
1

Object-Oriented Drawing
Haijun Xia1, Bruno Araujo1, Tovi Grossman2, Daniel Wigdor1

1University of Toronto
{haijunxia|brar|daniel}@dgp.toronto.edu

 2Autodesk Research
tovi.grossman@autodesk.com

ABSTRACT
We present Object-Oriented Drawing, which replaces most
WIMP UI with Attribute Objects. Attribute Objects embody
the attributes of digital content as UI objects that can be
manipulated through direct touch gestures. In this paper, the
fundamental UI concepts are presented, including Attribute
Objects, which may be moved, cloned, linked, and freely
associated with drawing objects. Other functionalities, such
as attribute-level blending and undo, are also demonstrated.
We developed a drawing application based on the presented
concepts with simultaneous touch and pen input. An expert
assessment of our application shows that direct physical
manipulation of Attribute Objects enables a user to quickly
perform interactions which were previously tedious, or even
impossible, with a coherent and consistent interaction
experience throughout the entire interface.

INTRODUCTION
In recent years, the popularity of touchscreen devices has
exploded, in large part because the omission of dedicated
control surfaces allows for bigger screens [20]. As this new
input paradigm has gained popularity, so have some

modifications to the traditional Windows Icons Menus and
Pointer user interfaces (WIMP UI). Perhaps the single
clearest update to the WIMP is the ubiquitous use of direct
physical manipulation of content, which can often be rotated,
translated, and scaled with simple gestures, rather than
utilizing offset controls. Such manipulation in a UI focuses
on employing knowledge of the physical world to interact
with the digital one [19]. While this leads to interfaces which
can be easily guessed, an apparent limitation is that such
interaction techniques are limited by their reliance on
analogs: the physical world provides no mechanism to
directly physically manipulate the brightness or opacity of a
photo, nor one to change transition effects between clips of a
video. This results in a great deal of variety in the gestures
which are guessed by users to try to perform each action,
giving clear evidence that there is no universal set of
“natural” gestures for HCI [38].
It is perhaps for this reason that applications for touchscreen
devices which include even modest levels of functionality
often fall-back on the traditional form-filling paradigm
which acts as the core of WIMP UI. As an example, consider
Adobe Line for iPad. Most of the advanced functionality of
Adobe Illustrator has been removed, leaving only a few
brushes for drawing on a canvas. As Figure 2 illustrates, even
in this highly simplified application, we see a regression to
the WIMP for control of brush properties. While suitable for
a mouse and keyboard, on a touchscreen device, such form
filling is tedious, slow, and error prone [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CHI'16, May 07-12, 2016, San Jose, CA, USA
© 2016 ACM. ISBN 978-1-4503-3362-7/16/05...$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858075

Figure 1. Object-Oriented Drawing replaces most traditional WIMP UI with Attribute Objects which may be directly

manipulated with traditional direct-touch gestures. This enables powerful and fluid interaction on touchscreen-based devices.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2858036.2858075

2

The goal of this project is to significantly reduce the reliance
on the WIMP UI for touchscreen devices, without requiring
users to learn new gestures. We accomplish this by extending
the direct physical manipulation metaphor beyond the
content of the application, and extend it to the attributes of
those objects. We approached this from two directions. First,
we sought to explore how traditional WIMP UIs could be
replaced with controls which are subject to a direct physical
manipulation metaphor. This allows us to provide a UI which
leverages and extends the paradigm which has proven
successful elsewhere with touch. We hoped this would
enable applications with higher levels of complexity without
paying the penalty of requiring complex gestural
vocabularies. Second, having taken this first step, we sought
to understand how enabling such direct physical
manipulation could enhance the functionality of a UI to
enable a user to quickly perform interactions which were
previously tedious or even impossible.

With the UI shown in Figure 2, imagine a situation in which
a user wishes to draw first with the “Brush”, then with the
“Marker”, both times with the same size. Copying the value
requires the user to select the first tool, open its properties,
note the size value, open the second tool, and manually set
the desired size. Imagine if, instead, the user could simply
grab the size attribute as if it were itself an object, and drag-
and-drop it onto the “Marker” object. It is precisely this sort
of direct manipulation of properties that our project has
sought to enable.

In this paper, we present Attribute Objects (AOs). AOs
replace much of the traditional form-filling UI by embodying
the attributes of digital content as UI objects which can be
directly physically manipulated through the same gestures as
other primitives. Seeing attributes as more than parameters
that define an object’s appearance, layout or behavior, they
are treated as components of virtual objects; beyond seeing
attributes as abstract numerical values, they are themselves
objects which can be directly physically manipulated.

To deeply explore the role that AOs can play in a user
interface, we developed a drawing application with
simultaneous touch and pen input that allows users to
directly manipulate the attributes of vector objects. The
application as well as the many uses and advantages of AOs,
are presented in detail in the paper. We have focused on
drawing because it is a rich platform for exploring interaction
mechanics, given the genre’s heavy reliance on attributes.
That said, it is our intention that the techniques we have
developed could be more broadly applied to touchscreen
applications of other types as well.

In addition to our interaction techniques, we present the results
of an expert assessment, where we asked users with several
years’ experience in vector drawing applications to use our
application and give feedback on the advantages and
limitations of Attribute Objects. We first examine the related
work.

RELATED WORK
Our work draws from several areas of previous research: the
form-filling user interfaces, objectifying UI elements, pen
and touch interaction, touch gestures, and alternative input
primitives. We review each in turn.

