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Figure 1: Given input images (a), the proposed V2Depth predicts more accurate depth (d) compared to the results (b) without
our virtual-view feature simulator and refiner, as well as the results of baseline method DRO [23] (c) without our simulator and
3DVA, especially for objects with occlusion relationships such as cars and pedestrians (marked by gray arrows).

ABSTRACT
Due to the lack of spatial cues giving merely a single image, many
monocular depth estimation methods have been developed to lever-
age stereo or multi-view images to learn the spatial information of
a scene in a self-supervised manner. However, these methods have
limited performance gain since they are not able to exploit sufficient
3D geometry cues during inference, where only monocular images
are available. In this work, we present V2Depth, a novel coarse-to-
fine framework withVirtualView feature simulation for supervised
monocular Depth estimation. Specifically, we first design a virtual-
view feature simulator by leveraging the technique of novel view
synthesis and contrastive learning to generate virtual view feature
maps. In this way, we explicitly provide representative spatial ge-
ometry for subsequent depth estimation in both the training and
inference stages. Then we introduce a 3DVA-Refiner to iteratively
optimize the predicted depth map. During the optimization pro-
cess, 3D-aware virtual attention is developed to capture the global
spatial-context correlations to maintain the feature consistency of
different views and estimation integrity of the 3D scene such as
objects with occlusion relationships. Decisive improvements over
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state-of-the-art approaches on three benchmark datasets across all
metrics demonstrate the superiority of our method.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Monocular Depth Estimation, Virtual-View Feature Simulation,
Contrastive Learning, Refinement Network

ACM Reference Format:
Zizhang Wu∗, Zhuozheng Li∗, Zhi-Gang Fan∗, Yunzhe Wu, Jian Pu, and Xi-
anzhi Li. 2023. V2Depth: Monocular Depth Estimation via Feature-Level
Virtual-View Simulation and Refinement. In Proceedings of the 31st ACM
International Conference on Multimedia (MM ’23), October 29-November 3,
2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3581783.3611751

∗ These authors contributed equally to this work.

1 INTRODUCTION
Monocular depth estimation is a fundamental task in computer
vision with the goal of predicting per-pixel depth values from a
single RGB image. Benefits from its nature of low cost and easy
implementation, monocular depth estimation contributes to vari-
ous applications including robot navigation [54], 3D scene recon-
struction [37, 82], augmented reality [13, 15], and autonomous
driving [43, 84], etc. Significant progress has been achieved by ex-
ploiting neural networks to learn the mapping from image to depth
map [6, 41, 46, 66, 89]. However, inferring an accurate depth map
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from merely a single image is quite challenging due to its inherent
ambiguity and ill-posed nature [26, 65], where many possible 3D
scenes can actually be projected into the same 2D scene [58, 89].
Monocular depth estimation task turns into a difficult fitting prob-
lem due to the lack of 3D geometric information in monocular images,
i.e. without available spatial cues.

A crucial intuition for humans’ perception of depth is to draw on
prior knowledge of left-right views. Hence, a number of approaches
develop the self-supervised training schemes[19, 22, 79], which
take stereo pairs as input for network training. It adopts left-right
depth reprojection with photometric cost minimization to learn
depth from binocular data. More recently, several distillation-based
methods [8, 83] have been used to train a stereo teacher network
on image pairs and distill the learned knowledge or structure priors
to the monocular student model. These methods, however, achieve
limited performance gain since they are not able to exploit sufficient
3D geometry cues during the inference stage, where onlymonocular
images are available as test input.

In this paper, we address supervised monocular Depth esti-
mation by introducing the Virtual-View feature simulation and
refinement to enable the learning of 3D spatial cues, which is the
first of this kind. Our approach (named V2Depth) first generates
a high-quality feature map of a synthetic image as taken from a
virtual camera placed in a different viewpoint. More specifically,
given a reference input image (e.g., left-view image), we design our
network to generate not only the reference feature map but also the
feature map from a new perspective (e.g., right-view). In specific,
we develop a virtual-view feature simulator (abbr. VVF-Simulator),
based on contrastive representation learning [57]. During network
training, given two identical images of the same view, we opti-
mize the output feature embedding space to maximize the cosine
similarity of the two positive features, since we expect our net-
work to convert one of the two identical images into a new view.
Conversely, given two images of different views, we minimize the
cosine similarity of the negative feature pairs, since we expect our
network to convert one of the two different images to be identi-
cal to the other. During inference, VVF-Simulator consumes two
identical monocular images and generates a pair of features, i.e., a
(real) reference feature map and a (virtual) novel-view feature map.
Therefore, compared to the teacher-student knowledge distillation
approach [83], our VVF-Simulator can explicitly make full use of
3D geometric information during both training and testing.

