inspect each line of code, Sam fnds it hard to piece together all 
the details related to the neural network. 

Sam also wants to go over several other projects to identify 
which is the most suitable project to follow for his text classifcation 
problem, or at least fnd out which design choices are common 
or atypical. However, he cannot manage to hold all the neural 
networks in his memory to mentally compare and contrast them. 
He does not even attempt to remember multiple models’ lower-level 
details such as the parameter settings of each layer type. 

With the help of ExampleNet’s interactive visualizations, Sam 
navigates through all the relevant projects in a corpus collected from 
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GitHub and establishes a holistic mental model of the design choices 
made by other DL programmers. In the Task facet of the faceted 
browser (① in Figure 1), Sam quickly fnds the text classifcation task 
and selects it. The interface updates to show him the distribution 
of diferent datasets and models used in those text-classifcation 
GitHub projects: specifcally, the bars in the light color still show the 
number of projects in the original collection, while bars in the dark 
color show the conditional distribution—the number of projects after 
fltering with Sam’s selections, which he may continue to make 
to hone in on the subset of Github projects that will collectively 
become his reference point for making his own design decisions. 
By looking at the conditional distribution in the facet of model 
types (Figure 1 ①), Sam fnds that the length of the dark blue bar 
for the RNN model is the longest, which means that the majority 
of projects implement RNN models for text classifcation. Thus he 
also decides to design an RNN for his task. 

Sam wants to flter out lower-quality projects. He believes 
projects’ popularity, in terms of stars and forks, implies their reli-
ability, so he drags the left border of the brush box in the Project 
Stars facet (① in Figure 1) to exclude projects with less than 3, 000 
stars. The histogram bars in other facets are updated accordingly. 
Now, Sam fnds that the number of models has been reduced to 
eight. Sam sets a similar threshold using the Project Forks facet. 
Finally, Sam sees in the overview diagram of model structures (③ 
in Figure 1) that some projects have too many layers, which are 
challenging to train with the limited computational power of his 
own machine. He uses the Number of Layers in Projects facet to sets 
a threshold to a maximum of 20 layers per project. Seven projects 
remain. 

5.1 Exploring the Design Space of Model 
Structures 

The layer type histogram (② in Figure 1) shows the distribution 
of diferent layers in the remaining projects. Sam fnds that the 
majority of projects (four of seven) use LSTM layers. While the 
majority of neural networks (four out of seven) use LSTM layers, 
only one model uses a GRU layer and two models use BiRNN layers. 
Sam realizes that GRU and BiRNN could be alternatives to LSTM 
layers. He also notices that all seven projects use Dropout layers, 
four use Embedding layers, and one uses Normalization layers. 
This is surprising to Sam, since he was not particularly aware and 
attentive to Embedding layers before. 

Sam is familiar with Normalization and Dropout layers, but he 
is not entirely sure how and where to use them. To fgure it out, 
Sam turns to the overview diagram (③ in Figure 1). He notices that 
fve of the seven models have a Dropout layer in the middle of the 
network, and two place them at the end of the network. He also 
notices a pattern of placing a Dropout layer right after an LSTM 
layer, and that the Embedding layers are always placed as the frst 
layer of a neural network. 

Sam clicks the alignment view button to re-align the neural net-
work structures in the overview diagram based on layer types. 
Figure 3a shows the re-aligned neural networks. In this view, Sam 
immediately notices the Dense, ReLU, Dense, ReLU, ... pattern. He 
also fnds that four projects use the alternative GRU/BiRNN, Dropout, 

(b) Highlight and compare multiple models 

Figure 3: A user aligns models by their layer types and then 
compares multiple models. 

(a) Align model structures by layer types 

GRU/BiRNN,... pattern. Now Sam is more confdent about the pat-
terns he found earlier. When Sam looks at the end of these models, 
he fnds all seven networks use Cross Entropy as their loss functions, 
which suggests to Sam that Cross Entropy might be a proper loss 
function choice for text classifcation. 

