
WebUI: A Dataset for Enhancing Visual UI Understanding with
Web Semantics

Jason Wu
HCI Institute, Carnegie Mellon

University
Pittsburgh, PA, USA
jsonwu@cmu.edu

Siyan Wang
Wellesley College
Wellesley, MA, USA
sw1@wellesley.edu

Siman Shen
Grinnell College
Grinnell, IA, USA

shenlisa@grinnell.edu

Yi-Hao Peng
HCI Institute, Carnegie Mellon

University
Pittsburgh, PA, USA
yihaop@cs.cmu.edu

Jeffrey Nichols
Snooty Bird LLC

USA
jwnichls@gmail.com

Jeffrey P. Bigham
HCI Institute, Carnegie Mellon

University
Pittsburgh, PA, USA
jbigham@cs.cmu.edu

ABSTRACT
Modeling user interfaces (UIs) from visual information allows sys-
tems to make inferences about the functionality and semantics
needed to support use cases in accessibility, app automation, and
testing. Current datasets for training machine learning models are
limited in size due to the costly and time-consuming process of
manually collecting and annotating UIs. We crawled the web to
construct WebUI, a large dataset of 400,000 rendered web pages
associated with automatically extracted metadata. We analyze the
composition of WebUI and show that while automatically extracted
data is noisy, most examples meet basic criteria for visual UI mod-
eling. We applied several strategies for incorporating semantics
found in web pages to increase the performance of visual UI un-
derstanding models in the mobile domain, where less labeled data
is available: (i) element detection, (ii) screen classification and (iii)
screen similarity.

KEYWORDS
Dataset; UI Modeling; Computer Vision; Transfer Learning; Web
Semantics; Computational Interaction

ACM Reference Format:
JasonWu, SiyanWang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey
P. Bigham. 2023. WebUI: A Dataset for Enhancing Visual UI Understanding
withWeb Semantics. In Proceedings of the 2023 CHI Conference on Human Fac-
tors in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3544548.3581158

1 INTRODUCTION
Computational modeling of user interfaces (UIs) allows us to under-
stand design decisions [15, 28], improve their accessibility [55], and
automate their usage [7, 31, 32]. Often, these systems must interact
with UIs in environments with incomplete or missing metadata (e.g.,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9421-5/23/04.
https://doi.org/10.1145/3544548.3581158

mobile apps authored with inaccessible UI toolkits). This presents
many challenges since it necessitates that they reliably identify and
reason about the functionality of the UI to support downstream
applications. Visual modeling of UIs, which has shown to be a
promising solution, predicts information directly from a screen-
shot using machine learning models and introduces no additional
dependencies.

Building the datasets needed to train accurate visual models
involves collecting a large number of screenshots paired with their
underlying semantic or structural representations. Recent efforts to
collect datasets [15, 55] for data-driven modeling have focused on
mobile apps, which are typically manually crawled and annotated
by crowdworkers since they are often difficult to automate. This
process is both time-consuming and expensive — prior work has
estimated that collecting a dataset of 72,000 app screens from 10,000
apps took 5 months and cost $20,000 [15]. Because of this, datasets
for visual UI modeling are limited in size and can be prohibitively
expensive to keep updated.

The web presents a possible solution to UI data scarcity since
web pages are a promising source of data to bootstrap and enhance
visual UI understanding. In contrast to mobile UIs, web UIs (i.e.,web
pages) are much easier to crawl since they are authored in a unified
parsable language (i.e., HTML) that typically exposes semantics
(e.g., links and listeners) necessary for automated navigation. The
same web page can also be viewed in many different viewports
and display settings, which makes it possible to collect a large
dataset of UIs rendered on a variety of devices (e.g., a smartphone or
tablet). In addition, web browsers offer several facilities to extract
visual, semantic, and stylistic information programmatically. In
particular, web conventions, such as the semantic HTML and the
ARIA initiatives, while not always adopted, constitute a large, if
potentially noisy, source of annotations for UI elements. Finally,
the web offers a virtually unlimited supply of data and has already
been employed as a data source for large-scale machine learning
[23, 52, 53]. We explore the possibility of automatically collecting
and labeling a large dataset of web UIs to support visual UI modeling
in other domains (e.g., mobile). Compared to previous web datasets
[28], our dataset is much larger, more recent, and contains semantic
information needed to support common visual UI understanding
tasks.

ar
X

iv
:2

30
1.

13
28

0v
1

 [
cs

.H
C

]
 3

0
Ja

n
20

23

https://doi.org/10.1145/3544548.3581158
https://doi.org/10.1145/3544548.3581158

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

In this paper, we show that a large dataset of automatically
collected web pages can improve the performance of visual UI
Understanding models through transfer learning techniques, and
we verify this phenomenon for three tasks. We first describe the
platform that we built to crawl websites automatically and scrape
relevant visual, semantic, and style data. Our crawler visited a
total of approximately 400,000 web pages using different simulated
devices. WebUI, the resulting dataset is an order of magnitude larger
than other publicly available datasets [28]. Next, we analyzed our
dataset’s composition and estimated data quality using several
automated metrics: (i) element size, (ii) element occlusion, and
(iii) layout responsiveness. We found that most websites met basic
criteria for visual UI modeling. Finally, we propose a framework
for incorporating web semantics to enhance the performance of
existing visual UI understanding approaches. We apply it to three
tasks in the literature: (i) element detection, (ii) screen classification
and (iii) video screen similarity and show that incorporating web
data improves performance in other target domains, even when
labels are unavailable.

To summarize, our paper makes the following contributions:
(1) The WebUI dataset, which consists of 400,000 web pages

each accessed with multiple simulated devices. We collected
WebUI using automated web crawling and automatically
associated web pages with visual, semantic, and stylistic
information that can generalize to UIs of other platforms.

(2) An analyis of the composition and quality of examples in
WebUI for visual UI modeling in terms of (i) element size, (ii)
element occlusion, and (iii) website layout responsiveness.

(3) A demonstration of the usefulness of the WebUI dataset
through three applications from the literature: (i) element
detection, (ii) screen classification and (iii) screen similarity.
We show that incorporating web data can lead to perfor-
mance improvements when used in a transfer learning set-
ting, and we verified its improvement for our three tasks. We
envision that similar approaches can be used for other tasks
common in visual UI understanding. Furthermore, we show
that models trained on only web data can often be directly
applied to other domains (e.g., Android app screens).

All code, models, and data will be released to the public to encourage
further research in this area.

2 RELATEDWORK
2.1 Datasets for UI Modeling
There have been several datasets collected to support UI modeling,
mostly in themobile domain. Several datasets have been collected to
support training specialized models [26, 40, 44] . The AMP dataset
consists of 77k screens from 4,068 iOS apps and was originally used
to train Screen Recognition, an enhanced screen reader [55], but
has also been extended with additional pairwise annotations to
support automated crawling applications [20].

The largest publicly available dataset Rico, which consists of
72K app screens from 9.7K Android apps, was collected using a
combination of automated and human crawling [15]. It captures
aspects of user interfaces that are static (e.g., app screenshots) and
dynamic (e.g., animations and user interaction traces). Rico has
served as the primary source of data for much UI understanding

research and it has been extended and re-labeled to support many
downstream applications, such as natural language interaction [7,
32, 49] and UI retrieval for design [6, 15].