Afterwards, based on the above 3D-aware virtual features, we
develop a 3DVA-Refiner to iteratively optimize our initial depth
predictions, as inspired by the deep recurrent optimizer (DRO) [23].
Specifically, we develop our 3D-aware virtual attention (3DVA)
module with the cross-attention mechanism that assigns the 3D-
aware virtual features as values, and the depth context features
as queries and keys. In this way, it effectively interacts with the
global 3D-aware virtual features and depth context features, thus
achieves feature consistency and depth estimation integrity. Exten-
sive experiments demonstrate that by rectifying the mismatching
problem, our V2Depth predicts the accurate depth and contours of
objects, especially for objects with occlusion relationships and in
messy environment.

Qualitatively, as shown in Fig. 1 (b), we directly predict depth by
learning features frommonocular input without our VVF-Simulator

and 3DVA-Refiner. Clearly, it is difficult to recover the complete
geometry of objects. On the other hand, compared to the baseline
method DRO (c), the predictions from our V2Depth (d) demonstrate
its robustness and precision at occluded objects; see particularly
the cars and pedestrians marked by gray arrows. Quantitatively, we
conduct extensive experiments on three challenging benchmarks
to validate the effectiveness of our pipeline against state-of-the-art
models and sufficient ablation studies to verify the contribution of
each major component of our V2Depth. Please refer to the experi-
ments section for more detailed comparisons.

In a nutshell, we summarize our main contributions in threefold:

• To the best of our knowledge, we are the first to introduce
monocular depth estimation with the feature-level virtual-
view simulation and refinement. Our proposed V2Depth
predicts accurate depth for mutually occluding objects and
achieves state-of-the-art performance on challenging KITTI,
Virtual KITTI 2, and DrivingStereo datasets.
• We design a novel virtual-view feature simulator by leverag-
ing contrastive learning to produce a pair of features, includ-
ing a real reference feature map and a virtual novel-view
feature map. It stimulates the applicability of monocular
depth estimation to real 3D understanding with representa-
tive spatial geometric information.
• We develop an 3D-aware virtual attention based refiner to
learn the 3D geometric constraints from the virtual-view
features and the reference features. It learns the feature con-
sistency along with the estimation integrity, and iteratively
optimizes the depth through attention-based integration.

2 RELATEDWORK
2.1 Monocular Depth Estimation
Monocular depth estimation methods aim at predicting the pixel-
wise depth values from a single image. Depending on whether the
input images are monocular or stereo images during the network
training, we divide those methods into monocular training and
stereo training methods.

Monocular training refers to training and inferencewithmonoc-
ular images only for the task of depth estimation. Eigen et al. [14]
first proposed a coarse-to-fine framework that uses the deep convo-
lutional neural network (CNN) to regress the depth map from the
extracted image features. Afterwards, Lee et al. [38] introduced the
multi-stage local planar guidance layer for stimulating the learning
of depth features. BANet [1] proposed a bidirectional attention
module to utilize the feed-forward feature maps and incorporate
the global context to filter depth ambiguity. Moreover, the dense
prediction transformer (DPT) was proposed [63] that leverages
the vision transformer (ViT) [12] as the backbone for accomplish-
ing global-aware feature extraction. NewCRFs [89] adopted the
swin-transformer [48] for image encoding and developed the fully-
connected conditional random fields for depth decoding. Particu-
larly, DRO [23] introduced the deep recurrent optimizer with the
gated recurrent unit (GRU) [76] to alternately update depth and
camera poses. Besides, some of those approaches attempt to esti-
mate the depth values from the results of classification or ordinal
regression[6, 17]. Fu et al. [17] introduced a spacing-increasing
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Figure 2: Overview of the framework. Given the reference image 𝐼𝑟 , our virtual-view feature simulator extracts the virtual-view
feature 𝐹𝑣 and the reference feature 𝐹𝑟 . In parallel, a depth context network extracts the context feature 𝐹𝑐 . Then, a depth
head takes in 𝐹𝑟 and outputs an initial depth map 𝐷0

𝑟 . During the optimization, the proposed 3D-aware virtual attention based
refiner (3DVA-Refiner) computes a cost map from the feature pairs with relative pose and initial depth. Finally, 𝐷0

𝑟 is iteratively
optimized by the 3DVA-Refiner and gradually converges to the optimal depth 𝐷∗𝑟 .

discretization (SID) strategy to discretize depth with the ordinary
regression loss. Adabins [6] proposed to divide the depth range
into bins for adaptive depth quantization. In addition, other meth-
ods introduce auxiliary information to assist the training of the
depth network, such as sparse depth [24], mixing datasets [64], or
segmentation information [34, 56, 61, 90].

However, it is an inherently ambiguous and ill-posed problem
to estimate the 3D world depth from monocular images due to the
lack of geometric constraints [58, 89].