The WIMP and Form Filling
In their early stages of commercial development, the WIMP
UI for the personal computer was regarded largely as a tool
for data entry and retrieval [30]. This can be traced back to
the Xerox Star system with its property sheet [21], where
properties are displayed and changed in graphical forms. To
this day, UI toolkits continue to focus on enabling the
construction of forms to enable quick and error-free data
entry input for transactional human-computer interaction.
The research community has long argued for the
development of a UI based on what was termed direct
manipulation, defined in part as “rapid incremental
reversible operations whose impact on the object of interest
is immediately visible” [30]. Direct manipulation has, for
certain classes of operations, become the norm, such as
WYSIWYG word processing, models in computer-aided
design, and geospatial applications [30]. While direct
manipulation is a common paradigm, equally common is a
regression to form-based editing of parameters, such as
selecting a font from a list or line thickness from a scale. On
a desktop, form filling can be fast and precise, thanks to
pixel-accurate pointing and keyboard input. On touch-based
devices, however, it can be tedious, slow, and error-prone
[8]. One relatively recent innovation in WIMP UI is the
contextual tool palette, which allows quick access to tools
customized to the current selection. We borrow from this in
situ placement of attribute controls, and build on it by adding
direct manipulation. The goal of the present project is to
extend direct manipulation from the object of a tool to its
attributes, and in so doing enable a fully expressive UI that
is better suited to touch input.

Figure 2. A partial screenshot of Adobe Line for the iPad.

Top: the control bar is used to select a brush. Bottom: pressing
and holding reveals a control panel of properties for the brush.

3

Objectifying UI Elements
In most form-filling applications, UI controls such as buttons,
scroll bars, and menus are the objects that users can
manipulate. These objects provide a means to interact with
properties, which are mostly text strings or numerical values.

Extensive works have investigated objectifying UI elements
to employ knowledge of the physical world to interact with
the digital one. However, it is perhaps because of the
profound influence of tool use in human history that a
number of works have focused on the objectification of tools
or commands. For example, controls and tools are no longer
plain icons confined in tool palettes; they can be moved
around [7, 9, 31] and applied selectively [31]. Different
aspects of tool manipulation have also been explored. Bier et
al. investigated the bimanual interaction with tools, which
were embodied as transparent widgets in a virtual sheet [9].
HabilisDraw [2] focuses on tools as first-class artifacts by
importing the ecological properties of tools in physical
environment. Nevertheless, manipulation of attributes still
has to be delegated to basic controls [6], which affords very
limited interactions.

Our work objectifies attributes instead of tools. Direct
physical manipulation gestures can be applied directly to
Attribute Objects without mediating user’s input through
other UI controls. This enables rich and flexible
manipulation of attributes. Attributes are no longer
numerical values permanently bound with application
objects; they can be freely decoupled from one object or
attached to another. Besides, promoting attributes to the
same level of the application objects also advocates
unlocking the global actions to attributes. In our system,
attributes can be duplicated to preserve a copy, grouped to
form a style, and restored for localized undo.

Pen and Finger Touch Interaction
Significant work has explored the rich interaction vocabulary
of touch input, largely divided between touch with a pen
(e.g.: [4, 33]), with fingers (e.g.: [26, 34]) and with whole
hands (e.g.: [14, 35, 39]). More recently, researchers have
sought to expand the capabilities of each by leveraging
bimanual, simultaneous use of pen and touch interaction,
enabled by hardware that is able to distinguish them [12, 17].

Prior research investigated the complementary roles of pen
and touch by assigning pen to the dominant hand and touch
to the non-dominant hand [12]. Hinckley et al. instead
divided the labor of pen and touch based on the strengths of
the input modality: pen writes and touch manipulates [17].
Their work introduced a slew of compelling interactions for
metaphorical physical manipulation of content and
demonstrated the power of such manipulation.

Our work seeks to build-on and extend this, enabling equally
powerful manipulation not just of content but of abstract
properties as well, thus providing a fully functional UI which
reduces the frequency of regression to a form-filling
paradigm. Though the principles we have developed may be

applied to other types of input devices, we have focused on
touch input, and designed our interaction methods for
bimanual use with the pen and finger.

Touch Gestures
Despite its many problems, touch input offers several
advantages over mouse input. For example, multiple
commands and operations can be phrased into a single
gestural action [13], and gestures which make-use of quasi-
modes (or “spring-loaded” modes) can reduce error rates
thanks to kinesthetic feedback [28, 29]. Furthermore,
utilizing gestural commands also reduces recourse to buttons
and widgets. By issuing commands through touch gestures,
such systems require no additional control area, allowing the
screen to be dedicated entirely to content.

While each of these projects shows great promise, research
has shown that, for the set of commands common to the
WIMP UI, users can only reliably guess a single type of
gesture: direct physical manipulation [38]; this likely
explains the popularity of physics-based UIs [1, 37]. A
common method to increase gesture vocabulary is to provide
gesture teaching systems, either as UI widgets (e.g.: [11, 24,
36]) or as a separate tool (e.g.: [5, 11, 16]). Our project is
complimentary to such gestural systems, in that the gestures
they have developed may, when extended to our techniques,
be allowed to manipulate not only objects in the system, but
the attributes of those objects as well. In our work, we have
not utilized complex gestures, instead we relied on simple
tapping and direct-physical manipulation.

Alternative Touch Input Primitives
We seek to develop alternative input primitives and UI
mechanisms. Three projects have explored replacing or
augmenting tapping selection with crossing-based selection.
Sketchpad first introduced pen-based vector drawing and
demonstrated dragging, tapping, flicking, and bimanual pen
+ button gestures [33]. Later, Crossy demonstrated how a
pen-based UI could be adapted and improved through the use
of crossing, and Moscovich demonstrated the use of crossing
for finger touch input [3, 27]. Our project is similar to these,
in that we too promote sliding gestures in a touch UI. Unlike
these projects, however, which focus on developing new
primitives or modifying a UI to suit known primitives, we
focus instead on higher-order UIs controlled by traditional
finger-touch primitives (tapping for selection and dragging
for direct physical manipulation).
Perhaps most similar in spirit to our project is FlowBlocks,
which replaced the WIMP GUI with directly physically
manipulable UI controls, as we have done [10]. The goal of
FlowBlocks, however, was to enable a UI for single display
groupware on a touchscreen. As such, their UI emphasized
adding multiple steps to effect an action. In contrast, our goal
is to reduce steps and to provide a UI that is more efficient
for single-user applications on a touchscreen. The result is a
fundamentally different set of user interface controls and
interaction methods.