Nevertheless, Rico has several weaknesses [14]. Several works
have identified labeling errors and noise (e.g., nodes in the view
hierarchy do not match up with the screenshot). To this end, efforts
have been made to repair and filter examples. Enrico first randomly
sampled 10,000 examples from Rico then cleaned and provided
additional annotations for 1460 of them [29]. The VINS dataset [6] is
a dataset for UI element detection that was created by collecting and
manually taking screenshots from several sources, including Rico.
The Clay dataset (60K app screens) was generated by denoising
Rico through a pipeline of automated machine learning models and
human annotators to provide element labels [30]. Rico and other
manually annotated datasets are expensive to create and update, and
thus, models trained on them may exhibit degraded performance
on newer design guidelines (e.g., Material Design is an updated
design look for Android). For example, Rico was collected in early
2017 and has yet to see any update. Finally, many of these datasets
focus on one particular platform (e.g., mobile phone) and therefore
may learn visual patterns specific to the screen dimensions. For
example, “hamburger menus” are usually used in mobile apps while
desktop apps may use navigation bars.

In our work, we scrape the web for examples of UIs, which
addresses some drawbacks (high cost, difficult to update, device-
dependent) of current datasets but not others (dataset noise). The
closest to our work is Webzeitgeist [28], which also used automated
crawling to mine the design of web pages. To support design mining
and machine learning applications, Webzeitgeist crawled 103,744
webpages and associated web elements with extracted properties
such as HTML tag, size, font, and color. This work is primarily used
for data-driven design applications and does not attempt to transfer
semantics to other domains. We also collect multiple views of each
website and query the browser for accessibility metadata, which
can further facilitate UI modeling applications.

2.2 Applications of UI Datasets
Applications that operate and improve existing UIs must reliably
identify their composition and functionality. Originally, many relied
on pixel-based or heuristic matching [1, 18, 43, 54]. The introduc-
tion of large UI datasets, such as those previously discussed, have
provided the opportunity to learn more robust computational mod-
els, especially those from visual data. The goal of this paper is to
improve the performance of these computational models by lever-
aging a large body of web data and its associated semantics. There
have been many efforts to learn the semantics of UIs [37, 49, 50]. In
this paper, we focus on three modeling tasks at the (i) element (ele-
ment detection), (ii) screen (screen classification), and (iii) app-level
(screen similarity).

Element detection identifies the location and type of UI widgets
from a screenshot and has applications in accessibility metadata
repair [55], design search [6], and software testing [12, 51]. Labeled
datasets for element detection exist [6, 15, 30, 55]; however they
are quite small compared to other datasets for object detection [36]
which contain an order of magnitude more examples (330K). We
found that incorporating our web UI dataset (400K examples) in a

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

pre-training phase led to performance benefits. Other work involves
modeling UIs at a higher level (e.g., screen-level) to reason about the
design categorization [29] and purpose [49] of a screen. Similarly,
datasets with screen-level annotations of UIs are much smaller than
others used in the CV literature [17] so we used additional web
data to improve accuracy. Finally, we investigated screen similarity,
a task that reasons about multiple UI inputs (e.g., frames of a video
recording), where no publicly available labeled data exists. We
found that models trained on related web semantics (e.g., URL
similarity) were able to successfully generalize to mobile screens.
In summary, our paper shows that applying examples from the
web and relevant machine learning techniques can improve the
performance of computational models that depend on UI data.

2.3 Related Machine Learning Approaches
We briefly introduce and summarize three machine learning ap-
proaches that we apply in our paper. Broadly, they fall under a body
of research known as “transfer learning” which uses knowledge
from learning one task (e.g., web pages) to improve performance
on another (e.g., mobile app screens).

Inductive transfer learning is a technique that improves model
performance by first “pre-training” a model on a related task, typi-
cally where a lot of data is available [42]. Once the model converges
on the first task, its weights are used as a starting point when train-
ing on the target task. Labeled data is required for both the source
and target domains, although it is possible that there are fewer
target examples.

In some cases, labeled data are missing for either the source or
target domains. If source labels are unavailable, semi-supervised
learning (SSL) can be applied to take advantage of unlabeled data to
improve performance [9]. For example, WebUI doesn’t contain any
labels for screen type (e.g., login screen, register screen), but we’d
like to use it to improve prediction accuracy on a small number of
annotated Android app screens. In our work, we apply a form of
SSL known as “self-learning” [9], where a UI classification model it-
eratively improves its performance by generating pseudo-labels for
an unlabeled dataset, then re-training itself using high-confidence
samples.

Finally, to support use-cases where target labels are unavailable,
we apply unsupervised domain adaptation (UDA) [22]. In many
cases, visual UI models trained on web data can be directly used
on any screenshot (including Android and iOS apps), and UDA
improves the performance and robustness of models to domain
changes. This type of knowledge transfer is particularly interesting
because it enables us to explore the feasibility of new UI under-
standing tasks (without manually annotating a large number of
examples) and bring some benefits of web semantics (e.g., semantic
HTML) to other platforms.

3 WEBUI DATASET
We introduce the WebUI dataset, which we construct and release
to support UI modeling. The WebUI dataset is composed of 400,000
web pages automatically crawled from the web. We stored screen-
shots and corresponding metadata from the browser engine, which
serve as annotations of UI element semantics. Because the collec-
tion process is highly automated, our final dataset is an order of

Database

Crawling

Coordinator

Crawler

Web

workers

assign URLs
to worker

send back
crawled URLs

Request and
collect data

Figure 1: Overview of our crawling architecture. A crawl-
ing coordinator contains a queue of URLs to crawl and as-
signs them to workers in a crawler pool. Workers asyn-
chronously process URLs by visiting them in a automated
browser, scraping relevant metadata, then uploading them
to a cloud database.

magnitude larger than other publicly available ones (Figure 4) and
can be more easily updated over time.

In this section, we give an overview of our web crawling architec-
ture, analyze the composition of our dataset, and provide evidence
that it can support visual UI modeling for other platforms.

3.1 Web UI Crawler
3.1.1 Crawling Architecture. To collect our dataset, we implemented
a parallelizable cloud-based web crawler. Our crawler consists of
(i) a crawling coordinator server that keeps track of visited and
queued URLs, (ii) a pool of crawler workers that scrapes URLs using
a headless browser, and (iii) a database service that stores uploaded
artifacts from the workers. The crawler worker is implemented
using a headless framework [3] for interfacing with the Chrome
browser. Each crawler worker repeatedly requests a URL from the
coordinator server, which keeps global data structures for visited
and upcoming URLs. The crawler worker includes some simple
heuristics to automatically dismiss certain types of popups (e.g.,
GDPR cookie warnings) to help it access page content.

We seeded our coordinator using a list of websites that we hy-
pothesized would lead to diverse examples of web pages (e.g., link
aggregationwebsites and design blogs) and ones that we expected to
have high-quality accessibilitymetadata (e.g., government websites).
A full list of our seed websites can be found in the supplementary
materials.

We explored several crawling policies and eventually settled on
one that encourages diverse exploration by inversely weighting the
probability of visiting a URL by its similarity to the visited set. For
example, if the crawler previously visited http://example.com/user/
alpha, it would be less likely to subsequently visit http://example.
com/user/beta.We set a minimum probability so that it is possible to
re-visit links to support additional types of analysis (e.g., temporal
changes). The coordinator organizes upcoming (i.e., queued) URLs
by their hostname, (i) selects a hostname randomly with uniform
probability, and then (ii) selects a URL using its assigned probability.
Empirically, we found this technique to be effective at avoiding

http://example.com/user/alpha
http://example.com/user/alpha
http://example.com/user/beta
http://example.com/user/beta

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

1280x720

1366x768

1536x864

1920x1080 iPhone iPad

Figure 2: Screenshots from a web page accessed using 6 dif-
ferent devices: 4 desktop resolutions, a smartphone, and a
tablet. By requesting a responsive web page at different reso-
lutions, we induce several layout variations (e.g., navigation
and hero button).

crawler traps, which are websites that cause automated crawlers to
get stuck in endless loops navigating within the same site.

3.1.2 Data Collected from a Web Page. We used a pool of crawler
workers to crawl web pages in parallel, and we visited each URL
with multiple simulated devices. We collected several types of se-
mantic information by querying the rendering and accessibility
engine. We set a timeout limit of 6 minutes for each URL, so some
web pages were not visited by all simulated devices.

