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ABSTRACT
We present a framework for gesture customization requiring mini-
mal examples from users, all without degrading the performance of
existing gesture sets. To achieve this, we first deployed a large-scale
study (N=500+) to collect data and train an accelerometer-gyroscope
recognition model with a cross-user accuracy of 95.7% and a false-
positive rate of 0.6 per hour when tested on everyday non-gesture
data. Next, we design a few-shot learning framework which derives
a lightweight model from our pre-trained model, enabling knowl-
edge transfer without performance degradation. We validate our
approach through a user study (N=20) examining on-device cus-
tomization from 12 new gestures, resulting in an average accuracy
of 55.3%, 83.1%, and 87.2% on using one, three, or five shots when
adding a new gesture, while maintaining the same recognition ac-
curacy and false-positive rate from the pre-existing gesture set. We
further evaluate the usability of our real-time implementation with
a user experience study (N=20). Our results highlight the effective-
ness, learnability, and usability of our customization framework.
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Our approach paves the way for a future where users are no longer
bound to pre-existing gestures, freeing them to creatively introduce
new gestures tailored to their preferences and abilities.
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1 INTRODUCTION
Recent advances in worn sensing technologies have led to the emer-
gence of promising hand gesture recognition systems [27, 29, 39,
42, 46, 50, 81, 87]. Regardless of the sensing modality, typical sys-
tems are designed with pre-defined gestures, using data collected
from multiple users [47, 83, 91, 93, 96]. To truly leverage gestural
input, devices should allow users to add their own gestures beyond
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Figure 1: Overview of Our Gesture Customization Framework & Real-Time System. A model can recognize a pre-existing ges-
ture set and is robust to noise, but it cannot recognize out-of-dictionary gestures (A). A custom gesture can be added merely
with three samples (B), without affecting the recognition on pre-existing gestures (C). The system can provide real-time feed-
back when the new gesture is close to existing gestures (D), similar to common daily activities (E), and inconsistent (F). When
the model performance is sub-optimal, users can decide whether to provide additional samples (G).

a pre-existing gesture vocabulary [52, 62, 84]. This unlocks several
advantages, including better gesture memorability [59], higher in-
teraction efficiency [63], and enhanced accessibility for people with
special needs [2].

However, there are two notable requirements for systems aiming
to support gesture customization, especially if the bar is to prevent
performance degradation of the original gesture set. First, such a
system should support a rapid and minimal data collection process
(e.g., around five samples) to limit user burden. Second, such a sys-
tem should go beyond model fine-tuning, as this often causes two
problems [80]: one is forgetting old, where the model’s performance
deteriorates drastically on old (i.e., pre-defined) classes [21]; the
other is overfitting new, where the fine-tuned model is prone to
overfitting towards newer classes, therefore degrading its general-
izability [26].

Although several early systems have explored few-shot gesture
recognition (first requirement) [7, 51], they mainly work for simple,
salient gestures and rely on highly distinguishable signals [3, 4, 51].
This often leads to poor performance for gestures that are more
fine-grained and natural. Moreover, these systems collapse all ges-
tures (old and new) into a single global gesture set. They did not
distinguish the pre-existing and customized gestures. But to make
such a system robust in the wild, it is essential to track performance
benchmarks between pre-existing v.s. customized gesture sets, and
doing equally well on both are of paramount importance. To the

best of our knowledge, no prior work has investigated the chal-
lenges of extending an existing model for new gestures with few
shots (second requirement).

In this paper, we propose a robust gesture customization frame-
work that supports a small number of user examples (three to
five [68, 82]), and offers in-situ feedback while maintaining recog-
nition performance on the original gesture set. Our framework
integrates transfer learning, incremental learning, and few-shot
learning techniques. To do this, we first conduct a user study on over
500 users across diverse contexts, using accelerometer-gyroscope
data to train a convolution neural network (CNN) to recognize
a pre-defined gesture set (four gestures plus a null class, which
includes 60 hours of of daily activities such as walking, typing,
driving, cooking). Next, we train a lightweight model for custom
gestures, without adjusting the parameters of the original model.
We employ the first half of our pre-trained model as a feature em-
bedding extractor, and create a parallel output after the embedding
layer to enable the training of a new model without affecting the
pre-trained model. We then utilize a series of data augmentation,
data synthesis, and adversarial training techniques to extract the
most utility from few user samples and boost model performance.

To further ensure that a new gesture is reliable [62], we designed
our learning and training process around an interactive customiza-
tion experience. Instead of simply accepting any gesture, our system
provides interactive feedback when a new gesture is either 1) too
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close to the existing gesture set, 2) too inconsistent relative to pro-
vided examples, 3) too confusing against unintended interactions
such as frequent daily activities, and 4) has sub-optimal recognition
performance, during which users can decide whether they want to
provide additional samples. Our study results show that this feed-
back mechanism empowers users to understand and make better
use of the recognition system to suit their accuracy and reliability
preferences. Figure 1 illustrates the overview of our framework.

To summarize, our paper makes the following core contributions:

• We propose a few-shot gesture customization framework that can
support gesture customization with a small number of samples,
without degrading the performance of pre-defined gestures.

• We conducted a large-scale user study (500+ participants) and
built a wrist-worn accelerometer-gyroscope gesture recognition
model. This model can recognize four gestures with an accuracy
of 95.7% and an F1 score of 95.8% in a cross-user setup, and a false
positive rate of 0.6 times per hour when tested on daily behavior
non-gesture data.

• We extend the pre-trained model by designing architectural, data
augmentation, data synthesis, adversarial regularization tech-
niques, and interactive feedback mechanisms to extract the most
utility from few user samples. We evaluated our framework on
12 new gestures in addition to the four existing gestures. The
final model achieves an average accuracy of 55.3%, 83.1%, and
87.2%, and an F1 score of 66.0%, 89.2%, and 92.1% on one, three,
and five gesture examples.

• We evaluate the usability of our real-time three-shot gesture
customization system through a user study. Our results indicate
that our gesture customization system achieves highly favorable
usability and learnability effects. We believe our framework en-
ables end-users to easily and creatively introduce new gestures
tailored to their preferences and abilities.

2 RELATEDWORK
In this section, we first provide a general overview of wearable hand
gesture recognition techniques across sensing modalities. Next, we
review prior work in the gesture customization. Finally, we review
ML-based methods that are relevant to our work.

2.1 Wearable Hand Gesture Recognition
Researchers and practitioners have extensively explored hand ges-
ture recognition. These technologies leverage diverse modalities,
including cameras [37, 45, 87, 90, 95], infrared (IR) ranging [22, 25,
29, 44, 56], acoustics [33, 39, 40, 47, 61], electromyography (EMG) [9,
72, 73], electrical impedance tomography [96], pressure [16, 42],
radar [50], stretch sensors [78], magnetic sensors [12, 13, 65, 94],
and bio-capacitive effects [69, 74, 81]. Among these techniques,
the intertial measurement unit (IMU) is arguably one of the most
low-cost and widely available sensors embedded in commodity
wearable devices. As a result, the IMU is frequently relied upon
for capturing dynamic hand gestures that involve arm or hand mo-
tion [1, 10, 27, 46, 48, 83, 89]. In this work, we focused on the IMU,
specifically the accelerometer and gyroscope, for its ubiquity and
potential for generalizability.