4

ATTRIBUTE OBJECTS
We propose extending direct physical manipulation,
reserved previously for the object of an application, to
attributes of those objects. Though simple conceptually, this
represents a fundamental overhaul to fundamental UI
paradigms. To explore the implications of this change to the
GUI, we developed a testbed application where all of the
interaction techniques we have described are represented.
Though we follow in the footsteps of Bier et al. [9] and Apitz
et al. [3] in this use of a drawing testbed, it is our intention
that they be considered for general in touchscreen UI.

Identity and Visual Representation
In a WIMP UI, controls such as text boxes and buttons are
generally assembled into groupings, such as panes and
palettes. Those which represent attributes of an object often
indicate those attributes as a state of the widget, such as value
of a radio button and contents in a textbox. Further, generic
tool palettes exist in a one-to-many relationship with the
objects in the system, by changing their values depending on
the selected object (e.g.: the “font size” dialogue is attached
to the toolbar of a word processor, but its value changes
depending on the size of the font in the selected text). In our
paradigm, each attribute is assigned an independent identity
and is represented as a paper-like card. Cards may be
attached to objects, and thus set the value of the attribute for
that object, or they may be detached from any object and sit
independently on the screen. As an example, each path in a
vector graphic has its own Attribute Object representing its
stroke width, as the shown in Figure 3. The visual
representation of the card conveys the following information
about an attribute:

Attribute Type: The text at the bottom of the card indicates
the type of object the card hosts; for example, stroke, fill, and
drop shadow.

Attribute Effect/Value: The effect (or value) of an attribute
is encoded by the text on the card and by its dynamic visual
representation; see the various attributes associated with the
seagull in Figure 3. If an Attribute Object exists on the
canvas independently, the card depicts its function on a
generic object; see the free-floating cards in Figure 3. If these
Attribute Objects are later dropped into a collection
associated with a drawing object, their visual representations
will update to illustrate that drawing object.

Attribute Hierarchy: A hierarchy of attributes, if one exists,
is represented by a tree structure. When it is expanded, it is
shown as a second row of attributes, such as in the stroke
attribute’s color and stroke width shown in Figure 3. A single
paper card represents a base attribute, while a stack of
cards—such as the shape and fill cards shown in Figure 3
indicates a hierarchy which may be expanded.

Direct Physical Manipulation
Attribute Objects cards are objects which can be tapped,
held, dragged, and stretched. The positioning of each AO
card within the display line can also be rearranged, allowing
the user to create groupings, and also change effects of
attributes where order matters.

Adding and Removing Attribute Object Cards
In traditional WIMP applications, a control palette lists all
possible attributes of an object, including those which have
not yet been set. Conversely, with Attribute Objects, an
attribute that has not been set simply does not exist. Setting
and removing of attributes is accomplished through
manipulation gestures:

Removing an Attribute from an Object: Dragging an
Attribute Object off the display line removes it from the
object. Releasing the attribute on the screen turns it into a
free-floating card; dragging it off the canvas deletes it. The
attribute is removed from the object, and so it reverts to a
state where that attribute is not set. If the attribute is the root
of a hierarchy, the whole hierarchy is removed.

Instantiating an Attribute: New attributes for an object may
be instantiated by dragging the handle of the display line to
the right. As the space between cards expands, potential
attributes that can be applied to the object appear; as seen in
Figure 4 these are shown as ghostly outlines. A single tap
instantiates an Attribute Object and adds it to the collection.

Cloning an Attribute: Attribute Objects may be directly
cloned. By holding an AO with one hand and then tapping
on the screen with the other, the card is cloned to the tapped
position, similar to [17, 32]. A cloned card can then be
attached to another drawing object. Cards can also be cloned
directly into a drawing object’s collection, simply by holding
an AO and tapping the object the user wishes to clone it to.
This allows, for example, for the quick and easy copying of
style information between graphics objects.

Figure 3. Attribute Object cards in our drawing application. a) Cards have been arranged in a collection, as indicated by their

alignment and blue display line. The collection has been associated with a drawing of a seagull; note the connecting line, the square
handle for adding new cards, and that the cards show the shape of the gull. b) Free-floating cards sit independently onscreen.

5

Linking
Though a simple clone is useful, additional power of style
sharing comes from linking Attribute Objects, so that
changes are instantly propagated. Unlike instancing, first
introduced in [33], attribute linking allows a many-to-many
relationship between several objects’ attributes. Attribute
Objects are linked at the time of making a clone: immediately
after the tap is performed, a link graphic is briefly displayed
that, if tapped, will create a persistent connection between
the source and destination Attribute Object. Links are shown
whenever a linked Attribute Object is manipulated and can
be broken by tapping the link icon. Figure 5 illustrates
linking.

Alignment
Because spatial position is itself an attribute of drawing
objects, alignment can be trivially achieved by cloning the
vertical or horizontal position of one object to another.
Figure 6 shows parts of a crosshair being quickly aligned by
cloning and sharing the position attribute; links ensure that
the layout is maintained when any object is moved. Cards for
each side of an object enables alignment to edges.

Blend
Attributes of the same type can also be blended. This is
inspired by the behavior that artists may blend several colors
to get the desired one. In order to blend, the user holds two
attributes of the same type; this generates a child object from
them, taking 50% from each side. The user can slide the child
towards one parent or the other, to linearly adjust the
influence of each. Dragging a child away from the parents
detaches it and turns it into an independent Attribute Object.

Figure 5. Example of linking: (a) The user has created a

drawing of a light bulb and reflection. She clones the fill colour
of the bulb into the reflection. (b) When she makes the clone,
the link icon appears on the reflection – she taps it to link the
clone to the source. (c) A link connection appears to indicate

the link is established (d) Changes to the fill colour of the bulb
are continuously propogated to the reflection.