5.2 Exploring the Design Space of 
Hyperparameters 

In deep learning, hyperparameters are critical to the performance 
of the networks. Prior work shows that embeddings, optimizers, 
and dropouts have a high impact on model accuracy and training 
time [19]. The hyperparameter view allows Sam to explore what 
common and uncommon hyperparameters are used by other devel-
opers. In Figure 1 ④, Sam notices fve hyperparameters are listed: 
learning rate, batch size, epochs, dropout rate, and optimizer. He 
did not even know about the decay rate and dropout rate before. 
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Figure 4: The semi-automated data curation pipeline of ExampleNet. Steps in light yellow are automated, while steps in light 
green are manual. 

For instance, on the learning rate chart, there are four projects 
that choose the learning rate as 0.001 and three projects use 0.0003 
(④ in Figure 1). The distribution of various learning rates used by 
other programmers augments Sam’s knowledge of an appropriate 
learning rate range. Without seeing the distribution of learning 
rates, Sam might have picked a learning rate that is too large or too 
small, costing him extra tuning iterations to fnd the optimal value. 

6 DATASET CURATION 
To fuel the visualization with real-world model data, we developed 
a semi-automated data curation process that extracts model charac-
teristics from GitHub projects. Figure 4 shows the pipeline. In this 
work, we focused on models implemented in TensorFlow. To collect 
deep learning projects, we searched “deep learning” and “neural 
network” on GitHub and downloaded the top-starred projects in 
the search result. Then we wrote a script to automatically scan 
the source code fles in those projects and discarded projects that 
do not import python packages from TensorFlow. Given a GitHub 
TensorFlow project, we took two major steps to pre-process the 
source code and then extract information cues mentioned in the for-
mative study. The extracted information cues were then manually 
validated to ensure data consistency and quality. 

6.1 Extracting Model Structures via Program 
Analysis 

We implemented a light-weight program analyzer to identify model 
structures from a DL project written in TensorFlow. First, for each 
project, the program analyzer scanned the source code and iden-
tifed imported TensorFlow APIs. Since many functions in difer-
ent Tensorfow packages have the same name, the package im-
portant information was later used to resolve ambiguous function 
calls in the source code. Then, the analyzer conducted a whole-
program call graph analysis to build the call graphs from all source 
code in the project. In the whole-program analysis, the analyzer 
parsed all source code to abstract syntax trees (ASTs) and tra-
versed the AST of each source code fle to build individual call 
graphs of that fle. Then it connected the individual call graphs to 
build a bigger call graph based on function calls between fles. 
We manually created a mapping from Tensorfow API calls to 
neural network layers and layer parameters. Table 2 shows all 
layer types that are recognized in this analysis. For example, the 
API method tf.nn.conv2d corresponds to the convolution layer, 
and tf.keras.losses.CategoricalCrossentropy corresponds 

to the cross-entropy loss function. Similarly, we manually created 
another mapping for hyperparameters. We defned a list of possi-
ble variable names for each hyperparameter, based on which the 
analyzer identifed variables that may hold hyperparameter values 
via fuzz matching. 

Given a call graph, the analyzer fltered out function calls that 
were not included in the pre-defned mapping. The remaining func-
tion calls constituted the essence of the model structure. Compared 
with manually reading source code and identifying model struc-
tures, this light-weight process signifcantly reduced the data cura-
tion efort. However, it was not precise enough and thus required 
manual validation. We discuss several cases that required attention 
from human validators. 

First, some projects may use loops to repeatedly add layers to 
a neural network. During program analysis, if a TensorFlow API 
call appears in a for loop, the analyzer will automatically log a 
warning message for manual validation. The human validator then 
manually inspects the loop bound to determine how many times a 
layer is added to the neural network. 

Second, if a TensorFlow API call appeared in an if-else branch, 
the program analyzer will also log a warning message. The human 
validator then manually assesses the conditional expression and de-
cides whether to add the layer to the model structure. If taking the 
if branch and else branch could lead to two diferent model struc-
tures, the human validator will manually create separate models to 
refect this. For example, 

1 if cell_name == 'LSTM': 
2 cell = tf.keras.layers.LSTM(units) 
3 else: 
4 cell = tf.keras.layers.GRU(units) 

In this code, the model can have two structures—one with LSTM 
units and the other with GRUs. In such a case, the human validator 
manually one RNN with LSTMS and the other with GRUs. 

