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ABSTRACT
Fine-grained sketch-based image retrieval is considered as an ideal
alternative to keyword-based image retrieval and image search by
image due to the rich and easily accessible characteristics of sketches.
Previous works always follow a paradigm that first extracting im-
age global feature with convolution neural network and then op-
timizing the model with triplet loss. Many efforts on narrowing
the domain gap and extracting discriminating features are made
by these works. However, they ignored that the global feature is
not good at capturing fine-grained details. In this paper, we em-
phasize the local features are more discriminating than global fea-
ture in FG-SBIR and explore an effective way to utilize local fea-
tures. Specifically, Local Aligned Network (LA-Net) is proposed
first, which solves FG-SBIR by directly aligning the mid-level lo-
cal features. Experiment manifests it can beat all previous base-
lines and is easy to implement. LA-Net is hoped to be a new strong
baseline for FG-SBIR. Next, Dynamic Local AlignedNetwork (DLA-
Net) is proposed to enhance LA-Net. The question of spatial mis-
alignment caused by the abstraction of the sketch is not considered
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by LA-Net. To solve this question, a dynamic alignment mecha-
nism is introduced into LA-Net. This new mechanism makes the
sketch interact with the photo and dynamically decide where to
align according to the different photos. The Experiment indicates
DLA-Net successfully addresses the question of spatial misalign-
ment. It gains a significant performance boost over LA-Net and
outperforms the state-of-the-art in FG-SBIR. To the best of our
knowledge, DLA-Net is the first model that beats humans on all
datasets—QMUL FG-SBIR, QMUL Handbag, and Sketchy.
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1 INTRODUCTION
The free-hand sketches, as their rich and easily accessible charac-
teristics, have been a common form of expression since ancient
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times. With the popularity of touch-screen devices, there is an in-
creasing attention on sketch-related issues, including sketch recog-
nition [6] [41] [13], sketch to image synthesis [2] [22] [17], sketch
segmentation [38] [42], and sketch based image retrieval [3] [40]
[31] [32]. As a sub-issue of sketch-based image retrieval, fine-grained
sketch-based image retrieval (FG-SBIR) [42] [40] [31] [19] is gain-
ing more and more attention due to its commercial value in the
field of image retrieval.

The problem FG-SBIR tries to address is finding the most simi-
lar photo based on the input sketch. It faces three challenges. First,
there is a large domain gap between sketches and photos as sketches
are made up of sparse black lines, while photos are made up of
dense color pixels. Second, sketches are highly abstract. As shown
in Figure 1a, different drawing levels and different comprehension
of drawers lead to a large intra-class difference. Last but not least,
fine-grained details are crucial for FG-SBIR. There may be only a
very slight difference between the query sketch and unmatched
photos as shown in Figure 1b. It is challenging to obtain the repre-
sentation of fine-grained details.

Existing FG-SBIRmodels have proposed variousmethods to solve
these three challenges. Early works [31] [39]mainly focused on the
first and second challenges. Triplet network with triplet loss was
used in these works to narrow the domain gap. Meanwhile, the
powerful representational capability of CNNs made these models
robust to the abstraction of the sketch. Recent works [40] [27] [26]
paid more attention to the third challenge. Attention mechanism,
generative task, and jigsaw puzzle self-supervision task are intro-
duced by these methods to better encode fine-grained information.
However, all of these methods utilized the global feature extracted
by global average pooling (GAP) [20] or fully connected layer. The
global feature is not discriminating enough as it only focuses on
notable parts while ignores the subtle fine-grained details. The no-
table parts are crucial to solve the coarse-grained task like image
classification. But for a fine-grained task like FG-SBIR, subtle fine-
grained details are more important. This means the local features
may be more suitable for FG-SBIR.