Figure 6. Example of alignment: (a) three separate, circular

drawings. (b) the user has cloned and linked the position
Attribute Object to the other two, instantly aligning all three.

The layout continuously is maintained by the links.

Figure 4. Example interaction sequence: (a) a seagull drawing object contains shape and fill Attribute Objects.

(b) The user clones the stroke Attribute Object to the seagull. (c) The user wishes to add a drop shadow,
so she pulls the handle to see un-set Attribute Objects, and (d) instantiates a drop shadow card by tapping it.

Figure 7. A free-floating star geometry has been blended with

a circle geometry to produce a rounded look.

6

Modes
Attribute Objects can be held to maintain quasi-modes on input,
similar to, but more expressive than the ‘shift’ key [28, 29].

Mode of Touch Input: Manipulating Objects or Values
By default, sliding gestures perform standard rotate, translate,
and scale manipulation operations. Holding an Attribute
Object places the system into a quasi-mode, in which
manipulation gestures change the value of the selected
Attribute Object. For example, holding the opacity card
while moving one’s finger on the canvas changes the alpha
value; holding a drop shadow card while moving the finger
directly manipulates the position of the shadow, as shown in
Figure 9. This allows users to perform direct manipulations
of attribute values. Gestures are mapped to parameters to
match user expectations for direct manipulation. As an
example, a rotation Attribute Object maps orientation
relative to the underlying object’s center (similar to a rotation
handle), while the value of a stroke width Attribute Object is
changed by dragging the finger across the stroke.

Such direct manipulation enables us to eliminate most
traditional UIs for attribute value selection. The one conceit
to a desktop widget is the use of a color picker, since the
picker already utilizes direct manipulation.

Mode of Pen Input: Drawing with Attributes
Past work has demonstrated quasi-modes for pen input [17].
In our system, just as holding an Attribute Object places
manipulation gestures into a quasi-mode, so too the pen
enters a mode related to a held AO. By default, the pen draws
a path with its current fill and stroke attributes. If the user
wishes to copy the style of an existing on-screen object to a
current drawing, they can hold that object (or its desired
attribute(s)) with the non-dominant hand. For example, if the
user holds an existing stroke Attribute Object while drawing,
the pen will draw in the style of the touched stroke.
Alternatively, if she wishes to quickly copy the shape of an
object, she can hold the shape attribute and drag with the pen:
a new stroke with the same shape will be drawn. See Figure 8.

History
By promoting attributes to Attribute Objects, there is a
natural opportunity to provide a history for card, just as is
done for content in many applications. In most applications,
undo and redo commands allow the user to navigate the
history of their input: undo erases the last change to the
virtual content, reverting it to an older state. In a typical
WIMP application, the undo stack preserves commands
executed across the entire application. Therefore, to revert a
change to a particular attribute, the user may have to sacrifice
all subsequent commands executed on the other objects.

In contrast, each Attribute Object maintains its own history.
Instead of tracking commands, we preserve each state of an
attribute, not dissimilar to version control applications. As
such, a user may retrieve a previous state of any attribute
without affecting other objects. In keeping with our theme of
embodying attributes, each of the previous states of an
Attribute Object is itself an object, with all of the capabilities
of other AO cards. It is also worth pointing out that objects
of any kind and any level in our system maintains their own
history, which enables flexible undo across the application.

As an example, a user may decide they liked an earlier color
applied to a drawing, and want to use it for a different part of
the same drawing. They simply display the Attribute Objects
for the original drawing, perform a pinch-to-zoom gesture to
expand the fill Attribute Object card, and reveal a separate
Attribute Object for each of the earlier fill attribute values.
Tapping a previous state previews the effect. Tapping on the
selected state again rolls the attribute back to the state.
Histories of parent and child attributes will roll back
according to state. Figure 10 illustrates the interaction.

Figure 9. (a) holding the stroke card allows the user to directly
manipulate the width of the stroke on the canvas by dragging
a finger; text appears indicating the current width. (a) holding

the drop shadow card allows the user to drag directly to
change the position of the drop shadow.

Figure 10. A user expands a fill Attribute Object to reveal
earlier colors used for the fill. They can then revert, apply

those attributes to other objects, or clone the earlier state to a
free-floating Attribute Object card for later use.

Figure 8. A user modes the pen by holding a shape card. This
allows him to quickly draw a scaled copy of the planet’s rings.

The mode is exited as soon as the user lifts his hand.

7

Everything is an Object
We extend our concept of objectification beyond the
attributes of content of applications to the controls for those
applications, including the cursor and drawing canvas.
Cursor as an Object
While inking, a small pen-shaped cursor provides feedback
for user input; similar to the behavior of Microsoft Windows,
the cursor remains on the screen when the user lifts the stylus
out of range of the digitizer. In keeping with our mantra that
“everything is an object”, the user can drag the pointer to
reposition it, or tap it to view its attributes. By default, the
pen possesses three cards: shape, fill, and stroke. Additional
cards may be added or cloned to the pen (see Figure 12).
Being able to draw basic primitives (e.g. rectangle and circle)
directly is a desired function. We pre-load such primitives as
history states of the shape card of the cursor object, enabling
the user to easily select these primitives. We made a small
tweak to the shape card for the cursor object: unlike histories
of other cards in our tool, selecting an earlier value will not
re-order the list. This ensures access to primitive shapes.
Canvas and Layers as Objects
Just like all other elements of the UI, the canvas and its layers
are, themselves, treated as manipulable objects. We treat the
canvas as an object possessing a set of Attribute Objects,
each representing a layer. By default, there are two layers:
the background and a single foreground layer. Each of these

layers possesses a set of Attribute Object cards, each of
which may be manipulated just like the others in our UI. For
example, the color of the background layer may be changed
by directly manipulating its fill attribute. The shape of the
canvas can be customized by sharing the shape attribute of a
path object on the canvas.

