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Abstract
Current studies on video trajectory retrieval focus on the 
retrieval and analysis of image content, neglecting the gap 
between the spatiotemporal continuity of retrieval condi-
tions and the spatiotemporal discontinuity of multi-camera 
video trajectories. In this study, we propose a method for 
the spatiotemporal retrieval of dynamic video object trajec-
tories in geographic scenes. Based on the camera calibra-
tion, the proposed method organizes the scene, cameras, 
and trajectories, constructs the spatiotemporal constraints, 
and queries the trajectories using two measures: camera-
by-camera retrieval and global trajectory retrieval. The 
proposed method was verified through experiments, and 
the results demonstrate that both measures can query tra-
jectories effectively and reduce the spatiotemporal video 
review range under different spatiotemporal constraints. 
Furthermore, compared with camera-by-camera retrieval, 
global trajectory retrieval can reduce the spatiotemporal 
video review range further and return more accurate results. 
The proposed method may provide support for the spatial 
analysis and understanding of surveillance video data.
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1  | INTRODUC TION

Surveillance videos can provide information on the temporal series motion behavior of dynamic objects (such as 
pedestrians and vehicles) in a geographical scene and describe their motion trajectories. A trajectory is an ab-
stract generalization of the active route of a dynamic object, which includes various spatiotemporal information, 
such as the location and direction. Unlike video image retrieval, which returns a specific set of images (Chiang 
& Yang, 2015; Yan & Hsu, 2009), video trajectory retrieval returns a specific set of dynamic object trajectories 
(Deng, Gunda, Rasheed, & Haering, 2012; Xiu, Gao, Liang, Qi, & Peng, 2018). Trajectory retrieval can improve the 
efficiency of query and analysis of video objects and allow the determination of information required for specific 
applications. Trajectory retrieval has attracted considerable attention for spatiotemporal data management and 
analysis (Wu et al., 2018).

Studies on video trajectory have mainly focused on image content-based retrieval (Ghuge, Ruikar, & Prakash, 
2018a, 2018b). As the camera fields of view space are not spatially connected, there comes a gap between spa-
tiotemporal continuity of retrieval conditions and the spatiotemporal discontinuity of multi-camera video trajec-
tories. And the gap is neglected by current studies. Nevertheless, through the integration of video and geographic 
information, the spatially integrated querying of multi-camera video images has been performed using video GIS 
(Han, Cui, Kong, Qin, & Fu, 2016; Lewis, Fotheringham, & Winstanley, 2011; Milosavljević, Dimitrijević, & Rančić, 
2010; Milosavljević, Rančić, Dimitrijević, Predić, & Mihajlović, 2016). There is an urgent need to develop a spatially 
integrated retrieval method for multi-camera video object trajectories in geographic scenes to obtain sets of cor-
responding cameras, videos, and trajectories of interest.

Based on a unified geographic framework, in this study we investigate the spatial retrieval of multi-camera 
video trajectories and propose a method for the spatiotemporal retrieval of dynamic video object trajectories in 
a geographical scene. Based on camera calibration, this method organizes the geographical scene, cameras, and 
dynamic object trajectories spatiotemporally, constructs spatiotemporal constraints for querying the trajecto-
ries, associates fewer video frames with the trajectories, and reduces the spatiotemporal video reviewing range. 
Because users who only know some of the motion characteristics of dynamic objects usually need to construct 
different retrieval methods under various conditions (Lie & Hsiao, 2002), this method establishes retrieval condi-
tions according to the two aspects of spatial and temporal constraints. Because the trajectory of a video object 
includes camera and scene relevance, when users retrieve the trajectory, they can either first query the associated 
cameras and then query the trajectories through the cameras, or query the trajectories directly in the geograph-
ical scene. Accordingly, we report two methods for querying trajectories: camera-by-camera retrieval and global 
trajectory retrieval (see Section 3.1 for details).

The remainder of this article is organized as follows. In Section 2, we report a retrospective analysis of the 
research status. In Section 3, we describe the process and technical details of the proposed method for the spatio-
temporal retrieval of dynamic video object trajectories. In Section 4, we present the experimental analysis of the 
trajectory retrieval performance. Finally, in Section 5, we outline several conclusions of this study.

2  | REL ATED WORK

Methods for the spatiotemporal retrieval of dynamic video objects in a geographical scene typically involve three 
main tasks: data organization of the video and geographical scene; video retrieval in the geographical scene; and 
retrieval of dynamic video objects. This section summarizes the research status according to these tasks.