Early trajectory-based gesture recognition methods, such as
dynamic time warping (DTW) [51] and hidden Markov models
(HMM) [57], can recognize gesture trajectories (e.g., line, square,
circle, star [57]) using few samples while achieving high accura-
cies. However, these methods do not work well for gestures that
are more complex and fine-grained. More sophisticated techniques
have emerged, relying heavily on data-driven approaches. These are
typically designed by collecting data from a known set of gestures.
Depending on the volume of collected data, modeling approaches
range from support vector machines (SVM), trees, e.g., [25, 39], to
deep learning models, e.g., [37, 95].

Our approach trains a high-performance model from large vol-
umes of data (collected from our user study). Moreover, we take
this process one step further by extending that model’s ability to
recognize novel gestures (e.g., customized by a new user) with a
few samples. We discuss the details of our approach in Sections 3
and 4.

2.2 Gesture Customization
The advantages of supporting customized, user-defined gestures
include but are not limited to greater memorability [59], higher
interaction efficiency [63], and better accessibility for people with
physical disabilities [2]. Prior work has explored and summarized
customized gesture sets through user elicitation studies (e.g., [66,
70, 84]), and others built tools that facilitate the creation of new
customized gestures (e.g., [6, 62, 94]).

To enable a favorable experience for end-users, gesture cus-
tomization systems need to support a nimble yet effective data
collection process. The HCI field has examined several approaches
for supporting gesture customization by demonstration [17, 53],
including rule-based approaches [4, 18], and tiered computational
methods [3, 52, 57, 63]. Related to our work, uWave [51] stored tem-
plates of accelerometer signals for new gestures, and used DTW to
compare against incoming data streams. Bigdelou et al. [7] applied
Laplacian Eigenmaps and kernel regression on arm-worn IMU sig-
nals, while Mezari et al. [58] leveraged fast Fourier transforms (FFT),
symbolic aggregate approximation, and simple distance metrics to
recognize new gestures.

Although these systems require minimal training data, they often
only work with hand gestures that involve significant hand motion,
where the IMU signals have high variance. As we will show in
Section 5, traditional methods perform poorly when applied to
complex, fine-grained gestures.

2.3 Related Machine Learning Techniques
Our work intersects with several ML-based approaches. These in-
clude transfer learning [24, 64], a method that focuses on applying
knowledge gained from solving one task to another related task, and
incremental learning [55, 67, 88], an approach that accommodates
new data to continuously extend a model’s knowledge without full
retraining. Specifically, our method belongs to a subcategory of
transfer learning: solving new tasks (i.e., new gestures) in the same
domain (i.e., hand gesture recognition) [64]. Likewise, the goal of
learning to recognize new gestures with few samples fits within
the few-shot learning problem [82]. A number of techniques have
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been proposed to address few-shot learning, including metric learn-
ing [43], meta-learning [20, 30], and multi-task learning [11, 97].
Within the gesture recognition domain, few-shot learning is per-
formed on camera data [77, 86] or EMG signals [68]. However,
previous research neglected the problem of extending an existing
model (for pre-existing classes) to include new classes.

Our framework is a variant of dynamic few-shot learning [26, 80],
where the goal is to train a model that can learn base categories,
while dynamically recognizing novel categories from only a few
training examples. Our approach is a combination of transfer learn-
ing, incremental learning and few-shot learning methods, which
we describe in the next two sections.

3 PRE-TRAINED GESTURE MODEL
We designed a system that integrates transfer learning, class incre-
mental learning, and few-shot learning for gesture customization.
Figure 2 visualizes the structure of the framework. In this section,
we describe our pre-trained model in detail, and we present our
gesture customization model in Section 4.

3.1 Data Collection
We sought to build a five-class classifier that can recognize four
dynamic hand gestures (Clench, Double Clench, Pinch, and Dou-
ble Pinch, see Figure 7) and one non-gesture case (i.e., negative
gesture). To ensure robustness, we made significant effort to build
a large-scale and diverse hand gesture dataset. Table 1 offers a
comprehensive summary.

3.1.1 Participants and Apparatus. Leveraging a user-experiment-
platform with a large user repository, we recruited 512 participants
(133 self-identified female, 378 male, 1 non-binary) with a wide
coverage of age range (min=21, max=63, mean=33.1±10.5). Majority
of users were right-handed (N=442, left-handed=70). We used Apple
Watch Series 5 and 6 for data collection, with IMU sensors sampled
at 800 Hz max, ultimately downsampled to 100 Hz during training

1. Participants wore the watch on their non-dominant hand during
the data collection. Data was first stored on the watch and then
uploaded to a server for processing and model training. The user
study received institutional IRB approval.

3.1.2 Gesture Data. We asked participants to follow instructions
on the watch throughout a session. In each round, a gesture would
appear on the screen, and we asked participants to perform that
gesture 10 times, each time following a three-second countdown.
Gesture order was randomized and each participant performed at
least three rounds of data for each gesture. Throughout this process,
a phone was placed directly above the user’s hand, and we recorded
video to serve as additional ground truth for annotation purposes.

We also considered other relevant factors: body posture, hand-
eye angle, motion, gesture variation, and activity. We randomly
picked a subset of participants to perform gestures in different body
postures, such as sitting upright (N=224), sitting and leaning back
(N=149), standing (N=58), and lying down (N=21). For different
hand-eye angles, participants were either asked to put down their
hand to abdomen-level (N=193), chest level (N=38), or head-level
(N=203). We also asked a few participants (N=40) to walk while
performing gestures. Lastly, we asked a small fraction of partici-
pants (N=13) to perform gestures at different speed and intensities
(i.e., slower-faster, weaker-stronger). Some participants (N=12) per-
formed light everyday tasks (e.g., typing or wrist twisting) while
occasionally performing a gesture.

3.1.3 Negative Data. In addition to positive examples, we also
asked participants to perform negative (i.e., non-gesture) examples.
In this round, we asked participants to perform normal indoor daily
activities, such as walking, phone browsing, and typing (among
others). Moreover, we asked a small group of participants (N=12) to
perform a wide range of behaviors that involved fine-grained hand
1We collected raw data with an overly high sampling rate, 800 Hz, to maximize our
dataset ability. However, during the model training, we found that 100 Hz already
suffices. Thus, in the rest of the paper, our framework only uses 100 Hz data.

Factor Information

Demographics
Total Number 512 Participants

Self-identified Gender Female 133, Male 378, Non-binary 1
Age Min 21, Max 63, Mean 33.1±10.5

Hand Habits Right handed (442), left-handed (70)

Gesture Data

Body Posture
Sitting upright (N=224), Sitting and leaning back (N=149),
Standing (N=58), Lying down (N=21), and others (N=60)

Eye-hand Angles
Abdomen-level (N=193), Chest level (N=38),
Head-level (N=203), and others (N=78)

Motion Static (472), Walking (40)
Gesture Variation Regular (499), Intentionally slower/faster/weaker/stronger (13)

Contexts Gesures only (500), Gestures inserted with regular chores (12)

Negative Data
In-lab Daily Activities Walking, using mobile phones, typing (500)
Targeted Negative Data A wide range of behaviors that involve fine-grained hand movement (12)

Table 1: Data Collection Information to Build The Pre-trained Model
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Figure 2: Hand Gesture Customization Framework. The upper region shows the two parts of a pre-trained gesture recognition
model: feature embedding extraction (A) and inference (B). The lower region shows the additional prediction head (C) that
trained on new inputs of the new gestures. Both the pre-trained model and the newmodel shared the same embedding layers.

movement, including tapping on the watch/other surfaces, scratch-
ing head/hands, using mouse/keyboard, playing pens, brushing
teeth, shaving, washing hands/utensil, showering, driving, using
juicer/vacuum cleaners, playing video games, opening bottles, and
biking. These negative sessions were not video-recorded.

