
Visualizing Examples of Deep Neural Networks at Scale

Litao Yan Elena L. Glassman Tianyi Zhang
Harvard University Harvard University Harvard University
Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA

litaoyan@g.harvard.edu glassman@seas.harvard.edu tianyi@seas.harvard.edu

Figure 1: ExampleNet, an interface to explore the commonalities and variations in relevant neural network models built by
other GitHub developers: (1) a faceted browser to identify relevant models, (2) the distribution of various layers used by other
developers, (3) an overview diagram of various model structures, and (4) the distribution of hyperparameters used by others.

ABSTRACT
Many programmers want to use deep learning due to its superior
accuracy in many challenging domains. Yet our formative study flter the corpus down to projects tackling similar tasks and com-
with ten programmers indicated that, when constructing their own pare design choices made by others. We evaluated ExampleNet in
deep neural networks (DNNs), they often had a difcult time choos- a within-subjects study with sixteen participants. Compared with
ing appropriate model structures and hyperparameter values. This the control condition (i.e., online search), participants using Ex-

paper presents ExampleNet—a novel interactive visualization sys- ampleNet were able to inspect more online examples, make more
data-driven design decisions, and make fewer design mistakes. tem for exploring common and uncommon design choices in a

large collection of open-source DNN projects. ExampleNet provides

a holistic view of the distribution over model structures and hy-
perparameter settings in the corpus of DNNs, so users can easily

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interactive systems and tools.

KEYWORDS
Visualization; deep neural networks; code examples

ACM Reference Format:
Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples
of Deep Neural Networks at Scale. In CHI Conference on Human Factors in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445654

https://doi.org/10.1145/3411764.3445654
mailto:permissions@acm.org

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3411764.3445654

1 INTRODUCTION
In recent years, a particular form of machine learning (ML)—deep
neural networks (DNNs)—has gained a lot of attention. More and
more programmers now want to learn and tinker with deep learning
models, mainly through online tutorials and blogs [4]. As tutorials
and blogs tend to only include a few simple examples for illustration
purposes, programmers often struggle to identify appropriate model
architectures for their own usage scenarios. When seeing a specifc
design choice in an example model, they often wonder how common
this design choice is, how suitable is it for their own tasks and
datasets, and what other options are available.

In a formative study with ten participants, we found that most
participants (9/10) said they searched online for tutorials, blogs,
and example models when building their own models. However,
searching online often makes them feel overwhelmed because of
the enormous amount of online resources. All of them complained
about the difculty of searching and navigating online examples to
fnd desired, relevant, easy-to-understand models. They expressed
their needs to understand the network structures and hyperpa-
rameters used by other developers on related tasks and datasets.
However, due to the tremendous resources available online, they are
unable to quickly search, navigate, and assess such neural network
design decisions using online search.

In addition to the information needs that these aspiring DNN pro-
grammers described to us in the formative study, we also consulted
relevant theory, i.e., Variation Theory [16], a theory about how hu-
mans efectively learn concepts, like “what is a DNN?” directly from
examples. Variation Theory suggests that, for every object of learn-
ing, there are critical dimensions of variation and critical values
along that dimension that learners need to discern. These critical
dimensions and values become discernable by showing examples
that are similar and diferent to it along these critical dimensions.
For example, an English speaker may be told that there are tones in
tonal languages that change the meaning of a word, but until they
hear two words that are identical except for the tone, they cannot
discern what the concept of a tone refers to. Similarly, they may not
be able to discern a particular tone until they hear multiple words
that share the same tone but vary in other ways. In the context of
building DNNs, they may need to see many similar and diferent
examples of DNNs to understand all the diferent dimensions (e.g.,
types of layers, sequences of layers, etc.) that they can play with
while constructing their own DNNs without it ceasing to be a DNN.
Once they can discern these dimensions of variation, they may also
want to anchor their initial choices on the common design choices
of others, while knowing that they can vary these choices at least
as far as the revealed uncommon choices.

Based on those identifed information needs and the relevant
theory, we summarize three design principles. First, our system
should help users understand the relevance of any example DNN
to their own task. Second, our system needs to help users compare
and contrast DNN examples on the basis of the design decisions
they care about, e.g., model type and structure, hyperparameter
values for the network and individual chosen layers, etc. Third, our

system needs to help users see commonalities and variations of
these design choices over a large sample of available DNN examples.

In this paper, we introduce ExampleNet—a novel interactive visu-
alization interface that (1) provides users a holistic view to explore
common and uncommon design decisions, such as neural network
architectures and hyperparameters, in a large collection of deep
learning projects, (2) allows users to quickly flter a corpus of DNNs
down to a subset that tackles similar tasks, and (3) compare and con-
trast the design decisions made by other developers represented in
that corpus. The faceted browser (Figure 1 ①) in ExampleNet assists
users in quickly selecting and fltering by the model’s metadata. The
overview diagram of model structures (Figure 1 ③) aggregates and
aligns the structure of various models in a single view so that users
can compare and contrast the commonalities and variations of lay-
ers and their arrangement. ExampleNet also includes the summative
distribution of layer types (Figure 1 ②) for users to explore common
layers used by others. The distribution of hyperparameters (Figure 1
④) shows the diferent hyperparameter values from a large number
of models so that users can have a comprehensive understanding
of common and uncommon hyperparameter settings.

We conducted a within-subjects user study with sixteen DL pro-
grammers of various levels of expertise in computer vision and
natural language process. Participants were asked to complete two
DL tasks by using either online search or ExampleNet to design
neural network structures and hyperparameter settings. We found
that when using ExampleNet, participants (1) navigated more on-
line examples, (2) made more data-driven design decisions, such
as using more types of layers and hyperparameters, and (3) made
fewer design mistakes, e.g., leaving out an activation function or
loss function, setting the epoch to an unworkably large value, etc.
The value of ExampleNet is perhaps best described by some of the
participants themselves: “ExampleNet gives a summary of all models
for every specifc machine learning task, and users can have a big
picture of the neural network construction choices.” (P3); “The visu-
alization of model architecture is also quite informative in showing
what are some common architectures shared across diferent projects,
while also shows how each network difers from one another.” (P7).

Our contributions are:
• A formative study that discovers the obstacles and needs of
DL programmers when designing a deep neural network

• An implementation of this interactive visualization for a set
of deep learning projects on GitHub

• A within-subjects user study that demonstrates the useful-
ness of ExampleNet to DL programmers when designing their
own neural networks

2 RELATED WORK

2.1 Learning Barriers in Deep Learning
Cai and Guo did a large survey with 645 software developers about
their desire to learn ML and the learning hurdles they face [4].
They found that developers’ desire to use ML frameworks extended
beyond simply wanting help with APIs: “developers desired ML
frameworks to teach them not only how to use the API, but also
the implicit best practices and concepts that would enable them
to efectively apply the framework to their particular problems.”
This motivates our focus on high-level design choices of building

https://doi.org/10.1145/3411764.3445654

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

neural networks rather than low-level implementation details such
as API usage. In addition, they also found out that online tutorials
and blogs often only ofer a limited set of examples, falling short of
helping users identify an appropriate model architecture for their
own tasks. As a result, developers were left to make many design
decisions at their own discretion, e.g., “how many convolution
layers do I need?”, “what dropout rate or optimizer should I use?”.

Some other studies and surveys have also investigated program-
mers’ practice of applying machine learning. Amershi et al. did a
case study at Microsoft and found that AI is completely diferent
from traditional software applications [1]. For example, machine
learning applications have more complex data; model customiza-
tion and reuse require more complex skills; and AI components are
more difcult to process as separate modules. Yang et al. pointed
out that most non-experts simply use pre-trained ML models as
black-box tools and integrate them into their own applications,
which sometimes leads to difcult or unrealistic learning goals [30].
Patel et al. identifed three major obstacles of applying ML as a
tool in software development, such as the difculty of using ML in
an iterative and exploratory way [17]. Dove et al. [5]and Yang et
al. [29] probed the challenges that UX designers face in working
with ML. Both of them found that UX designers have difculties
understanding ML, its capabilities, and its limitations.