The data organization of a video and geographical scene involves the integrated organization analysis of the 
video and geospatial data, which is realized based on the camera spatialization model. Typical camera spatializa-
tion models are the quadrilateral model of a 2D plane (Walton, Berger, Ebert, & Chen, 2014), the pyramid model 
in a 3D scene (Du, Bista, & Varshney, 2016), and the coverage analysis model based on camera grids (Wang, Liu, 
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Zhang, & Wang, 2017). Based on the concepts of multimedia GIS (Charou, Kabassi, Martinis, & Stefouli, 2010), 
geographic video (geo-video) (McDermid, Franklin, & LeDrew, 2005), and video GIS (Navarrete & Blat, 2002), 
data organization methods such as metadata description (Han, Kong, Qin, & Wang, 2013) and global positioning 
system (GPS) association (Feng & Song, 2014) were constructed in early research. These methods could perform 
the geographic retrieval and display video images by describing the corresponding relationship between the 
video frames and geographical locations. In recent years, greater attention has been paid to the fusion orga-
nization of the video content and geographical scene, and several data fusion organization methods for videos 
and geographical scenes based on camera spatial models have been developed. These include one class as an 
R-tree index based on the visual field (Wu et al., 2015), the determination of camera-by-camera topological 
relationships (Cho, Park, Kim, Lee, & Yoon, 2017), and the analysis of the field of view of the camera. Another 
method realizes the organization of multi-camera video data by associating factors such as the moving object’s 
texture (Jian, Liao, Fan, & Xue, 2017), spatiotemporal behavior (Loy, Xiang, & Gong, 2010), and semantic aspects 
(Mehboob et al., 2017).

The purpose of video retrieval in a geographical scene is to identify video images by means of geospatial con-
straints. The video data are divided into static and dynamic data according to whether the camera position and 
posture change during shooting. For dynamic video data, Han et al. (2016) focused on the geographical location 
of each image frame of a motion video and analyzed the shooting range of the video image to perform video 
image retrieval. On this basis, Konda, Conci, and De Natale (2016) and Wang et al. (2017) optimized the image se-
quences and improved the video image retrieval efficiency by analyzing the image features and camera posture. 
For the retrieval of static video data, Milosavljević et al. (2016) studied cameras with fixed shooting positions 
and retrieved video information in different temporal periods and shooting areas by locating the field of view 
of the camera. To consider and analyze the spatial constraints between cameras in the video retrieval process 
effectively, Wu et al. (2015) proposed an event-based geo-video hierarchical model to realize the retrieval and 
querying of multiple camera video events. On this basis, Xie et al. (2015) developed a multi-level semantic model 
to describe the dynamic information in multi-channel videos in a geographical scene, which improved the video 
retrieval efficiency.

In the retrieval of dynamic video objects, suitable dynamic objects are selected by matching the description 
features within the existing samples. In a study on the feature selection of dynamic object descriptions, Tian 
et al. (2009) defined the general search features of a dynamic object using eight categories: color, type, size, 
geometry, motion, position, occurrence time, and duration. Subsequently, Chiang and Yang (2015) simplified the 
search features as the object dynamic type and color, improving the retrieval efficiency. Lee, Park, and Yoo (2013) 
integrated the features of multi-video dynamic objects into a cube model and analyzed the object features using 
the cube. Chamasemani, Affendy, Mustapha, and Khalid (2015) defined the retrieval mode of the dynamic object 
as the search for specific objects or certain object types. Leone (2012) performed hierarchical distinction of the 
retrieval complexities of dynamic objects by defining three input modes of the retrieved spatiotemporal infor-
mation: motion behavior, motion flow, and multiple motion. Regarding specific retrieval methods for the trajec-
tory characteristics of video objects, considering the spatiotemporal correlation between the tracks of dynamic 
objects captured by different cameras, Calderara, Cucchiara, and Prati (2006) studied methods for retrieving 
multi-camera dynamic video objects with overlapping shooting areas. They obtained these methods through the 
fusion analysis of the spatiotemporal characteristics of the dynamic objects to reduce the search scope and obtain 
more accurate retrieval results. Deng et al. (2010) achieved the analysis and retrieval of the spatiotemporal behav-
ior of dynamic video objects and geospatial information. Kim et al. (2014) and Panta, Qodseya, Péninou, and Sedes 
(2018) achieved dynamic video object retrieval based on the geographical area, direction, keywords, and time by 
collecting the geospatial information of the cameras. In further research, Deng et al. (2012) and Xiu et al. (2018) 
added the trajectory of a dynamic video object into a spatial database. They retrieved and expressed the dynamic 
video object in a specific geographical area efficiently by using spatial analysis methods, including coordinate 
transformation, abstract expression, and vectorization.
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3  | SPATIOTEMPOR AL RETRIE VAL OF VIDEO OBJEC T TR A JEC TORIES