Third, the fuzz matching method may fail to recognize some hy-
perparameter values, since GitHub developers may assign obscure 
variable names to their hyperparameters. Sometimes, hyperparam-
eters may be set in a confguration fle rather than being hardcoded 
in the source code. When a hyperparameter is missing in the anal-
ysis result, the human validator must manually go through the 
source code fles and identify the hyperparameter values. 

Finally, we discarded models that have multi-granularity archi-
tectures. For example, in ResNet [8], the residual layer will have 
two outputs. The frst output is directly linked to the next layer, 
and the second output will skip one or more layers. Currently, our 
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system does not support visualization of such multi-granularity 
architectures. 

6.2 Identifying DL Tasks and Datasets from 
GitHub Projects 

In addition to model structures and hyperparameters, we manually 
identifed the training datasets, tasks, and model names from each 
project. We read through the README of each project to identify 
dataset names. If the dataset was not mentioned in the README, 
we went through the project’s data preprocessing code to identify 
the training data. We manually classifed identifed datasets into six 
categories—image, text, video, audio, tabular, and others. Similarly, 
we identifed the computation tasks such as image classifcation and 
sentiment analysis from the README. Regarding model names, 
we frst attempted to look for specifc names mentioned in the 
README, such as VGG and AlexNet. If no specifc model names 
were found, we manually assigned a general name such as CNN or 
LSTM based on the model structures identifed in the previous step. 

In this work, we downloaded 203 GitHub projects.We ran our 
static program analyzer on those 203 projects and found that the 
analyzer failed to extract any model structures or hyperparameters 
from 86 projects. This is because these 86 projects were outside 
the scope of our program analyzer’s capabilities: (a) 82 projects 
were not written in TensorFlow and (b) 4 projects used pre-trained 
models that our analyzer could not extract relevant data from. Then 
we manually went through the README fles of the remaining 117 
projects. 24 projects were discarded in this step since their README 
fles did not contain information about their training datasets, tasks, 
and model names. Among the remaining 93 projects, 31 (33%) were 
eliminated because they included structures outside the scope of 
our current visualization algorithms: (a) 7 projects included residual 
connections (ResNets), 12 included multiple branches (Inception net-
works), 9 included GANs (each contains two networks, a generator, 
and a discriminator respectively) and 3 included other unsupported 
models such as HMM. After the analysis and manual validation 
steps, we extracted complete model structures, hyperparameters, 
and other meta-data for 62 models. These 62 models form the collec-
tion of neural network examples used in the following user study 
of ExampleNet. The semi-automated process took roughly 20 man-
hours. The most time-consuming part is to manually go through 
GitHub README fles to identify DNN related meta-data, which 
took about 6 minutes per project. 

7 USER STUDY 
We conducted a within-subjects study with sixteen participants 
to evaluate whether ExampleNet could help them more efectively 
develop an awareness of design choices available to them when 
designing a deep neural network. Online search, a common prac-
tice in neural network design as indicated by our formative study 
(Section 3), is used as the realistic baseline in a control condition. 

7.1 Participants 
We recruited sixteen master students in Computer Science and 
Engineering or Data Science at Harvard University. Participants 
received a $25 Amazon gift card as compensation for their time. 
Participants had diverse expertise in deep learning. Three of them 

had between two and fve years of deep learning experience, nine 
participants had only one year of experience, and the remaining 
four had just one-semester’s experience. 

Participants self-reported their familiarity with the two deep 
learning domains, CV and NLP, on a 6-point Likert scale. For com-
puter vision, eight participants rated themselves as beginners (0-1 
on the Likert scale), seven rated themselves as only somewhat 
familiar (2-3 on the Likert scale), and only one participant rated 
themselves as familiar (4 point on the Likert scale). For NLP, the 
majority of participants (10 out of 16) considered themselves be-
ginners, fve rated themselves as somewhat familiar, and one rated 
himself as familiar. 

7.2 Protocol 
We selected two common deep learning tasks from CV and NLP: 

• Task 1 (Image Classifcation): Design a neural network and 
fnd reasonable hyperparameter settings to classify 10K 128× 
128 animal images into dog, cat, or others. 