Stereo training refers to using stereo image pairs during the
training of the depth network. Particularly, left-right consistency
allows methods to release the dependence on ground-truth depth
for training and to perform self-supervised depth estimation with
binocular stereo images [25, 34–36, 60, 83]. Grag et al. [19] first
formulated the photometric consistency loss based on left-right
images to estimate depth without using LiDAR supervision. Then,
MonoDepth [22] and MonoDepth2 [21] performed a stereo-trained
version that employed left-right depth reprojection to learn depth
from stereo pairs. The reprojection loss was hence computed at
a higher resolution [21, 49, 59] to stimulate the depth-awareness
of high-level feature maps. Depth Hints [79] was introduced as
depth suggestions obtained from simple off-the-shelf stereo algo-
rithms to study the reprojections in depth prediction from stereo-
based self-supervision, and the pre-computed semi-global matching
(SGM) [29, 30] depth from binocular stereo data was adopted as a
supervisory signal. DistDepth [83] adopted stereo images as inputs,
and introduced the structure distillation approach to learn knacks
from an off-the-shelf relative depth estimator.

Inspired by the leveraging of geometric constraints frommultiple
cameras for the training of self-supervised depth estimation, we

proposed to train a monocular depth estimator based on generated
virtual-view semantic features.

2.2 Novel View Synthesis
To provide sufficient 3D geometry constraints and avoid the incon-
sistency between training and inference strategies, we investigate
the potential of novel view synthesis (NVS). The methods based
on neural radiance fields [3, 4, 9, 31, 33, 51, 55, 67] (Nerfs) have
achieved impressive fidelity on photo-realistic novel-view synthe-
sis. Specifically, the multi-layer perceptron (MLP) was adopted to
map spatial coordinates to color (appearance) and density (geome-
try) values. Novel views were rendered by evaluating the optimized
MLP along rays and incorporating the color over the density with
the volume rendering [50] approach. In addition, recent approaches
also regulate the MLP on feature grids or voxels, resulting in a faster
speed of inference [7, 47, 53, 73] and more robust generalizations
to novel scenes [52, 70, 88]. Despite these advances, they require
multiple images for the rendering of novel scenes.

Considering NVS from a single image, methods also attempted
to incorporate the usage of both NeRFs and depth estimation. Ear-
lier works [10, 11, 78] predict layered depth images (LDI) [69] for
rendering. Afterwards, methods [72, 77] started learning view syn-
thesis by using deep learning to generate the multiplane image
(MPI) [91], which is a camera-centric layered 3D representation
with multiple layers of color and alpha values at certain depths.
MINE [42] predicted a 4-channel image (volume density and RGB)
at arbitrary depth values to reconstruct the camera frustum and syn-
thesize the frustum as novel RGB or depth views with differentiable
rendering. Besides, Wiles et al. [80] proposed an end-to-end NVS
method by employing a network to predict both a per-pixel depth
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map and a feature map from a single image. It generated novel-view
images through neural rendering and network refinement on the
reprojected features. Furthermore, NVS-MonoDepth [5] proposed
to improve the monocular depth prediction with novel view syn-
thesis, where the prediction results of a monocular depth network
are warped to an additional viewpoint. Recently, Wimbauer et al.
[81] generalized the depth prediction formulation to a continuous
density field by introducing an encoder-decoder network to predict
a dense feature map from a single image. They applied volume
rendering to perform both NVS and depth prediction.

Motivated by the above effective neural reconstruction approaches,
we hence propose a novel supervised coarse-to-fine framework that
incorporates the idea of NVS to construct a virtual-view feature
simulator. It feeds the initial results with generated virtual feature
pairs to the spatial refinement network, and iteratively optimizes
the high-level semantic features for depth estimation.

3 METHOD
3.1 Overview
Given a reference image 𝐼𝑟 , our goal is to predict an accurate depth
map 𝐷∗𝑟 from 𝐼𝑟 . We present our novel framework V2Depth in
Fig. 2, which mainly consists of three components: a novel virtual-
view feature simulator, a depth context net, and a 3D-aware virtual
attention based refiner. We use ResNet18 [28] as the feature net
and context net to extract features. Specifically, we first regard
𝐼𝑟 as the network input. The input image first goes through our
proposed virtual-view feature simulator to produce virtual-view
feature pairs, which consist of the (real) reference feature 𝐹𝑟 and the
virtual view feature 𝐹𝑣 . In parallel, a depth context network extracts
the context feature 𝐹𝑐 from 𝐼𝑟 . Next, inside our 3DVA-Refiner, a
depth head takes in the reference feature 𝐹𝑟 , which is extracted from
𝐼𝑟 and outputs an initial depth map 𝐷0

𝑟 . Furthermore, a cost map
is constructed from the current depth map 𝐷𝑡

𝑟 , virtual-view and
reference view features, and virtual camera pose. Hence, the final
feature 𝐹 𝑓 is generated by a convolution net and the proposed 3D-
aware virtual attention. The proposed 3D-aware virtual attention
and gated recurrent units (GRU) generate the depth updates ΔD
and gradually refine it to gain the optimal depth map 𝐷∗𝑟 .