In this section, we first introduce a method for the organization of data for the determination of a video object 
trajectory in a geographical scene, which is the basis of spatiotemporal retrieval. Then, we explain the construc-
tion of the retrieval conditions from the spatial and temporal constraints and present the matching model of track 
samples and retrieval conditions. Finally, we describe two search methods: camera-by-camera retrieval and global 
retrieval.

3.1 | Video data organization of moving object trajectories

Prior to the organization of the trajectory data, the video image needs to be preprocessed as follows. An 
object detection algorithm based on computer vision is used to detect the dynamic objects, mark their loca-
tion, and perform sub-image extraction (He, Gkioxari, Dollár, & Girshick, 2017), and a tracking algorithm is 
employed to track dynamic objects and generate trajectories (Lukezic, Vojir, Cehovin Zajc, Matas, & Kristan, 
2017). Based on the camera calibration results, an image geospatial mapping model (Du et al., 2016) is con-
structed to locate each frame of the dynamic object sub-graph captured from the original video in the geo-
graphical space and determine the instantaneous location of the dynamic object in the individual frames. 
In the field of view of each camera, the temporal combination of all instantaneous spatial positions of the 
dynamic object is the local trajectory of the object in the current camera. Because the camera shooting area 
in the geographical space is discontinuous, an existing dynamic object re-identification algorithm is used for 
cross-camera re-identification. The same moving object is continuously positioned with multiple cameras to 
obtain the global trajectory of the dynamic video object in multiple fields of view of the camera (as illustrated 
in Figure 1).

Denoting the number of dynamic objects in the kth field of view of the camera as Nk and the local trajectory of 
each dynamic object in the camera shooting range as Ck,i, the total set of all dynamic objects in the geographical 
scene Obj can be expressed as follows:

where Ik,i,j and Pk,i,j represent the i th dynamic object in the kth camera and jth video frame in the geographical 
space location, respectively. It should be noted that the same dynamic object may appear in different fields of 
view of the camera. Therefore, to demonstrate the cross-camera association of the dynamic object, we express 
the global trajectory of each dynamic object in the geographical scene Cubei as follows:

where Lo is the total number of dynamic objects in the geographical scene, Cubei represents the global trajectory 
of the i th dynamic object in the geographical scene, and Ck1,i ,Ck2,i ,… ,Cko,i is the local trajectory of k1, k2,… , ko in 
the camera.

(1)Obj=
{
Ck,i (k=1,2, … , L)

(
i=1,2, … ,Nk

)}

(2)Ck,i =
{
Pk,i,j (j=1,2, … , n)

}

(3)Cubei =
{
Ck1,i ,Ck2,i , … ,Cko,i ,…(k1, k2,… ,ko)∈ (1, 2,… , L)

}

(4)Obj=
{
Cubei

(
i=1, 2,… , Lo

)} (
Lo≤L

)
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3.2 | Spatiotemporal constraints and matching model

3.2.1 | Spatial constraints

During the spatial retrieval process, users can draw lines or planes geometrically to determine the trajectories 
that are similar to—or have inclusion relations with—the drawn geometric objects. Alternatively, they can re-
trieve trajectories with the same motion characteristics by describing the motion direction of the dynamic objects 
and spatial motion characteristics (e.g. those of the camera) by means of natural language description. In this  
section, we describe four types of spatially constrained trajectory retrieval modes: line, plane, motion direction, and  
camera path retrieval.

Line retrieval
Line retrieval is executed based on drawing the retrieval line segment as the retrieval condition and analyzing 
the similarity between the spatiotemporal trajectory and the retrieval line segment, which is a directed segment.