3.1.4 Annotation. Each data collection study lasted 30 to 60 min-
utes. We synchronized videos with our IMU signals and annotated
the start and end times of each gesture performance. After annota-
tion, we collected approximately 110,000 gesture samples (30 hours),
and 60 hours of negative samples. The average duration of single
gestures (i.e., Clench and Pinch) is around 550ms, while the average
duration of double gestures (i.e., Double Clench/Pinch) is around
800ms.

3.2 Model Architecture
The raw input of the model is a one-second, six degree-of-freedom
accel-gyro signal (three axes for accelerometer, and three axes for
gyroscope) sampled at 100 Hz. Each channel is preprocessed using
three Butterworth bandpass filters (0.22-8 Hz, 8-32 Hz, 32 Hz) using
cascaded second-order sections, leading to a 100 × 4 input size for
every channel.

We adopt the concept of EfficientNet [79] to balance the number
of trainable parameters and model performance. Specifically, for
each input channel, we employed two inverted residual blocks [71]
(i.e., MBConv in Figure 2) to process the signals. We then concate-
nate the output of the six channels, and add one more separable
convolution layer [15] to capture concatenated information with

low computational cost, followed by a max-pooling layer and a
flatten layer. We mark these layers as the feature embedding ex-
traction part of the pre-trained model (Figure 2a), whose output is
a one-dimension vector with a vector length of 120.

The latter half of the pre-trained model consists of a stack of
five fully connected layers with sizes 80, 40, 20, 10, and 5. We
insert a batch normalization layer [38] and a dropout layer (𝑝 =

0.5) [23] between every two fully connected layers to improve
model generalizability. The output of the final layers correspond to
the confidence of the five classes. We use cross-entropy as the loss
function, and Adam optimizer during the training. The entire model
has 106k total parameters, a suitable size for on-device inference.

3.3 Model Training and Performance
After data collection, we processed each data sequence with a slid-
ing window mechanism, with the window size as 1 second (same as
the input of the model), and a step size of 0.125 sec (simulating an
8Hz prediction frequency). We then randomly split 50%, 10%, 40%
of the dataset into training, validation, and testing sets. It is worth
noting that data splitting was conducted based on participants so
that the evaluation outcomes are cross-user results. We trained our
model for 200 epochs, with a 0.1 exponential learning rate decay
every 50 epochs. The epoch with the best results on the validation
set is saved and evaluated on the testing set.

3.3.1 Window-level Prediction Performance. We first investigate
the direct outcome of the prediction, which is at the window level.
The results show an average accuracy of 74.8%, a precision of 93.6%,
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(a) Window-level Matrix (b) Gesture-level Matrix

Figure 3: Prediction Results as Confusion Matrices of The
Pre-trained Model. The window-level prediction (a) has an
average accuracy of 74.8% and an F1 score of 82.7%. The
gesture-level aggregation (b) significantly improves the re-
sults, with an accuracy of 95.7% and an F1 score of 95.8%.

a recall of 74.8%, and an F1 score of 82.7%. Figure 3a visualizes the
confusion matrix of the window-level prediction on the testing set.

The confusion matrix shows that there is little confusion among
the four gestures, and that the majority of the misclassification
comes from the model not recognizing some windows where a ges-
ture actually happens, leading to false negatives. The window-level
prediction only focused on every single 1-sec window. However,
in real-time scenarios, a gesture is comprised of multiple windows.
Therefore, we need to aggregate our window-level predictions to
obtain our gesture-level predictions.

3.3.2 Gesture-level Prediction Performance. The aggregation in-
volves a few hyper-parameters. For the four gestures, we need to
decide how many consecutive prediction windows are required
before the model predicts a gesture. For negative data, we also need
to decide how many consecutive windows with non-negative pre-
dictions are required before the model triggers a “false positive”. We
performed grid search on these hyper-parameters using our valida-
tion set. Our final consecutive window length thresholds are 3, 4, 3,
4 for Clench, Double Clench, Pinch, and Double Pinch, respectively.

Aggregation significantly improves our recognition performance,
with an average accuracy of 95.7%, a precision of 95.8%, a recall of
95.7%, and an F1 score of 95.8%. Moreover, the gesture-level false
positive rate is 0.6 times per hour. Figure 3b presents the confusion
matrix of the gesture-level results. These results indicate that our
model can accurately recognize gestures on new users’ data and is
highly robust to negative data.

4 GESTURE CUSTOMIZATION
Having a model that can recognize four gestures and works across
users with robust performance, we now describe our gesture cus-
tomization framework.

4.1 Customization Architecture
Our framework integrates transfer learning, class incremental learn-
ing, and few-shot learning. After building the pre-trained model
with good performance, we create a new branch after the feature
embedding extraction layers as the additional prediction head (Fig-
ure 2a and Figure 2c). Note that each user will have their own

Figure 4: 2-D t-SNE Visualization of The Feature Embedding
Vectors of Different Gestures. The same color indicates the
same gesture. Data collected for building the pre-trained
model is plotted in circle, while new users’ customized ges-
ture data are plotted in cross and diamond. The zoom-in area
suggests that even for the same customized gesture, differ-
ent users’ data may have distinct clusters.

particular branch, even when two users want to add the same cus-
tomized gesture. To better understand this, Figure 4 visualizes the
2-dimensional t-distributed stochastic neighbor embedding (t-SNE)
plot with a subset of the four gestures’ data collected in Section 3.1,
as well as two new users’ data with both of them performing two
customized gestures (Peace and PinkyPinch, see Figure 7) and two
old gestures (Clench and Pinch).

There are a few observations. First, most of the four pre-existing
gestures form clear clusters, which reflects the high accuracy of
the pre-trained model. More importantly, the two users’ data has
some interesting patterns: while both users did the same gestures,
each user’s own data form a cluster and the two users’ clusters
are not close to each other, especially for the gesture Peace. This
indicates high between-user variance and low within-user variance,
i.e., a user can do a gesture in a relatively consistent way, while two
users may do it quite differently. Besides, the decision boundaries
to distinguish the two new gestures (Peace v.s. PinkyPinch) are also
different between the two users. These observations further support
building a customized prediction head for each user’s customization
gestures.

We employ a simple, light-weighted two-layer fully connected
network, the first as a feature processing layer and the second as the
output layer. The first layer uses Leaky ReLU (𝛼 = 0.3) [60] as the
activation function and has a L2 kernel regularizer (_ = 5𝑒−5) [35]
and a dropout layer (𝑝 = 0.5) [23] to reduce overfitting. The last
layer uses Softmax activation that corresponds to the prediction
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confidence of the final classes. The number of the classes is equal to
the number of customized gestures plus one more for the negative
case. Therefore, when users create their first customized gesture, the
additional prediction head is trained as a binary classifier. When a
second gesture is added, a new three-class prediction head is trained
from scratch, etc. Since the prediction head is light-weighted, the
training process is fast.

In real-time, the new prediction head works together with the
pre-trained model to recognize gestures. The two models recognize
distinctive gestures and are both robust to negative data. If both
models predict a gesture, the one with the highest confidence would
be the final prediction.