3.2 Virtual-View Feature Simulator
We firstly define II ∈ [0, 1]3×𝐻×𝑊 =

(
R3

)Ω as the reference image
on the lattice Ω = {1, . . . , 𝐻 } × {1, . . . ,𝑊 }. Hence we leverage the
volume rendering [50, 81] and feature grid sampling to simulate
virtual-view feature maps. During training, we use the left-right
stereo image pairs of the widely used datasets [14, 18, 86] as inputs,
where the left image is the reference image and the right image
is the novel view image ground truth for the training of virtual
view synthesis. Under the assumption of homogeneous coordinates
[81], a point x ∈ R3 in world coordinates is projected onto the
image plane of image 𝑖 by the following operation: 𝜋𝑖 (x) = 𝐾𝑖𝑇𝑖x,
where 𝑇i ∈ R4×4 and 𝐾i ∈ R3×4 denote the corresponding world-
to-camera pose matrix and projection matrix, respectively.

We design two components within the virtual-view feature sim-
ulator, an image encoder E that encodes the input image into pixel-
aligned feature grids, and a multi-layer perception (MLP) 𝜙 . Given
a spatial location and its corresponding encoded feature, 𝜙 outputs

the volume density. We model the spatial query in the camera space
of the input view, rather than a canonical space. It is not only inte-
gral for generalization to unseen scenes and object categories, but
also for flexibility, since no clear canonical coordinate system exists
in scenes with multiple objects or real scenes. The model is trained
with the volume rendering method [81]. Given the input image 𝐼𝑟 ,
our feature network predicts a pixel-aligned feature map F ∈ R𝑐Ω .
Inspired by the work [81], every feature 𝑓𝑢 = 𝐹 (𝑢) at pixel location
u ∈ Ω is able to capture the distribution of local geometry along
the ray from the camera origin through the pixel at u.

We adopt MLP 𝜙 to predict the density of the scene based on the
input view. To predict a density value at a 3D coordinate 𝑥 , we first
project x onto the input image u′r = 𝜋r (x) and bilinearly sample the
feature 𝑓u′ = F (u′) at that position. We hence encode the feature
𝑓u′ , the positional encoding 𝛾 (𝑑) [51] of the distance 𝑑 between x
and the camera origin, and the positional encoding 𝛾

(
u′r
)
of the

pixel with the MLP 𝜙 . We use the feature representation 𝑓u′ to
describe the density along a ray through the camera center and
pixel u′. We then apply𝜙 to predict the density 𝜎x at the 3D location
x based on 𝑓u′ and a distance to the camera:

𝜎x = 𝜙

(
𝑓u′r , 𝛾 (𝑑), 𝛾

(
u′r
) )

(1)

We perform volume rendering and feature grid sampling to simu-
late virtual-view feature maps. When performing volume rendering
from a novel viewpoint, instead of retrieving feature grids directly
from our scene representation, we sample the feature grid from
the available feature maps for a point in 3D space. Concretely, we
project a 3D point x into a frame 𝑘 and then bilinearly sample the
feature 𝑓x,𝑘 = I𝑘 (𝜋𝑘 (x)) at this position. By combining 𝑠𝑖𝑔𝑚𝑎x and
𝑓𝑥,𝑘 , we can perform volume rendering for the virtual-view feature
simulation. To obtain the feature grid 𝑓𝑘 for a point in a novel view,
we emit a ray from the camera and integrate the feature grid along
the ray over the probability of the ray ending at a certain distance.
To approximate this integral, density, feature grids are evaluated
at 𝑠 discrete steps x𝑖 along the ray. 𝜎𝑖 is regarded as the distance
between x𝑖 and x𝑖+1. We set 𝛼𝑖 as the probability of a ray ending
between x𝑖 and x𝑖+1. From the previous 𝛼 𝑗 , the probability 𝑇𝑖 that
x𝑖 is not occluded can be calculated. In other words, the ray does
not terminate before x𝑖 .