The upper curve in Figure 2 is a trajectory in which the circle point corresponds to the trajectory point of the 
dynamic object and the lower curve is the retrieval line segment; M and N represent the two ends of the retrieval 
segment, A and B are the closest points to M and N among the trajectory points of the current dynamic object, re-
spectively, and the dynamic object has moved from point A to point B. To determine whether the retrieval segment 
MN matches the dynamic object trajectory, it is necessary to consider the similarity degree between the trajectory 
line and the retrieval segment in terms of direction, length, and spatial distance. Based on the above analysis, the 
following three parameters were established to construct the matching model: the angle between the trajectory 
and retrieval lines, denoted by Angle; the ratio between the projection length of the trajectory line on the retrieval 
line and the retrieval line length, denoted as Rate; the deviation distance between the trajectory and the retrieval 
lines, denoted as Dis. The three parameters can be calculated as follows:

(5)Angle=arc cos
����⃗AB ⋅ �����⃗MN

|||����⃗AB
|||∗

||| �����⃗MN
|||

F I G U R E  1   Photographs of instantaneous position, local trajectory, and global trajectory of dynamic object
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where Angle is the angle between the vectors ����⃗AB and �����⃗MN;

where MQ is the projection from AB to the retrieval line segment MN, and Rate is the ratio of the length of line 
segment MQ to that of line segment MN;

where Di represents the distance from the trajectory point on trajectory section AB to the retrieval line segment, 
n represents the number of track points between A and B, and Dis represents the average distance from all trajec-
tory points between A and B to the retrieval line segment.

Based on the above parameters, the specific matching algorithm proceeds as follows: the trajectory points 
of all dynamic objects are traversed, and the information of the two closest points at both ends of the retrieval 
line segment corresponding to each dynamic object is marked (ID, track coordinate, and frame number of the 
dynamic object). Then, it is determined whether Angle, the vector of the retrieval line segment, and Rate meet 
certain threshold values. The trajectory group to be matched is traversed, and Dis is calculated. If Dis satisfies the 
predefined threshold condition, the trajectory and retrieval line are successfully matched.

Plane retrieval
By drawing a closed convex polygon as the retrieval plane and analyzing the topological relationship (intersec-
tion and separation) between the dynamic object trajectory and polygon, trajectories meeting the conditions are 
obtained as the retrieval results. The specific matching algorithm is illustrated in Figure 3. The current retrieval 
plane is denoted by Rec, and for each trajectory Ck,i, it is determined whether each trajectory point Pk,i,j is in Rec. If a 
point exists in Rec (as indicated in the figure by P1,1,4), the current trajectory (as indicated by C1,1) has an intersecting 
topological relationship with Rec. This demonstrates that the trajectory successfully matches the retrieval plane 
and the evaluation of the remaining trajectory points in the current dynamic object is terminated.

Motion direction retrieval
For motion direction retrieval, the geographic motion direction information described by natural language is used; 
for example, “from east to west” or “from northeast to southwest.” The description information is transformed 
into the spatial model, and the retrieval results are obtained by matching with the spatiotemporal dynamic object 
trajectory. In this study, the input was formatted into natural language as follows:

(6)Rate=
����⃗AB ⋅ �����⃗MQ

||| �����⃗MN
|||

∕
||| �����⃗MN

|||

(7)Dis=

(
n∑
i=1

Di

)/
n

(8)FromDirection1 ToDirection2

(9){Direction1,Direction2}={"East", "West", "North", "South"}

F I G U R E  2   Schematic of similarity calculation of trajectory and retrieval lines
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where Direction1 and Direction2 are regarded as dynamic object retrieval in the east–west and north–south di-
rections, if only east and west or north and south are taken, respectively. In other cases, these are regarded as 
dynamic object retrieval results in the "Obliquedirection" motion direction.

To obtain the values of Direction1 and Direction2, as illustrated in Figure 4, the line between the start and 
endpoints of the spatiotemporal trajectory of each dynamic object in the geographical space is calculated, and 
the tangent value tan � of the line and due east direction are obtained. The threshold value r00< r0<1 of the geo-
graphical direction description is provided. Evaluating the relationship between |tan �| and r0, 1∕r0:

Camera path retrieval
For each dynamic object trajectory, the camera path vector Oi in the geographical space is constructed and all non-
empty sub-vector sets Oi−s of Oi are provided. The relationship between Oi and Oi−s is as follows:

(10)Dir=

⎧
⎪⎪⎨⎪⎪⎩

{"North−southdirection"} ( �tan 𝛼�>1∕r0)

{"Obliquedirection"} (r0< �tan 𝛼�< r0)

{"East−westdirection"} ( �tan 𝛼�< r0)

(11)Oi ={(C1→C2→C3)}

(12)Oi−s = { (C1→C2→C3), (C1→C2), (C2→C3), (C1→C3)}

F I G U R E  3   Diagram of plane retrieval

F I G U R E  4   Schematic of dynamic object trajectory direction calculation
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where C1, C2, and C3 represent the camera identifiers. The camera path retrieval condition is denoted by OC. If OC is 
the same as any element in the camera path sub-vector set Oi−s for the current object, the current dynamic object 
trajectory and retrieval condition are matched successfully.