Because layers are represented as cards within the canvas,
their order can be trivially reorganized by dragging them to
another position within the display line. This eliminates the
need for dedicated UI widgets (e.g. layer panel of Adobe
Photoshop and Illustrator). The opacity of a layer can be
adjusted by adding an opacity card to the layer that contains
the image to support tracing tasks.
EXPERT REVIEW
We wished to validate our belief that further objectifying the
UI could add significant value to touch-based systems. We
recognize that a fundamental change to UIs could be jarring
and, at first, create problems of usability for those who are
familiar with a WIMP-based UI. We wanted to ensure that we
could gain feedback from potential users about the effectiveness
and usefulness of the approach, without being hung-up on initial
usability. We thus conducted an expert review with graphic
design professionals, each with significant experience with
existing drawing tools. We spent significant time training
these professionals on the use of the system and collected
their feedback on its utility and usability. We were also
particularly interested in how these experts would see the
concepts integrated into their professional workflows.
Participants
We recruited nine professional graphic designers (4 female),
aged 25 to 48, to participate in the review. All participants
had more than five years’ experience with a vector graphics
drawing tools, such as Adobe Illustrator. Participants were
compensated $50 for an approximately 90-minute session.
Apparatus
The Object-Oriented Drawing system was implemented as a
Win32 application in Windows 8 using OpenGL and
NVIDIA Path rendering SDK [23], running with a
1920x1200 px Wacom Cintiq 24HD (capacitive finger touch
& EMR pen touch + hover). A dual digitizer-based system
was utilized to ensure that stylus and fingers could be reliably
differentiated.

Figure 12. Top: the pen cursor, along with its set of Attribute
Objects grouped in a display line. Bottom: Layers are each an
Attribute Object of the canvas, allowing for trivial reordering,

removal, and other basic operations, without special UI.

Figure 11. The Object-Oriented Drawing application.

8

Procedure
Each expert review session consisted of three stages:
Introduction and Training (25-30 minutes)
Participants were first given an introduction to the concept.
The experimenter then guided the user to explore our
interface by finishing a simple drawing of a moon
surrounded by stars. During training, the experimenter
described the interaction verbally and asked to participants
to perform the actions. We intentionally provided only
single, simple examples of each interaction technique (such
as copying a fill color from one object to another, and not
copying multiple or root attributes). This was done for two
reasons. First, to ensure participants were not overwhelmed.
Second, it allowed us to observe whether the participants
applied each technique to other contexts, giving them the
opportunity to explore and to demonstrate understanding.

Exercise and Freeform Usage (30-40minutes)
Participants were then asked to replicate another simple
drawing, provided by the experimenter, which lent itself to
many of the techniques, without the assistance of the
experimenter. After completing this simple drawing,
participants were asked to keep exploring the interface by
creating their own illustrations.

Questionnaire & Interview (20-25minutes)
Participants next completed a questionnaire about the
system. The questionnaire was composed of 7-point Likert-
scale questions to collect the experts’ response to both the
usefulness and usability of each technique. The experimenter
then demonstrated some additional, advanced functionalities
of the tool that had not been previously demonstrated but
were included in the post-study interview for feedback. The
interview then consisted of open-ended questions that were
asked to gain the users’ feedback on usability, utility, and
how well they foresaw integrating AO into their existing
toolchain and workflow.

Results
Workflow
Participants were interviewed about how object-oriented
drawing could integrate with their existing toolchain and
workflow. All responded positively: 5 participants rated their
agreement with the statement “my workflow based on this
concept through the entire interface was coherent and fluid”
as “strongly agree”, the remaining four “agree”. This
strongly indicates that the concept can enable graphical
applications with a higher level of complexity on a touch-
based system, without paying the penalty of inconsistency.
Specific feedback from the experts included:

P7: You think less, and you just like work on graphic more
than setting every single attribute. [In Adobe Illustrator], it's
so frustrating. Software I normally use, such as
Photoshop/Illustrator requires me to set specific settings or
use sliders, such as a brush stroke to 1px etc. Your app makes
setting attributes more fluid.

Participants also pointed out that being able to directly access
and manipulate the attribute instead of rooting through tools

and menus makes the interface less hidden than the existing
WIMP graphic applications.

P2: In Illustrator there are so many tools and functions hidden,
you need to find the tool to change the attributes. In your
system, when you want to adjust the attribute, you just do it.

P5: There are many things in illustrator that are hidden so
deep, and I couldn’t discover them. But in your system, I
know what attributes I have, and I know what the system is
capable of.

P8: Tool-wise, you guys don’t have the tools; function-wise,
you almost have everything.

Utility of Object-Oriented Drawing
Participants were asked to specifically rate the usefulness of
each of the techniques. Significant agreement was found, as
shown in Table 1. This indicates that the various techniques
enabled by Attribute Objects are valued and desired. A
participant noted, “I love it. I really like the concept that
being able to save and share different styles, and being able
to access every single attribute of this object, and the history
thing, it’s just phenomenal.”

Among the various techniques, our system’s ability to save
and reuse every attribute as well as to preserve the history of
each attribute was strongly favored by participants.
Participants rated sharing styles in the interface as quick (five
“strongly agree”, the remaining four “agree”) and flexible
(four “strongly agree”, the remaining five “agree”). In
addition, participants reported that saving attributes as
floating AOs enabled them to preserve a valuable attribute
setting, which may have been arrived-at after significant
tuning: “in Adobe Illustrator, if you screw up the path object,
you screw up everything; here I worried less about losing the
graphic style”, noted P2. The statement that “history of
attributes provided a flexible way to undo a previous
operation from one attribute” was rated “strongly agree” by
seven participants and “agree” by the remaining two. The
experts also found the object-oriented drawing to be
internally consistent and useful for finding functionality:

P3: The more I used it, the more I enjoyed it. Everything just
matches your expectation.