Our framework leverages the first half of the pre-trained model
as the feature extractor and transfers it to new gesture recognition
tasks. By training the new prediction head for incremental classes,
the performance of the existing gestures is not impacted, addressing
the forgetting old problem. Then, we tackle the few-shot challenge
with a series of data processing techniques.

4.2 Maximizing Few Shots
No matter how much we simplify the model, training a model
with less than 10 samples is challenging. It can easily fall into the
overfitting problem. It is also hard to prevent false-positives as
the model does not have enough “positive” samples (i.e., gesture
samples) to learn from. We use a series of techniques to make
the most out of the small amount of data provided by users (see
Figure 5).

4.2.1 Data Segmentation. Before actual data processing, it is worth
noting that there is no readily available training sample. When end-
users record data of their new customized gestures, they can either
do gestures consecutively in a row (similar to the data collection
process in Section 3.1), or follow some instructions to do one gesture
at a time and repeat several times, depending on the interaction
design. In either way, it is unrealistic to ask users to provide the
exact start and end timestamp of the gesture. Therefore, we need
to segment the signal sequence to obtain data samples.

We take the output signals of the middle bandpass filters (8-
32 Hz) as this is robust to noisy arm movement, and use a peak
detection algorithm to identify potential moments of performing
hand gestures. Specifically, we calculate the sum of the magnitude
of both filtered accelerometer and gyroscope signals, and apply a
1-sec absolute moving average to smooth the data. We then use a
simple peak detectionmethod that finds local maxima by comparing
neighboring values (with distance threshold as 1 sec). A peak is
ignored if it is lower than the overall average of signal magnitude. If
any time reference is available (e.g., a countdown mechanism), we
can further filter peaks according to the reference. We take a 1-sec
window centered at these potential peaks, and feed them into the
feature extraction part of the pre-trained model. We then compute
a Euclidean distance matrix of the normalized embedding vectors
and remove outliers (threshold empirically set as 0.8). In such a
way, we can segment out pronounced, repetitive hand movement
periods that correspond to the target gestures.

Once the peaks are determined, we take a 1.5-sec window cen-
tered at each final peak to ensure that a gesture is fully covered

by the window. Our data augmentation techniques are applied to
these windows.

4.2.2 Data Augmentation. After data segmentation, we use sev-
eral data augmentation techniques to generate a larger number
of samples. Three time series data augmentation techniques [41],
with all seven combinations (23 − 1), are used to generate positive
samples, enlarging the data size by eight times: 1) zooming, to sim-
ulate different gesture speed, randomly chosen from ×0.9 to ×1;
2) scaling, to simulate different gesture strength, with the scaling
factor 𝑠 ∼ N(1, 0.22), 𝑠 ∈ [0, 2], and 3) time-warping, to simulate
gesture temporal variance, with 2 interpolation knots and warping
randomness𝑤 ∼ N(1, 0.052),𝑤 ∈ [0, 2].

Moreover, we also employ three augmentation techniques to
generate gesture data that is marked as negative [92]: 1) cutting out
by masking a random 0.5 sec of signals by zero; 2) reversing signals,
and 3) shuffling by slicing signals into 0.1-sec pieces and generating
a random permutation. These augmentations are often used in
other ML tasks to augment positive data, but we mark the data
augmented by these techniques as negative to ensure our model
only recognizes valid gestures. We also applied the seven positive
augmentation techniques on these negative data to generate more
negative samples.

After data augmentation, we take a 1-sec sliding window on
these 1.5-sec windows to generate samples to be fed into the pre-
trained model. The step size is set as 0.1 sec, leading to five input
samples from each 1.5-sec window. In addition, the data collected in
Section 3.1 are all added as negative data to improve the robustness
of the model against noisy movement.

4.2.3 Data Synthesis. Although the data augmentation can gener-
ate signals with larger variance from the data recorded by end-users,
these augmented data may not be close to the actual gesture vari-
ance introduced by natural human behavior. Therefore, we further
synthesize more data from both the raw signals and the augmented
signals that simulate the natural motion variance. Specifically, we
train a Δ-encoder [75], a self-supervised encoder-decoder model
that can capture the difference between two samples (i.e., Δ) belong-
ing to the same gesture, and use it to synthesize more new gesture
samples.

A Δ-encoder is trained as follows: it takes two samples (sam-
pleInput and sampleRef) from the same class as the input, feeds
sampleInput through a few neural network layers to be a very small
embedding called Δ-vector (similar to a typical Autoencoder [31]),
and then use the Δ-vector and the sampleRef to reconstruct sam-
pleInput. The intuition comes from the fact that the size of Δ-vector
is so small that it focuses on capturing the difference between sam-
pleInput and sampleRef, which is then used to rebuild sampleInput
with sampleRef as the reference [75]. After the Δ-encoder is trained,
it can take another sample from the new class as a new sampleRef,
and generate a new sample of the same class with a Δ-vector. This
Δ-vector can either be obtained via feeding any existing sample
from other classes through the encoder, or randomly generated.

In our case, we use the data of the four pre-existing gestures
to train a Δ-encoder. During the training, we randomly draw two
samples from the same gesture and the same user to ensure that the
model captures the within-user variance instead of the between-
user variance. We use the feature embeddings of length 120 as the
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Figure 5: The Data Processing Pipeline of Training a Gesture Customization Prediction Head. It starts with a short data se-
quence (3 shots in this example) recorded by an end-user and goes through data segmentation, augmentation, and synthesis
before the training. The training process is enhanced by adversarial regularization.

input and the output of the Δ-encoder to save computation cost. Our
structure of our Δ-encoder is fairly simple. Both the encoder and
decoder have one hidden layer with a size of 4096 and uses Leaky
ReLU (𝛼 = 0.3) as the activation function. The size of Δ-vector is
set as 5. Using the training set from the four gestures, the model
is trained with 200 epochs and has a 0.5 exponential decay on the
learning rate every 30 epochs. The epoch with the best results on
the validation set is saved. We also calculate and save the Δ-vectors
from the four gestures’ testing set, which will be used to generate
new samples.

In real-time, when the customized gestures’ data come in and go
through the augmentation stage, we use the Δ-encoder to generate
extra samples of the customized gestures that contain more natural
gesture variance, enlarging both augmented positive and negative
data by 10 times.

4.2.4 Adversarial Training Regularization. After the data augmen-
tation and data synthesis, we obtain a large amount of data with ap-
propriate variance to train the prediction head. To further improve
the robustness of the model, we adopt the practice of adversarial
training regularization [32, 54] when learning the model.

The main idea of adversarial regularization is to train a model
with adversarially-perturbed data (perturbed towards the decision
boundary or inverse gradient decent so that the training process
becomes harder) in addition to the original training data. It can
prevent the model from overfitting and classify the data points close
to the boundary more robustly. In Figure 4, the two customized
gestures’ data from the same user tend to be blended with the exist-
ing four gestures near the boundary. The adversarial regularization
can help to enhance classification performance, especially for the
purpose of reducing false-positive. We set both the adversarial
regularization loss weight and the reverse gradient step size as 0.2.

Through a series of data segmentation, data augmentation, data
synthesis, and adversarial training, we can learn a robust prediction
head for each new user that can accurately recognize their cus-
tomized gestures with a low false-positive rate. Figure 5 visualizes
the whole training procedure of the prediction head.

4.3 Interactive Feedback
We take a few prerequisites into account to design the user ex-
perience. When building the prediction head, we have two im-
plicit assumptions: 1) Each customized gesture is unique and dis-
tinguishes from existing gestures; 2) The sequence provided by an
end-user does contain valid, consistent gesture repetitions. More-
over, to avoid frequent false-positive triggers, a gesture should not
be close to ordinary daily actions, such as shaking (common in
teeth-brushing, washing, and scratching) and slow waving (easily
involved in driving or greeting).