3.2.2 | Temporal constraints

In this approach, natural language is used to describe the retrieval time range and the temporal information of the 
natural language and match the dynamic object trajectories to obtain the retrieval results. Two types of temporal 
constraints exist: one to describe the time paragraph of the dynamic object (e.g., “appears from 16:10 to 16:20”) 
and the other to describe the speed of the dynamic object in the geographical space (e.g., “the average motion 
speed is higher than 2 m/s”). The temporal retrieval conditions are usually provided jointly with the abovemen-
tioned spatial retrieval conditions to form spatiotemporal constraints, thereby realizing spatiotemporal retrieval.

3.3 | Query for results

This section presents the detailed steps of the two query methods investigated in this study, namely, camera-
by-camera retrieval and global trajectory retrieval. The former involves selecting the camera that matches the 
retrieval conditions and then matching and querying the retrieval conditions with the video trajectories in each 
camera, while the latter involves directly matching and querying the retrieval conditions with the global video 
object trajectories in the geographical space.

3.3.1 | Camera-by-camera retrieval

Camera-by-camera retrieval involves analyzing the spatial relationship between the retrieval conditions and the 
fields of view of the camera, determining the cameras that meet the retrieval conditions and comparing the re-
trieval conditions with the local trajectories in each camera to match and return the results. The specific steps of 
camera-by-camera retrieval for the different spatiotemporal constraints are as follows.

For line retrieval, the spatial relationship between the retrieval line segment and the field of view of each 
camera is analyzed first: when the retrieval line segment intersects one or more camera fields, the corresponding 
camera is selected. The retrieval line segment is divided according to the intersection of the retrieval line segment 
and the field of view of the camera to obtain the sub-retrieval line segment corresponding to each camera (e.g., in 
Figure 5, �������⃗p1p2, �������⃗p3p4 , and �������⃗p5p6 correspond to the sub-retrieval line segments of cameras 1, 2, and 3, respectively). 
Thereafter, for each eligible camera, as described in Section 3.2.1, the line retrieval constraint parameters Angle,  
Rate, and Dis are set. The corresponding sub-retrieval line segment of each camera is compared with the local 
trajectory in the camera to determine whether each local trajectory in the field of view of the camera is similar to 
the corresponding sub-retrieval line segment.

For plane retrieval, the spatial relationship between the retrieval plane and each field of view of the camera 
has to be analyzed first: if the intersection of the retrieval plane and the field of view of the camera is not empty, 
the corresponding camera will be selected. Thereafter, for each eligible camera, as described in Section 3.2.1, it is 
determined whether the trajectory of each dynamic object in the camera matches the retrieval plane.

For motion direction retrieval, it is necessary to analyze the motion direction of the local trajectory in each 
camera, as follows: the entry and exit points of the dynamic object in the field of view of the camera are obtained, 
the direction parameter r0 is set, the motion direction Dir of the dynamic object is obtained, and it is determined 
whether it matches the retrieval conditions.
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For camera path retrieval, the camera path vector Oi needs to be decomposed for the camera set Ci (i = 1, 2,…) 
to be passed, which returns all dynamic objects in each camera separately.

Based on spatial retrieval, it is necessary to continue to filter the objects that meet the time constraints and 
to realize the spatiotemporal retrieval of the video object trajectory using camera-by-camera retrieval. For time 
segment retrieval, the retrieval time segment is set as ΔT. If the intersection of the current dynamic video object 
and time segment ΔT is not empty, the time constraint condition is met. For the average speed retrieval, it is possi-
ble to determine whether the time constrains are met by calculating the geospatial average speed of the dynamic 
object in the field of view of the camera and comparing it with the retrieval conditions.

3.3.2 | Global trajectory retrieval

In global trajectory retrieval, the relevant characteristics of the global trajectory are first determined for compari-
son according to the constraint type. Thereafter, the retrieval conditions are compared with the relevant features 
of the current global trajectory sequentially. Finally, the matching results are returned. The specific steps of the 
global trajectory retrieval for the different spatiotemporal constraints are as follows.