Simulated Devices. We sampled each web page with 6 sim-
ulated devices: 4 of the most common desktop resolutions [4], a
tablet, and a mobile phone. Devices are simulated by setting the
browser window resolution and user agent to match the goal device,
both of which may affect the page’s content and rendering.

Screenshots. Our crawler worker captured two types of screen-
shots (i.e., visual data) from websites. We captured a viewport
screenshot, with fixed image dimensions, and a full-page screenshot,
with variable height. Images were saved using lossy compression
to save storage. While compression can introduce some artifacts,
previous work [19] suggests that the effect on deep learning model
performance is minimal.

Accessibility Tree. We used a browser automation library to
query Chrome’s developer tools to retrieve an accessibility tree
for each page [2]. The accessibility tree is a tree-based represen-
tation of a web page that is shown to assistive technology, such
as screen readers. The tree contains accessibility objects, which
usually correspond to UI elements and can be queried for properties
(e.g., clickability, headings).

Compared to the DOM tree, the accessibility tree is simplified by
removing redundant nodes (e.g., <div> tags that are only used for
styling) and automatically populated with semantic information
via associated ARIA attributes or inferred from the node’s contents.
The browser generates the accessibility tree using a combination of
HTML tags, ARIA attributes, and event listeners (e.g., click handlers)
to create a more consistent semantic representation of the UI. For
instance, there are multiple ways to create a button (e.g., a styled
div) and the accessibility tree is intended to unify all of these to a
single button tag.

Layout and Computed Style. For each element in the accessi-
bility tree, we stored layout information from the rendering engine.
Specifically, we retrieved 4 bounding boxes relevant to the “box
model”: (i) the content bounding box, (ii) the padding bounding

of

 e
le

m
en

ts
 (i

n
th

ou
sa

nd
s)

0

25000

50000

75000

100000

125000

text link list item image heading paragraph line break generic grid cell button

Frequency of Common Element Types

Figure 3: 10 most common element types in the WebUI
dataset. Element types are based on automatically computed
roles, which are not mutually exclusive. Text is the most
common type, but many types offer semantic information
about what text is used for e.g, a heading, paragraph or link.

of

 U
Is

0

100,000

200,000

300,000

400,000

500,000

Enrico VINS Clay Rico Screen
Recognition

Webzeitgeist WebUI

UI Dataset Size

Figure 4: Comparison of WebUI to existing UI datasets. We-
bUI contains nearly 400,000 web pages and is nearly one or-
der of magnitude larger than existing datasets available for
download (Enrico, VINS, Clay, Rico). Eachweb page also con-
tains multiple screenshots captured using 6 simulated de-
vices.

box, (iii) the border bounding box, and (iv) the margin bounding
box. Each element was also associated with its computed style in-
formation, which included font size, background color and other
CSS properties.

3.2 Dataset Composition
The WebUI dataset contains 400K web UIs captured over a period
of 3 months and cost about $500 to crawl. We grouped web pages
together by their domain name, then generated training (70%),
validation (10%), and testing (20%) splits. This ensured that similar
pages from the same website must appear in the same split. We
created four versions of the training dataset. Three of these splits
were generated by randomly sampling a subset of the training split:
Web-7k, Web-70k, Web-350k. We chose 70k as a baseline size, since
it is approximately the size of existing UI datasets [15, 55]. We
also generated an additional split (Web-7k-Resampled) to provide a
small, higher quality split for experimentation. Web-7k-Resampled
was generated using a class-balancing sampling technique, and
we removed screens with possible visual defects (e.g., very small,
occluded, or invisible elements). More information about how this
set was generated can be found in the appendix. The validation and
test split was always kept the same.

3.2.1 Comparison to Existing Datasets. WebUI is an order of magni-
tude larger than existing datasets used for UI understanding (Figure
4) and provides rich semantic and style information not found in
mobile datasets. WebUI focuses on the static properties of web
pages and does not store page loading times or element animations.

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

We analyzed the makeup of web UIs and compared them to
mobile UIs. The distribution of UI types (e.g. Login, News, Search)
in WebUI are also likely to be different than mobile data, since
many web pages are primarily hypertext documents. We extracted
elements from the accessibility tree and categorized them using
their computed accessibility role and the role of any singleton
parents. For example, a clickable image is created in HTML by
surrounding an image () element with an anchor element
(<a>). Thus, it is possible for elements to be assigned to multiple
classes. Figure 3 shows the frequency of element types in our dataset.
Similar to prior work [55], we find that text is the most common
element in our dataset. However, we find limited overlap between
the rest of the label set, possibly due to the nature of web data and
the mutually exclusive nature of existing label sets. On average,
there were 60 elements on a web UI, 30 of which were visible in the
viewport. This is more than the number of elements on mobile app
screens, which prior work estimated to be around 25 per screen,
although this may in part be due to differences in segmentation
(e.g., a single Rich Text Field on Android can contain differently
formatted text while on HTML they would broken up into different
tags). On average, there were also more clickable elements per web
page (20 on web pages vs 15 “interactable" elements on Android
apps), likely due to the prevalence of hyperlinks on the web.

3.2.2 Dataset Quality. Compared to manually labeled examples,
automatically extracted annotations can contain errors that impact
modeling performance. We conducted an analysis on a small, ran-
domly sampled data from our dataset (1000 web pages). While there
are numerous possible defects, we focus on three that we believe are
most relevant to data quality: (i) element size, (ii) element occlusion,
and (iii) website responsiveness. Our analysis is primarily focused
on quantifying possible defects but not reparing them. Previous
work [30, 44] has explored automated methods for correcting mis-
matched labels and occluded elements, and we expect the overall
quality of WebUI could be improved if these were applied..

Element Size. Element size refers to the dimensions of an anno-
tated object in an image. For example, if a bounding box annotation
surrounds an object that is too small relative to the image resolution,
it may be difficult for a model to identify the object. The average
area of bounding boxes in our data is approximately 14000𝑝𝑥2, but
this may have been influenced by short segments of text. The Web
Content Accessibility Guidelines (WCAG) guideline for target size
also recommends that interactable elements have a minimum size
of 44 by 44 pixels, so that they can be easily selected by users. In our
dataset, one third of interactable elements (e.g., elements tagged as
links or button) were smaller than this threshold.

Element Occlusion. Element occlusion occurs when one object
partially or completely covers another in a screenshot. Occluded el-
ements are detrimental to visual modeling since they may represent
targets that can be impossible to predict correctly. We quantified the
occlusion rate by counting the number of screens with overlapping
leaf elements. We found that 18% of screens in our sampled split
contained overlapping leaf elements. However, of the overlapping
elements, only a third of them were occluded by more than 20% of
their total area.

Responsive Websites.Website responsiveness relates to how
well a web page adapts to different screen viewports. Since we sim-
ulated multiple devices for each web page, responsive websites are
likely to produce more variation in their layouts than unresponsive
ones. To measure responsiveness, we automatically computed met-
rics included in the Chrome Lighthouse tool for estimating layout
responsiveness: (i) responsiveness of content width to window size
and (ii) the use of a viewport meta tag, which is needed for proper
mobile rendering. From our analysis we found that 70% and 80% of
processed web pages met the first, and second criteria, respectively.

In summary, our analysis suggests that most web pages in our
dataset meet some basic requirements for visual UI modeling. Given
the reliance of our data collection on extracted accessibility meta-
data, we expect high quality examples to adhere to good accessibility
practices, such as those outlined by WCAG. However, considering
the inaccessibility of the web and that many criteria are difficult
to verify automatically, we also expect many web pages to vio-
late some of these criteria. There are other desirable properties for
dataset quality that we did not check, e.g., the accurate use of se-
mantic HTML tags, ARIA tags, and tightness of element bounding
boxes. These properties were harder to verify automatically, since
they require knowledge of developer intention and associated tasks.
In our analysis, we only attempt to identify possible defects, and
we did not attempt to remove or repair samples. This could be a
direction for future work to improve dataset quality [8, 30].