2.2 Example-based Programming Learning
As the Internet accumulates a large volume of code and code-related
artifacts, many programmers now resort to online resources while
writing code [3, 20, 22, 28]. Sadowski et al. found that Google de-
velopers issued an average of 12 online code search queries per
weekday [20]. Brandt et al. observed that, when writing code, pro-
grammers typically started with searching for relevant tutorials
and then used the code examples in these tutorials as the scafold
for their own implementations [3]. Head et al. proposed an interac-
tive approach that extracts runnable code examples from GitHub
projects [10].

Stack Overfow (SO) is a popular site for asking and answering
programming questions. Wu et al. surveyed SO users to investigate
the remaining barriers of programming when fnding assistance on
the site. Among 453 respondents, 65% said they had to manually
adapt SO examples to ft their own usage scenarios, 44% found
some examples hard to understand, and 32% complained about the
low quality of some examples. Besides, Zhang et al. identifed the
needs of API designers and discussed how community-generated
API usage data can be leveraged to address those needs [32]. The
results of our formative study on learning DL are highly consistent
with these previous fndings: 1) participants always searched for
examples before building their own neural network models, and
2) participants found it difcult to identify desired information
from many search results and assess their relevance for their own
usage scenario. On the other hand, our participants expressed more
interest in fnding out high-level design choices such as the model
structure, rather than learning low-level implementation details
such as how to make a particular API call.

2.3 Deep Neural Network Visualization
Many neural network visualization tools have been proposed
to support diferent activities in neural network development.

TensorBoard [27] and Sony’s Neural Network Console [24] provide
visualizations for a single network and its layer parameters. They
are primarily designed to facilitate model training, providing dif-
ferent features to monitor the training process. Other visualization
tools, such as LSTMVis [26] and TensorFlow Playground [23], are
designed to increase the interpretability of a pre-trained model, by
visualizing the weight updates and hidden layers in the model.

ExampleNet difers from these visualization tools in three per-
spectives. First, unlike TensorBoard and Sony’s Neural Network
Console, which focus more on assisting users to debug and train a
better model, ExampleNet targets the model design phase, in which
developers can explore and discover various design choices of model
structures and hyperparameter settings. Second, these visualization
tools only represent a single model at a time. They do not allow
users to easily compare and contrast multiple models, let alone the
distribution of their design choices over an entire corpus of DNN
models. Third, visualization tools such as LSTMVis and Tensor-
Flow Playground visualize aspects of the model for interpretability
purposes. However, they do not render hyperparameter settings,
which are essential for beginners to design a runnable model.

2.4 Interfaces for Exploring Collections of
Code and Tutorial Examples

Previous work has explored diferent ways of visualizing large
collections of examples for D3 visualization [11], API usage exam-
ples [6], website design [13], and Photoshop tutorials [12]. Hoque
et al. [11] present an approach for searching and exploring difer-
ent visualization styles for a large number of D3 visualizations.
Similar to Hoque et al. ’s approach, the Adaptive Ideas Web design
tool [14] uses an example gallery for users to choose and adapt web-
site design ideas. Apart from these two interfaces, Delta [12] uses
thumbnail images to visualize the workfows in multiple PhotoShop
tutorials from diferent aspects. All of these interfaces visualize the
examples in a stacked and grouped view, which is hard to directly
compare and contrast the commonalities and variations of critical
aspects of DNNs, such as the sequence of layers. In ExampleNet,
we use a Sankey diagram to visualize each model side by side in a
single view, with the option to align similar layers across models.
In this way, users can have a bird’s-eye view of the common and
uncommon model architectures and how they difer.

To our best knowledge, Examplore [6] is the only work that
aligns and aggregates a large collection of examples in a single
view. Examplore uses a pre-defned code skeleton to visualize API
usage examples, which cannot be directly reused for visualizing
DNNs. It is difcult to defne a particular skeleton that includes all
the various architectures. In ExampleNet, instead of designing such
a skeleton, we present a diferent approach—directly visualizing the
model structures in a Sankey diagram and using a local alignment
algorithm to further align them by layer types.

3 FORMATIVE STUDY

3.1 Participants
We conducted a formative study with 10 graduate students (6 fe-
males and 4 males) who have taken a deep learning class at Harvard
University. Three participants have more than fve years of pro-
gramming experience, six have two to fve years of programming ex-
perience, and one has one-year experience. As for machine learning

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

experience, half of them have two to fve years of experience, three
have only one year of experience, and two only have one semester
of experience. Nine of the ten participants have used TensorFlow
before, and four of the ten participants have used PyTorch. They
have worked on diferent kinds of deep learning projects such as
image recognition, object detection, and natural language process-
ing. Participants were compensated with a $15 Amazon gift card
for their time.

3.2 Methodology
We conducted a 45-min semi-structured interview with each par-
ticipant. During the interview, we frst asked about their learning
experiences with neural networks. Specifcally, we asked what kinds
of neural network projects they have worked on, what kinds of chal-
lenges they faced, and what kinds of online resources they found
useful. We also asked whether and how often they searched for
examples when building neural networks, what information cues
they intended to discover from those examples, and what kinds of
difculties they experienced.

Finally, we showed them TensorBoard [27], a popular neural
network visualization tool. TensorBoard visualizes neural network
layers and low-level computational operations such as additions of
tensors as a datafow graph. All ten participants said they had used
TensorBoard before. We asked them what they liked and disliked
about TensorBoard and whether it can surface those information
cues they wished to discover from examples of neural networks.

During the interview, we encouraged participants to contextual-
ize their answers based on their recent experience of learning and
building deep learning models. Two authors coded participants’
responses to each question and then categorized them following
the card sorting method [15]. We synthesize our major fndings in
the next section.

3.3 Participants’ Responses
3.3.1 Learning and Building Neural Networks.
search and adapt example neural networks on GitHub rather than
building a neural network from scratch. Nine of ten participants
said the frst thing they would do was to search for GitHub projects
that perform similar tasks on similar datasets. For example, P8
said, “when I need to process images, I will search CNN and other
keywords in GitHub, and identify similar projects to see what other
people have done with images.” When asked about how they decide
which GitHub project to follow or reuse, participants said they
cared the most about the relevance to their own tasks and datasets.
After they have decided on a GitHub project, they adapt the model
structure to ft their own data. P7 mentioned, “based on our data, we
may change our (network) structure and add few more layers behind
or in front of the original network.”

3.3.2 The Information Needs of Deep Learning Programmers. Ta-
ble 1 lists the common information cues our participants wished to
discover from GitHub examples when designing neural networks.
First, eight participants wished to get a holistic view of diferent
neural networks for similar tasks (N1, N5). P4 said, “when I searched
for models with the same task, I can only browse one example at a
time, and I cannot compare other related examples at the same time.”
In particular, fve participants emphasized that they did not want to

Programmers often

investigate all projects returned by GitHub Search but only those
processing similar tasks and datasets as their own (N7). However,
it is cumbersome to assess the relevance of a GitHub project. P7
explained, “there is a project about some kinds of NLP tasks, but I
don’t know what kind of datasets they are using, or what kind of data
format. I have to search in the documents to look for the datasets.”
Hence, participants wished to have some tool support for distilling
information such as tasks and training data from GitHub projects
to help them make quick assessment.

Second, most participants expressed a desire to understand the
high-level design decisions in related models in GitHub (N2, N3,
N4, N6). Eight participants were interested in identifying the struc-
ture of neural networks (N2). However, it is difcult to identify
model structures from GitHub projects. P4 complained, “sometimes
there are thousands of lines of source code in several diferent fles,
so you can barely have a clear overview of what the model looks
like.” Nine participants wanted to understand the “tricks” used by
other programmers to improve their model performance (N3). In
addition, participants wanted to compare the hyperparameters in
diferent models (N4) and identify the common choices made by
other programmers (N6).