For line retrieval, as described in Section 3.2.1, the retrieval constraint parameters Angle, Rate, and Dis are set 
directly. The global trajectory of each dynamic object is matched with the retrieval line segment (ignoring the blind 
area between cameras).

For plane retrieval, as described in Section 3.2.1, the topological relationship between the global trajectory 
of each dynamic object and the retrieval plane is matched directly (ignoring the blind area between cameras), and 
the retrieval results are returned.

For motion direction retrieval, the relative positions of the entry and exit points of the trajectory in the entire 
geographical scene are analyzed for the global trajectory of each dynamic object, the direction parameters r0 are 
set, the motion direction Dir of the dynamic object is set, and it is determined whether it matches the retrieval 
conditions.

For camera path retrieval, the sequence Oi for the global trajectory of each dynamic object is obtained through 
the camera and compared with the retrieval condition OC. A non-empty subset in Oi that is identical to OC indicates 
that the current global trajectory matches the retrieval condition.

Based on spatial retrieval, the trajectory objects that meet the temporal constraints are continuously filtered 
to achieve the spatiotemporal retrieval of the global trajectory. For time section retrieval, the retrieval time sec-
tion is set as ΔT. The global trajectory Cubei of the current dynamic object is set as indicated in Equation (3). If 
the intersection of the occurrence time of any local trajectory Ck,i contained in the current dynamic object in its 

F I G U R E  5   Diagram of retrieval segment segmentation
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corresponding camera and retrieval time period ΔT is not empty, the current dynamic object meets the temporal 
constraint condition. For average speed retrieval, most dynamic objects exhibit cross-camera motion owing to 
the overlap and blind area between cameras. To calculate the average speed v of the dynamic objects effectively 
in the entire geospatial space, the following procedure is performed: (a) For the overlapped part of the field of 
view of the camera, only one trajectory in the camera is used, to avoid repeating calculations; and (b) For the blind 
area between cameras, it is necessary to deduce the blind area of the dynamic object trajectory: as illustrated in 
Figure 6, it is known that the field of view of camera 1 is in area A, that of camera 2 is in area B, and the current 
dynamic object local track C1,i is in area A, whereas the local track C2,i is in area B. If the dynamic object moves from 
area A to area B, a directed line segment is used to connect the final track point of the dynamic object leaving area 
A and the first track point entering area B. The time difference and Euclidean distance between the two points 
are calculated to obtain the camera blind area track C1−2,i. Finally, the global trajectory v of the current dynamic 
object is calculated by connecting the local trajectory and blind area deduction trajectory in the field of view of 
the camera and is matched with the retrieval conditions.

4  | E XPERIMENT AND ANALYSIS

To verify the effectiveness of the trajectory retrieval method proposed in this study, multi-camera videos cap-
tured in the same geographical scene were analyzed to compare the performance of camera-by-camera retrieval 
with those of global trajectory retrieval. Moreover, the accuracy of the retrieval results and the effect of reducing 
the spatiotemporal range of the video search were analyzed.

4.1 | Experimental data

In this study, we used open source experimental data provided by DukeMTMC (http://vision.cs.duke.edu/DukeM 
TMC/), which include video image data captured by eight adjacent cameras with fixed spatial position, as well as 
geographic location data and camera calibration parameters of all camera bodies and camera viewing areas (as 
indicated in Figure 7). The data also include more than 2,000 cross-camera dynamic object trajectories, which are 
marked by the image bounding box generated by automatic computer vision detection and tracking, along with 
manual annotation correction. In this experiment, we selected a 50-min video sequence from 4:25 to 5:15 from the 
original dataset as the experimental data. The experimental environment was as follows. Software: Windows 10, 

F I G U R E  6   Diagram of camera blind area trajectory deduction

http://vision.cs.duke.edu/DukeMTMC/
http://vision.cs.duke.edu/DukeMTMC/
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Anaconda 3 + Python 3.6 + Tensorflow 1.2, MATLAB 2017b, and Unity3d. Hardware: AMD Ryzen 5 2600 3.40 GHz 
six-core processor, 16.0 GB RAM, NVIDIA Geforce GTX 1060 3 GB. The following algorithms were employed for 
preprocessing and obtaining the video object trajectory: Mask R-CNN dynamic video object detection algorithm 
(He et al., 2017); CSRT tracking algorithm (Lukezic et al., 2017); an improved GAN-based method established by 
generating unlabeled samples (Zheng, Zheng, & Yang, 2017) as the cross-camera re-recognition algorithm.