4 TRANSFERRING SEMANTICS FROM WEB
DATA

We hypothesized that web data is similar and relevant to modeling
other types of UIs from their pixels. In this paper, we are specif-
ically interested in the mobile domain, as mobile apps often lack
metadata and can only be reliably understood from their visual
appearance. In many cases, manually-annotated mobile datasets
are small, and in some cases, labels are completely unavailable. We
used transfer learning to apply our dataset to three existing tasks
in the UI understanding literature: (i) element detection, (ii) screen
classification, and (iii) screen similarity. Table 1 shows downstream
applications where UI understanding tasks can benefit from web
data. Because each task contains different constraints (e.g., presence
of labeled target data) it is difficult to apply a single strategy to
serve all use-cases. For example, inductive transfer learning typi-
cally requires labels in both the pre-training and fine-tuning phase
is impossible to apply to a setting where target labels are unavail-
able (e.g., screen similarity). We expect our three transfer learning
strategies to be applicable to most future use-cases, since they span
all combinations of labeled data availability (Table 1).

4.1 Element Detection
Element detection requires a machine learning model to identify
the locations and types of UI elements from a screenshot. Often
these models are based on object detection frameworks.

Element detection is an example of a task where labeled data is
available in both the source and target domain (albeit fewer exam-
ples of mobile screens), so it is possible to employ inductive transfer
learning. The WebUI dataset contains the locations of elements that
we scraped from the website accessibility tree. Element types are

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

Table 1: Table of strategies for transferring semantics from web pages to other types of UIs. We explored scenarios where
labeled data is missing in either domain by applying three strategies: (i) finetuning, (ii) semi-supervised learning, and (iii)
domain adaptation.

Approach Finetuning Semi-supervised Learning Domain Adaptation

Application Element Detection Screen Classification Screen Similarity

Web (Source) Y N Y
Mobile (Target) Y Y N

Web
Data

VINS
Element
Detector

Element
DetectorStep 1:

Pre-training
Step 3:

Fine-tuning

Step 2: Weight initialization

Figure 5: We applied inductive transfer learning to improve
the performance of a element detectionmodel. First, we pre-
trained the model on web pages to predict the location of
nodes in the accessibility tree. Then, we used the weights of
the web model to initialize the downstream model. Finally,
we fine-tuned the downstream model on a smaller dataset
consisting of mobile app screens.

inferred from the HTML tags and the ARIA labels [2]. We show that
this training strategy results in improvements to element detection
performance.

4.1.1 Model Implementation. We primarily followed the details
provided by VINS [6] to implement our element detection model.
The VINS dataset, which we used for training, is composed of
4800 annotated UI screenshots from various sources such as design
wireframes, Android apps, and iOS apps. Since the authors did not
release official data splits, we randomly partitioned the data into
training (70%), validation (15%), and testing (15%) sets. This specific
split ratio was chosen since it has been used in other UI modeling
work [50]. The paper identifies 11 primary UI component classes;
however the released raw dataset includes a total of 22 class labels.
For the extraneous labels, we either tried to merge them with the
11 primary labels (e.g., “Remember Me" merged with “Check Box")
or assigned them to an “Other" class (e.g., “Map") if no good fit was
found. Instead of the SSD object detection model [38] used by VINS,
we opted to start from the more recent FCOS model architecture
[48], since we found it was easier to modify to support multi-label
training. Previous element detection work [6, 12, 55] trained models
to assign one class label (e.g., Button, Text field) to each detected
element in the screenshot. To take advantage of multiple, nested
definitions of web elements in our dataset, we trained the object
detection model to predict multiple labels for each bounding box.

Figure 5 illustrates the overall training process. In the pre-training
phase, the element detection model is trained on a split of the We-
bUI dataset. Due to cost and time constraints, we trained all element
detection models for a maximum of 5 days. We also used early stop-
ping on the validation metric to reduce the chance of overfitting.
Afterwards, a specific part of the model was re-initialized (the ob-
ject classification head) to match the number of classes in the VINS

dataset before it was fine-tuned. We found it difficult to modify the
original SSD architecture to support the multi-label pre-training,
so we only followed the original training from scratch procedure
described in the paper as a baseline.

4.1.2 Results. Table 2 shows the performance of each model con-
figuration on the VINS test set, and we show that our updated
configurations lead to significant performance improvements. Our
primary performance metric for this task was the mean average pre-
cision (mAP), which is a standard metric used for object detection
models that takes into the accuracy of bounding box location (i.e.,
how closely the predicted box overlaps with ground truth) and clas-
sification (prediction of object type). The mAP score is calculated
by computing an individual average precision (AP) score for each
possible element class (e.g., Text, Check Box), which represents the
object detector’s accuracy in detecting each object class. The AP
scores are averaged to produce the mAP score. We calculated the
mAP score over classes that could be mapped to the original label
set in the paper [6] i.e., we excluded the “Other" class where there
was no clear mapping to the original set. We calculated the un-
weighted mean between class APs, which assigns equal importance
to common and rare element types. Our best model configuration
performed 0.14 better than the baseline in terms of mAP score.
While the largest source of improvement over the baseline con-
figuration (SSD) came from the updated FCOS model architecture,
our fine-tuning procedure contributed to gains as well. Specifi-
cally, we note that pre-training with more examples led to better
performance (around 0.04 mAP). Depending on the downstream
application of the element detection model, this improvement could
lead to better user experience but would require further validation.
For example, a screen reader [55] does not require tight bounding
boxes; however, it would benefit from detecting more (small) el-
ements on the screen. Query-based design search [6] could also
retrieve more relevant examples.

Although we followed the original training procedure as closely
as possible, we were unable to reach the mAP score reported in the
original VINS paper. This can be attributed to (i) our use of different
randomized splits and (ii) differences in mappings between class
labels from the raw data to the 11 primary classes, which were not
provided in the previously released code. Nevertheless, since we
used the same splits and class mappings across all of our model
configurations, we expect the relative performance improvements
to be consistent.

We also investigated the zero-shot performance of element de-
tectors trained only on web data (i.e., without fine-tuning). It is
difficult to compute performance quantitatively, since the label sets

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 2: Element detection performance (11 object classes)
for different model configurations. Pre-training on more
web screens led to better performance on mobile screens af-
ter fine-tuning.

Model Configuration mAP

SSD (Random Init.) 0.6737
FCOS (Random Init.) 0.7739
FCOS (Pre-trained on Web7k) 0.7877
FCOS (Pre-trained on Web7k-Resampled) 0.7961
FCOS (Pre-trained on Web70k) 0.7921
FCOS (Pre-trained on Web350k) 0.8115

between the web and mobile datasets do not directly overlap. How-
ever, we provide qualitative evidence that zero-shot learning could
be successful. Figure 6 shows the output of a web model when run
on mobile app screens from Rico. We conducted minimal prepro-
cessing, such as cropping out the Android system notification bar
and the navigation soft buttons. In many cases, the web analogs
of mobile text and image elements are detected accurately, which
suggests that some element classes have consistent appearance
across platforms. Interestingly, some web classes such as links and
headings are also detected in the image, which could be used to infer
new semantics such as clickability [47] and navigation landmarks.

4.2 Screen Classification
Classifying screen type or functionality from a screenshot can
be useful for design analysis and automation. Previously, small
amounts of data have been collected and annotated for this purpose.
Enrico [29] is an example of a dataset (1460 samples, subset of Rico
[15]) where each screenshot is assigned to one of 20 mutually-
exclusive design categories. Because of the dataset’s small size, it is
challenging to train accurate deep learning classification models.
While our web dataset is large, it also does not have the screen-
type annotations, and thus it is not possible to employ the same
pre-training strategy that was used for element detection.