To this end, we lay emphasis on local features and explore an
effective way to solve FG-SBIR by utilizing local features. We first
propose a simple but strong baseline—Local Aligned Network (LA-
Net). LA-Net takes images as an aggregate of fine-grained details
and considers FG-SBIR as the process of finding sketch and photo
matching pairs that sharemost fine-grained details. It extracts local
features from themid-level layer of the backbone network first and
then directly aligns the local features by narrowing the distance
of features at the same spatial location.We next propose Dynamic
Local Aligned Network (DLA-Net) to better utilize local features.
LA-Net assumes that the paired sketch and photo are strictly spa-
tial aligned. However, due to the abstraction of sketches, it is com-
mon to find spatial misalignment between the paired sketch and
photo. To solve this question, a dynamic alignment mechanism is
introduced. This mechanism makes the query sketch interact with
gallery photos and dynamically decide where to align.

Our contributions are as follows:

• We emphasize the importance of local features and propose
a new baseline named Local Aligned Network (LA-Net). LA-
Net solves FG-SBIR by aligning local features.

match

(a) (b)

Figure 1: (a) An example of abstraction of sketch. (b) An ex-
ample of fine-grained characteristic of FG-SBIR, different
colored boxes represent the dissimilar regions.

• We propose Dynamic Local Aligned Network (DLA-Net) to
better utilize local features. DLA-Net introduces a dynamic
alignmentmechanism to solve the spatial misalignment that
LA-Net can not handle.

• Extensive experiments showLA-Net surpasses previous base-
lines on three FG-SBIR datasets, which demonstrates local
features are more discriminating than global feature in FG-
SBIR.

• Extensive experiments demonstrate dynamic alignmentmech-
anism is beneficial for the usage of local features. DLA-Net
outperforms existing approaches by a significant margin.
Furthermore, to the best of our knowledge, DLA-Net first
beats humans on all three datasets.

2 RELATEDWORK
2.1 Category-level SBIR
The goal of category-level SBIR is to find a photo, which has the
same category as the query sketch. This is one of the earliest stud-
ied sketch-related problems. Early approaches are mainly based on
handcrafted descriptors, includingHOG[10] [9], color histogram[14],
BOW[7], etc. Later works focus on deep learning methods[1] [37]
[36]. These methods use CNNs with triplet loss or contrastive loss
to narrow the domain gap. Recently, a more difficult problem—
zero-shot SBIR has become the mainstream issue in category-level
SBIR.

2.2 Fine-grained SBIR
FG-SBIR further requires the photo and sketch match at the in-
stance level. Compared with category-level SBIR, this is a rela-
tively new problem. FG-SBIR was first proposed in [18], which
employed a deformable-part model to tackle this problem. Subse-
quent FG-SBIR models mainly used deep learning methods. The
two earlier models [31] [39] were similar.They all employed triplet
networks with triplet loss to learn a unified embedding feature
space. A classification loss is additionally added in [31] to fit the
multi-category datasets. These two works did not pay attention to
fine-grained details. To solve this problem, recent works proposed
various methods. Pang et al. [26] introduced a generative task to
make the embedding feature space more sensitive towards fine-
grained details. In [40], an attention mechanism was introduced
to make the model pay more attention to fine-grained details. A
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mixed modal jigsaw puzzle pre-training task is proposed in [27] to
extract more effective features for FG-SBIR. Sain et al. [30] studied
the hierarchical trait of sketches and learned a more discriminat-
ing feature by propagating across different detail levels. Although
these methods made progress in FG-SBIR, they all had one ques-
tion that all of them used global feature, which can not capture
enough fine-grained details. In this paper, our DLA-Net learns to
encode fine-grained details by dynamically aligning local features.

2.3 Global and local features in CNNs
Since the introduction of AlexNet [16] in 2012, CNNs have become
the main research method in the field of computer vision due to
their powerful representational capability. CNNs were first used
in image classification tasks, in which the abstract global feature is
more effective. Besides, many commonly used pre-trained models
are also pre-trained for classification tasks. So, it is common to uti-
lize global feature when using CNNs in other tasks. However, the
global feature extracted by fully connected layer or global average
pooling layer [20] loses the fine-grained information. This makes
the local features are more effective than global feature in fine-
grained related tasks, such as object detection [29], fine-grained
image classification [12] [21], and image retrieval [24] [5]. For FG-
SBIR, fine-grained details are also very important, but there is no
work that has attempted to utilize local features. Our DLA-Net
makes use of the local features and the outstanding performance
proves that the local features are more suitable for FG-SBIR.