𝛼𝑖 = exp
(
1 − 𝜎x𝑖𝛿𝑖

)
𝑇𝑖 =

𝑖−1∏
𝑗=1

(
1 − 𝛼 𝑗

)
(2)

𝑓𝑘 =

𝑆∑︁
𝑖=1

𝑇𝑖𝛼𝑖 𝑓x𝑖 ,𝑘 (3)

To train the virtual-view feature simulator based on contrastive
representation learning [27, 57], we learn the output feature embed-
ding space to maximize the cosine similarity of the positive image
pairs in the training batch while minimizing the cosine similarity
of the embedding of the negative image pairs. Inspired by the CLIP
method [62], we optimize the same symmetric cross-entropy loss
over these similarity scores. This training batch construction tech-
niquewas proposed in deepmetric learning as themulti-class N-pair
loss [71], and used for our contrastive representation learning as
the InfoNCE loss [57]. In our training batch, all the positive image
pairs have two images from different view directions, and all the
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Figure 3: Illustration of the 3D-aware virtual attention
(3DVA). The 3D-aware virtual feature 𝐹𝑑 and the context
features 𝐹𝑐 are fed into our 3D-aware virtual attention to-
gether. The 3DVA outputs the final feature 𝐹 𝑓 to the depth
GRU for iterative refinement.

negative image pairs have two identical images (from the same view
direction). We employ stereo images to train the VVF-Simulator
while using only monocular images as input during inference.

3.3 3DVA-Refiner
We adopt the 3D-aware virtual attention based refiner to iteratively
refine the initial estimate, so that depth map 𝐷∗𝑟 could gradually
converges. We also introduced it with the additional 3D-aware
guidance from the corporation of the context features 𝐹𝑐 from the
depth context net and the virtual camera pose vector. The refiner
takes in these inputs to produce the prediction offset Δ𝐷𝑡

𝑟 and then
updates the depth as follows:

𝐷𝑡+1
𝑟 ← 𝐷𝑡

𝑟 + Δ𝐷𝑡
𝑟 . (4)

In detail, we first construct the virtual cost map from 𝐷𝑡
𝑟 , 𝑃𝑣 , 𝐹𝑟

and 𝐹𝑣 , as shown in Fig. 2. Notably, the virtual cost map measures
the photometric cost in feature space between the reference image
𝐼𝑟 and the virtual right image 𝐼𝑣 . Given the current depth map 𝐷𝑡

𝑟 of
the reference image 𝐼𝑟 and the virtual camera pose 𝑃𝑣 of the virtual
image 𝐼𝑣 with respect to the real reference image 𝐼𝑟 , the virtual cost
map is constructed at each pixel 𝑥 in the reference image 𝐼𝑟 :

C𝑡
𝑣 (𝑥) =




F𝑣 (𝜋 (
P𝑣 ◦ 𝜋−1 (𝑥,D𝑡

𝑟 (𝑥))
))
− F𝑟 (𝑥)





2
, (5)

where 𝜋 () is the projection of 3D points in 3D space onto the image
plane and 𝜋−1 (𝑥, 𝐷𝑡

𝑟 (𝑥)) represents the inverse projection. The
transformation converts 3D points from the camera space of 𝐼𝑟 to
that of 𝐼𝑣 . Next, we adopt two convolution layers as a simple feature
extractor to obtain the 3D-aware virtual attention features 𝐹𝑑 from
the virtual cost map, preparing for the following 3DVA. Thus it
rectifies the implied content-spatial inconsistency for occluded or
moving objects as shown in Fig. 1, Fig. 4 and Fig. 5, as well as
effectively promoting information integration between 3D-aware
virtual attention features and depth context features.

3D-aware Virtual Attention (3DVA). The construction of the cost
volume heavily relies on the static scene assumption, where it sup-
poses that the object points remain static at time 𝑡 and 𝑡∗. Thus,
we re-project the features at time 𝑡 to another plane with pose 𝑡∗
at time 𝑡∗, to match cost values. However, moving objects break

this assumption since targets such as cars, trains, or pedestrians
with a certain speed could move within the time gap [34, 44]. It
thus gives rise to the feature inconsistency deviation, degraded
(mismatching) cost values and re-projection loss, and drawbacks
to our depth optimization. We discard explicit settings such as the
object motion prediction module or disentangle module [16, 39, 82],
which brings additional complexity and ignores the potential of
complementary context-spatial information. Instead, we deliver
our 3D-aware virtual attention (3DVA) to implicitly rectify the
mismatching problem, thus achieving feature consistency and es-
timation integrity. It efficiently cooperates the global 3D-aware
virtual features with context features via the attention operation.
Quantitative and qualitative results in Section 4 demonstrate the
superiority of our method.