• Task 2 (Text Classifcation): Design a neural network and fnd 
reasonable hyperparameter settings to classify 10K English 
conversations into weather, animals, environment protec-
tion, or others. 

For each task, participants were asked to answer two questions 
related to neural network architecture and hyperparameter design: 

• Q1 (Network Structure Design): Draw the neural network and 
specify the number of layers and the type of each layer. 

• Q2 (Hyperparameter Design): Set the values of four critical 
hyperparameters, including learning rate, batch size, epochs, 
and optimizer. In addition, provide the name and suitable 
value of any other hyperparameters that may help optimize 
your model. 

Each study took about 70 minutes. Each participant was given 
20 minutes to fnish each task. In the control condition, participants 
were allowed to use any search engines they were comfortable with 
to fnd online resources, e.g., blogs, tutorials, StackOverfow posts, 
to answer Q1 and Q2 for the assigned task. In the experiment con-
dition, participants were only allowed to use ExampleNet without 
any access to other online resources to answer Q1 and Q2 for the 
assigned task. Given that this was a within-subjects study, each 
participant experienced one task in one condition and the other task 
in the other condition. To mitigate any learning efects, both the 
order of the assigned tasks and conditions were counterbalanced 
across participants. Before the task with ExampleNet, participants 
were asked to frst watch an 8-min tutorial video of ExampleNet and 
then spend 5 minutes familiarizing themselves with the interface 
After each task, the participants were asked to complete a question-
naire to record their refections on their experience in the assigned 
condition. As part of the post-study survey, participants were asked 
to answer fve NASA Task Load Index questions [7] to rate the 
cognitive load of the assigned task. After fnishing both tasks, par-
ticipants were asked to fll out another survey to directly compare 
the Online Search and ExampleNet conditions. We recorded each 
user study session with the permission of participants. 

https://projects.We
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Online Search 
ExampleNet 

# of Layers 
Min Median Max 
4 9.5 21 
7 13 30 

# of Layer Types 
Min Median Max 
3 5 7 
6 7 9 

# of Hyperparameters 
Min Median Max 
4 4.5 5 
4 5 10 

# of Inspected Examples 
Min Median Max 
0 2 5 
5 6 12 

# of Design Mistakes 
Min Median Max 
0 1 4 
0 0 1 

Table 3: Statistics about number of layers, number of layer types, number of hyperparameters, number of looked examples, 
and number of mistakes when using online search and ExampleNet. 

8 USER STUDY RESULTS 

8.1 User Performance 
Participants using ExampleNet 
choices compared with using online search. When using Exam-
pleNet, participants designed deeper neural networks (median of
13 vs. 9.5) with more diverse layer types (median of 7 vs. 5) than
using online search. Though deeper neural networks do not mean
more superior models, being able to see the distribution of diferent
neural networks indeed brings programmers more awareness of
various design choices such as diferent types of layers to leverage
in their own models. For example, 8 out of 16 participants used
Dropout layers in their text classifcation model when using Exam-
pleNet, while only 3 of 16 participants used it when using online
search. In general, adding Dropout layers can improve generaliza-
tion performance on text classifcation tasks [25]. 

The diferences are also clear for hyperparameter design: com-
pared with using online search, participants using ExampleNet set
more hyperparameters such as dropout rate, decay rate, and mo-
mentum. Three participants set a decay rate when using ExampleNet
while no participants set one when using online search. By setting
a decay rate, the model will start with a large learning rate and then
let it decay by the proscribed amount over the course of training
A larger initial learning rate can accelerate training and help the
model escape local minimal. Decaying the learning rate can help
the model converge to a minimum and avoid oscillation [31]. 