4.2 | Experimental evaluation indices

To analyze the retrieval results effectively, the accuracy and recall rates were selected as the evaluation indices to 
analyze the spatiotemporal retrieval performance. The calculation formulae were as follows:

where m indicates whether the current calculation is for the temporal constraint tem or the spatial constraint spc, 
Npre,m is the number of correct trajectories obtained by the retrieval, Nser,m is the total number of retrieved trajec-
tories, and Ntol,m is the total number of trajectories that meet the retrieval conditions.

4.3 | Analysis of experimental results

In the experiment, the following spatial and temporal retrieval conditions (as indicated in Table 1) were implemented.

1. Spatial constraints: Cases 1 and 2 involved line retrieval. In the virtual geographical scene, the retrieval 
line was sketched manually, and the model parameters were set as follows: Angle=30, Rate=0.6, and 
Dis=5.0. Cases 3 and 4 involved plane retrieval, in which the retrieval plane was selected in the virtual 
geographical scene. Cases 5 and 6 involved direction retrieval, where the matching model parameters 
were r0=0.5. Cases 7 and 8 involved camera path retrieval.

(13)Prem=Npre,m∕Nser,m (m= tem, spc)

(14)Recm=Npre,m∕Ntol,m (m= tem, spc)

F I G U R E  7   Fields of view of the camera and video images
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2. Temporal constraints: Cases 1, 3, 5, and 7 involved time paragraph retrieval, and Cases 2, 4, 6, and 8 involved 
average speed retrieval with v<1.5 m∕s.

The numbers of trajectories and accuracies of the retrievals returned in these cases are summarized in Table 2. 
To facilitate the visual comparison of the number of trajectories returned by the retrieval, we divided each global 
trajectory into multiple local trajectories in the different fields of view of the camera for quantity statistics. The 
first and second columns in Table 2 list the total number of returned local trajectories retrieved by the global 
trajectory and camera-by-camera trajectory retrievals, respectively. As the global trajectory retrieval involved 
matching and analyzing the motion behavior of the moving object in the entire geographical scene with the re-
trieval conditions, the accuracy and recall rate of the returned results were 100%. However, the camera-by-cam-
era retrieval only entailed analyzing the local spatiotemporal motion of the moving object, and the results could 
differ from those in the entire scene; thus, generally, the camera-by-camera retrieval could not reach 100% accu-
racy and recall rate. The accuracies and recall rates of the camera-by-camera retrieval results relative to the spatial 
and temporal constraints are listed in the third to sixth columns of Table 2.

The results for Cases 1 and 2 demonstrate that false detection occurred under the spatial constraints when 
the local trajectory of the same dynamic object matched the retrieval line segment while the global trajectory did 

TA B L E  1   Spatiotemporal trajectory retrieval cases

Case Spatial constraint Time constraint

Case 1 Appears in 4:30–4:45

Case 2 v<1.5 m∕s

Case 3 Appears in 4:45–5:00

Case 4 v<1.5 m∕s

Case 5 “From southeast to northwest” Appears in 4:30–4:45

Case 6 “From east to west” v<1.5 m∕s

Case 7 Camera paths 1 and 2 Appears in 4:45–5:00

Case 8 Camera paths 1–5 v<1.5 m∕s
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not match. Moreover, missing detection occurred when the global trajectory matched the retrieval line segment 
while the local trajectory did not match. Under the temporal constraints, as the vanishing–appearing point line 
connection was generally used in the blind area extrapolation, the average speed of several dynamic objects was 
too high, resulting in false detection. The accuracy of the camera-by-camera retrieval was not high.

The results obtained in Cases 3 and 4 indicate that, under the spatial constraints, there was no differ-
ence between the results of the camera-by-camera plane retrieval and those of the global trajectory retrieval. 
Furthermore, no false detection or missing detection occurred, and the accuracy and recall rate were both 1. 
Under the temporal constraints, the average speed of several dynamic objects was overestimated owing to the 
blind area deduction. Consequently, the accuracy and recall rate of the camera-by-camera retrieval were high.

The results for Cases 5 and 6 demonstrate that, under the spatial and temporal constraints, the local trajectory 
of the same dynamic object matched with the direction constraints, but the global trajectory did not match, which 
could cause false detection. Moreover, the global trajectory of the same dynamic object matched with the direc-
tion constraints, but the local trajectory did not match, which could cause missing detection.