Specifically, as shown in Fig. 3, for depth optimization, we first lift
the 3DVA feature 𝐹𝑑 to value (𝑉 ) vectors via the mapping function
𝜎 (·). Meanwhile, we create query (𝑄) and key (𝐾 ) vectors by adding
the mapping functions 𝜃 (·) and 𝜙 (·) from the context feature 𝐹𝑐 ,
and prepare long-range geometry embedding (LGE). We first allo-
cate the query, key, and value as𝑄 = 𝜃 (𝐹𝑐 )⊕𝐿𝐺𝐸, 𝐾 = 𝜙 (𝐹𝑐 )⊕𝐿𝐺𝐸,
and 𝑉 = 𝜎 (𝐹𝑠 ), respectively. Subsequently, the 3D-aware virtual
attention is denoted as follows:

𝐹𝑑 = 𝑓s (𝑄 ⊗ 𝐾) ⊗ 𝑉 ⊕ 𝐹𝑠 , (6)

where 𝑓𝑠 denotes the softmax operation, ⊕ denotes the point-wise
addition and ⊗ denotes matrix multiplication.

Intuitively, compared with directly feeding 𝐹𝑑 and 𝐹𝑐 for re-
finement, our 3DVA explicitly aligns the features for occluded and
moving objects through the cross-attention mechanism to compen-
sate for the mismatching discrepancy. It thus guarantees 3D-aware
feature fusion and seamless depth refinement. It also helps the
context feature to fulfill the integrity of targets with occlusion rela-
tionship, such as the fourth column (d) of Fig. 1, where our 3DVA
successfully rectify the wrong estimation for the contour of cars,
pedestrians and bicyclists.

3.4 Supervised Training Loss
Our 3D-aware virtual-view refiner is trained for minimizing the
depth error. The depth loss is formulated as the L1 distance between
the predicted depth 𝐷𝑟 of the reference image 𝐼𝑟 and the associated
ground truth 𝐷𝑟 :

Ldepth =

𝑚∑︁
𝑠=1

𝛾𝑚−𝑠 ∥Dr − D̂r∥1, (7)

where the discounting factor 𝛾 is 0.85 and 𝑠 is the stage number.
There are 𝑚 optimization stages for depth refinements. At each
stage, the 3DVA-Refiner iteratively optimizes the depth 𝑛 times.

4 EXPERIMENTS AND RESULTS
4.1 Datasets
KITTI is a popular depth estimation benchmark for autonomous
driving [20]. It provides over 93,000 depth maps with correspond-
ing raw LiDAR scans and RGB images aligned with the raw data.
We follow the widely-used KITTI Eigen split [14] to conduct the
monocular depth estimation experiment. It contains 23488 image
pairs from 32 scenes for training and 697 images from 29 scenes for
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Method Cap Input GT type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE𝑙𝑜𝑔 ↓ 𝛿1 < 1.25 ↑ 𝛿2 < 1.252 ↑ 𝛿3 < 1.253 ↑
PackNet-SfM [25] 0-80m M→S Velodyne 0.090 0.618 4.220 0.179 0.893 0.962 0.983
DRO [23] 0-80m Multi-Frame Velodyne 0.073 0.528 3.888 0.163 0.924 0.969 0.984
V2Depth (ours) 0-80m Multi-Frame Velodyne 0.061 0.425 2.788 0.116 0.952 0.985 0.992

BTS [38] 0-80m Single-Frame Improved 0.059 0.241 2.756 0.096 0.956 0.993 0.998
GLPDepth [32] 0-80m Single-Frame Improved 0.057 – 2.297 0.086 0.967 0.996 0.999
PackNet-SfM [25] 0-80m M→S Improved 0.064 0.300 3.089 0.108 0.943 0.989 0.997

BANet [74] 0-80m Multi-Frame Improved 0.083 – 3.640 0.134 – – –
DeepV2D(2-view) [75] 0-80m Multi-Frame Improved 0.064 0.350 2.946 0.120 0.946 0.982 0.991
DRO [23] 0-80m Multi-Frame Improved 0.047 0.199 2.629 0.082 0.970 0.994 0.998
Ours 0-80m Single-Frame Improved 0.037 0.143 1.985 0.068 0.983 0.998 0.999

Table 1: Quantitative results of supervised monocular depth estimation methods on the KITTI Eigen split. Note that the seven
widely used metrics are calculated strictly following the baseline [23] and ground-truth median scaling is applied. "M→S"
means monocular multiple frame images are used in training while only a single frame image is used for inference. We utilize
bold to highlight the best results.