Participants also mentioned several information cues such as
runnability and model accuracy, which are important for them to
decide which model to follow (N8, N9). Participants put more trust
in the design choices made within models with high accuracy. Yet
if a highly accurate model requires many GPUs and takes a lot of
time to train, they were less willing to follow and experiment with
the model. Finally, several participants wanted to know what kinds
of data preprocessing steps, e.g., standardization, one-hot encoding,
etc., were performed in the projects (N10).

3.3.3 The Challenges of Identifying Desired Information. When
asked about the difculty of discovering those information cues,
seven participants said they were overwhelmed by searching and
navigating through related projects. P3 said, “sometimes [GitHub]
gives us too many other details that you will not use.” P4 added
that “the README fles are so rough and do not describe what they
are doing in their repo.” Eight participants complained about the
difculty of assessing the relevance and quality of GitHub projects
in the search results. P4 said, “even though we can sort the results
in GitHub, I still need to go through each result to further identify
whether it is related to what I am doing.” P8 said, “only looking at the
title or description [of a GitHub project] is not enough. I still need to
check the README fle or read the code directly to know what exactly
they are doing.”

Four participants mentioned the difculty of comparing and
contrasting diferent GitHub projects. P4 said that “after I found
a suitable example, I’m still not sure what other people will do. For
example, whether other people will use the same layer here, or whether
other people will use the same value of this parameter.” As a result,
participants found it difcult to decide which GitHub project to use.
P8 said “I don’t know which model is a better match for my task, and
there is no place to compare them.”

Four participants were concerned about the lack of runtime infor-
mation in GitHub projects. P5 said “I think building the environment
is the most difcult. Every time after you download a GitHub repo,

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

Information Needs Participants
N1. What are diferent neural networks for similar tasks and datasets? P1, P2, P3, P4, P6, P7, P8, P10
N2. I want to quickly fnd out the structure of a model in a project. P1, P2, P3, P4, P6, P8, P9, P10
N3. What kinds of “tricks” (e.g., attention, dropout) have other programmers used? P1, P2, P3, P4, P5, P6, P7, P8, P10
N4. Is my hyperparameter setting similar to those in popular projects? P1, P2, P3, P4, P5, P6, P7, P8, P10
N5. What kinds of models are often used for specifc datasets and tasks? P1, P2, P3, P4, P6, P7, P8, P10
N6. What are the common hyperparameters set by others? P2, P3, P4, P5, P6, P7, P8, P9, P10
N7. Do these projects use similar datasets and perform similar tasks as mine? P1, P2, P3, P4, P5
N8. Is this model runnable? How easy? What is the running environment? P1, P3, P7, P9, P10
N9. What is the accuracy of the model? How long does it take to train? P1, P2, P5, P10
N10. How do others pre-process their data before feeding to a model? P1, P2, P6, P7

Table 1: The common information cues that participants wish to discover

[you] need a lot of time to make it work. And it may take a week, or
two weeks longer depending on the environment it uses.”

3.3.4 What They Like or Dislike about TensorBoard. Seven of the
ten participants did not like TensorBoard. They pointed out two
main reasons. First, a lot of critical information they wished to
know about a neural network was not displayed in TensorFlow.
For example, P3, P4, and P6 all expected to see the task and dataset
information to assess the relevance of an example model to their
own goal. Second, the visualization in TensorBoard shows many
low-level operations that participants did not care about. P3 men-
tioned that “even some low-level operations such as addition and
matrix multiplication are represented in the graph.” On the other
hand, the other three participants liked TensorBoard, since it shows
the high-level structure of a neural network, such as layers and
activation functions. P9 said, "the fow is clear, and the structure
is very important to me. Compared with reading through thousand
lines of codes, this is much better." P3 also considered TensorBoard
helpful since “it distinguishes layers and functions in diferent colors
and blocks, making it easy for people to understand.”

4 DESIGN PRINCIPLES & SYSTEM OVERVIEW

4.1 Design Principles
We summarized three design principles for a system that supports
learning and designing neural networks, based on the information
needs of deep learning programmers identifed in the formative
study and the Variation Theory [16]:
D1. Help users understand the relevance to their own tasks.
From the formative study, the information needs (N1, N5, N7)
indicate that DL programmers only care about projects that have
similar tasks and datasets to their own. For example, N7 represents
the user’s need to understand whether a neural network example
is related to the task they are facing. Furthermore, N1 and N5 both
indicate users are only willing to learn more about a neural network
example when they believe that the task to which the given example
belongs is highly relevant. Therefore, our system needs to provide a
way to help users quickly understand whether a project is relevant.
D2. Help users distill high-level design decisions. N2, N3, N5,
and N6 indicate that DL programmers want to understand high-
level design decisions such as model structures and hyperparam-
eters rather than low-level implementation details. In N2, users
want to know the information about model structures instead of

the implementation of models. And N3, N5, N6 are the needs of
users who want to know more about model types, hyperparameter
settings, etc. respectively. Therefore, our system needs to help users
easily perceive these high-level design decisions from the low-level
code in deep learning projects.
D3. Help users understand the commonalities and variations
of design choices. N4, N5, N6 all indicate that DL programmers
want to understand the common hyperparameters and model struc-
tures used for similar same tasks or datasets. Furthermore, N1, N3
indicate that users also want to fnd the variations in neural net-
work design. For example, some users want to know alternative
model types that handle similar tasks, and some users want to know
diferent tricks used by diferent developers. Therefore, our system
needs to support exploring both common and uncommon design
decisions in neural network design.

4.2 System Overview
Based on the three design principles, we implemented an interactive
visualization system called ExampleNet that helps programmers
explore various neural network design descions in a corpus of DNN
models. It contains three main features:

4.2.1 Faceted Browser. In the faceted browser view (① in Figure 1),
each facet displays the names of diferent datasets, tasks, and model
types. Through this faceted browser, users can quickly select and
flter the corpus of DNN models based on their own needs. The
distribution bar next to each facet shows the number of models
corresponding to each facet under diferent selection conditions.
Therefore, users can directly read the length of each bar to under-
stand how frequent or infrequent each option is, given their prior
selections. In addition, the faceted browser also renders quality-
related metrics such as project stars and forks. This allows users to
flter models based on these proxies for quality.

4.2.2 An Overview Diagram of Model Structures. The overview dia-
gram of model structures (③ in Figure 1) shows the large collection
of networks at scale. Since the structure of a neural network de-
scribes the order in which data fows between layers, we follow the
Sankey diagram design to aggregate the structures of various mod-
els in a single view. In our Sankey diagram, each fow represents
one or more models, and each node in the fow represents a layer.
Models are aligned based on the type and ordering of their layers.
Model layers with the same type in the same position are merged

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

Figure 2: Align the structures of two models based on layer types

into a single fow. For example, in Figure 2a, the frst layers of two
models are both convolution layers, so these two convolution lay-
ers are merged into a joint layer. In this way, users can compare
and contrast the commonalities and variations of layer choices and
arrangements among multiple models in a single view.

The traditional Sankey diagram design often produces a diagram
with many overlaps among fows when visualizing many neural
network models. The bifurcation and convergence of fows can
easily cause confusion. Therefore, we decided to adapt the tradi-
tional design to only contain the bifurcation structure without no
convergence. In Figure 2a, our design renders the subsequent lay-
ers of two models as they are diferent. However, the traditional
Sankey diagram design will maximally merge these subsequent
layers, making the two fows intertwined with each other.