Therefore, our framework should not simply accept any in-
coming data provided by end-users. Instead, it needs to be sanity
checked to ensure the gesture are reliable [62]. We design the over-
all gesture customization user experience for our framework, as
shown in Figure 6.

When the data is recorded and segmented, we examine whether
it belongs to any of the following three situations and provide real-
time feedback to users to help users better understand the process
and design gestures [62]:

• Similar to existing gestures. We feed the segmented data into the
pre-trained model and the additional prediction head (if it exists).
If either model predicts the majority of the segments to be one
of the existing gestures, it indicates that the new gesture is close
to previous gestures.

• Inconsistent. During the segmentation, we check the euclidean
distance matrix of potential gesture repetitions and filter out
those that are far from the rest of the repetitions (see Section 4.2).
After the filtering, if the number of repetitions left is less than the
expected number (e.g., 3 when the framework requires a three-
shot recording), it means that users did not do the gesture in a
consistent way.

• Easily confused with daily activities. To find whether the new
gesture is close to common daily behaviors, we leverage the neg-
ative data collected in Section 3.1. We use the pre-trained model
to extract the embeddings of the negative data in the testing set
(sliced in 1-sec pieces), and apply Hierarchical Density-Based
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Figure 6: Gesture Customization User Experience Design. If a new gesture is similar to existing gestures, or performed in-
consistently, or close to daily activities, the framework will provide corresponding feedback to users and ask them to define
another gesture. Moreover, if a new gesture is novel and performed consistently, but the model is trained with fair perfor-
mance, the framework will offer users to choose finishing or collecting a few more samples. Such a feedback can help users
to better understand the process and design gestures.

Spatial Clustering of Applications with Noise (HDBSCAN) [8]
to automatically cluster the data. HDBSCAN is a variant of DB-
SCAN [19] that can adapt different distance thresholds based
on the cluster density, obviating the necessity of setting this
hyperparameter. We use the euclidean distance as the metric,
and set the minimal cluster size as 3. HDBSCAN identifies 2,500
clusters. We calculate and save the center of these clusters and
use them as the representation of common daily activities. After
the new gesture data is segmented, we compute a distance matrix
between the gesture data and these cluster centers, and find each
gesture sample’s closest center. If the majority of the gesture data
are close to at least one of these centers (threshold empirically
set as 0.4), it means that the new gesture is close to common daily
activities.

When a customized gesture is novel and performed consistently,
the framework will proceed and go through a series of data augmen-
tation, data synthesis, and adversarial training. After the training,
we synthesize extra gesture data and use them as a testing set. If
the testing accuracy is good enough (set as 80.0%), the process is
completed and the model can recognize the new gesture. When
the accuracy is below the threshold, the framework will inform
users of the accuracy value and let them decide either to whether
to continue data recording and re-train the model with more data.
If the model still does not perform well on the testing set after the
second data collection, it will ask users to define a new gesture.

5 EVALUATION
We evaluate our framework from two aspects. In this section, we
focus on the algorithmic perspective and measure the model per-
formance on various new gestures. In the next section, we assess it
from the usability perspective and test the real-time system via a
user study.

5.1 Data Collection
We conducted a user study to collect data from 16 gestures (four ex-
isting gestures in Section 3 and 12 new gestures) to train customized
gesture recognition for each individual.

5.1.1 Gesture Design. To evaluate the performance of our frame-
work, we refer to the taxonomy of dynamic hand gestures [14] and
choose a set of new gestures (in addition to the four supported by
the pre-trained model) that covers a wide range of movement. Other
than the existing four gestures (Clench, Double Clench, Pinch, Dou-
ble Pinch), we pick a set of 12 new gestures that are representative
of different wrist/hand/finger movement patterns [14]: Spread and
Double Spread have opposite finger movement (opened v.s. closed)
against Clench and Double Clench, PinkyPinch and Double PinkyP-
inch use a different finger than Pinch, and Peace has two fingers
opened and three fingers closed; Slide has opposite motion between
the thumb and the index finger; TwistOut/In, RotateOut/In and
Extend/Flex involve wrist movement in different ways. Figure 7
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Figure 7: Dynamic Hand Gesture Set Involved in the Study: (A) Clench and DoubleClench, (B) Pinch and DoublePinch, (C)
Spread and DoubleSpread, (D) PinkyPinch and DoublePinkyPinch, (E) Peace, (F) Slide, (G) RotateOut, (H) RotateIn, (I) Deviate-
Out, (J) DeviateIn, (K) Extend, (L) Flex. All gestures start from a neutral, relax hand pose, and return back to the neutral pose
at the end. The four gestures of (A) (B) are supported by the pre-trained model. It is worth noting that this gesture set is only
for the purpose of evaluation. Our framework can work with a muchmore wide range of gestures as long as they are not close
to existing gestures or common daily activities.

visualizes the 16 gestures (12 new + 4 existing). All gestures start
from the neutral pose and return back to the neutral pose.

It is worth noting that the main purpose of this gesture set is to
evaluate the framework’s performance. The actual gesture set that
can be supported by our framework goes beyond these 12 gestures.

5.1.2 Participants and Apparatus. 20 participants (4 self-identified
female, 16 male, Age = 29.8±4.9) volunteered to participate in the
data collection study. 3 participants are left-handed. We employed
the Apple Watch Series 6 for data collection, with IMU sensors
sampled at 100 Hz. All participants wore the smartwatch on their
non-dominant hands.

5.1.3 Design and Procedure. Participants went through multiple
sessions for data collection. Each session is similar to the study in
Section 3.1, where participants saw the gesture name on the watch
screen, followed a 3-sec countdown to perform the gesture, and
repeated five times.

Every participant started with one session for each of the ex-
isting four gestures as a warm-up stage. Then, they had five data
collection sessions. In each session, they performed each of the 12
new gestures 5 times. A Latin-square design was used to counter-
balance the order effect. Participants took a 30-sec break between
gestures and a 2-min break between each session to reduce fatigue.
Moreover, to simulate the actual use case of taking the watch on
and off over time, participants were asked to take off and put on
the watch during the break to vary the watch position on the wrist,
with a variation within 5 cm. The study was around 30 to 40 min-
utes. Overall, for each participant, we collected 5 repetitions per
existing gesture, 25 repetitions (5 sessions × 5 repetitions) per new
gesture.

5.2 Model Performance
We followed the procedure depicted in Figure 5 to process the
data. For each user, we randomly picked two sessions (i.e., 10-shot
maximum) as the training set, one session as the validation set,
and the remaining two as the testing set. We repeated three times
and computed the average performance. We also evaluated the
robustness of the model against noise by applying it to the negative
testing set and measuring the false-positive rate.

Note that during the testing, we use a sliding windowmechanism
on thewhole sequence to simulate a real-time use case. Thus, similar
to Section 3.3, the results can be evaluated at both window-level
and gesture-level. For the gesture-level prediction, we set a uniform
consecutive window length threshold as 5.

In the rest of the section, we first evaluated the recognition
performance on the new gestures (Section 5.2.1). We then evaluated
whether the recognition on the existing gestures were impacted
after introducing new prediction heads (Section 5.2.2). We further
combined existing and new gestures, and evaluated their overall
performance (Section 5.2.3). Finally, we compared our framework
with a range of baseline techniques (Section 5.2.4).