3 LA-NET
Given the query sketches and gallery photos, most previous meth-
ods take the input image as a whole and used the Euclidean dis-
tance between global features as a similarity. These methods may
ignore many fine-grained details due to the use of the global fea-
ture. Different from them, we take images as an aggregate of fine-
grained details and considers FG-SBIR as the process of finding
sketch and photo matching pairs that share most fine-grained de-
tails. Following this assume, LA-Net is proposed. As shown in Fig-
ure 2, LA-Net first uses Local Feature Extractor to obtain the mid-
level local feature map and then directly align the local features in
Local Aligned Module.

3.1 Local Feature Extractor
Similar to previousworks, LA-Net also uses triplet networks.Mean-
while, considering the inter-domain differences, the sketch branch
and photo branch of LA-Net do not share parameters. Local Fea-
ture Extractor can take any CNNs as the backbone. In this paper,
we employ ResNet50 [8] as the backbone due to its competitive per-
formance and concise architecture. In order to obtain the local fea-
tures, GAP layer and the following layers are removed. It is worth
noting that we also remove the final convolution layer and use the
output feature map of conv3 layer. We do this to better encode fine-
grained details. It is widely studied in [20] [23] that the deeper layer
leads higher semantic level and a bigger receptive field. To encode
fine-grained details which usually exist in a relatively small area,
the mid-level local features with lower semantic level and smaller
receptive field are better. Formally, given a triplet (𝑆, 𝑃+, 𝑃−) as
input, in which 𝑆 represents query sketch, 𝑃+ represents positive

photo, 𝑃− represents negative photo. Local Feature Extractor will
output the mid-level feature map f ∈ R𝐶×𝐻×𝑊 , where [𝐻,𝑊 ] is
the spatial size and 𝐶 is the dimension of the feature map.

3.2 Local Aligned Module
Given the output of Local Feature Extractor, Local Aligned Module
first uses local L2 normalization to normalize the input mid-level
feature map. Normalizing image feature with L2 normalization is
a shared method in FG-SBIR because it can stabilize the training
process by restricting the embedding feature space to hypersphere.
However, simply normalizing the feature map will make the lo-
cal feature at every spatial location be polluted by others. Thus,
a local L2 normalization is proposed in LA-Net to normalize ev-
ery local feature independently. Specifically, given feature map
f ∈ R𝐶×𝐻×𝑊 , the local L2 normalization is defined as:

g(𝑥,𝑦) = f(𝑥,𝑦)
𝑚𝑎𝑥 (∥f(𝑥,𝑦)∥2, 𝜖)

(1)

∥f(𝑥,𝑦)∥2 =

√√√ 𝐶∑
𝑖=1

𝑓 2𝑖 (𝑥,𝑦) (2)

where 𝜖 is a small value to avoid division by zero.
Then, Local Aligned Module calculates the distance between

features of sketch and photo. It first calculates the local distance,
which is the euclidean distance between a pair of local features at
the same location on the feature map of sketch and photo. These
local distances are viewed as the similarity between the localized
areas of sketch and photo. For paired sketches and photos, there
should be more similar localized areas. It means the value of most
local distances should be small. We use 2-norm to calculate the
total distance because 2-norm tends to make every input element
small. Formally, the total distance between a sketch and a photo is
formulated as:

𝑑𝑖 (𝑆, 𝑃) =

√√√√ 𝐶∑
𝑗=1

[𝑔𝑠𝑗 (𝑥,𝑦) − 𝑔
𝑝
𝑗 (𝑥,𝑦)]2 (3)

𝐷 (𝑆, 𝑃) =

√√√𝐻×𝑊∑
𝑖=1

𝑑2𝑖 (𝑆, 𝑃) (4)

Finally, LA-Net is optimized using triplet loss, given a triplet
(𝑆, 𝑃+, 𝑃−) as input, triplet loss is defined as:

𝐿𝑡𝑟𝑖 =𝑚𝑎𝑥 (0,Δ + 𝐷 (𝑆, 𝑃+) − 𝐷 (𝑆, 𝑃−)) (5)
where Δ is the margin between paired features and unpaired fea-
tures.