Method Reference Input Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE𝑙𝑜𝑔 ↓ 𝛿1 < 1.25 ↑ 𝛿2 < 1.252 ↑ 𝛿3 < 1.253 ↑ FPS ↑
BANet [74] ICLR 2019 Multi-Frame 0.083 – 3.640 0.134 – – – –
DeepV2D [75] ICLR 2020 Multi-Frame 0.064 0.350 2.946 0.120 0.946 0.982 0.991 0.67
DRO [23] RA-L 2023 Multi-Frame 0.059 0.230 2.799 0.092 0.964 0.994 0.998 6.25
MaGNet [2] CVPR 2022 Multi-Frame 0.054 0.162 2.158 0.083 0.971 – – –

Xu et al. [85] CVPR 2018 Single-Frame 0.122 0.897 4.677 – 0.818 0.954 0.985 –
DORN [17] CVPR 2018 Single-Frame 0.072 0.307 2.727 0.120 0.932 0.984 0.995 –
Yin et al. [87] ICCV 2019 Single-Frame 0.072 – 3.258 0.117 0.938 0.990 0.998 –
PackNet-SAN [24] CVPR 2021 Single-Frame 0.062 – 2.888 – 0.955 – – –
DPT* [63] ICCV 2021 Single-Frame 0.062 – 2.573 0.092 0.959 0.995 0.999 –
PWA [40] AAAI 2021 Single-Frame 0.060 0.221 2.604 0.093 0.958 0.994 0.999 –
AdaBins [6] CVPR 2021 Single-Frame 0.058 0.190 2.360 0.088 0.964 0.995 0.999 2.96
P3Depth [58] CVPR 2022 Single-Frame 0.071 0.270 2.842 0.103 0.953 0.993 0.998 –
NeWCRFs [89] CVPR 2022 Single-Frame 0.052 0.155 2.129 0.079 0.974 0.997 0.999 3.48
SIDP [45] CVPR 2023 Single-Frame 0.050 – 2.020 0.075 0.976 – – –
Ours – Single-Frame 0.043 0.150 1.989 0.069 0.981 0.998 0.999 3.05

Table 2: Quantitative results on KITTI Eigen split with the cap of 0-80m. Note that the seven widely used metrics are calculated
strictly following NeWCRFs [89]. "Abs Rel" error occupies the main ranking metric. "*" means using additional data for training.
We utilize bold to highlight the best results of single-frame methods and multi-frame methods.

testing. The corresponding depth of each image is sampled sparsely
by the rotating LiDAR sensor. The "Improved" ground-truth in Ta-
ble 1 refers to the improved annotated depth map, which aggregates
Lidar points from five successive frames and stereo images.
Virtual KITTI 2 is an updated version of the well-known photo-
realistic synthetic video dataset Virtual KITTI [18] and designed to
learn and evaluate computer vision models for video understanding
tasks such as depth estimation. It consists of 5 sequence clones from
the KITTI tracking benchmark and contains 50 monocular videos
generated from five different virtual worlds in urban settings under
different imaging and weather conditions. These synthetic videos
are fully annotated with depth labels.
DrivingStereo is a large-scale stereo dataset that covers a diverse
set of outdoor driving scenarios with over 180k images. Credit to
the huge amount of available data, deep-learning models usually
pre-train on it to improve the robustness to real-world driving
scenes [86]. It is designed to learn and evaluate vision models for
video understanding tasks such as object detection and depth es-
timation. High-quality labels of depth maps are generated by a
model-guided filtering strategy from multi-frame LiDAR points.

4.2 Implementation Details
We implement our V2Depth in PyTorch and train it for 100 epochs
with a mini-batch size of 4. We adopt ResNet18 [28] as the feature
network, which is pre-trained on ImageNet [68] and then trained by
the contrastive representation learning [57, 62]. The learning rate
is 2 × 10−4 for depth refinement, which is decayed by a constant
step (gamma=0.5 and step size=30). We set 𝛽1 = 0.9 and 𝛽2 = 0.999
in the Adam optimizer. We resize the input images to 320 × 960 for
training, and set the number of sequential images to 2 for 3DVA-
Refiner by balancing both computation efficiency and prediction
accuracy. We fix𝑚 = 3 and 𝑛 = 4 in the experiments.

4.3 Evaluation of Our Method
Evaluation on KITTI. We first compare our V2Depth against the
state-of-the-art supervised depth estimators on the KITTI dataset;
see Tables 1 & 2 for the results. For a fair comparison, all methods
are evaluated given the same sequential images. In Table 1, the
seven widely-used evaluation metrics are calculated following [23]
and the ground-truth median scaling is applied. On the other hand,
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(a) Input images (b) Results w/o simulator and refiner (c) Results of DRO (d) Results of our V2Depth

Figure 4: Qualitative results on the KITTI Eigen split dataset.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE𝑙𝑜𝑔 ↓
DORN 0.068 0.274 2.693 0.115
Adabins 0.041 0.164 1.981 0.094
DRO 0.040 0.153 1.903 0.092
NeWCRFs 0.039 0.157 1.977 0.085
Ours 0.032 0.125 1.683 0.081

Table 3: Quantitative results on the Virtual KITTI 2.

the seven evaluation metrics in Table 2 are calculated according
to NeWCRFs [89]. We also evaluate our method against others in
terms of the frames per second (FPS) using the same Nvidia RTX
A6000 GPU. Clearly, V2Depth achieves state-of-the-art performance
over all the evaluation metrics under both the effectiveness and
efficiency considerations.