Instead, we applied a semi-supervised learning technique known
as self-training [9]. Self-training is a process that improves model
performance by iteratively labeling and re-training on a large source
of unlabeled data. We investigated the effects of using WebUI as the
unlabeled dataset and show that doing so improves overall screen
classification accuracy.

4.2.1 Model Implementation. Figure 7 shows our procedure for
incorporating WebUI data into our model training via self-training.

First, we trained screen classifier based on the VGG-16 archi-
tecture with batch normalization and dropout [45], as described
by the Enrico paper [29]. Since official training, validation, and
testing splits were not provided, we randomly generated our own
(70%/15%/15%). This model was trained only on data from the Enrico
training split and served as the teacher classifier. Next, the teacher
model was used to generate “soft" pseudo-labels for screenshots
in the WebUI dataset, where each sample was mapped to a vector
containing probabilities for each class. We followed the procedure
used by Yalniz et al. [53] to keep only the top K most confident

Table 3: Classification accuracy (across 20 classes) for dif-
ferent configurations of our screen classification model. In-
creasing the amount of data used with our semi-supervised
learning method led to increased accuracy.

Model Configuration Accuracy

VGG-16 0.4737
Noisy ResNet-50 0.4649
Noisy ResNet-50 (Rico) 0.4956
Noisy ResNet-50 (Web7k) 0.4864
Noisy ResNet-50 (Web7k-Resampled) 0.4868
Noisy ResNet-50 (Web70k) 0.5175
Noisy ResNet-50 (Web350k) 0.5263

labels for each class. To select K, we first randomly sampled a small
subset of 1000 web pages from our dataset and performed a param-
eter search to find the optimal value. Based on our experiments,
we found that a value of 10% of the total dataset size led to good
performance (e.g., we set K=700 for the Web-7k split). Finally, we
trained a student classifier on a combination of the original and
automatically generated labels. We employed a specific type of
self-training known as Noisy Student Training [52], which involves
injecting noise into the student model’s training process so that it
becomes more robust. Two types of noise are used in this process:
(i) input noise, which is implemented via random data augmenta-
tion techniques and (ii) model noise, which is implemented with
dropout [46] and stochastic depth [27]. Because stochastic depth
can only be applied to model architectures with residual blocks, we
used an architecture based on ResNet-50 [25] instead of VGG-16.

4.2.2 Results. Overall, we found that applying self-training to in-
corporate additional unlabeled data led to consistent performance
improvements (Table 3). The best classifier using WebUI data was
5% more accurate than the baseline model, which was only trained
with the Enrico dataset. Our baseline VGG-16 model performed
considerably worse than the originally reported results [29] but
achieved similar accuracy to another reproduction of the work [35].
The performance difference could be attributed to differences in
randomized splits. Since we used the same splits across all condi-
tions, we expect relative performance differences to be consistent.
To investigate the effects of using a newmodel architecture, we also
trained a Noisy ResNet-50 (architecture used by the student model)
on the Enrico dataset. The resulting classifier performed relatively
poorly (worse than the baseline model), since the modifications
introduced (dropout and stochastic depth) require more data to
train effectively.

The primary source of improvement stems from the inclusion of
additional unlabeled data during the training process, which led to
a more generalizable student model. We observed that the small size
of the Enrico dataset (1460 samples) quickly led to overfitting during
training and limited overall performance. Semi-supervised learning
techniques, such as self-training, allow training on a much larger
number of examples.We found that model accuracy improved when
we incorporated more unlabeled examples, both from WebUI and
Rico.

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

Figure 6: Output of our element detection models run on two app screens. In many cases, detections from our web-only model
(Blue) coincide with ones from our fine-tuned model (Orange), which suggests some zero-shot transfer capabilities. Predicted
tags from the web-only model also provide additional metadata corresponding to clickability (link) and heading prediction
(heading); however, the predicted bounding boxes are often less tight than the fine-tuned model.

Enrico
Web
Data

Teacher
Classifier

Student
ClassifierStep 1: 

Training
Step 3:

Noisy Training

Step 2: 
Pseudo-labels

Figure 7: We applied semi-supervised learning to boost
screen classification performance using unlabeled web data.
First, a teacher classifier is trained using a “gold" dataset of
labeled mobile screens. Then, the teacher classifier is used
to generate a “silver" dataset of pseudo-labels by running it
on a large, unlabeled data source (e.g.,web data). Finally, the
“gold" and “silver" datasets are combined when training a
student classifier, which is larger and regularized with noise
to improve generalization. This process can be repeated;
however, we only perform one iteration.

4.3 Screen Similarity

Web
Data

Similarity
Model

RICO

UI Similarity

Mobile Examples

Unsup. Domain
Adaptation

Figure 8:We used unsupervised domain adaptation (UDA) to
train a screen similarity model that predicts relationships
between pairs of web pages and mobile app screens. The
training uses web data to learn similarity between screen-
shots using their associated URLs. Unlabeled data from
Rico is used to train an domain-adversarial network, which
guides the main model to learn features that transferrable
from web pages to mobile screens.

Identifying variations within the same screen and detecting tran-
sitions to new screens are useful for replaying user interaction
traces, processing bug reports [13], and automated app testing
[33, 34]. To model these properties and understand how multiple
screens from an application relate to each other, previous work
[20, 34] has sought to differentiate between distinct UIs and varia-
tions of the same UI. For example, the same checkout screen may
appear different based on the number and types of products added
to the cart. Common screen interactions such as scrolling and in-
teraction with expandable widgets (e.g., menus, dialogs, keyboards,
and notifications) may also alter the visual appearance of a screen.
Visual prediction reduces system reliance on accessibility metadata,
which may be missing or incomplete, and further extends the ap-
plications of these models, as they can process video recordings of
user interactions (e.g., reproducing bug reports) [5, 13].

Previous work [20] opted to manually annotate a dataset of
more than one thousand iPhone applications that were manually
“crawled" by crowdworkers; however, the dataset was not released
to the public. As a weak source of annotation, we used web page
URLs to automatically label page relations. Since no labeled data is
available in the mobile domain, we employed domain-adversarial
network training [22], a type of unsupervised domain adaptation
(UDA), to encourage the model to learn transferrable features from
the web domain that might apply to the mobile domain. Note that
while it is possible to apply the semi-supervised learning strategy
(which was used for the screen classification task) in reverse, it may
be less effective, since the unlabeled dataset (mobile UIs) is smaller
than the labeled dataset.

4.3.1 Model Implementation. We followed previous work [20] and
used a ResNet-18 [25] model trained as a siamese network [24]. The
siamese network uses the same model to encode two inputs, then
compares them in feature space (i.e., their embeddings) to decide if
they are different variations of the same UI screen. Our approach is
different from the method proposed by previous work [13], which

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 4: Classification performance (same-screen vs new-
screen) of our screen similarity models evaluated on pairs
of screens from our web data. Performance increased when
the model was trained on more data and slightly decreased
when trained with the UDA objective.

Model Configuration F1-Score
ResNet-18 (Web7k) 0.7097
ResNet-18 UDA (Web7k) 0.7184
ResNet-18 (Web7k-Resampled) 0.7368
ResNet-18 UDA (Web7k-Resampled) 0.7191
ResNet-18 (Web70k) 0.8222
ResNet-18 UDA (Web70k) 0.8193
ResNet-18 (Web350k) 0.9630
ResNet-18 UDA (Web350k) 0.9500

applies random data augmentations (e.g., blurring, rotation, trans-
lation) to screenshots to create same-screen pairs. Instead, we ran-
domly sampled pairs of screenshots from our web data for training,
with balanced probability for same-screen and new-screen pairs.
Same-screen pairs were generated by finding screenshots with the
same URL but accessed at different times or simulating page scrolls
on a full-page screen capture by sliding a window vertically along
the image. Note that occasionally, simulated page scrolls and access-
ing the same web page at different times still produced identical or
nearly identical screenshots, so in our test set, we filtered these out
using perceptual hashing. Different-screen pairs were generated
both by sampling screenshots from within the same domain but
with different URL path, and by sampling screenshots from other
domains.