4 DLA-NET
4.1 Limitation of LA-Net
Local distance in LA-Net is calculated on the same location of sketch
and photo, which means LA-Net assumes that there is a strict spa-
tial alignment between sketches and photos. If the sketch is well-
drawn, this assumption is reasonable. However, due to the abstrac-
tion of sketches, it is a common phenomenon to see spatial mis-
alignment between paired sketch and photo. As shown in Figure
3a, the buckle part of the sketch and photo are spatially misaligned.
This misalignment will puzzle the model and weaken the ability of
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Figure 2: Architecture of LA-Net.

(a)

(b)

Figure 3: (a) Visualization of the spatial misalignment be-
tween paired sketch and photo. The same color block rep-
resents the area that should be aligned. (b) Visualization of
the area local distance focus using guided backpropagation.

the model to learn discriminating local features. To further demon-
strate the effect of spatial misalignment, we also make a visualiza-
tion to visualize the area that local distance focuses on. Specifi-
cally, we utilize guided backpropagation [34] on one of the local
distances of the paired sketch and photo.The visualization result is

𝒅𝒅𝟏𝟏𝟏𝟏 𝒅𝒅𝟏𝟏𝟐𝟐 𝒅𝒅𝟏𝟏𝒏𝒏𝒅𝒅𝟏𝟏𝒏𝒏−𝟏𝟏……

…
…

𝒅𝒅𝒏𝒏𝟏𝟏 𝒅𝒅𝒏𝒏𝟐𝟐 𝒅𝒅𝒏𝒏𝒏𝒏𝒅𝒅𝒏𝒏𝒏𝒏−𝟏𝟏……

𝑑𝑑1
min

𝑑𝑑𝑛𝑛
min

• 2
calculate 
distance

Figure 4: Illustration of dynamic alignment mechanism. Lo-
cal features of sketch slide over the whole feature map of
photo and calculate local distances. The minimum local dis-
tances of every local feature of sketch are summed up using
2-norm to obtain the total distance.

shown in Figure 3b. It can be observed that the area LA-Net focuses
on is semantically mismatch when there is a spatial misalignment.

4.2 Dynamic Alignment Mechanism
To solve the spatial misalignment, we improve Local Aligned Mod-
ule and get a new model named Dynamic Local Aligned Network
(DLA-Network). A dynamic alignment mechanism that is similar
to convolution operation is introduced. As shown in Figure 4, ev-
ery local feature of sketch slides over the whole feature map of
photo and dynamically chooses the aligned local feature depend-
ing on different photos. This mechanism makes the sketch interact
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with the photo, which is consistent with human behavior. When
performing FG-SBIR task, people always switch between sketches
and photos to find the matching and unmatching areas. Sain et al.
[30] first introduced cross-modal interaction in FG-SBIR. However,
the sketch and photo features are merged in their cross-modal in-
teraction. We think it is unreasonable to merge the two features
that need to be compared later. So our DLA-Net only finds the
aligned local feature instead of merging sketch and photo features.
Specifically, the difference between LA-Net and DLA-Net is the cal-
culation method of local distance. New local distance is changed as
below:

𝑑𝑘𝑖 (𝑆, 𝑃) =

√√√√ 𝐶∑
𝑗=1

[𝑔𝑠𝑗 (𝑥,𝑦) − 𝑔
𝑝
𝑗 (𝑥𝑘 , 𝑦𝑘 )]2 (6)

𝑑𝑖 (𝑆, 𝑃) =𝑚𝑖𝑛(𝑑1𝑖 (𝑆, 𝑃), 𝑑
2
𝑖 (𝑆, 𝑃), · · · , 𝑑

𝑊 ×𝐻
𝑖 (𝑆, 𝑃)) (7)