P8: Your interface is very nice. It is very uniform. When I
want to change something, I know where to find it.

Technique Agree Neutral Disagree
Creating & Deleting
Attribute Object (AO) 9 0 0

Cloning 9 0 0
Injecting 9 0 0
Linking 7 1 1
Grouping independent AOs 9 0 0
AO as mode of touch 7 1 1
AO as mode of pen 9 0 0
History 9 0 0
Table 1. Compressed (from 7- to 3-point scale) summary of

Likert-scale responses to “Do you agree this technique is
useful for your drawing tasks”

9

Usability
All participants commented that their interaction throughout
the entire interface was intuitive and that the interface was
easy to learn. P9 noted: “here working with my hands like
that is really intuitive; all this interaction, I get it. You only
have to see it once”. Four participants reported knowledge
and skill transfer from direct manipulation of content:

P2: I can clearly feel each attribute is like an object. The
boundary between this tool and the real life disappears. The
experience is like how I manipulate things on the chopping
board when I am cooking.

P3: It’s like drawing in the real world; you are using
physical objects. You don’t have stroke width in the real
world. This is the advantage of the digital software. Your app
brought this advantage into an environment that simulates
reality, so I can use my experience of the physical world.

Several participants noted that more complex gestures, such
as holding and tapping to duplicate an object, and stretching
the card to see its history, were not self-revealing. P6
commented “I wouldn’t have guessed that you can see the
history, but after I see it, it makes sense”. This echoes the
problem found by many researchers, such as Hinckley et al.
[17], and suggests the need for Just-in-Time Chrome or other
UIs such as those previously described [36].

Observed Behaviors
We also noted several interesting behaviors during the study.
Because the pen is the cursor, we did not enable it to be
cloned as an object. However, we observed that one
participant (P4) tried to clone the pen object to get several
virtual brushes with different styles. This indicates that the
participant truly understood the concept that pen is an object.
The present alternative in our system is to maintain groups
of free-floating Attribute Objects and to use them to provide
a quasi-mode for pen input. Of course, this begins to look
like a tool palette, though one whose contents are
individually manipulable.

Another interesting behavior noted seemed to have been
developed out of the understanding that cards are
independent objects. Two participants (P3 and P9) developed
the drawing strategy where they first worked on the basic
geometry of the drawing. They then created independent
attribute templates to configure multiple graphical objects,
similar to a style sheet. Utilizing the attribute copying and
linking mechanism, they could quickly configure and adjust
the universal styles. P3 and P9 both reported that they
developed this strategy because they were “amazed at the
power of quickly sharing and linking attributes”. The same
strategy was seen from P5. However, she reported that in the
applications she is using (Adobe Illustrator), she prepares all
the styles she will need before she starts drawing. “It (Object-
Oriented Drawing) fits my workflow very well.”

Usability Concerns
When asked to compare the system with existing vector
graphic drawing tools, participants expressed a desire to be

able to precisely manipulate each point of a path. This
functionality was omitted to reduce development time but
should certainly be included in any commercial release. One
participant (P7) also found that sharing attributes in the
system is powerful but was, at first, “a little bit
overwhelming”. P7 noted that “There are so many
possibilities, so what should I do?” For example, in our
system, to share an attribute, users can copy an attribute
directly to another object with or without creating a copy on
the canvas; they can also hold the object and draw with the
pen to re-use the style. Our work focuses on the various
interaction techniques enabled by seeing each attribute as an
object. However, the comment from P7 indicates that
usability might be improved by reducing some flexibility.

Adaptability
In our post-study interview, participants were asked whether
they agree this concept can be applied to other applications.
All participants rated ‘strongly agree’ and listed the possible
applications such as image/music/video editing, layout
design, animation, 3D modeling, etc. They also mentioned
limitations: e.g. if used for Photoshop, various selection
techniques should be supported, so should links between
different types of attributes for animation tools.

Summary
The results of the study demonstrate that the interaction
methods we have described provide a coherent and
consistent interaction experience throughout the entire
interface, without sacrificing the functionality of the
graphical applications, as is presently done for touch-based
devices. Beyond that, more advanced functionalities (such as
reusing and linking attributes as well as accessing the history
of each attribute) were agreed by our expert assessors to
allow a user to quickly perform interactions which were
previously tedious, or even impossible. Although the
assessment is on a vector graphics tool, our participants
found the concept generalizable to various applications.

DISCUSSION
Two core parts form the foundation of our Object-Oriented
Drawing application: Attribute Object and the pen + touch
interaction. We approached the project from the start as “how
do we enable deeper functionality on mobile devices”, and
thus much of the design is centered around pen+touch.
However, it is clear that the capabilities of Object-Oriented
Drawing completely come from the actions that can be
applied to Attribute Objects, cloning, linking, blending, etc.
The described interactions provide a way to activate such
actions on a pen+touch system. That said, the “multi”-touch
gestures in the system are cloning, linking, quasi modes, and
the drag-to-expand gesture. Each of these has a mouse-based
equivalent, such as using “alt-drag” to make clones, “ctrl-
click” to select multiple items, and dragging on borders to
expand object. Therefore, the concept of Attribute Objects
can be easily applied to desktop setup with mouse and
keyboard input.

10

Consider modeling the content in an application and its
change with a state machine: attributes describe the states,
while commands and tools drive the transitions. Most
existing systems are command-centered: users execute
commands to make transitions. Our approach, on the other
hand, enables direct access to states, with transitions driven
by the manipulations of Attribute Objects. Attribute Objects
are most beneficial for applications that require intensive
formatting (e.g. xml-based content) than data processing (e.g.
csv-based content). However, we believe the concept will
motivate a new design of data manipulation applications. As
an example, the sorting command in Excel reorganizes data.
In an attribute-centered design, ‘order’ could be an attribute
of a column. Once attached, the column is reorganized, while
the original data is preserved.