The domain-adversarial training process seeks to simultaneously
accomplish two objectives: (i) learn an embedding space where two
screenshots are from the same screen if their distance is less than a
threshold, and (ii) learn an encoding function that applies to both
the web and mobile domains. The first objective is related to the
primary task of distinguishing same-screen pairs from new-screen
pairs and is achieved with a pairwise margin-based loss [20]. The
second objective aims to align the feature distributions of the two
domains by maximizing the error rate of a domain classifier, which
is a network that tries to classify whether a sample is from a web
or mobile UI. For this task, we used only web page screenshots cap-
tured on simulated smartphones, to make the domain classification
objective more challenging.

4.3.2 Results. Since one of the assumptions of our problem is that
labeled examples of same-screen and new-screen pairs are unavail-
able for mobile apps, we used two alternative methods to evaluate
our screen similarity model: (i) quantitative evaluation on labeled
pairs of web screens and (ii) qualitative evaluation on a set of unla-
beled Android interaction videos.

Table 4 shows the quantitative performance of our models evalu-
ated on pairs of web pages from our dataset. Overall, training with
more data led to significantly better performance, an increase of
over 20%. The inclusion of a domain adaptation objective sometimes
led to a slight drop in classification performance since it introduces

additional constraints in the learning process. We qualitatively eval-
uated our model’s performance characteristics on mobile screens
by using them to segment videos of mobile app interaction. We
used a dataset of screen recordings of bug reproductions [13] for 6
open-source Android apps and applied our model by sequentially
sampling frames from the video and evaluating whether a new
screen was reached. Note our sampling process differs from other
previous work [7, 15] that segmented crawls at recording time us-
ing accessibility metadata, because we do not have accessibility
metadata corresponding to the previously collected recordings used
in our analysis. Figure 9 shows an example of a usage video pro-
cessed by our model. While the web model was effective detecting
some types of transitions that occurred in mobile apps, it was less
effective at others, such as software keyboards and dialogs, which
do not occur frequently in the WebUI dataset. We include more
model-generated segmentations of the bug reproduction dataset in
supplementary material.

In this work, we applied unsupervised domain adaptation, which
does not require any labels from the target domain. Other domain
adaptation strategies exist, and some are able to incorporate small
amounts of labeled data, which we expect could improve the accu-
racy of our model by contributing transition types unique to mobile
apps.

5 DISCUSSION
5.1 Performance Impact of Web Data
Empirically, we showed that automatically crawled and annotated
web pages, like those available in WebUI, can effectively support
common visual modeling tasks for other domains (e.g.,mobile apps)
through transfer learning strategies. In cases where a small amount
of labeled mobile data was available, as in element detection and
screen classification, incorporating web data led to better perfor-
mance. Even when labeled data was completely unavailable, as in
screen similarity, models trained only on web data could often be
directly applied to mobile app screens. Our results suggest that the
size of current UI datasets may be a limiting factor, since model
performance increases consistently when trained on larger splits
of data. Our observations and analysis of WebUI’s composition
showed that web pages can differ from mobile app screens in terms
of complexity (i.e., average number of on-screen elements) and
element types. However, the performance improvements from our
machine learning experiments suggest that web and mobile UIs are
similar enough to transfer some types of semantics between them.

We currently only explored three examples, although we believe
that other UI modeling works [11, 47, 50] can also benefit from
similar approaches. We did not evaluate all possible applications of
WebUI in our paper, due to time and cost constraints. However, the
three experiments we conducted cover all possibilities of source and
target domain labels (1), so similar transfer learning techniques are
likely to apply. Future work that builds upon WebUI can conduct
more detailed evaluations of other downstream tasks.

One specific area that we believe is promising for future work
is automated design verification [41], which could benefit from a
large volume of web pages containing paired visual and stylistic
information. Our highly automated data collection process also
allows WebUI to be more easily updated in the future by re-visiting

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

Droid Weight

AntennaPod

Time Tracker

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Token

GrowTracker

GNUCash

Figure 9: Examples of interaction videos segmented by our bestmodels trainedwithUDA (Red) andwithoutUDA (Blue). Videos
are sampled at 1 fps. The output of both models contain errors, however, we found that the adapted UDA model generally
produced better segmentations. Common errors include oversegmentation due to app dialogs and soft keyboards, which do
not occur in the WebUI dataset.

the same list of URLs. An updated version of the dataset could also
facilitate longitudinal analysis of the design [14] and accessibil-
ity [21] of web UIs. Nevertheless, WebUI is currently unlikely to
support other types of modeling, such as user interaction mining
[15, 16], that require realistic interaction traces, since our crawling
strategy was largely based on random link traversal.

5.2 Improved Automated Crawling
Our crawler was unable to access much of the “deep web" (i.e.,
large part of the web that cannot be indexed), and thus our dataset
contains few, if any, web pages that are not publicly accessible
or protected by authentication flows. It also did not attempt to
interact with all elements on a web page and conducted a very
limited exploration of any JavaScript-enabled functionality that
might have been present. Trends in web and app development,
such as the creation of Progressive Web Apps (PWAs), suggest that
this type of functionality will becomemore common, and traditional
link-based traversal may become less effective at exploring UI states.

To improve automated crawling and data collection, our crawler
could benefit from a semantic understanding of web pages. For
example, it could detect page functionality to explore states that
require human input and either execute automated routines (e.g.
detecting login fields) or employ crowdsourcing [15] to allow it to

proceed in more complex scenarios. Our currently trained models
could augment or improve this process by identifying tasks associ-
ated with web pages (e.g., screen classification) or by augmenting
potentially noisy labels provided by the automatically generated
accessibility tree. In turn, the crawler could explore more of the
web, leading to higher quality and more diverse data. If repeated
iteratively, this process would constitute a form of Never-Ending
Learning [39], a machine learning paradigm where models learn
continuously over long periods of time. Instead of learning from a
fixed dataset, models could constantly improve itself by encounter-
ing new content and designs, both of which are important due to
the dynamic nature of UIs.

5.3 Generalized UI Understanding
Our experiments show that incorporating web data is most effec-
tive for improving visual UI modeling in transfer learning settings
where a limited amount of target labels are available for fine-tuning.
A logical next step is to obtain similar benefits without any addi-
tional labeled data. To this end, we identified several strategies for
improving generalization. First, unlike existing UI datasets that
contain examples from one device type, we intentionally simulated
multiple viewports and devices during data collection. The decom-
position of one-hot labels (where each element type is assigned

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

exactly one type) into combinations of multi-hot tags (each element
can be assigned multiple labels) may also be useful, since it avoids
the problem of platform-specific element types. Figure 6 demon-
strates the zero-shot transfer capabilities of models trained only
on web data by successfully detecting and classifying elements on
Android app screens. While the label sets of web and Android data
do not directly overlap, the web model outputs reasonable analogs
(e.g., Text, link) for Android widgets (e.g., Text Button). Finally, our
screen similarity model shows how unsupervised domain adaptation
can improve the transferrability of learned features across domains
through an explicit machine learning objective.

A long-term goal of our automated data collection and modeling
efforts is achieving a more generalized understanding of UIs — a
single model that could be used to predict semantics for any UI. This
is challenging due to differing design guidelines and paradigms, but
it could ultimately lead to a better understanding of how to solve
UI problems across platforms.