5 EXPERIMENTS
5.1 Datasets and Settings
Three datasets are used in our experiments:

• QMULFG-SBIR dataset consists of three subdataset, namely
QMUL-Shoe-v1,QMUL-Chair-v1,QMUL-Shoe-v2.There
are 419 and 297 sketch-photo pairs in QMUL-Shoe-v1 and
QMUL-Chair-v1, respectively. 304 and 200 pairs are used to
train and rest to test as mentioned in [39]. QMUL-Shoe-v2
is an extended version of QMUL-Shoe-v1. The number of
photos is extended to 2000. Each photo has three or more
hand-drawn sketches lead to 6730 sketches in total. We fol-
low the split in [40], which uses 1800 pairs to train and rest
to test.

• QMULHandbag datasetwas introduced in [33].This dataset
is similar to QMUL-Shoe-v1 and QMUL-Chair-v1. It con-
tains 568 sketch-photo pairs.The split is consistent with [33]
which uses 400 pairs to train and rest to test. We also do not
use the human triplet annotations in this dataset.

• Sketchy dataset is the largest SBIR dataset. It is a multi-
category dataset, which contains 74,425 sketches and 12,500
gallery photos spanning 125 categories. Each category has
100 photos and 5 or more corresponding sketches for each
photo. There are 10 pairs in each category to test and the
rest to train. This split is as same as [31].

Evaluation Metric. The goal of FG-SBIR is to find the matching
photo. To evaluate the retrieval accuracy, acc.@1 is commonly used
in previousmethods.Thismetric is the percentage of sketcheswhose
top-1 retrieval result is the true-match photo. We also use this met-
ric. Multi-view testing is a commonly used testing strategy in pre-
vious methods [39] [33] [40]. TC-Net [19] has proven this strategy
can boost somemethodswith the computational burden increasing
in the testing stage. Considering the large computational burden,
we do not use the multi-view testing strategy.

5.2 Implementation Details
Training.Ourmethod is implemented on the Pytorch platform. As
mentioned in Section 3.1, we employ ImageNet pre-trained ResNet50
model as the backbone feature extractor and remove the layers af-
ter conv3 layer (For Sketchy dataset, these layers are reserved to

(a)

(b)

Figure 5: Visualization of the area that local distance focus.
(a) Visualization of LA-Net. (b) Visualization of DLA-Net.

complete classification task as [31]). The sketch branch and photo
branch do not share parameters and the shape of output feature
map is 1024 × 16 × 16. The margin Δ in Eq. 5 is set to 0.1. Vanilla
triplet loss is hard to optimize, we use the batch all triplet loss [4]
when implementing the model. We set the batch size to 32 and
train the model using Adam [15] optimiser. The model is trained
for 100 epochs with learning rate are set as 0.0001 and 0.00001
for QMUL datasets and Sketchy dataset, respectively. Besides, for
Sketchy dataset, the weight of triplet loss and classification loss is
set to 48 and 1, respectively.
Data Processing. There are two views on whether to use edge
map. TripletSN [39] and DSSA [33] convert photo to edge map to
narrow the domain gap, while Sketchy [31] and TC-Net [19] do not
use edge map, due to the fact it is expensive and unstable to train
the network by edge maps. We follow the latter to use the original
photos. The input sketches and photos are first resized to 288×288
and then are randomly cropped to 256×256. It is worth noting that
we do not use random horizontal flip to augment datasets because
we hold the view that FG-SBIR should have pose sensitivity.

5.3 Competitors
Deep learning methods are proven to be better than hand-crafted
methods in [19] [40]. Thus, we only compare our model with deep
learningmethods.The competitors are split into two groups: (1)Base-
lines: TripletSN [39] uses Sketch-a-Net [41] as feature extractor
and optimized the model using triplet loss. Sketchy [31] is simi-
lar to TripletSN except that it uses GoogLeNet [35] as backbone
and adds a classification loss for Sketchy dataset. Triplet-ResNet
replaces the backbone of TripletSN with ResNet50. We compare
with this baseline to eliminate the effect of different backbones. (2)
Benchmarks:DSSA [33] improves TripletSN using attention mech-
anism and higher-order energy function. CGL [26] adds a gener-
ative task to preserve all the domain invariant information that
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Table 1: Comparative results on FG-SBIR specific datasets.