5.2.1 Recognizing New Gestures. We investigated two factors that
have important design implications: the number of shots used for
training and the number of new gestures that the model is trained
to recognize. For the first factor, we went through different numbers
of training samples from the original training set (from 1 shot to 10
shots) to train the model. For the second factor, given the number
of new gestures, we went through all possible combinations of
the gestures, from one new gesture to four new gestures. In total,
we trained and evaluated 475,800 models (10 shot numbers × 3
repetition ×∑4

𝑛=1
(12
𝑛

)
=793 gesture combinations × 20 participants).

Prediction Head Evaluation. We first evaluate the perfor-
mance of the prediction head (the solid lines in Figure 8). When
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Figure 8: Prediction Performance with Different Number of
Shots and Gestures. The accuracy and F1 score results corre-
spond to the left y-axis, while the false positive rate results
correspond to the right y-axis. Error bars indicate the stan-
dard error of the mean.

using only one shot to add a new gesture (i.e., users perform the ges-
ture just one time), our framework can achieve an average gesture-
level accuracy of 55.3% and an F1 score of 64.6%. The more shots
the model has, the better the recognition performance. With three
shots of a new gesture, our framework can achieve an average ac-
curacy of 83.1% and an F1 score of 88.9%. The performance further
increases to 87.2% and 92.0% with five shots, and 91.0% and 94.5%
when using ten shots. Meanwhile, the models are robust to noisy
data, with an average false positive rate af 0.02 times per hour when
evaluated on daily activity non-gesture data.

Supporting more than one gesture is more challenging, but our
framework achieves an average accuracy of 83.3% and an F1 score
of 88.8% with three shots of two new gestures. When adding three
new gestures, our method has an accuracy of 77.7% and an F1 score
of 84.2%. For four gestures, our method still has an accuracy of 77.2%
and an F1 score of 83.4%. More new gestures also lead to a slightly
higher false positive rate, and we observe the same trend as more
number of shots are included for training. This can be explained by
the fact that the increased variety of the positive samples raises the
difficulty of the classification task. But our models can maintain
the false positive rate as low as 0.06 or 0.12 times per hour when
adding two or four gestures. The evaluation results show promising
potential of the framework.

Moreover, we investigate the individual performance of each
gesture. Figure 9 reveals that the majority of the 12 gestures have
good performance. Using three shots, 7 out of 12 gestures have
F1 scores at least 90%. Spread, RotateOut, and Flex have F1 scores

Figure 9: Prediction Performance of One New Gesture.

higher than 95%. In contrast, Slide has relatively lower performance.
The difference can be explained by the fact that the sliding gesture
has larger variation, or is hard for the accelerometer/gyroscope to
capture the motion.

To evaluate how these new gestures are confused against each
other, we also look into the confusion between each pair of gestures
when both are added as new gestures. Figure 10 shows that Slide
and Peace are relatively more easily confused with other gestures.

Combining Prediction Head and Pre-trained Model. After
the prediction head is trained and applied in real-time, it works with
the pre-trained model together for recognition. Therefore, we also
evaluate the performance on the new gestures when combining the
two models, as shown by the dashed lines in Figure 8. The results
are very close to those tested solely on the prediction head, with a

Figure 10: Prediction Performance of Two New Gestures.
Higher F1 score indicates less confusion between the two
newly added gestures.
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minimal performance drop of 1.7% on F1 scores. This indicates that
the two models have a distinguishing focus on different gestures
(i.e., new gestures v.s. existing four gestures) and barely confuse
each other.

5.2.2 Recognizing Existing Gestures. In addition to evaluating the
performance of our framework on new gestures’ data and negative
data, it is also important to measure how much the additional
prediction head influences the recognition performance on the
existing four gestures. Both the average accuracy and F1 score
achieve 97.5% and 97.7% when applying the combined model on
participants’ data of the existing four gestures. This shows that the
recognition outcomes of the original four gestures are not impacted
by the additional prediction head.

5.2.3 Recognizing All Gestures. The real-time system in actual us-
age can recognize both new gestures and existing gestures. There-
fore, we also evaluate the two models on all gestures, as shown
by the dotted lines in Figure 8. When using one shot to add a new
gesture, our framework can achieve an average F1 score of 84.3%
on the five gestures. With three, five, and ten shots, the F1 score in-
creases to 93.1%, 94.4%, and 95.4%. When adding two, three, or four
gestures with three shots, the average F1 scores achieve 91.0%, 86.6%
or 84.9% on the whole six, seven, or eight gestures. We summarize
detailed results in Appendix Tab. 4

The results from Section 5.2.1 to Section 5.2.3 suggest that our
framework can include new gestures and achieve good performance
with only a few shots, without degrading the recognition accuracy
on existing gestures.

5.2.4 Comparing to Other Methods. We also compare our frame-
work against a few other methods. Some of them are traditional
computational methods, while some of them are deep-learning-
based:

• DTW. In some prior work [51], DTW can be used to recognize
new hand waving gestures with only one sample as the template.
We re-implement the algorithm in uWave [51] and test it using
our datasets.

• Traditional ML models. As deep learning methods are usually
data-hungry, an alternative solution is to use off-the-shelf tradi-
tional ML models to lower the data requirement. We test both
SVM and random forest as they are commonly used on wear-
able gesture recognition systems (e.g., [25, 39, 96]). The input for
these traditional models are the feature embeddings from the
pre-trained model.

• Fine-tuning on the pre-trained model. This method is one of the
common transfer-learning-based solutions. Specifically, we re-
move the final layer of the pre-trained model and add a new layer
with more output nodes (five original classes plus the number of
new gestures). We copy the weights from the old layers for the
old five nodes, and randomly initiates the weights for the new
nodes. Then, we fine-tuning the model using new data.

• Ablation study. In addition to other methods, we also remove one
of the data augmentation, data synthesis, and adversarial regular-
ization methods to evaluate each of their individual contribution
to the final results.

Methods
Window-level Gesture-level

acc F1 FP Rate acc F1 FP #/Hr

DTW 0.485 0.355 0.515 0.552 0.597 0.457
SVM 0.928 0.737 0.000 0.712 0.796 0.021

Random Forest 0.895 0.686 0.000 0.686 0.763 0.000
Fine-tuning 0.915 0.516 0.039 0.448 0.511 6.175

w/o Augmentation 0.898 0.497 0.000 0.244 0.327 0.000
w/o Synthesis 0.933 0.784 0.001 0.819 0.879 0.034

w/o Adv Regularization 0.922 0.742 0.002 0.792 0.855 0.106
Full Pipeline 0.935 0.790 0.001 0.833 0.888 0.055

Table 2: Results Comparison between Our Framework and
Other Methods. All training and testing use three shots and
two new gestures to ensure consistency.

To make a fair comparison, we use three shots and two gestures
for consistency, and negative data is available in all methods. Ta-
ble 2 presents both the window-level and gesture-level results. Our
method significantly outperforms the traditional methods and the
fine-tuning method by at least 12.1% on accuracy and 9.2% on F1
score. Moreover, the ablation study results show that each of the
techniques helps improve the model performance.

6 USABILITY
Finally, we implemented a real-time system based on our frame-
work, and evaluated the system via a user study. Figure 11 shows the
watch interface that corresponds to the user experience roadmap.
Not only do we evaluate the real-time recognition performance,
more importantly, we also measure the system usability and collect
users’ feedback.