6 CONCLUSION
In this paper, we introduced WebUI, a dataset of approximately
400,000 web pages paired with visual, semantic, and style informa-
tion to support visual UI modeling. Unlike most existing datasets for
UI research that depend on costly and time-consuming human ex-
ploration and annotation, WebUI was collected with a web crawler
that uses existing metadata, such as the accessibility tree and com-
puted styles, as noisy labels for visual prediction. Our highly auto-
mated process allowed us to collect an order of magnitude more
UIs than other publicly released datasets and often associates more
information (e.g., clickability, responsiveness) with each example.
We demonstrated the utility of our dataset by incorporating it into
three visual UI modeling tasks in the mobile domain: (i) element de-
tection, (ii) screen classification, and (iii) screen similarity. In cases
where a small amount of labeled mobile data exists, incorporating
web data led to increased performance, and in cases without any
labeled mobile data, we found that models trained on web pages
could often generalize to mobile app screens. In summary, our work
shows that the web constitutes a large source of data that can more
sustainably be crawled and mined for supporting visual UI research
and modeling.

ACKNOWLEDGMENTS
This work was funded in part by an NSF Graduate Research Fel-
lowship.

REFERENCES
[1] 2022. AutoIt Function PixelSearch. https://www.autoitscript.com/autoit3/docs/

functions/PixelSearch.htm.
[2] 2022. Chrome DevTools engineering blog Full Accessibility Tree in Chrome

DevTools. https://developer.chrome.com/blog/full-accessibility-tree/. Accessed:
2022-09-15.

[3] 2022. Puppeteer - Chrome. https://developer.chrome.com/docs/puppeteer/. Ac-
cessed: 2022-09-15.

[4] 2022. What is the ideal screen size for responsive design? https://www.
browserstack.com/guide/ideal-screen-sizes-for-responsive-design. Accessed:
2022-09-15.

[5] Carlos Bernal-Cárdenas, Nathan Cooper, Madeleine Havranek, Kevin Moran,
Oscar Chaparro, Denys Poshyvanyk, and Andrian Marcus. 2022. Translating
Video Recordings of Complex Mobile App UI Gestures Into Replayable Scenarios.
IEEE Transactions on Software Engineering (2022).

[6] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. Vins: Visual search for mobile user interface design. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[7] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A Plummer. 2022. Interactive Mobile App Navigation with Uncertain or
Under-specified Natural Language Commands. arXiv preprint arXiv:2202.02312
(2022).

[8] Tsung-Hsiang Chang, Tom Yeh, and Rob Miller. 2011. Associating the visual
representation of user interfaces with their internal structures and metadata. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology. 245–256.

[9] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised
learning. IEEE Transactions on Neural Networks 20, 3 (2009), 542–542.

[10] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[11] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and
Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Applications. In
CHI Conference on Human Factors in Computing Systems. 1–14.

[12] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming
Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface: Old
fashioned or deep learning or a combination?. In proceedings of the 28th ACM
joint meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1202–1214.

[13] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin Moran, and
Denys Poshyvanyk. 2021. It takes two to tango: Combining visual and textual
information for detecting duplicate video-based bug reports. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 957–969.

[14] Biplab Deka, Bardia Doosti, Forrest Huang, Chad Franzen, Joshua Hibschman,
Daniel Afergan, Yang Li, Ranjitha Kumar, Tao Dong, and Jeffrey Nichols. 2021.
An Early Rico Retrospective: Three Years of Uses for a Mobile App Dataset.
In Artificial Intelligence for Human Computer Interaction: A Modern Approach.
Springer, 229–256.

[15] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[16] Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction
mining mobile apps. In Proceedings of the 29th annual symposium on user interface
software and technology. 767–776.

[17] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[18] Morgan Dixon and James Fogarty. 2010. Prefab: implementing advanced behav-
iors using pixel-based reverse engineering of interface structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 1525–1534.

[19] Samuel Dodge and Lina Karam. 2016. Understanding how image quality af-
fects deep neural networks. In 2016 eighth international conference on quality of
multimedia experience (QoMEX). IEEE, 1–6.

[20] Shirin Feiz, Jason Wu, Xiaoyi Zhang, Amanda Swearngin, Titus Barik, and Jeffrey
Nichols. 2022. Understanding Screen Relationships from Screenshots of Smart-
phone Applications. In 27th International Conference on Intelligent User Interfaces.
447–458.

[21] Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Ja-
cob O Wobbrock. 2022. A Large-Scale Longitudinal Analysis of Missing Label
Accessibility Failures in Android Apps. In CHI Conference on Human Factors in
Computing Systems. 1–16.

[22] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The journal of machine learning
research 17, 1 (2016), 2096–2030.

[23] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020).

[24] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735–1742.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[26] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wich-
ers, Gabriel Schubiner, Ruby Lee, and Jindong Chen. 2021. Actionbert: Leveraging
user actions for semantic understanding of user interfaces. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 5931–5938.

[27] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. 2016.
Deep networks with stochastic depth. In European conference on computer vision.

https://www.autoitscript.com/autoit3/docs/functions/PixelSearch.htm
https://www.autoitscript.com/autoit3/docs/functions/PixelSearch.htm
https://developer.chrome.com/blog/full-accessibility-tree/
https://developer.chrome.com/docs/puppeteer/
https://www.browserstack.com/guide/ideal-screen-sizes-for-responsive-design
https://www.browserstack.com/guide/ideal-screen-sizes-for-responsive-design

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

Springer, 646–661.
[28] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,

Scott R Klemmer, and Jerry O Talton. 2013. Webzeitgeist: design mining the web.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 3083–3092.

[29] Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A dataset for
topic modeling of mobile UI designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services. 1–4.

[30] Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. 2022. Learning to Denoise
Raw Mobile UI Layouts for Improving Datasets at Scale. In CHI Conference on
Human Factors in Computing Systems. 1–13.

[31] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[32] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile UI action sequences. arXiv preprint
arXiv:2005.03776 (2020).

[33] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26.

[34] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
deep learning-based approach to automated black-box android app testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1070–1073.

[35] Paul Pu Liang, Yiwei Lyu, Xiang Fan, Zetian Wu, Yun Cheng, Jason Wu, Leslie
Chen, Peter Wu, Michelle A Lee, Yuke Zhu, et al. 2021. Multibench: Mul-
tiscale benchmarks for multimodal representation learning. arXiv preprint
arXiv:2107.07502 (2021).

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[37] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. 569–579.

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[39] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan Yang,
Justin Betteridge, Andrew Carlson, Bhavana Dalvi, Matt Gardner, Bryan Kisiel,
et al. 2018. Never-ending learning. Commun. ACM 61, 5 (2018), 103–115.

[40] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user
interfaces for mobile apps. IEEE Transactions on Software Engineering 46, 2 (2018),
196–221.

[41] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy-
vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In
Proceedings of the 40th International Conference on Software Engineering. 165–175.

[42] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345–1359.

[43] Richard S. Schwerdtfeger. 1991. Making the GUI Talk. ftp://service.boulder.ibm.
com/sns/sr-os2/sr2doc/guitalk.txt.

[44] Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Matthias Jarke. 2021. Synz:
Enhanced synthetic dataset for training ui element detectors. In 26th International
Conference on Intelligent User Interfaces-Companion. 67–69.

[45] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[47] Amanda Swearngin and Yang Li. 2019. Modeling mobile interface tappability
using crowdsourcing and deep learning. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–11.

[48] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. 2019. Fcos: Fully convolutional
one-stage object detection. In Proceedings of the IEEE/CVF international conference
on computer vision. 9627–9636.

[49] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2words: Automatic mobile UI summarization with multimodal
learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 498–510.

[50] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual
ACM Symposium on User Interface Software and Technology. 470–483.