Method QMUL-Shoe-v1 QMUL-Chair-v1 QMUL-Handbag QMUL-Shoe-v2 Sketchy

Baselines
TripletSN [39] 52.17% 72.16% 39.90% 30.93% 36.72%
Sketchy [31] - - - - 37.10%
Triplet-ResNet 28.70% 62.89% 37.39% 35.89% 40.91%

Benchmarks

DSSA [33] 61.74% 81.44% 49.40% - -
CGL [26] - - - - 50.14%
DSM [28] 54.80% 85.60% 51.20% - -

CMHM [30] - - - 36.27% -
SMJP [27] 56.52% 85.98% 62.97% 36.52% 53.45%
TC-Net [19] 63.48% 95.88% - 40.02% 40.81%

Ours LA-Net 57.39% 93.81% 56.52% 42.34% 43.13%
DLA-Net 79.13% 98.97% 69.57% 50.15% 54.92%
Human 76.52% 94.85% 50% 49.50% 54.27%

Table 2: Comparison of using different level local features.

Method QMUL-Shoe-v1 QMUL-Chair-v1 QMUL-Handbag QMUL-Shoe-v2 Sketchy
Triplet-ResNet 28.70% 62.89% 37.39% 35.89% 40.91%

LA-Net 57.39% 93.81% 56.52% 42.34% 43.13%
LA-Net-high 41.74% 86.60% 48.70% 41.29% 50.41%
DLA-Net 79.13% 98.97% 69.57% 50.15% 54.92%

DLA-Net-high 41.74% 78.35% 46.09% 42.94% 49.54%

Table 3: Comparison of different normalization strategy.

Method QMUL-Shoe-v1 QMUL-Chair-v1 QMUL-Handbag QMUL-Shoe-v2 Sketchy
LA-Net (global L2) 55.65% 93.81% 51.30% 37.54% 42.64%
LA-Net (w/o L2) 56.52% 92.78% 52.17% 42.19% 38.87%

LA-Net 57.39% 93.81% 56.52% 42.34% 43.13%
DLA-Net (global L2) 54.78% 98.97% 62.61% 43.39% 53.70%
DLA-Net (w/o L2) 66.09% 97.94% 66.09% 48.50% 53.39%

DLA-Net 79.13% 98.97% 69.57% 50.15% 54.92%

is useful for cross-domain reconstruction. DSM [28] cast shape
matching as metric learning with CNNs. It first turned images into
edge maps and then utilized CNNs to extract image descriptors.
CMHM [30] extracts features by parsing the hierarchy of sketches
and reinforces features via cross-modal interaction. TC-Net [19]
uses DenseNet-169 [11] as backbone and introduces auxiliary clas-
sification loss to facilitate the network. SMJP [27] usesmixed-modal
jigsaw puzzle to replace the ImageNet pre-train procedure, which
can producemore suitable feature for FG-SBIR.Human baselines
are also very important baselines. We report human baselines to
prove the effectiveness of our DLA-Net. The human baselines of
QMUL FG-SBIR dataset and QMUL Handbag dataset are reported
in [40], while the human baseline of Sketchy is reported in [31].

5.4 Performance Analysis
The comparative results are shown in Table 1. We make the follow-
ing observations:

LA-Net is a new strong baseline. Comparing with the pre-
vious baselines—TripletSN and Sketchy, LA-Net obtains the best

retrieval accuracy on all datasets. It is worth noting that even with
the use of multi-view testing and complex pre-training, TripletSN
is also surpassed by LA-Net. LA-Net only makes a slight modifi-
cation on TripletSN and is trained without bells and whistles. We
hope it will serve as a strong baseline for FG-SBIR.

Local features are more suitable for FG-SBIR. We compare
LA-Net with Triplet-ResNet, which is similar to LA-Net except uti-
lizing the global feature. LA-Net outperforms Triplet-ResNet by a
remarkable margin on all datasets. This demonstrates that the dis-
criminating ability of local features is stronger than the global fea-
ture. Thereby, local features are more suitable for FG-SBIR.