It is possible that not all commands and tools could be
replaced by Attribute Objects. This reveals one limitation of
our system: the limited means (the presented gestures) to
drive the transitions. It is a clear area for future work. In our
system, holding an attribute invokes quasi-mode. While
doing so, it could potentially invoke related tools of the held
attribute, for example, the scissor tool for geometry attribute.
User can select the needed tool with another hand before
manipulation. Holding an AO searches the tools and
releasing it clears the modes and tools.

When the number of the attribute becomes large, there is a
risk of overcrowding the work area. In our system, the
hierarchy and the expandable tree structure of attributes
provide a method for increasing the scope of attributes which
can be defined per object. Cards can be piled and rogue piles
may be moved to a storage area to save the working space.
Moreover, object-oriented drawing also advocates a uniform
and consistent design of the interface, with inherent clues for
navigation in the interface, as pointed out by P8. However,
for applications that maintain hundreds of attributes,
advanced interface design might still be necessary.

FUTURE WORK
Attribute Objects utilize several properties of physical and
digital objects. For example, a physical card can be directly
manipulated, while a digital card can be cloned, linked, and
can have its state preserved. Other properties of objects can
also be imbued into Attribute Objects to enrich interaction
possibilities. For example, usage information of an attribute
can be conveyed by the crumples developed on the card that
houses the attribute, similar to [1, 25]. We also envision that
AOs can be hyperlinked with other objects. When a user
encounters a desired attribute (e.g. transition effect of a
video) online, she can easily clone it. The clone AO is
automatically hyperlinked back to the original AO. While
using the cloned AO, she can follow the hyperlink back to
the original object to get other related AOs.

Another direction of the future work is to further develop the
drawing functionality of our test platform to make it a fully
functioning vector drawing application. This could facilitate
deployment studies and development of a generalized UI.

Beyond this, a more flexible mechanism to enable
customized AOs would also be interesting to explore. In our
application, users can group attributes to form a style.
However, it is unclear what the style is if a group contains
color, blur, and offset attributes, even though they are the
defining components of a drop shadow attribute. Therefore,
to craft a nonexistent AO, the system should allow the users
to specify how the effect of an AO is applied. Traditionally,
this is achieved by programming. Whether this can be
achieved graphically through direct manipulation is a
challenging problem and begins to resemble work in end-
user programming.

We have explored the interaction with attributes of virtual
content in a drawing application on a 2D pen + touch system.
Design considerations were made to accommodate this
specific setting. For example, an AO is represented as a 2D
card which can be dragged and stretched. However, it is
unnecessary to keep this metaphor for other applications. For
a 3D modeling application in a virtual reality system, a 3D
card or ball metaphor might be proper for direct gesture
manipulation. Radically, direct tangible manipulation of
physically embodied Attribute Objects may also be explored,
as the shape changing interface could give dynamic physical
representation of virtual content [15].

An AO can be linked to another AO of the same type, so their
values will always be equal. Future work can also explore the
rich relationship between AO of different types. This can be
applied to application for animation editing [22]. In regards
to embodying an abstract object to enable direct
manipulation, future work can explore embodying the
relationship and its attributes as objects. For example, the
relationship curve between two variables can be shared with
other variables to achieve a consistent animation pace.
History of the curve can also be preserved to allow users to
retrieve a previous setting.

CONCLUSION
We have presented Object-Oriented Drawing, a drawing
testbed which demonstrates the replacement of all traditional
WIMP UIs with Attribute Objects. Attribute Objects replace
much of the traditional form-filling by embodying the
attributes of digital content as objects which can be directly
physically manipulated. This enables a drawing application
with higher levels of complexity without paying the penalty
of requiring complex gestural vocabularies. We have
demonstrated through expert review that this approach to
touch-based UIs holds considerable promise for enabling
more complex functionality on touch-based systems.

ACKNOWLEDGMENTS
We would like to thank members of DGP lab for their inputs
and discussions, Katie Barker for editing, and paper
reviewers for the valuable feedback. Special thanks to Peter
Hamilton for his assistance with the video and Chris De Paoli
for the banner.

11

REFERENCES
1. Anand Agarawala and Ravin Balakrishnan. Keepin’it

real: pushing the desktop metaphor with physics, piles
and the pen. CHI '06, 1283-1292.

2. Robert St. Amant and Thomas E. Horton. 2002.
Characterizing tool use in an interactive drawing
environment. SMARTGRAPH '02, 86-93.

3. Georg Apitz and François Guimbretière. CrossY : A
Crossing-Based Drawing Application. UIST '04, 3–12.

4. Ronald M. Baecker. 1969. Picture-driven animation.
AFIPS '69 (Spring), 273-288.

5. Olivier Bau and Wendy E Mackay. OctoPocus: A
Dynamic Guide for Learning Gesture-Based Command
Sets. UIST '08, 37–46.

6. Michel Beaudouin-Lafon. Instrumental interaction: an
interaction model for designing post-WIMP user
interfaces. CHI '00, 446-453.

7. Benjamin B. Bederson, James D. Hollan, Allison
Druin, Jason Stewart, David Rogers, and David Proft.
Local tools: an alternative to tool palettes. UIST '96,
169-170.

8. Hrvoje Benko and Daniel Wigdor. Imprecision,
Inaccuracy, and Frustration: the Tale of Touch Input. In
Tabletops - Horizontal Interactive Displays, Springer
London, 2010, 249–275.

9. Eric A. Bier, Maureen C. Stone, Ken Pier, William
Buxton, and Tony DeRose. Toolglass and magic
lenses: the see-through interface. SIGGRAPH '93, 73-
80.

10. Florian Block, Daniel Wigdor, and Bc Phillips.
FlowBlocks: A multi-touch UI for crowd interaction.
UIST '12, 497–507.

11. Andrew Bragdon, Robert Zeleznik, Brian Williamson,
Timothy Miller, and Joseph J. LaViola, Jr. GestureBar:
improving the approachability of gesture-based
interfaces. CHI '09, 2269–2278.