6.1 Participants and Apparatus
We invited the same set of users in Section 5 for the usability eval-
uation. Apple Series S6 was used as the apparatus for the usability
study, worn on participants’ non-dominant hands. For prototyping
purposes, the watch streamed the data to a MacBook Pro laptop.
The laptop did the model training and gesture recognition, and sent
the results back to the watch for real-time interaction.

6.2 Design and Procedure
Weused a three-shot version of the system for the evaluation. Partic-
ipants went through the following stages after a brief introduction
of the system and the interface:

(1) Participants first tried the recognition system in the live-stream
mode with the existing four gestures to get themselves famil-
iarized with the system.

(2) Participants recorded a pre-defined new gesture RotateOut
three times to add the gesture, and tested it in the live-stream
mode, together with the four gestures (five in total).

(3) Participants were asked to create one or more customized ges-
tures themselves and record the gesture. After adding it suc-
cessfully, they tested it in the live-stream mode, together with
the five existing gestures.
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Figure 11: Real-Time Gesture Customization SystemWatch Interface Design. The few-shot recording mode is consistent with
the user experience design in Figure 6.

(4) Participants were told to use the system freely for 5 to 10
minutes, after which they filled in the System Usability Scale
(SUS) [5] and Task Load Index (NASA-TLX) questionnaire [34],
and had a semi-structured interview about their experience.

During the study, participants could ask the experimenter anytime
if they have any questions. The experimenter noted down all suc-
cessful or unsuccessful recognition results. The study lasted about
30 minutes.

6.3 Results
Overall, many participants were excited about the system. We sum-
marize the recognition results, customization procedure, and sub-
jective feedback.

6.3.1 New Gestures Recognition Performance. The real-time perfor-
mance of the system is similar to the offline results in Section 5.2.
The average recognition accuracy and F1 score on the four existing
gestures are 96.7% and 98.1%. For new gestures, the overall average
accuracy and F1 score are 91.1% and 95.1%, respectively. The cus-
tomized gestures defined by participants were diverse. Examples
include snapping fingers, flicking fingers, making spiderman pose,
etc.. Some gestures have zero misclassification during the study,
such as Snap, Spiderman, Clap, and FiveFingerBend.

Meanwhile, false-positive rate was kept low. A few participants
tried diverse non-gesture motion and the real-time system was
robust to noisy data. On average, participants had 0.6 times of false
positive throughout the whole study.
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Gestures acc F1 FP Count # of Users Gestures acc F1 FP Count # of Users

Clench 0.950 0.972 0.100 20 DoubleClench 0.993 0.996 0.050 20
Pinch 0.975 0.986 0.200 20 DoublePinch 0.952 0.972 0.000 20

RotateOut 0.949 0.973 0.050 20 Snap 0.960 0.978 0.000 5
Flick 0.958 0.978 0.000 3 Peace 1.000 1.000 0.500 2

FastArmWave 0.909 0.950 0.500 2 Spiderman 1.000 1.000 0.000 1
VulcanSalute 1.000 1.000 0.000 1 Clap 1.000 1.000 0.000 1

PinchThenDrag 1.000 1.000 0.000 1 FiveFingerBend 1.000 1.000 0.000 1
PinkyPinch 0.900 0.947 0.000 1 IndexFingerPointing 0.882 0.938 0.000 1
ThumbsUp 0.857 0.923 1.000 1 ThumbTwoTaps 0.833 0.909 0.000 1

FiveFingerSequentialBend 0.812 0.897 0.000 1 IndexFingerBend 0.800 0.889 0.000 1
Punch 0.778 0.875 2.000 1 IndexMiddleFingerBend 0.750 0.857 0.000 1

Table 3: Recognition Results in The Real-time System Usability Study. All new gestures are added with three shots. FP count
indicates the average count of false positive per person during the study.

Table 3 summarizes the proposed gestures and their recogni-
tion performance. These results indicate the scalability and the
robustness of our framework.

6.3.2 Procedure of Gesture Customization. During the study, all
participants added the RotateOut gesture smoothly. As for adding
their own gestures, most participants succeeded at the first trial
when adding their own gesture. This indicates that the system’s
sanity check does not pose much restriction on users’ creativity.

A small number of participants’ new gesture did notwent through
due to the similarity check. Two participants’ first gestures (mid-
dle finger pinching and hang loose) were recognized as close to
Pinch and Clench, respectively. P15 attempted to add a slow wav-
ing motion as the second gesture but it got recognized as being
close to common daily activities. P18 first added PinkyPinch as
the first new gesture, and then tried to add a thumb-tapping on
index finger knuckle. It did not go through as it was recognized
as being close to PinkyPinch. Moreover, some participants delib-
erately tried to confuse the system. After adding the first gesture,
P2 intentionally added another similar gesture but it did not go
through. The accelerometer signals of these new gestures and the
wrongly recognized gestures were indeed similar. On the one hand,
this indicates the robustness of the system; On the other hand, this
reveals the room for improvement of our framework to distinguish
closer gestures.

As for the model performance check, P1 and P19 got an accuracy
below 80%when adding their gestures. Both of them chose to collect
more shots and completed the addition.

6.3.3 Questionnaire Results. The questionnaire results also suggest
positive feedback from participants. Following the score calculation
method [5], we obtain the average overall SUS score as 87.2±8.3 out
of 100. This indicates the high overall usability of our system. SUS
has two sub-scale scores (Q4 and Q10 for “Learnability” and the rest
for “Usability”). The learnability score was 84.5±14.3 (out of 100,
high) and the usability score was 87.9±8.6 (out of 100, high). Both
sub-scale scores further indicate that our system is easy-to-learn

and easy-to-use. The details of each SUS questions can be found in
Appendix Figure 12.

Moreover, results of the NASA-TLX questionnaire (on a 7-point
Likert scale) indicate that participants had low task load when us-
ing the real-time system, which is in line with the SUS outcome.
Participants reported low task mental load (1.9±1.1), physical load
(2.7±1.3), and temporal load (2.3±1.3). They considered themselves
paying low effort (2.0±0.9). Moreover, participants agreed that they
had a good performance during the study (6.2±1.0) and there was
little frustration (1.5±1.1). Both the SUS and NASA-TLX question-
naires’ results indicate good usability of our system.

6.3.4 Subjective Feedback. In addition to the questionnaire results,
participants provided positive comments about the system. 8 out
of the 20 participants explicitly mentioned that they would love to
use the system in daily life. A few participants were impressed by
the system: “It works amazingly well! That’s beyond my expectation.”
(P11). Some participants were happy to see how the system can be
robust against noisy motion. P2 was excited when their confusing
gesture was not accepted by the system. “The system could tell that
they are too close and it did not let me add it. This is a very good
design, [making the system] much more robust!” (P2). P1 liked the
feedback when the system has sub-optimal performance. “Know
that the system is not perfect is absolutely fine! It only took three
samples! I also feel good that the system can inform me about the
performance so that I can have a better expectation.” (P1). Some
participants discussed a few potential use cases of our system. We
will have more discussion in Section 7.2.

Overall, the recognition performance and subject feedback of
the user study illustrate the good usability and promising future of
our framework.