Dynamic alignment mechanism improves LA-Net signifi-
cantly. Although LA-Net already gains a relatively high retrieval
accuracy, DLA-Net also gains a significant improvement on LA-
Net. As mentioned in Section 4, dynamic alignment mechanism is
proposed to solve the problem of spatial misalignment. To demon-
strate this, we visualizewhere the local distance focus using guided
backpropagation [34]. The visualization results are shown in Fig-
ure 5. It can be observed that LA-Net focuses on the areas which
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Figure 6: Impact of different range of dynamic alignment.
These variants are tested on QMUL-Shoe-v2 dataset and
Sketchy dataset.The range of 16 means sliding over the
whole feature map.

are located at the same location of paired sketch and photo, while
DLA-Net focuses on the areas that have the same semantics. This
demonstrates dynamic alignment mechanism can effectively solve
the problem of spatial misalignment, which is the key to the im-
provement of DLA-Net.

Comparison with benchmarks. Comparing with the previ-
ous benchmarks, DLA-Net surpasses all previous models. More im-
portantly, DLA-Net beats humans on all datasets for the first time.
This further demonstrates the effectiveness of DLA-Net.

5.5 Ablation Study
In this section, we compare LA-Net and DLA-Net with several vari-
ants to validate some key design choices.

Thebenefit ofmid-level local features.Asmentioned in Sec-
tion 3.1, LA-Net uses the mid-level local features instead of the
high-level local features, because we take the attitude that mid-
level local features are more suitable to encode fine-grained de-
tails. To verify the validity of mid-level local features, we com-
pare Triplet-ResNet, LA-Net, and DLA-Net with LA-Net-high and
DLA-Net-high.These two variants use the high-level local features
which are the output of the conv4 layer of ResNet50. The result is
shown in Table 2.Wemake the following observations: (1) Both LA-
Net and LA-Net-high perform better than Triplet-ResNet, which in-
dicates local features are more discriminating in FG-SBIR. (2) Com-
paring with mid-level local features, high-level local features have
a bad effect on both models except LA-Net on Sketchy dataset.This
demonstrates that the mid-level local features are more beneficial
to FG-SBIR than high-level local features. For the exceptions on
Sketchy dataset, the more severe spatial misalignment of Sketchy
dataset may be the cause. As the CNNs going deeper, receptive
field will become bigger, which is beneficial for spatial misalign-
ment. Besides, comparing with QMUL FG-SBIR and QMUL Hand-
bag in which photos only have white background, Sketchy pho-
tos have complicated background. This leads to considerable noise.
High-level feature can effectively eliminate this noise, which also

Table 4: Comparative results on CC-FG-SBIR

Method acc.@1
Triplet-ResNet50 12.68%

[25] 22.60%
LA-Net 20.00%
DLA-Net 27.41%

makes LA-Net-high performs better than LA-Net. (3) Comparing
the results of LA-Net-high and DLA-Net-high, it is clear to see that
dynamic alignmentmechanism have a tiny or even bad effect when
using high-level local features. This means the mid-level local fea-
tures are necessary for dynamic alignment mechanism.

The benefit of local L2 normalization. We compare local L2
normalization with two different normalization strategies—global
L2 normalization and without L2 normalization. Global L2 normal-
ization normalizes all local features and without L2 normalization
simply abandons normalization.These two different normalization
strategies are tested on LA-Net and DLA-Net. Table 3 suggests
global L2 normalization and without L2 normalization performs
differently on different datasets, but they all worse than local L2
normalization. This indicates local L2 normalization is vital for FG-
SBIR.

The area size of dynamic alignment. Dynamic alignment
mechanism solve the question of spatial misalignment by dynami-
cally choosing aligned local feature.The area size of dynamic align-
ment determines the ability of DLA-Net to solve this question. We
test different area sizes of dynamic alignment on QMUL-Shoe-v2
dataset and Sketchy dataset. Figure 6 shows the retrieval accuracy
improves as the area size increases until reaching the size of 9. Af-
ter that, DLA-Net reaches a stable performance. This result is rea-
sonable because the spatial misalignment only exists in a relatively
small area in FG-SBIR. It means we do not need to slide over the
whole photo feature map. However, when implementing dynamic
alignment mechanism using a small area size, a selective mask is
needed which will reduce computing efficiency. Thus, we set the
area size of dynamic alignment to 16 in DLA-Net.