On the other hand, our adaption makes it difcult to identify
common subsequences of layers in relatively diferent positions
across models. In Figure 2a, after the frst joint convolution layer,
the subsequent layers of the two models vary only by one layer:
the second layer in the frst model is ReLU, while the second layer
of the second model is Max Pooling. Though the second layers
are diferent, the following layers after the second layer are quite
similar. As the subsequent layers are visualized in separate fows,
it is difcult for users to mentally align them and compare their
similarities. Hence, we introduced a local alignment feature to align
layers with the same type in relatively similar positions. Specifcally,
we used the Smith-Waterman algorithm [18]. This algorithm frst
determines the substitution matrix and the gap penalty scheme
and, from that, constructs a scoring matrix. Finally, it traces back
this scoring matrix based on the source of each score recursively
to generate the best local alignment. Figure 2b shows the aligned
diagram of Figure 2a. Based on the local alignment, the second layer
(Max Pooling) of the second model is extended, so its subsequent
layers are aligned with the same subsequence of layers in the frst
model.

4.2.3 The Summative Distribution of Layer Types and Hyperparame-
ters. Several summative charts show the distributions of layer types
(② in Figure 1) and hyperparameter values (④ in Figure 1). The
summative chart of layer types renders layer types in six categories:
CNN, RNN, DNN, Activation Function, Loss Function, and Others.
Table 2 shows the variety of layer types that can be recognized by
our system. We also used the same color scheme as the overview
diagram of model structures (③ in Figure 1).

The hyperparameter charts (④ in Figure 1) show the distributions
of diferent hyperparameter values and layer parameter values.
Our system recognizes and renders 9 hyperparameters, including
learning rate, batch size, epochs, optimizer, momentum, decay rate,
dropout rate, number of hidden layers, and number of hidden layer

Category Recognized Layer Types
Convolution, Deconvolution, Max Pooling, CNN Average Pooling

RNN LSTM, GRU, BiRNN, RNN, CRF, Attention
DNN Input, Dense, Dropout, Flatten
Other Embedding, Normalization

Activation Function Argmax, ReLU, Sigmoid, Softmax, Linear, tanh
Loss Function Cross Entropy, Reduce Mean, CTC, L2, MSE

Table 2: The neural network layer types that are recognized
and rendered by our current implementation.

units. Unlike the summative chart of layer types, we use bubble
charts to render the distribution of these hyperparameters. The
x-axis represents the value of hyperparameters or parameters. The
y-axis and the radius of each circle indicate how many models have
set this value as a hyperparameter or parameter. The reason why
we used diferent design elements to visualize the same information
is that in some hyperparameters and parameters, many values will
be concentrated in a small range. For example, many models set the
learning rate to less than 0.01. If we only use the size of the circle
to represent the number of models that use this value, there will be
many overlapping data points. When a user hovers over a circle,
the chart displays the number of models that use this value.

5 USAGE SCENARIO
Suppose Sam is a beginner in deep learning. He wants to imple-
ment a deep learning model for text classifcation. Without using
ExampleNet, Sam searches with the keyword “text classifcation” on
GitHub. The GitHub search engine returns 8, 899 related projects.
Sam ranks those projects by their stars. Then he opens the project
that received the most stars and reads its README fle to under-
stand basic information about the project.

Sam wants to understand the structure of the neural network
in this project, so he looks for the source code that implements it.
Since he is a beginner in deep learning, he struggles to glean what
he needs from the hundreds of lines of code. Even after attempting
to inspect each line of code, Sam fnds it hard to piece together all
the details related to the neural network.

Sam also wants to go over several other projects to identify
which is the most suitable project to follow for his text classifcation
problem, or at least fnd out which design choices are common
or atypical. However, he cannot manage to hold all the neural
networks in his memory to mentally compare and contrast them.
He does not even attempt to remember multiple models’ lower-level
details such as the parameter settings of each layer type.

With the help of ExampleNet’s interactive visualizations, Sam
navigates through all the relevant projects in a corpus collected from

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

GitHub and establishes a holistic mental model of the design choices
made by other DL programmers. In the Task facet of the faceted
browser (① in Figure 1), Sam quickly fnds the text classifcation task
and selects it. The interface updates to show him the distribution
of diferent datasets and models used in those text-classifcation
GitHub projects: specifcally, the bars in the light color still show the
number of projects in the original collection, while bars in the dark
color show the conditional distribution—the number of projects after
fltering with Sam’s selections, which he may continue to make
to hone in on the subset of Github projects that will collectively
become his reference point for making his own design decisions.
By looking at the conditional distribution in the facet of model
types (Figure 1 ①), Sam fnds that the length of the dark blue bar
for the RNN model is the longest, which means that the majority
of projects implement RNN models for text classifcation. Thus he
also decides to design an RNN for his task.

Sam wants to flter out lower-quality projects. He believes
projects’ popularity, in terms of stars and forks, implies their reli-
ability, so he drags the left border of the brush box in the Project
Stars facet (① in Figure 1) to exclude projects with less than 3, 000
stars. The histogram bars in other facets are updated accordingly.
Now, Sam fnds that the number of models has been reduced to
eight. Sam sets a similar threshold using the Project Forks facet.
Finally, Sam sees in the overview diagram of model structures (③
in Figure 1) that some projects have too many layers, which are
challenging to train with the limited computational power of his
own machine. He uses the Number of Layers in Projects facet to sets
a threshold to a maximum of 20 layers per project. Seven projects
remain.

5.1 Exploring the Design Space of Model
Structures

The layer type histogram (② in Figure 1) shows the distribution
of diferent layers in the remaining projects. Sam fnds that the
majority of projects (four of seven) use LSTM layers. While the
majority of neural networks (four out of seven) use LSTM layers,
only one model uses a GRU layer and two models use BiRNN layers.
Sam realizes that GRU and BiRNN could be alternatives to LSTM
layers. He also notices that all seven projects use Dropout layers,
four use Embedding layers, and one uses Normalization layers.
This is surprising to Sam, since he was not particularly aware and
attentive to Embedding layers before.

Sam is familiar with Normalization and Dropout layers, but he
is not entirely sure how and where to use them. To fgure it out,
Sam turns to the overview diagram (③ in Figure 1). He notices that
fve of the seven models have a Dropout layer in the middle of the
network, and two place them at the end of the network. He also
notices a pattern of placing a Dropout layer right after an LSTM
layer, and that the Embedding layers are always placed as the frst
layer of a neural network.

Sam clicks the alignment view button to re-align the neural net-
work structures in the overview diagram based on layer types.
Figure 3a shows the re-aligned neural networks. In this view, Sam
immediately notices the Dense, ReLU, Dense, ReLU, ... pattern. He
also fnds that four projects use the alternative GRU/BiRNN, Dropout,

(b) Highlight and compare multiple models

Figure 3: A user aligns models by their layer types and then
compares multiple models.

(a) Align model structures by layer types

GRU/BiRNN,... pattern. Now Sam is more confdent about the pat-
terns he found earlier. When Sam looks at the end of these models,
he fnds all seven networks use Cross Entropy as their loss functions,
which suggests to Sam that Cross Entropy might be a proper loss
function choice for text classifcation.

5.2 Exploring the Design Space of
Hyperparameters

In deep learning, hyperparameters are critical to the performance
of the networks. Prior work shows that embeddings, optimizers,
and dropouts have a high impact on model accuracy and training
time [19]. The hyperparameter view allows Sam to explore what
common and uncommon hyperparameters are used by other devel-
opers. In Figure 1 ④, Sam notices fve hyperparameters are listed:
learning rate, batch size, epochs, dropout rate, and optimizer. He
did not even know about the decay rate and dropout rate before.

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

Figure 4: The semi-automated data curation pipeline of ExampleNet. Steps in light yellow are automated, while steps in light
green are manual.

For instance, on the learning rate chart, there are four projects
that choose the learning rate as 0.001 and three projects use 0.0003
(④ in Figure 1). The distribution of various learning rates used by
other programmers augments Sam’s knowledge of an appropriate
learning rate range. Without seeing the distribution of learning
rates, Sam might have picked a learning rate that is too large or too
small, costing him extra tuning iterations to fnd the optimal value.