We manually analyzed the user study recordings and counted the
number of online examples each participant inspected during the
study. In the online search condition, we defned example inspec-
tion as clicking into a search result. In the ExampleNet condition
we defned example inspection when they thought out loud about

made signifcantly diferent design

a model or when they clicked into the GitHub repository page of a
model from ExampleNet. As shown in Table 3, when using online
search, participants only inspected two online examples on the
median. Some of them even designed the neural network based on
their own experience, without looking at a single example. As sev-
eral participants pointed out in the post-study survey, navigating
through online examples and identifying the essence from each

example is time-consuming and cumbersome. By contrast, when 
using ExampleNet, participants inspected a median of six GitHub 
examples. With the faceted browser in ExampleNet, participants 

 quickly fltered the large collection of GitHub examples and re-
trieved the ones that were most relevant to their task and dataset. 

 The overview diagram provided them a bird’s-eye view, enabling 
 them to simultaneously compare and contrast multiple model struc-
 tures. However, with online search, participants had to click into 
 each search result, identifed the model in it, and went back and 
 forth to compare them. This was time-consuming and cumbersome. 
 P14 explained this contrast between using ExampleNet and online 
 search in the following way, “[ExampleNet] provides you several 

reasonable fltering conditions and clear comparisons of structures of 
 diferent well-known models. ... [When searching online,] I was easily 

overwhelmed when facing a massive amount of information from the 
internet. And I didn’t know which one to start from.” 

Table 3 quantifes the model design diferences in terms of the 
 number of layers, the types of layers used in a model, the number 

of hyperparameters, the number of inspected examples, and the 
, number of design mistakes. 
 We manually assessed the models designed by each participant. 
 Table 4 shows the distribution of diferent kinds of design mistakes 
. made by participants. The most common mistake is “Missing Acti-
 vation Function” (8/16). If the model does not contain an activation 
 function, it will be a linear model. The complexity of the linear 

model is limited, the robustness is reduced, and the ability to learn 
 the complex functional mapping from the data is weaker. Some de-
 sign mistakes may lead to more severe consequences. For example, 

missing loss functions and incorrect layer sequencing order will 
, cause runtime errors. As another example, missing the dense layer 
 will cause the model to be unable to convert the dimensions of the 
 output from the convolution and pooling layers into the output 
 space corresponding to the classifcation task. Therefore, the model 
 cannot calculate the loss and thus cannot perform backpropagation 
 to update the weight of each parameter in the model. 

We found that ExampleNet has a statistically signifcant impact 
 on assisting participants to reduce mistakes (Table 4) in neural 
 network design and hyperparameter design. On average, each 

The Mistakes Participants Made Participants (Online Search) Participants (ExampleNet) 
Missing Activation Function P4, P6, P8, P9, P10, P11, P12, P14 

Huge Epochs 
Missing Loss Function 
Missing Dropout Rate 
Missing Dense Layer 
Huge Learning Rate 

Incorrect Layer Sequencing Order 

P3, P4, P5, P7, P8, P15 
P1, P2, P3, P8, P10 
P1, P4, P8, P9 

P13, P14 
P3 
P12 

None 
P3, P5 
None 
None 
P3 

None 
None 

Table 4: The mistakes participants made when using online search and ExampleNet. 
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(a) 

(b) 

Figure 5: (a) when using ExampleNet, participants felt more 
confdent in the networks they designed, (b) participants 
thought that ExampleNet is more helpful than online search 
when they searched and designed neural networks. 

participant made a median of 0.19 mistakes in both tasks. In contrast, 
when using online search, they made an average of 2.06 mistakes 
in each task. The mean diference of mistakes (1.88) is statistically 
signifcant (paired t-test: t = 4.5281,d f = 30, p − value < 0.00001). 
The comparison between online search and ExampleNet indicates 
that providing more examples and giving the holistic view of these 
examples could signifcantly decrease the rate of mistakes when 
designing deep learning models and choosing hyperparameters. 

8.2 Impact of User Expertise 
While not found to be statistically signifcant, there is little discern-
able diference between the ExampleNet’s impact on the mistake 
rate of participants claiming no familiarity (1 on a 6-point Likert 
scale) with an assigned task (CV or NLP) and the mistake rate of 
participants claiming at least some familiarity (2 or higher on a 
6-point Likert scale). Both the task-unfamiliar participants using 
ExampleNet and the task-at-least-somewhat-familiar participants 
made at most one mistake (min: 0, median: 0, max: 1) compared to 
task-unfamiliar participants using online search (min: 1, median: 
1.5, max: 4) and task-at-least-somewhat-familiar participants (min: 
0, median: 1, max: 3). 