[51] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1655–1659.

[52] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. 2020. Self-
training with noisy student improves imagenet classification. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 10687–10698.

[53] I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. 2019.
Billion-scale semi-supervised learning for image classification. arXiv preprint
arXiv:1905.00546 (2019).

[54] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

[55] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
recognition: Creating accessibility metadata for mobile applications from pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

A ADDITIONAL DATASET SAMPLES
We provide additional samples from the WebUI (Figure 10) to sup-
plement the example in the paper (Figure 2). Our example gallery
shows several different types of websites, including login, landing,
product, portfolio, and informational pages. Each website is cap-
tured using different simulated devices, which shows, among other
things, how content responds to screen size. We also computed the
percentile-rank of each web page’s class distribution.

B CLASS IMBALANCE ANALYSIS
This section describes analysis of class imbalance of WebUI and
its effect on transfer learning applications. Similar to other UI
datasets[55], WebUI exhibits an imbalance of UI element classes,
where some types of elements (e.g., text) appear much more fre-
quently than others (e.g., images). Several aspects of WebUI (e.g.,
finer-grain text segmentation, multi-hot labels, and prevalence of
documents on the web) also contributed to class imbalance.

We used a frequency-based resampling method to generate the
Web7k-Resampled, which resulted in more examples of infrequent
element types. Our technique assigned weights to samples to in-
crease the representation of UIs containing rare or infrequent ele-
ment types, and we resampled based on the 10 element types shown
in Figure 3. Algorithm 1 provides an overview of our resampling
technique. Note that unlike some class-balancing algorithms (e.g.,
SMOTE [10]), our technique does not generate additional synthetic
samples and does not include the same screen more than once.

Web7k-Resampled contains proportionally more examples of
many infrequent classes (Figure 3). Figure 11 shows the proportional
increase in screens containing each element type. Figure 12 shows
the proportional increase in the total number of elements for each
type.

The results from our performance evaluations in the main paper
suggest that this resampled split leads to improvements for each
of our three tasks when compared to a randomly sampled subset
of the same size. Notably, the element detector model resampled
7k split outperformed the one trained on 70k random split, which
suggests that element balancing was particularly useful for tasks
where elements types are directly predicted. Tests with other two
tasks (screen classification and screen similarity) also led to im-
provements for the resampled models; however, the gains were
more modest. The improvements could be because the element
distribution in the resampled split is closer to that of the target data.
In addition, we provide a deeper analysis of the Element Detection

ftp://service.boulder.ibm.com/sns/sr-os2/sr2doc/guitalk.txt
ftp://service.boulder.ibm.com/sns/sr-os2/sr2doc/guitalk.txt

WebUI: A Dataset for Enhancing Visual UI Understanding with Web Semantics CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 10: Samples from WebUI accessed with different simulated devices. For each screen, we compute its element type dis-
tribution (normalized to 1). Then, we computed the percentile-rank of the top 10 classes with respect to the entire dataset. For
example, the bottom row’s button class has a percentile-rank of 90, meaning the web page’s relative frequency of is greater
than 90% of others in the dataset.

CHI ’23, April 23–28, 2023, Hamburg, Germany Wu et al.

Table 5: Average Precision (AP) of each element class (excluding the “Other" class) for the Element Detection task.

Element Type SSD (Random) FCOS (Random) FCOS (Web7k) FCOS (Web7k-Re.) FCOS (Web70k) FCOS (Web350k)

Background Image 0.85 0.88 0.86 0.91 0.85 0.93
Checked View 0.06 0.28 0.31 0.34 0.32 0.38
Icon 0.72 0.73 0.75 0.75 0.75 0.77
Input Field 0.22 0.59 0.7 0.60 0.72 0.69
Image 0.73 0.8 0.77 0.82 0.78 0.82
Text 0.66 0.83 0.89 0.84 0.9 0.85
Text Button 0.57 0.9 0.94 0.94 0.95 0.94
Page Indicator 0.83 0.76 0.83 0.76 0.79 0.8
Pop-Up Window 0.85 0.83 0.8 0.85 0.78 0.83
Sliding Menu 0.95 0.98 0.96 0.98 0.96 0.97
Switch 0.97 0.93 0.86 0.97 0.91 0.94

mAP 0.67 0.77 0.79 0.80 0.79 0.81

Algorithm 1: Pseudo-code for the frequency-based resam-
pling algorithm used to generate the Web7k-Resampled
split.
1 function SampleSplit (𝑁,𝐶, 𝑆);
Input :Number of samples to choose 𝑁 , list of element

classes 𝐶 , and list of samples 𝑆
Output :Resampled subset of 𝑆
/* Vector containing total frequencies for 𝑐 ∈ 𝐶

*/
2 𝑓𝐶 ← total # of elements in 𝑆 for each class
/* Matrix where rows are 𝑠 ∈ 𝑆 and columns are

normalized frequency of 𝑐 ∈ 𝐶 for 𝑠 */

3 𝑓𝑆 ← frequency of classes 𝑐 ∈ 𝐶 (columns) for 𝑠 ∈ 𝑆 (rows)
/* Assign sampling weights to 𝑐 ∈ 𝐶 inversely

proportional to frequency */

4 𝑤𝐶 ← [1
𝑓𝐶 [𝑐] | 𝑐 ∈ 𝐶]

5 samples← []
/* Repeat until desired split size is reached */

6 while len(samples) < 𝑁 do
7 𝑐𝑠 ← Sample(𝐶,𝑤𝐶)
8 𝑤𝑠 ← [𝑓𝑆 [𝑠, 𝑐𝑠] | 𝑠 ∈ 𝑆]
9 sample← SampleWithoutReplace(𝑆,𝑤𝑠)

10 add sample to samples
11 end
12 return samples

R
el

at
iv

e
Fr

eq
. C

ha
ng

e

0

1

2

3

tex
t

lin
k

lis
t it

em
im

ag
e

he
ad

ing

pa
rag

rap
h

lin
e b

rea
k

ge
ne

ric

gri
d c

ell

bu
tto

n

Change in Screen Frequency after Resampling

Figure 11:We calculated the change in frequency (expressed
as a ratio) of screens containing at least one of each element
type after resampling. For example, the number of screens
containing at least one image element is 2.7x more than in
the randomly sampled set.

R
el

at
iv

e
Fr

eq
. C

ha
ng

e

0.0

0.5

1.0

1.5

2.0

tex
t

lin
k

lis
t it

em
im

ag
e

he
ad

ing

pa
rag

rap
h

lin
e b

rea
k

ge
ne

ric

gri
d c

ell

bu
tto

n

Change in Element Frequency after Resampling

Figure 12:We calculated the change in frequency (expressed
as a ratio) of total number of elements after resampling.
For example, the average screen in the resampled split con-
tains 1.3x more images. Note that is possible for most el-
ement classes to increase in frequency (while not having
other classes experience a proportional decrease) because el-
ement classes are notmutually exclusive, and the resampled
split containsmore elements that are assignedmultiple tags.

class, which is most likely to be affected by element type imbal-
ance. Table 5 shows that the Web7k-resampled split has higher AP
for classes like "Text Button" and "Image", which had increased
representation after resampling.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Datasets for UI Modeling
	2.2 Applications of UI Datasets
	2.3 Related Machine Learning Approaches

	3 WebUI Dataset
	3.1 Web UI Crawler
	3.2 Dataset Composition

	4 Transferring Semantics from Web Data
	4.1 Element Detection
	4.2 Screen Classification
	4.3 Screen Similarity

	5 Discussion
	5.1 Performance Impact of Web Data
	5.2 Improved Automated Crawling
	5.3 Generalized UI Understanding

	6 Conclusion
	Acknowledgments
	References
	A Additional Dataset Samples
	B Class Imbalance Analysis