6 DATASET CURATION
To fuel the visualization with real-world model data, we developed
a semi-automated data curation process that extracts model charac-
teristics from GitHub projects. Figure 4 shows the pipeline. In this
work, we focused on models implemented in TensorFlow. To collect
deep learning projects, we searched “deep learning” and “neural
network” on GitHub and downloaded the top-starred projects in
the search result. Then we wrote a script to automatically scan
the source code fles in those projects and discarded projects that
do not import python packages from TensorFlow. Given a GitHub
TensorFlow project, we took two major steps to pre-process the
source code and then extract information cues mentioned in the for-
mative study. The extracted information cues were then manually
validated to ensure data consistency and quality.

6.1 Extracting Model Structures via Program
Analysis

We implemented a light-weight program analyzer to identify model
structures from a DL project written in TensorFlow. First, for each
project, the program analyzer scanned the source code and iden-
tifed imported TensorFlow APIs. Since many functions in difer-
ent Tensorfow packages have the same name, the package im-
portant information was later used to resolve ambiguous function
calls in the source code. Then, the analyzer conducted a whole-
program call graph analysis to build the call graphs from all source
code in the project. In the whole-program analysis, the analyzer
parsed all source code to abstract syntax trees (ASTs) and tra-
versed the AST of each source code fle to build individual call
graphs of that fle. Then it connected the individual call graphs to
build a bigger call graph based on function calls between fles.
We manually created a mapping from Tensorfow API calls to
neural network layers and layer parameters. Table 2 shows all
layer types that are recognized in this analysis. For example, the
API method tf.nn.conv2d corresponds to the convolution layer,
and tf.keras.losses.CategoricalCrossentropy corresponds

to the cross-entropy loss function. Similarly, we manually created
another mapping for hyperparameters. We defned a list of possi-
ble variable names for each hyperparameter, based on which the
analyzer identifed variables that may hold hyperparameter values
via fuzz matching.

Given a call graph, the analyzer fltered out function calls that
were not included in the pre-defned mapping. The remaining func-
tion calls constituted the essence of the model structure. Compared
with manually reading source code and identifying model struc-
tures, this light-weight process signifcantly reduced the data cura-
tion efort. However, it was not precise enough and thus required
manual validation. We discuss several cases that required attention
from human validators.

First, some projects may use loops to repeatedly add layers to
a neural network. During program analysis, if a TensorFlow API
call appears in a for loop, the analyzer will automatically log a
warning message for manual validation. The human validator then
manually inspects the loop bound to determine how many times a
layer is added to the neural network.

Second, if a TensorFlow API call appeared in an if-else branch,
the program analyzer will also log a warning message. The human
validator then manually assesses the conditional expression and de-
cides whether to add the layer to the model structure. If taking the
if branch and else branch could lead to two diferent model struc-
tures, the human validator will manually create separate models to
refect this. For example,

1 if cell_name == 'LSTM':
2 cell = tf.keras.layers.LSTM(units)
3 else:
4 cell = tf.keras.layers.GRU(units)

In this code, the model can have two structures—one with LSTM
units and the other with GRUs. In such a case, the human validator
manually one RNN with LSTMS and the other with GRUs.

Third, the fuzz matching method may fail to recognize some hy-
perparameter values, since GitHub developers may assign obscure
variable names to their hyperparameters. Sometimes, hyperparam-
eters may be set in a confguration fle rather than being hardcoded
in the source code. When a hyperparameter is missing in the anal-
ysis result, the human validator must manually go through the
source code fles and identify the hyperparameter values.

Finally, we discarded models that have multi-granularity archi-
tectures. For example, in ResNet [8], the residual layer will have
two outputs. The frst output is directly linked to the next layer,
and the second output will skip one or more layers. Currently, our

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

system does not support visualization of such multi-granularity
architectures.

6.2 Identifying DL Tasks and Datasets from
GitHub Projects

In addition to model structures and hyperparameters, we manually
identifed the training datasets, tasks, and model names from each
project. We read through the README of each project to identify
dataset names. If the dataset was not mentioned in the README,
we went through the project’s data preprocessing code to identify
the training data. We manually classifed identifed datasets into six
categories—image, text, video, audio, tabular, and others. Similarly,
we identifed the computation tasks such as image classifcation and
sentiment analysis from the README. Regarding model names,
we frst attempted to look for specifc names mentioned in the
README, such as VGG and AlexNet. If no specifc model names
were found, we manually assigned a general name such as CNN or
LSTM based on the model structures identifed in the previous step.

In this work, we downloaded 203 GitHub projects.We ran our
static program analyzer on those 203 projects and found that the
analyzer failed to extract any model structures or hyperparameters
from 86 projects. This is because these 86 projects were outside
the scope of our program analyzer’s capabilities: (a) 82 projects
were not written in TensorFlow and (b) 4 projects used pre-trained
models that our analyzer could not extract relevant data from. Then
we manually went through the README fles of the remaining 117
projects. 24 projects were discarded in this step since their README
fles did not contain information about their training datasets, tasks,
and model names. Among the remaining 93 projects, 31 (33%) were
eliminated because they included structures outside the scope of
our current visualization algorithms: (a) 7 projects included residual
connections (ResNets), 12 included multiple branches (Inception net-
works), 9 included GANs (each contains two networks, a generator,
and a discriminator respectively) and 3 included other unsupported
models such as HMM. After the analysis and manual validation
steps, we extracted complete model structures, hyperparameters,
and other meta-data for 62 models. These 62 models form the collec-
tion of neural network examples used in the following user study
of ExampleNet. The semi-automated process took roughly 20 man-
hours. The most time-consuming part is to manually go through
GitHub README fles to identify DNN related meta-data, which
took about 6 minutes per project.

7 USER STUDY
We conducted a within-subjects study with sixteen participants
to evaluate whether ExampleNet could help them more efectively
develop an awareness of design choices available to them when
designing a deep neural network. Online search, a common prac-
tice in neural network design as indicated by our formative study
(Section 3), is used as the realistic baseline in a control condition.

7.1 Participants
We recruited sixteen master students in Computer Science and
Engineering or Data Science at Harvard University. Participants
received a $25 Amazon gift card as compensation for their time.
Participants had diverse expertise in deep learning. Three of them

had between two and fve years of deep learning experience, nine
participants had only one year of experience, and the remaining
four had just one-semester’s experience.

Participants self-reported their familiarity with the two deep
learning domains, CV and NLP, on a 6-point Likert scale. For com-
puter vision, eight participants rated themselves as beginners (0-1
on the Likert scale), seven rated themselves as only somewhat
familiar (2-3 on the Likert scale), and only one participant rated
themselves as familiar (4 point on the Likert scale). For NLP, the
majority of participants (10 out of 16) considered themselves be-
ginners, fve rated themselves as somewhat familiar, and one rated
himself as familiar.

7.2 Protocol
We selected two common deep learning tasks from CV and NLP:

• Task 1 (Image Classifcation): Design a neural network and
fnd reasonable hyperparameter settings to classify 10K 128×
128 animal images into dog, cat, or others.

• Task 2 (Text Classifcation): Design a neural network and fnd
reasonable hyperparameter settings to classify 10K English
conversations into weather, animals, environment protec-
tion, or others.

For each task, participants were asked to answer two questions
related to neural network architecture and hyperparameter design:

• Q1 (Network Structure Design): Draw the neural network and
specify the number of layers and the type of each layer.

• Q2 (Hyperparameter Design): Set the values of four critical
hyperparameters, including learning rate, batch size, epochs,
and optimizer. In addition, provide the name and suitable
value of any other hyperparameters that may help optimize
your model.