5.6 Qualitative Visualization
Figure 7 shows some retrieved results on QMUL-Shoe-v2 dataset
using Triplet-ResNet, LA-Net, andDLA-Net, respectively. From the
first row, we can observe that LA-Net, and DLA-Net focus more on
fine-grained details and are sensitive to the location of details. This
further demonstrates local features are more suitable for FG-SBIR.
The second row shows the case that query sketches are more ab-
stract.These results show LA-Net is unable to copewith the serious
abstract sketches, while DLA-Net can retrieval the correct results.
This indicates the dynamic alignment mechanism is good at tack-
ling the abstraction of sketch.

To further demonstrate the ability of DLA-Net to solve the ab-
straction of sketch, we also make a visualization to find the aligned
area of paired sketch and photo. Note that we only visualize the dis-
criminative areas as shown in Figure 8. These results show DLA-
Net is able to find the correct local area by using dynamic align-
ment mechanism.
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Figure 7: Visualization of the retrieved results on QMUL-Shoe-v2 dataset for different models, the correct results are marked
with green boxes.

Figure 8: Visualization of the aligned area learned by DLA-
Net.

6 FURTHER ANALYSIS
Due to the fact that sketches are difficult to obtain, cross-category
fine-grained sketch-based image retrieval (CC-FG-SBIR) is proposed
in recent years [27] [25]. We note that these methods also used the
global feature. The global feature is of high semantic level which
leads it is unfavorable for CC-FG-SBIR. While, mid-level local fea-
tures focus more on fine-grained details, which are likely to be
shared by other categories. This makes it may be more suitable for
CC-FG-SBIR.Thus, we validate the generalization capability of our
LA-Net and DLA-Net. We perform experiment on Sketchy dataset.
Following the same data split as [25], we split Sketchy dataset into
104 train and 21 test categories, in which the test categories are not
present in ImageNet-1K.The training epoch is also set to 20 as same
as [25]. Comparative results are shown in Table 4. It is clear to see
LA-Net and DLA-Net perform better than Triplet-ResNet50. Fur-
thermore, our DLA-Net surpasses the model specifically designed
for CC-FG-SBIR. This indicates DLA-Net has powerful generaliz-
ing capability.

To evaluate the computational complexity of DLA-Net, we con-
duct an additional experiment. On theQMUL-Shoe-v2 dataset, Triplet-
ResNet50 needs 32s and 3s per epoch for train and test, respectively.
LA-Net needs 28s and 5s, while DLA-Net needs 33s and 7s. It can

be seen that the computational complexity of DLA-Net is higher
than others because the sketch interacts with photos. However,
comparing with the significant improvement in retrieval accuracy,
this cost is relatively small and acceptable. We will focus on the
question of computational complexity in future work.

7 CONCLUSION
This paper demonstrates the local features are more discriminating
in FG-SBIR and explores an effective way to utilize local features.
Firstly, we propose a new strong baseline for FG-SBIR named LA-
Net. LA-Net takes the image as an aggregate of fine-grained details
and directly aligns the mid-level local features. With a simple ar-
chitecture, LA-Net can surpass all previous baselines. This proves
local features, especially the mid-level local features are more suit-
able for FG-SBIR.Then, we note that directly aligning local features
can not solve the question of spatial misalignment. Thus, we pro-
pose DLA-Net which introduces a dynamic alignment mechanism
into LA-Net. DLA-Net achieves the best performance and even
beats humans on three FG-SBIR specific datasets, which demon-
strates dynamic alignment mechanism is an effective way to uti-
lize local features. Besides, we also find DLA-Net performs best on
CC-FG-SBIR, which further proves the effectiveness of DLA-Net.
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