8.3 User Confdence and Cognitive Load 
In the post-study survey, participants reported having more conf-
dence in their neural networks when using ExampleNet. Figure 5a 
shows the distribution of their confdence ratings on a 7-point Likert 

Figure 6: Participants felt less mental demand, hurry, and 
frustration when using ExampleNet to complete two tasks. 
They also believed themselves have a better performance 
when using ExampleNet. 

scale. The median confdence when using ExampleNet is 1.5 points 
higher than when using online search. In addition, all sixteen par-
ticipants found ExampleNet more helpful than online search. These 
results imply that rendering the commonalities and variations of a 
large collection of examples is more useful than overwhelming. P1 
said “when I construct the model through online resources, I usually 
only select the frst model that makes sense as my starting point. Ex-
ampleNet lists a comparison between models, so I am more confdent 
in the model that I selected.” P4 said, “it [ExampleNet] helps me fnd 
the most useful information quickly and I could compare it to diferent 
models. I can clearly see the network designs and parameter settings.” 
With the help of a faceted browser, participants could easily flter 
the corpus of deep learning projects based on their own tasks or 
datasets. P10 said “many times I don’t know if the information I got 
from online search is accurate or not, or if they are tailored to my 
project. ExampleNet aggregates well-developed model architectures 
into one place. This greatly helped me make well-informed decisions 
when choosing model architectures.” 

As shown in Figure 6, participants felt more mental demand, 
hurry, and frustration when using online search than using Exam-
pleNet. This is mainly because ExampleNet directly shows a holistic 
summary of related models, so participants no longer need to read 
hundreds of lines of codes and tutorials. P3 mentioned, “ExampleNet 
gives a comprehensive summary of every aspect in networks, such as 
hyperparameter values and depth of networks. Most online articles 
do not talk about the hyperparameter value choices in the model, but 
just the model introduction, which made me confused.” 

8.4 Qualitative Feedback 
Most participants (13/16) rated the overview diagram of model 
structures as the most useful feature in ExampleNet. They believed 
that this overview diagram provides a clear and comparable way 
for users to discover commonalities and variations through a large 
collection of network structures. P7 said “the visualization of model 
architectures is quite informative in showing what are some common 
architectures shared across diferent projects, while also showing how 
each network difers from one another.” 11 out of 16 participants 
liked the histogram that shows the distribution of the number of 
models for each layer used (6 or 7 on a 7-point scale). The function 
of aligning diferent model structures received a mixed feeling from 
our participants—half of the participants (8/16) found it useful while 
the other half stayed neutral about it. Other features, such as bubble 
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charts showing the distribution of diferent hyperparameters (7/16), 
providing the link to each GitHub repository (3/16), clear and easy-
to-use interface (7/16), and the ability to sort examples by stars and 
forks (P7), also received a lot of positive reviews. Regarding the 
feature that shows the distribution of diferent hyperparameters, 
P3 mentioned “it gives the recommendations of hyperparameter val-
ues which helped me a lot since I didn’t have experience in tuning 
parameters of NLP.” P7 believed that allowing users to sort models 
by stars and forks is an advantage of ExampleNet: “the ability to sort 
projects by stars and then highlight the relevant network is also quite 
helpful and can get beginners up to speed in a short amount of time.” 

Regarding online search, four participants pointed out that 
searching based on keywords only could not accurately fnd the 
desired results. P1 said, “sometimes I don’t get what I want straight-
forwardly, like when I want to fnd a good initial value for the learning 
rate, the website talks about the advantages and disadvantages of hav-
ing it too large or too small. I also don’t know what keywords I should 
put in this part.” P2 also complained, “when I searched for ’optimizer’, 
it [GitHub Search] gave me many results about ’optimization’, which 
is completely diferent.” P7 said, “the problem is, it is hard to tell which 
website gives the answer I am looking for and the quality of each 
website is not guaranteed.” Most participants (10/16) complained 
that the large amount of information provided by online search is 
time-consuming and also overwhelming. P6 said, “there is too much 
information when I used online search, kind of hard to locate exactly 
what I want. Also, too much information could be distracting and 
very time-consuming.” 