Each study took about 70 minutes. Each participant was given
20 minutes to fnish each task. In the control condition, participants
were allowed to use any search engines they were comfortable with
to fnd online resources, e.g., blogs, tutorials, StackOverfow posts,
to answer Q1 and Q2 for the assigned task. In the experiment con-
dition, participants were only allowed to use ExampleNet without
any access to other online resources to answer Q1 and Q2 for the
assigned task. Given that this was a within-subjects study, each
participant experienced one task in one condition and the other task
in the other condition. To mitigate any learning efects, both the
order of the assigned tasks and conditions were counterbalanced
across participants. Before the task with ExampleNet, participants
were asked to frst watch an 8-min tutorial video of ExampleNet and
then spend 5 minutes familiarizing themselves with the interface
After each task, the participants were asked to complete a question-
naire to record their refections on their experience in the assigned
condition. As part of the post-study survey, participants were asked
to answer fve NASA Task Load Index questions [7] to rate the
cognitive load of the assigned task. After fnishing both tasks, par-
ticipants were asked to fll out another survey to directly compare
the Online Search and ExampleNet conditions. We recorded each
user study session with the permission of participants.

https://projects.We

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

Online Search
ExampleNet

of Layers
Min Median Max
4 9.5 21
7 13 30

of Layer Types
Min Median Max
3 5 7
6 7 9

of Hyperparameters
Min Median Max
4 4.5 5
4 5 10

of Inspected Examples
Min Median Max
0 2 5
5 6 12

of Design Mistakes
Min Median Max
0 1 4
0 0 1

Table 3: Statistics about number of layers, number of layer types, number of hyperparameters, number of looked examples,
and number of mistakes when using online search and ExampleNet.

8 USER STUDY RESULTS

8.1 User Performance
Participants using ExampleNet
choices compared with using online search. When using Exam-
pleNet, participants designed deeper neural networks (median of
13 vs. 9.5) with more diverse layer types (median of 7 vs. 5) than
using online search. Though deeper neural networks do not mean
more superior models, being able to see the distribution of diferent
neural networks indeed brings programmers more awareness of
various design choices such as diferent types of layers to leverage
in their own models. For example, 8 out of 16 participants used
Dropout layers in their text classifcation model when using Exam-
pleNet, while only 3 of 16 participants used it when using online
search. In general, adding Dropout layers can improve generaliza-
tion performance on text classifcation tasks [25].

The diferences are also clear for hyperparameter design: com-
pared with using online search, participants using ExampleNet set
more hyperparameters such as dropout rate, decay rate, and mo-
mentum. Three participants set a decay rate when using ExampleNet
while no participants set one when using online search. By setting
a decay rate, the model will start with a large learning rate and then
let it decay by the proscribed amount over the course of training
A larger initial learning rate can accelerate training and help the
model escape local minimal. Decaying the learning rate can help
the model converge to a minimum and avoid oscillation [31].

We manually analyzed the user study recordings and counted the
number of online examples each participant inspected during the
study. In the online search condition, we defned example inspec-
tion as clicking into a search result. In the ExampleNet condition
we defned example inspection when they thought out loud about

made signifcantly diferent design

a model or when they clicked into the GitHub repository page of a
model from ExampleNet. As shown in Table 3, when using online
search, participants only inspected two online examples on the
median. Some of them even designed the neural network based on
their own experience, without looking at a single example. As sev-
eral participants pointed out in the post-study survey, navigating
through online examples and identifying the essence from each

example is time-consuming and cumbersome. By contrast, when
using ExampleNet, participants inspected a median of six GitHub
examples. With the faceted browser in ExampleNet, participants

 quickly fltered the large collection of GitHub examples and re-
trieved the ones that were most relevant to their task and dataset.

 The overview diagram provided them a bird’s-eye view, enabling
 them to simultaneously compare and contrast multiple model struc-
 tures. However, with online search, participants had to click into
 each search result, identifed the model in it, and went back and
 forth to compare them. This was time-consuming and cumbersome.
 P14 explained this contrast between using ExampleNet and online
 search in the following way, “[ExampleNet] provides you several

reasonable fltering conditions and clear comparisons of structures of
 diferent well-known models. ... [When searching online,] I was easily

overwhelmed when facing a massive amount of information from the
internet. And I didn’t know which one to start from.”

Table 3 quantifes the model design diferences in terms of the
 number of layers, the types of layers used in a model, the number

of hyperparameters, the number of inspected examples, and the
, number of design mistakes.
 We manually assessed the models designed by each participant.
 Table 4 shows the distribution of diferent kinds of design mistakes
. made by participants. The most common mistake is “Missing Acti-
 vation Function” (8/16). If the model does not contain an activation
 function, it will be a linear model. The complexity of the linear

model is limited, the robustness is reduced, and the ability to learn
 the complex functional mapping from the data is weaker. Some de-
 sign mistakes may lead to more severe consequences. For example,

missing loss functions and incorrect layer sequencing order will
, cause runtime errors. As another example, missing the dense layer
 will cause the model to be unable to convert the dimensions of the
 output from the convolution and pooling layers into the output
 space corresponding to the classifcation task. Therefore, the model
 cannot calculate the loss and thus cannot perform backpropagation
 to update the weight of each parameter in the model.

We found that ExampleNet has a statistically signifcant impact
 on assisting participants to reduce mistakes (Table 4) in neural
 network design and hyperparameter design. On average, each

The Mistakes Participants Made Participants (Online Search) Participants (ExampleNet)
Missing Activation Function P4, P6, P8, P9, P10, P11, P12, P14

Huge Epochs
Missing Loss Function
Missing Dropout Rate
Missing Dense Layer
Huge Learning Rate

Incorrect Layer Sequencing Order

P3, P4, P5, P7, P8, P15
P1, P2, P3, P8, P10
P1, P4, P8, P9

P13, P14
P3
P12

None
P3, P5
None
None
P3

None
None

Table 4: The mistakes participants made when using online search and ExampleNet.

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

(a)

(b)

Figure 5: (a) when using ExampleNet, participants felt more
confdent in the networks they designed, (b) participants
thought that ExampleNet is more helpful than online search
when they searched and designed neural networks.

participant made a median of 0.19 mistakes in both tasks. In contrast,
when using online search, they made an average of 2.06 mistakes
in each task. The mean diference of mistakes (1.88) is statistically
signifcant (paired t-test: t = 4.5281,d f = 30, p − value < 0.00001).
The comparison between online search and ExampleNet indicates
that providing more examples and giving the holistic view of these
examples could signifcantly decrease the rate of mistakes when
designing deep learning models and choosing hyperparameters.

8.2 Impact of User Expertise
While not found to be statistically signifcant, there is little discern-
able diference between the ExampleNet’s impact on the mistake
rate of participants claiming no familiarity (1 on a 6-point Likert
scale) with an assigned task (CV or NLP) and the mistake rate of
participants claiming at least some familiarity (2 or higher on a
6-point Likert scale). Both the task-unfamiliar participants using
ExampleNet and the task-at-least-somewhat-familiar participants
made at most one mistake (min: 0, median: 0, max: 1) compared to
task-unfamiliar participants using online search (min: 1, median:
1.5, max: 4) and task-at-least-somewhat-familiar participants (min:
0, median: 1, max: 3).

8.3 User Confdence and Cognitive Load
In the post-study survey, participants reported having more conf-
dence in their neural networks when using ExampleNet. Figure 5a
shows the distribution of their confdence ratings on a 7-point Likert

Figure 6: Participants felt less mental demand, hurry, and
frustration when using ExampleNet to complete two tasks.
They also believed themselves have a better performance
when using ExampleNet.

scale. The median confdence when using ExampleNet is 1.5 points
higher than when using online search. In addition, all sixteen par-
ticipants found ExampleNet more helpful than online search. These
results imply that rendering the commonalities and variations of a
large collection of examples is more useful than overwhelming. P1
said “when I construct the model through online resources, I usually
only select the frst model that makes sense as my starting point. Ex-
ampleNet lists a comparison between models, so I am more confdent
in the model that I selected.” P4 said, “it [ExampleNet] helps me fnd
the most useful information quickly and I could compare it to diferent
models. I can clearly see the network designs and parameter settings.”
With the help of a faceted browser, participants could easily flter
the corpus of deep learning projects based on their own tasks or
datasets. P10 said “many times I don’t know if the information I got
from online search is accurate or not, or if they are tailored to my
project. ExampleNet aggregates well-developed model architectures
into one place. This greatly helped me make well-informed decisions
when choosing model architectures.”