12. Peter Brandl, Clifton Forlines, Daniel Wigdor, Michael
Haller, and Chia Shen. Combining and measuring the
benefits of bimanual pen and direct-touch interaction
on horizontal interfaces. AVI '08, 154–161.

13. Bill Buxton. Chunking and phrasing and the design of
human-computer dialogues. IFIP '86, 475–480.

14. Xiang Cao, Andrew D. Wilson, Ravin Balakrishnan,
Ken Hinckley, and Scott E. Hudson. ShapeTouch:
Leveraging contact shape on interactive surfaces.
TABLETOP '08, 129–136.

15. Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu
Hogge, and Hiroshi Ishii. inFORM: dynamic physical
affordances and constraints through shape and object
actuation. UIST '13, 417–426.

16. Dustin Freeman, Hrvoje Benko, Meredith Ringel
Morris, and Daniel Wigdor. ShadowGuides:
Visualisations for In-Situ Learning of Multi-Touch and
Whole-Hand Gestures. ITS '09, 165–172.

17. Ken Hinckley, Koji Yatani, Michel Pahud, Nicole
Coddingotn, Jenny Rodenhouse, Andy Wilson, Hrvoje
Benko, and Bill Buxton. Pen + touch = new tools. UIST
'10, 27–36.

18. Raphaël Hoarau and Stéphane Conversy. Augmenting
the scope of interactions with implicit and explicit
graphical structures. CHI '12, 1937–1946.

19. Robert J.K. Jacob, Audrey Girouard, Leanne M.
Hirshfield, Michael S. Horn, Orit Shaer, Erin Treacy
Solovey, and Jamie Zigelbaum. Reality-based
interaction: a framework for post-WIMP interfaces.
CHI '08, 201–210.

20. Steve Jobs. 2007. Mac World Expo 2007: Keynote.
21. Jeff Johnson, Teresa L. Roberts, William Verplank,

David C. Smith, Charles H. Irby, Marian Beard, and
Kevin Mackey. The Xerox Star: A retrospective.
Computer vol. 22, no. 9 1989, 11-26.

22. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. Kitty: Sketching Dynamic
and Interactive Illustrations. UIST '14, 395–405.

23. Mark J. Kilgard and Jeff Bolz. GPU-accelerated path
rendering. ACM Transactions on Graphics 31, 6: 1,
2012.

24. Gordon Kurtenbach and William Buxton. User learning
and performance with marking menus. CHI '94: 258-
264.

25. Justin Matejka, Tovi Grossman, and George
Fitzmaurice. Patina: Dynamic Heatmaps for
Visualizing Application Usage. CHI '13, 3227–3236.

26. P McAvinney. The Sensor Frame-A Gesture-Based
Device for the Manipulation of Graphic Objects. 1986.

27. Tomer Moscovich. Contact area interaction with
sliding widgets. UIST '09, 13–22.

28. Jef Raskin. The Humane Interface: New Directions for
Designing Interactive Systems. 2000.

29. Abigail Sellen, Gordon Kurtenbach, and William
Buxton. The prevention of mode errors through sensory
feedback. Human-Computer Interaction 7, 2, 1992,
141–164.

30. Ben Shneiderman. The future of interactive systems
and the emergence of direct manipulation. Behaviour &
Information Technology. 1982.

31. Randall B. Smith. Experiences with the alternate reality
kit: an example of the tension between literalism and
magic. CHI '87, 61-67.

32. Sven Strothoff, Wolfgang Stuerzlinger, and Klaus
Hinrichs. Pins 'n' Touches: An Interface for Tagging
and Editing Complex Groups. ITS '15, 191-200.

33. Ivan E. Sutherland. Sketchpad a man-machine
graphical communication system. SHARE design
automation workshop. 1964.

12

34. Pierre Wellner. The Digital Desk Calculator: Tactile
Manipulation on a Desk Top Display. UIST '91, 27–33.

35. Daniel Wigdor, Hrvoje Benko, John Pella, Jarrod
Lombardo, and Sarah Williams. Rock & rails:
extending multi-touch interactions with shape gestures
to enable precise spatial manipulations. CHI '11, 1581–
1590.

36. Daniel Wigdor and Dennis Wixon. Brave NUI World:
Designing Natural User Interfaces for Touch and
Gesture. 2011.

37. Andrew D Wilson, Shahram Izadi, Otmar Hilliges,
Armando Garcia-Mendoza, and David Kirk. Bringing
physics to the surface. UIST '08, 67–76.

38. Jacob O. Wobbrock, Meredith Ringel Morris, and
Andrew D. Wilson. User-defined gestures for surface
computing. CHI '09, 1083–1092.

39. Mike Wu and Ravin Balakrishnan. Multi-finger and
whole hand gestural interaction techniques for multi-
user tabletop displays. UIST '03, 193–202.

	Object-Oriented Drawing
	ABSTRACT
	INTRODUCTION
	related worK
	The WIMP and Form Filling
	Objectifying UI Elements
	Pen and Finger Touch Interaction
	Touch Gestures
	Alternative Touch Input Primitives

	Attribute Objects
	Identity and Visual Representation
	Direct Physical Manipulation
	Adding and Removing Attribute Object Cards
	Linking
	Alignment
	Blend
	Modes
	Mode of Touch Input: Manipulating Objects or Values
	Mode of Pen Input: Drawing with Attributes

	History
	Everything is an Object
	Cursor as an Object
	Canvas and Layers as Objects

	Expert review
	Participants
	Apparatus
	Procedure
	Introduction and Training (25-30 minutes)
	Exercise and Freeform Usage (30-40minutes)
	Questionnaire & Interview (20-25minutes)

	Results
	Workflow
	Utility of Object-Oriented Drawing
	Usability
	Observed Behaviors
	Usability Concerns
	Adaptability
	Summary

	Discussion
	Future work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