The results obtained in Cases 7 and 8 indicate that false detection could occur under the spatial constraints if 
the local trajectory of the dynamic object satisfied the path condition and the global trajectory was not satisfied; 
therefore, the accuracy of the spatial constraints was low. Furthermore, the global trajectory always matched the 
camera path and the local trajectory; thus, no missed detection occurred and the recall rate was 1.

The purposes of video trajectory retrieval are to improve the video review efficiency and assist users in un-
derstanding the dynamic changes in a geographical scene rapidly. To compare the effects of camera-by-camera 
retrieval and global trajectory retrieval on the reduction of the spatiotemporal video search range intuitively, we 

F I G U R E  8   Cases 1–8: number of associated video frames returned from trajectory retrieval results



464  |     XIE Et al.

converted the video trajectories into the associated video frames. By comparing the playing time of the video 
associated with the return trajectories of the two retrieval methods under the same spatiotemporal constraints, 
the effects of the two retrieval methods on the improvement of the video review efficiency were analyzed (as 
illustrated in Figure 8).

Figure 8 presents the original video durations for each camera (C1–C8) and the associated video durations of the 
two trajectory retrieval results in the eight cases. Among these, the blue, red, and yellow columns represent the orig-
inal video durations, video durations with camera-by-camera trajectory retrieval, and video durations with global tra-
jectory retrieval, respectively. The experimental results demonstrate that, under different spatiotemporal constraints, 
both the camera-by-camera retrieval and global trajectory retrieval could reduce the spatiotemporal range of the 
video search. Thus, not only could the video time required by each camera be reduced, but also the viewing of video 
content from several cameras in space could be omitted. Moreover, compared to camera-by-camera retrieval, global 
trajectory retrieval could return more accurate trajectories, and in most cases, it could reduce the reviewing time fur-
ther. However, it should be noted that global trajectory generation requires re-recognition of moving objects across 
cameras, which is influenced by factors such as the camera shooting angles, lighting conditions, weather changes, 
occlusions, and image resolutions, resulting in high computational complexity, low efficiency, insufficient accuracy, and 
low real-time performance of the recognition results (Bedagkar-Gala & Shah, 2014; Leng, Ye, & Tian, 2019). Therefore, 
although the video spatiotemporal range associated with the global trajectory retrieval results was small and the accu-
racy was high, it was difficult to obtain the real-time and accurate global trajectory of dynamic video objects. However, 
camera-by-camera retrieval does not require the re-identification of the video moving objects because the local trajec-
tory is easy to obtain, and its accuracy and real-time capability are strong, reflecting its practical value.

F I G U R E  8   Continued
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It should be noted that our spatiotemporal retrieval method has some drawbacks. First, the dynamic video 
objects should be correctly extracted before they are retrieved. Second, the fields of view of the cameras should 
be close to each other for the effective implementation of trajectory deduction with camera blind areas. Finally, 
the dynamic video objects occurring in different cameras should appear continuously in time.

5  | CONCLUSIONS

We developed a spatiotemporal retrieval method for dynamic video object trajectory in a geographical scene to 
realize the spatial querying of video trajectories. In this method, the retrieval conditions are constructed according 
to spatial and temporal constraints, and two approaches are used to query the trajectory: camera-by-camera re-
trieval and global trajectory retrieval. The experimental results demonstrated that, under different spatiotemporal 
constraints, both camera-by-camera and global trajectory retrieval can query trajectories effectively and reduce 
the spatiotemporal video review range; compared to camera-by-camera retrieval, global trajectory retrieval has a 
lower spatiotemporal video review range and returns more accurate results; however, it has higher data preproc-
essing requirements.

The proposed trajectory retrieval method synthetically uses video object detection, tracking, and recognition 
technology in computer vision and geospatial analysis and can aid users in retrieving dynamic video objects to 
interpret video contents. Moreover, it can provide support for spatiotemporal data analysis and the visualization 
of video GIS, as well as for the application of new computer science algorithms in GIS. In future research, we will 
attempt to introduce the spatiotemporal scale factors into the retrieval constraints and examine construction 
methods for the dynamic video object retrieval mode under different spatiotemporal scales. Moreover, we will 
introduce GPS, public opinion, and other spatiotemporal data, as well as integrate multi-source information to 
support the analysis and understanding of the spatiotemporal behavior of dynamic video objects.
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