As shown in Figure 6, participants felt more mental demand,
hurry, and frustration when using online search than using Exam-
pleNet. This is mainly because ExampleNet directly shows a holistic
summary of related models, so participants no longer need to read
hundreds of lines of codes and tutorials. P3 mentioned, “ExampleNet
gives a comprehensive summary of every aspect in networks, such as
hyperparameter values and depth of networks. Most online articles
do not talk about the hyperparameter value choices in the model, but
just the model introduction, which made me confused.”

8.4 Qualitative Feedback
Most participants (13/16) rated the overview diagram of model
structures as the most useful feature in ExampleNet. They believed
that this overview diagram provides a clear and comparable way
for users to discover commonalities and variations through a large
collection of network structures. P7 said “the visualization of model
architectures is quite informative in showing what are some common
architectures shared across diferent projects, while also showing how
each network difers from one another.” 11 out of 16 participants
liked the histogram that shows the distribution of the number of
models for each layer used (6 or 7 on a 7-point scale). The function
of aligning diferent model structures received a mixed feeling from
our participants—half of the participants (8/16) found it useful while
the other half stayed neutral about it. Other features, such as bubble

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

charts showing the distribution of diferent hyperparameters (7/16),
providing the link to each GitHub repository (3/16), clear and easy-
to-use interface (7/16), and the ability to sort examples by stars and
forks (P7), also received a lot of positive reviews. Regarding the
feature that shows the distribution of diferent hyperparameters,
P3 mentioned “it gives the recommendations of hyperparameter val-
ues which helped me a lot since I didn’t have experience in tuning
parameters of NLP.” P7 believed that allowing users to sort models
by stars and forks is an advantage of ExampleNet: “the ability to sort
projects by stars and then highlight the relevant network is also quite
helpful and can get beginners up to speed in a short amount of time.”

Regarding online search, four participants pointed out that
searching based on keywords only could not accurately fnd the
desired results. P1 said, “sometimes I don’t get what I want straight-
forwardly, like when I want to fnd a good initial value for the learning
rate, the website talks about the advantages and disadvantages of hav-
ing it too large or too small. I also don’t know what keywords I should
put in this part.” P2 also complained, “when I searched for ’optimizer’,
it [GitHub Search] gave me many results about ’optimization’, which
is completely diferent.” P7 said, “the problem is, it is hard to tell which
website gives the answer I am looking for and the quality of each
website is not guaranteed.” Most participants (10/16) complained
that the large amount of information provided by online search is
time-consuming and also overwhelming. P6 said, “there is too much
information when I used online search, kind of hard to locate exactly
what I want. Also, too much information could be distracting and
very time-consuming.”

They also made some suggestions to improve ExampleNet. Four
participants wanted ExampleNet to add more details about the
dataset size and the input and output types of a model. Two partici-
pants suggested to improve the color scheme in ExampleNet. One
participant suggested to add the last update time of each GitHub
project, since he trusted actively maintained projects more. Two
participants wished ExampleNet could automatically generate a
model based on their high-level design choices.

In the last part of the post-survey, we asked how ExampleNet
may ft into their programming workfow. Four out of sixteen par-
ticipants wrote that they wanted to use ExampleNet when facing
unfamiliar tasks, data sets, and models. P1 said, “I will use Exam-
pleNet when I am unfamiliar with the model I am gonna use. ... I am
very unfamiliar with NLP and hyper-parameter selection for models,
[so] I would come to ExampleNet for this part. It’s a better place to
start, especially when I am not familiar with some layers that I might
use, it’s good to see their positions in the model frst and get a rough
idea what I can expect to see in my fnal model.” Five participants
wished to use ExampleNet when they needed to quickly fnd suitable
and popular models.

9 DISCUSSION
The user study results suggest that ExampleNet helps deep learn-
ing programmers browse more examples, make more data-driven
design decisions, and make fewer mistakes. We believe these difer-
ences are, in part, a result of ExampleNet’s support on task-centered
compare and contrast cognition, as well as norm-setting through
showing the distribution of common and uncommon choices made
by other programmers, from model structures to layer parameter

values. We also believe ExampleNet answers many of the concrete
questions and information needs identifed in the formative study.

Specifcally, the multifaceted browser provides a convenient way
to flter GitHub projects based on the processed datasets, tasks,
and model names. As informed by the formative study, program-
mers only care about those models that process similar datasets
and tasks as their own (Section 3.3.2). Without the faceted browser,
programmers need to dig into each project and fgure out whether
the project is relevant or not. The Sankey diagram and the hy-
perparameter charts give an overview of diferent layer types and
hyperparameters in relevant DL models after fltering. Many user
study participants started with very vague ideas such as “I want
to use a CNN” and “a CNN should have a convolution layer.” Yet
they did not know exactly what other layers they should consider
including, possible orders of layers, what optimizers to consider, etc.
By looking at the Sankey diagram and the hyperparameter charts,
they could quickly answer those questions. As shown in Table 4,
when only looking at online tutorials without such an overview in
ExampleNet, participants made more design mistakes.

ExampleNet does not remove the need for tuning model struc-
tures and hyperparameters in the training phase. Based on the
training result, programmers still need to adjust some hyperparam-
eter values and experiment with alternative hyperparameters to
arrive at an optimal model. The lab study suggests that ExampleNet
may give users a better starting point for their own iterative neural
network design process and hyperparameter tuning, which may be
critical to quickly getting reasonable results from a newly-designed
neural network.

Since designing and tuning deep learning models requires much
human expertise, the Machine Learning community has proposed a
series of automated machine learning (AutoML) techniques that au-
tomatically build DL models without human assistance [9]. Though
AutoML is a promising solution for reducing the manual efort and
adoption barrier of deep learning, many programmers may still
want to learn how to design neural network models themselves, or
at least be aware of possible design choices so that they can better
assess models synthesized on their behalf by tools like AutoML.
Exploratory tools like ExampleNet will still be useful in such cases.
In addition, the designers of AutoML techniques can also use tools
like ExampleNet to discover what kinds of models, hyperparame-
ters, and other ML tricks have been developed and used in the wild
and further incorporate this variety of design options into their
AutoML algorithms.

10 LIMITATIONS AND FUTURE WORK
Our current system design and implementation has several limita-
tions, which remain to be addressed in future work. As described
in Section 4, each fow in the modifed Sankey diagram can only
represent layers in a model sequentially, so ExampleNet is unable
to support visualizing networks with branch-like structures. Two
major extensions are needed to support networks with more com-
plex structures. First, the static analyzer needs to be extended to
recognize related APIs such as “tf.concat” in program analysis to
handle residual connections and multiple branches. The Sankey
diagram needs to be replaced with other types of visualizations

Visualizing Examples of Deep Neural Networks at Scale CHI ’21, May 8–13, 2021, Yokohama, Japan

such as Union Graphs [2] to aggregate models with non-sequential
network structures.

Currently, our static program analyzer only extracts model struc-
tures and hyperparameters from models built by TensorFlow. It can
be extended to other DL frameworks such as PyTorch by supple-
menting two pre-defned mappings in JSON—one mapping between
library API methods and layer types and another mapping between
API method parameters and hyperparameters. Apart from the lim-
itations on the API, supporting models written in programming
languages other than Python would require swapping in a diferent
language parser and updating the downstream AST-traversing code.
Supporting additional deep learning frameworks such as PyTorch,
additional layer types, and hyperparameters, will likely be a matter
of engineering rather than additional novel system design.

As described in Section 6, the data curation process is only semi-
automated. The major limitation is that we have to manually skim
through the README fle of a GitHub repository to identify DNN
related meta-data, including dataset types, tasks, and model names.
It took us about 6 minutes per project. The manual efort will in-
crease linearly as the number of projects increases. This can be
mitigated in two ways. First, future Github users could be encour-
aged to explicitly encode those DNN related meta-data in their
README fles, much like some medical publication sites invite
authors to submit their papers with explicitly described PICO ele-
ments [21]. This can make those meta-data more readily available
for search and analysis. Second, using keyword matching or some
NLP methods can to some extent reduce the manual efort; manual
validation is still necessary as automated methods may not always
be accurate.