They also made some suggestions to improve ExampleNet. Four 
participants wanted ExampleNet to add more details about the 
dataset size and the input and output types of a model. Two partici-
pants suggested to improve the color scheme in ExampleNet. One 
participant suggested to add the last update time of each GitHub 
project, since he trusted actively maintained projects more. Two 
participants wished ExampleNet could automatically generate a 
model based on their high-level design choices. 

In the last part of the post-survey, we asked how ExampleNet 
may ft into their programming workfow. Four out of sixteen par-
ticipants wrote that they wanted to use ExampleNet when facing 
unfamiliar tasks, data sets, and models. P1 said, “I will use Exam-
pleNet when I am unfamiliar with the model I am gonna use. ... I am 
very unfamiliar with NLP and hyper-parameter selection for models, 
[so] I would come to ExampleNet for this part. It’s a better place to 
start, especially when I am not familiar with some layers that I might 
use, it’s good to see their positions in the model frst and get a rough 
idea what I can expect to see in my fnal model.” Five participants 
wished to use ExampleNet when they needed to quickly fnd suitable 
and popular models. 

9 DISCUSSION 
The user study results suggest that ExampleNet helps deep learn-
ing programmers browse more examples, make more data-driven 
design decisions, and make fewer mistakes. We believe these difer-
ences are, in part, a result of ExampleNet’s support on task-centered 
compare and contrast cognition, as well as norm-setting through 
showing the distribution of common and uncommon choices made 
by other programmers, from model structures to layer parameter 

values. We also believe ExampleNet answers many of the concrete 
questions and information needs identifed in the formative study. 

Specifcally, the multifaceted browser provides a convenient way 
to flter GitHub projects based on the processed datasets, tasks, 
and model names. As informed by the formative study, program-
mers only care about those models that process similar datasets 
and tasks as their own (Section 3.3.2). Without the faceted browser, 
programmers need to dig into each project and fgure out whether 
the project is relevant or not. The Sankey diagram and the hy-
perparameter charts give an overview of diferent layer types and 
hyperparameters in relevant DL models after fltering. Many user 
study participants started with very vague ideas such as “I want 
to use a CNN” and “a CNN should have a convolution layer.” Yet 
they did not know exactly what other layers they should consider 
including, possible orders of layers, what optimizers to consider, etc. 
By looking at the Sankey diagram and the hyperparameter charts, 
they could quickly answer those questions. As shown in Table 4, 
when only looking at online tutorials without such an overview in 
ExampleNet, participants made more design mistakes. 

ExampleNet does not remove the need for tuning model struc-
tures and hyperparameters in the training phase. Based on the 
training result, programmers still need to adjust some hyperparam-
eter values and experiment with alternative hyperparameters to 
arrive at an optimal model. The lab study suggests that ExampleNet 
may give users a better starting point for their own iterative neural 
network design process and hyperparameter tuning, which may be 
critical to quickly getting reasonable results from a newly-designed 
neural network. 

Since designing and tuning deep learning models requires much 
human expertise, the Machine Learning community has proposed a 
series of automated machine learning (AutoML) techniques that au-
tomatically build DL models without human assistance [9]. Though 
AutoML is a promising solution for reducing the manual efort and 
adoption barrier of deep learning, many programmers may still 
want to learn how to design neural network models themselves, or 
at least be aware of possible design choices so that they can better 
assess models synthesized on their behalf by tools like AutoML. 
Exploratory tools like ExampleNet will still be useful in such cases. 
In addition, the designers of AutoML techniques can also use tools 
like ExampleNet to discover what kinds of models, hyperparame-
ters, and other ML tricks have been developed and used in the wild 
and further incorporate this variety of design options into their 
AutoML algorithms. 