7 DISCUSSION
Here, we discuss insights of extending gesture sets, application
scenarios and the potential generalizability of our framework. We
also summarize limitations and future work.
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7.1 Potentials and Challenges of Extending
Gesture Set

Through our evaluation studies, we reveal the potential of our
framework to extend the existing four gestures to support more
gestures with few shots. In Section 5, the 12 new gestures are de-
signed to span across different dimensions in hand gesture design
space. Meanwhile, in Section 6, a number of diverse gestures were
proposed by participants without restrictions. Achieving good re-
sults in both studies, our framework shows the ability to extend to
a wide range of gesture sets. However, we also foresee some chal-
lenges of the framework. Our pilot study indicates that gestures
with the same fingers but opposite sequences are hard to classify,
e.g., thumb sliding from the bottom to the top of the index finger v.s.
thumb sliding from the top to the bottom of the index finger. This
is mainly caused by the similar motion patterns measured from
the wrist-worn accelerometer. Increasing the signal sampling rate
could be a potential solution to discover pattern differences and
distinguish this type of complex but close gestures [48].

7.2 Applications
We believe our contributions in this paper can be impactful in many
areas. First, a well-designed customization system can improve ges-
ture memorability [59] and interaction efficiency [63]. Likewise, our
work can be helpful for users who need more than what typically
ships in a pre-packaged gesture set. A well-designed customization
system can accelerate users’ ability to easily and creatively add new
gestures. In our case, we envision our system being particularly
helpful for users who have personalized accessibility conditions [2]
or situational impairments [28, 76]. In situations where the original
gesture set can be inappropriate or inaccessible, our framework
can support the creation of gestures that best cater to users’ pref-
erences and abilities; our interactive feedback mechanisms ensure
that end-users get to decide what level of robustness and accuracy
helps them achieve their device usage goals.

7.3 Beyond Gestures
Our framework has the potential to transfer to other customization
tasks beyond gesture recognition. As depicted in Figure 2, ourmodel
architecture and data processing techniques aremostly independent
from any specific classification task. For example, our framework
can be applied to other time-series recognition tasks, such as fa-
cial expression recognition [85], voice command recognition [36],
and human activity recognition [30]. As long as the model can be
architecturally decomposed into feature extraction and inference
components (which is often the case for deep-learning models), the
core ideas, interactive feedback mechanisms, and overall contribu-
tions in this paper are conceptually and practically compatible.

7.4 Limitations
Like any other paper, our work has limitations. First, our set of
12 new customized gestures is not comprehensive. Although our
evaluation is based on all possible combinations of these gestures,
our results are still far from being thorough. In the future, we plan
to collect data from more gestures and conduct a wider evalua-
tion experiment. Second, the constraints of our usability study
prevented us from investigating the robustness of the system when

running for a longer period. It is possible that after a while, users’
customized gestures may drift over time. However, we envision
multiple techniques to address such variations. For example, when
a misclassification is noticed (due to temporal drift), users can pro-
vide in-situ feedback (via extra gesture samples), helping the system
adaptively improve its robustness. Third, on-device processing and
training is beyond the scope of this paper. Currently, our model
is trained on an external laptop (with data streamed wirelessly).
In an engineering implementation, training and processing can
be offloaded to a cloud server, or it can be federated across other
devices [49]. These are areas we plan to investigate in future work.

8 CONCLUSION
In this paper, we present a gesture customization framework that
supports end-users to add their own customized gestures with very
few samples, without impacting the recognition performance of
the existing gesture set. We first conducted a large-scale user study
(N=512) to train an IMU-only deep learning gesture recognition
model that can recognize four gestures (Clench, Double-Clench,
Pinch, and Double-Pinch) with a cross-user accuracy of 95.7% and
a F1 score of 95.8% and a false positive rate of 0.6 times per hour.
Then, we proposed a dynamic few-shot learning framework that
creates a branch after the first half of the pre-trained model to
enable knowledge transfer and introduce minimal influence on the
old gestures’ recognition outcome. We then used a series of data
processing techniques to improve the robustness of the additional
prediction model. Through an evaluation study (N=20) on a set
of 12 new gestures, our framework shows an average accuracy of
55.3%, 83.1%, and an F1 score of 66.0%, 89.2%, and 92.1% on using
one, three, five shots when adding one new gesture. When adding
two, three, and four gestures, it can achieve an average accuracy
of 83.3%, 77.7%, and 77.2% and an average F1 score of 88.8%, 84.2%,
and 83.4% with only three shots, while maintaining the low false
positive rate and the good accuracy on the existing four gestures.
We further evaluated the usability of the real-time implementation
of our framework via a user study (N=20). The results indicate
good learnability and usability of our framework. We envision
our work can paves the way for enabling users move beyond pre-
existing gestures, freeing them to creatively add new gestures that
are tailored to their preferences and ability.
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APPENDIX

# of

Shots

New Gestures

with Prediction Head

New Gestures

with Both Models

New&Existing Gestures

with Both Models
Non-gestures

Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 FP Rate FP Count/Hr

1 0.908 0.570 0.523 0.608 0.889 0.434 0.505 0.592 0.880 0.546 0.680 0.709 0.001 0.040
2 0.920 0.672 0.694 0.767 0.904 0.531 0.671 0.748 0.889 0.604 0.782 0.811 0.001 0.060
3 0.927 0.725 0.780 0.842 0.911 0.584 0.753 0.821 0.893 0.632 0.833 0.860 0.001 0.074
4 0.930 0.747 0.824 0.875 0.914 0.613 0.798 0.855 0.895 0.645 0.861 0.884 0.001 0.102
5 0.930 0.755 0.841 0.887 0.915 0.626 0.816 0.869 0.896 0.650 0.872 0.893 0.002 0.116
6 0.929 0.760 0.857 0.899 0.914 0.636 0.832 0.880 0.894 0.652 0.881 0.900 0.002 0.152
7 0.931 0.764 0.858 0.900 0.916 0.636 0.832 0.881 0.896 0.654 0.882 0.901 0.002 0.145
8 0.933 0.770 0.864 0.904 0.917 0.641 0.838 0.886 0.897 0.657 0.885 0.904 0.002 0.128
9 0.931 0.770 0.870 0.909 0.916 0.644 0.843 0.890 0.896 0.657 0.888 0.906 0.002 0.136
10 0.932 0.778 0.885 0.919 0.917 0.657 0.860 0.901 0.896 0.662 0.899 0.915 0.002 0.162

# of

Gestures

New Gestures

with Prediction Head

New Gestures

with Both Models

New&Existing Gestures

with Both Models
Non-gestures

Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level Window-level Gesture-level

acc F1 acc F1 acc F1 acc F1 acc F1 acc F1 FP Rate FP Count/Hr

1 0.936 0.834 0.828 0.883 0.921 0.744 0.805 0.865 0.885 0.651 0.918 0.930 0.000 0.025
2 0.934 0.785 0.824 0.875 0.917 0.664 0.800 0.857 0.891 0.648 0.886 0.904 0.001 0.062
3 0.928 0.738 0.795 0.849 0.912 0.604 0.770 0.831 0.893 0.637 0.850 0.872 0.001 0.095
4 0.926 0.718 0.798 0.848 0.910 0.586 0.773 0.829 0.894 0.633 0.838 0.861 0.002 0.127

Table 4: Results Summary of Prediction Heads with Different Numbers of Shots (top) and Gestures (bottom). FP stands for
false positive. The top table shows the average results over 1 to 10 shots. The bottom table shows the average results over 1 to
4 gestures.

Figure 12: Barplot of the 10 Questions in SUS Questionnaire. Note that Q2,4,6,8,10 are marked as [R] and their scores are
reversed for better visualization. Error bar indicates standard error.
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