In our user study, though our participants are new to deep learn-
ing, they are not new to programming. All 16 participants are
graduate students; 13 of them have over one year of working ex-
perience as data scientists or software engineers. 14 of them have
2 to 5 years of programming experience. Therefore, they do not
represent those deep learning learners who are new to both deep
learning and programming.

11 CONCLUSION
This paper presents a novel interactive visualization interface that
allows users to (1) simultaneously explore design choices in a large
number of deep learning projects, and (2) compare and contrast the
common and uncommon design choices. We conducted a within-
subjects study with sixteen deep learning programmers to evaluate
ExampleNet. The study results show that when using ExampleNet,
participants inspected more neural network examples than online
search. After inspecting the network design and hyperparameters
setting in these examples, participants using ExampleNet made more
data-driven design decisions, such as picking a more reasonable
learning rate as a starting point, using dropout and normalization
to build more robust models. In addition, using ExampleNet, par-
ticipants made signifcantly fewer design mistakes, e.g. missing
activation functions, missing loss functions, incorrect layer orders,
etc. In the end, we discussed the possibility of fully automating the
data curation pipeline, supporting more complex model architec-
tures, and surfacing more information cues such as dataset size,
model accuracy, and training time.

REFERENCES
[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[2] Keith Andrews, Martin Wohlfahrt, and Gerhard Wurzinger. 2009. Visual graph
comparison. In 2009 13th International Conference Information Visualisation. IEEE,
62–67.

[3] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
2009. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1589–1598.

[4] Carrie J Cai and Philip J Guo. 2019. Software Developers Learning Machine
Learning: Motivations, Hurdles, and Desires. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 25–34.

[5] Graham Dove, Kim Halskov, Jodi Forlizzi, and John Zimmerman. 2017. UX design
innovation: Challenges for working with machine learning as a design material.
In Proceedings of the 2017 chi conference on human factors in computing systems.
278–288.

[6] Elena L Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API usage examples at scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[7] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2019. AutoML: A Survey of the
State-of-the-Art. arXiv preprint arXiv:1908.00709 (2019).

[10] Andrew Head, Elena L Glassman, Björn Hartmann, and Marti A Hearst. 2018.
Interactive extraction of examples from existing code. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–12.

[11] Enamul Hoque and Maneesh Agrawala. 2019. Searching the Visual Style and
Structure of D3 Visualizations. IEEE Transactions on Visualization and Computer
Graphics 26, 1 (2019), 1236–1245.

[12] Nicholas Kong, Tovi Grossman, Björn Hartmann, Maneesh Agrawala, and George
Fitzmaurice. 2012. Delta: a tool for representing and comparing workfows. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1027–1036.

[13] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R Klemmer, and Jerry O Talton. 2013. Webzeitgeist: design mining the web.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
3083–3092.

[14] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R Klemmer.
2010. Designing with interactive example galleries. In Proceedings of the SIGCHI
conference on human factors in computing systems. 2257–2266.

[15] Howard Lune and Bruce L Berg. 2016. Qualitative research methods for the social
sciences. Pearson Higher Ed.

[16] Ference Marton. 2014. Necessary conditions of learning. Routledge.
[17] Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. 2008. In-

vestigating statistical machine learning as a tool for software development. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
667–676.

[18] William R Pearson. 1991. Searching protein sequence libraries: comparison of
the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
Genomics 11, 3 (1991), 635–650.

[19] Nils Reimers and Iryna Gurevych. 2017. Optimal hyperparameters for deep lstm-
networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799 (2017).

[20] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191–201.

[21] Connie Schardt, Martha B Adams, Thomas Owens, Sheri Keitz, and Paul Fontelo.
2007. Utilization of the PICO framework to improve searching PubMed for
clinical questions. BMC medical informatics and decision making 7, 1 (2007), 16.

[22] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes.
2011. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology (TOSEM) 21, 1 (2011), 4.

[23] Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viégas, and Martin Watten-
berg. 2017. Direct-manipulation visualization of deep networks. arXiv preprint
arXiv:1708.03788 (2017).

[24] SONY. 2019. Neural Network Console. https://dl.sony.com.
[25] Nitish Srivastava, Geofrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overftting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

https://dl.sony.com
http://jmlr.org/papers/v15/srivastava14a.html

CHI ’21, May 8–13, 2021, Yokohama, Japan Litao Yan, Elena L. Glassman, and Tianyi Zhang

[26] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfster, and Alexander M Rush.
2017. Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent
neural networks. IEEE transactions on visualization and computer graphics 24, 1
(2017), 667–676.

[27] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion
Mane, Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg.
2017. Visualizing datafow graphs of deep learning models in tensorfow. IEEE
transactions on visualization and computer graphics 24, 1 (2017), 1–12.

[28] Yuhao Wu, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2018. How
Do Developers Utilize Source Code from Stack Overfow? Empirical Software
Engineering (2018), 1–37.

[29] Qian Yang, Alex Scuito, John Zimmerman, Jodi Forlizzi, and Aaron Steinfeld.
2018. Investigating how experienced UX designers efectively work with machine
learning. In Proceedings of the 2018 Designing Interactive Systems Conference. 585–
596.

[30] Qian Yang, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. 2018. Grounding in-
teractive machine learning tool design in how non-experts actually build models.
In Proceedings of the 2018 Designing Interactive Systems Conference. 573–584.

[31] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. 2019. How
Does Learning Rate Decay Help Modern Neural Networks? (2019).

[32] Tianyi Zhang, Björn Hartmann, Miryung Kim, and Elena L Glassman. 2020.
Enabling Data-Driven API Design with Community Usage Data: A Need-Finding
Study. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

A INTERVIEW QUESTIONS IN THE
FORMATIVE STUDY

We used the following nine questions to guide the semi-structured
interview in the formative study.

Section 1. Learning Neural Networks
1. What kinds of machine learning projects have you worked

on?
2. What kinds of challenges do you face when learning to build

neural networks?
3. What kinds of online resources do you fnd very useful?

Section 2. Searching Example Neural Networks
1. Do you search for examples when you learn and build neural

networks? How often?
2. How do you search for such examples? Do you search on

Google, Stack Overfow, GitHub? What kinds of keywords do you
often use?

3. What kinds of difculties do you have when searching for
those examples?
Section 3. Visualizing Example Neural Networks

1. Suppose we have built a magic search engine that can identify
many relevant deep learning projects. What kinds of information
do you want to discover from this pile of projects? Or what kinds
of questions do you want to answer using this data?

2. Have you used TensorBoard before? How do you like or dislike
the visualization tool in TensorBoard?

3. We sketched several alternative designs for visualizing neural
networks. How do you like or dislike each visualization design?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning Barriers in Deep Learning
	2.2 Example-based Programming Learning
	2.3 Deep Neural Network Visualization
	2.4 Interfaces for Exploring Collections of Code and Tutorial Examples

	3 Formative Study
	3.1 Participants
	3.2 Methodology
	3.3 Participants' Responses

	4 Design Principles & System Overview
	4.1 Design Principles
	4.2 System Overview

	5 Usage Scenario
	5.1 Exploring the Design Space of Model Structures
	5.2 Exploring the Design Space of Hyperparameters

	6 Dataset Curation
	6.1 Extracting Model Structures via Program Analysis
	6.2 Identifying DL Tasks and Datasets from GitHub Projects

	7 User Study
	7.1 Participants
	7.2 Protocol

	8 User Study Results
	8.1 User Performance
	8.2 Impact of User Expertise
	8.3 User Confidence and Cognitive Load
	8.4 Qualitative Feedback

	9 Discussion
	10 Limitations and Future Work
	11 Conclusion
	References
	A Interview questions in the Formative Study