10 LIMITATIONS AND FUTURE WORK 
Our current system design and implementation has several limita-
tions, which remain to be addressed in future work. As described 
in Section 4, each fow in the modifed Sankey diagram can only 
represent layers in a model sequentially, so ExampleNet is unable 
to support visualizing networks with branch-like structures. Two 
major extensions are needed to support networks with more com-
plex structures. First, the static analyzer needs to be extended to 
recognize related APIs such as “tf.concat” in program analysis to 
handle residual connections and multiple branches. The Sankey 
diagram needs to be replaced with other types of visualizations 



Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan 

such as Union Graphs [2] to aggregate models with non-sequential 
network structures. 

Currently, our static program analyzer only extracts model struc-
tures and hyperparameters from models built by TensorFlow. It can 
be extended to other DL frameworks such as PyTorch by supple-
menting two pre-defned mappings in JSON—one mapping between 
library API methods and layer types and another mapping between 
API method parameters and hyperparameters. Apart from the lim-
itations on the API, supporting models written in programming 
languages other than Python would require swapping in a diferent 
language parser and updating the downstream AST-traversing code. 
Supporting additional deep learning frameworks such as PyTorch, 
additional layer types, and hyperparameters, will likely be a matter 
of engineering rather than additional novel system design. 

As described in Section 6, the data curation process is only semi-
automated. The major limitation is that we have to manually skim 
through the README fle of a GitHub repository to identify DNN 
related meta-data, including dataset types, tasks, and model names. 
It took us about 6 minutes per project. The manual efort will in-
crease linearly as the number of projects increases. This can be 
mitigated in two ways. First, future Github users could be encour-
aged to explicitly encode those DNN related meta-data in their 
README fles, much like some medical publication sites invite 
authors to submit their papers with explicitly described PICO ele-
ments [21]. This can make those meta-data more readily available 
for search and analysis. Second, using keyword matching or some 
NLP methods can to some extent reduce the manual efort; manual 
validation is still necessary as automated methods may not always 
be accurate. 

In our user study, though our participants are new to deep learn-
ing, they are not new to programming. All 16 participants are 
graduate students; 13 of them have over one year of working ex-
perience as data scientists or software engineers. 14 of them have 
2 to 5 years of programming experience. Therefore, they do not 
represent those deep learning learners who are new to both deep 
learning and programming. 

11 CONCLUSION 
This paper presents a novel interactive visualization interface that 
allows users to (1) simultaneously explore design choices in a large 
number of deep learning projects, and (2) compare and contrast the 
common and uncommon design choices. We conducted a within-
subjects study with sixteen deep learning programmers to evaluate 
ExampleNet. The study results show that when using ExampleNet, 
participants inspected more neural network examples than online 
search. After inspecting the network design and hyperparameters 
setting in these examples, participants using ExampleNet made more 
data-driven design decisions, such as picking a more reasonable 
learning rate as a starting point, using dropout and normalization 
to build more robust models. In addition, using ExampleNet, par-
ticipants made signifcantly fewer design mistakes, e.g. missing 
activation functions, missing loss functions, incorrect layer orders, 
etc. In the end, we discussed the possibility of fully automating the 
data curation pipeline, supporting more complex model architec-
tures, and surfacing more information cues such as dataset size, 
model accuracy, and training time. 
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A INTERVIEW QUESTIONS IN THE 
FORMATIVE STUDY 

We used the following nine questions to guide the semi-structured 
interview in the formative study. 

Section 1. Learning Neural Networks 
1. What kinds of machine learning projects have you worked 

on? 
2. What kinds of challenges do you face when learning to build 

neural networks? 
3. What kinds of online resources do you fnd very useful? 

Section 2. Searching Example Neural Networks 
1. Do you search for examples when you learn and build neural 

networks? How often? 
2. How do you search for such examples? Do you search on 

Google, Stack Overfow, GitHub? What kinds of keywords do you 
often use? 

3. What kinds of difculties do you have when searching for 
those examples? 
Section 3. Visualizing Example Neural Networks 

1. Suppose we have built a magic search engine that can identify 
many relevant deep learning projects. What kinds of information 
do you want to discover from this pile of projects? Or what kinds 
of questions do you want to answer using this data? 

2. Have you used TensorBoard before? How do you like or dislike 
the visualization tool in TensorBoard? 

3. We sketched several alternative designs for visualizing neural 
networks. How do you like or dislike each visualization design? 
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