We further show the qualitative comparisons in Fig. 4 by com-
paring our method (d) with the recent approach DRO [23] (c) and
the simplified depth predictor without our simulator and refiner (b).
The simplified depth predictor is composed of a feature network
and a depth head, and estimates a initial coarse depth map. Then
the coarse-to-fine method DRO predicts relatively accurate depth
by adding a deep recurrent optimizer as the refiner. Comparing to
DRO, our V2Depth has a novel feature simulator and a 3D-aware
virtual attention module, and replaces temporal adjacency features
with the generated virtual-view features as input to the refiner. As
shown in the white boxes of Fig. 4, our method yields more accurate
and cleaner depth estimation results for objects with occlusion, for
example, the car behind the road railings, bicyclists, and pedestri-
ans. In addition, the results of our V2Depth demonstrate the better
depth and clearer contours of objects in some difficult regions such
as messy environments and distant traffic signs (please refer to
regions marked with white boxes).

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE𝑙𝑜𝑔 ↓
DORN 0.055 0.126 1.217 0.103
Adabins 0.036 0.083 0.612 0.089
DRO 0.035 0.079 0.595 0.086
NeWCRFs 0.032 0.071 0.548 0.077
Ours 0.026 0.068 0.506 0.047

Table 4: Quantitative results on the DrivingStereo.

Evaluation on Virtual KITTI 2.We further compare our method
with recent approaches on the virtual KITTI 2 dataset. We use a
subset of the virtual KITTI 2, which contains 1,700 image pairs
for training and 193 images for testing. The quantitative results
of our method compared with others are shown in Table 3, where
four widely used evaluation metrics are calculated for the test set.
Notably, our V2Depth achieves significantly outperforms on all
evaluation metrics.
Evaluation on DrivingStereo. We further evaluate our approach
on the DrivingStereo benchmark. We use a subset of the Driving-
Stereo dataset, which contains 7251 image pairs for training and
500 images for testing. The quantitative and qualitative results are
shown in Table 4 and Fig. 5. Our method outperforms these monocu-
lar depth predictors in all evaluation metrics. The qualitative results
in Fig. 5 illustrate that our V2Depth is robust to obscured vehicles,
distant vehicles, the signage in front of grasses, and the consistency
of object boundaries.

4.4 Computation Time Analysis
We evaluate the speed of inference on the Nvidia RTX A6000 GPU
with the metric of frames per second (FPS). Credit to our usage of
the lightweight ResNet18 [28] backbone, compared to the single-
frame method Adabins [6], the inference speed of our V2Depth
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(a) Input images (b) Results w/o simulator and refiner (c) Results of DRO (d) Results of our V2Depth

Figure 5: Qualitative results on the DrivingStereo dataset.

is improved by 3%, 3.05 (Ours) vs. 2.96 (Adabins). As shown in
Table 2, the inference speed of V2Depth is comparable against the
NeWCRFs [89] (3.05 vs. 3.48), while our performance significantly
outperforms both the NeWCRFs and the SIDP [45]. In detail, we
achieve a 14% reduction in the main metric "Abs Rel" error (0.043
vs. 0.050) compared to the top estimator.

4.5 Ablation Study

IDP Refiner TNF VVF CL 3DVA Abs Rel ↓ Sq Rel ↓ 𝛿1 ↑
✓ 0.091 0.473 0.908
✓ ✓ ✓ 0.059 0.230 0.964
✓ ✓ ✓ 0.050 0.186 0.973
✓ ✓ ✓ ✓ 0.047 0.171 0.976
✓ ✓ ✓ ✓ 0.045 0.159 0.979
✓ ✓ ✓ ✓ ✓ 0.043 0.150 0.981

Table 5: Ablation study on the KITTI dataset. "IDP" : ini-
tial depth predictor, "TNF": temporal neighboring features
from the monocular temporal sequences, "VVF": virtual view
features generated from our VVF-Simulator, "Refiner": refine-
ment network without our 3DVA, "CL": contrastive learning
loss, "3DVA": 3D-aware virtual attention.

To inspect the influence of our designs, we conduct an ablation
study on the KITTI [14, 20] benchmark and provide the results in
Table 5. The bottom row indicates our full pipeline.
Initial Depth Predictor. We first build an initial depth predictor
named "IDP", which includes the same feature network and a depth
head but without the simulator or the refiner. As shown in the
second column (b) of Fig. 1, Fig. 4, and Fig. 5, the results predicted
by IDP are coarser against the full coarse-to-fine framework.
Refiner.We add our refiner to IDP to construct a baseline coarse-
to-fine framework. In detail, given the initial depth, virtual camera
pose and multiple features, the GRU-based refiner constructs a
cost map and iteratively optimizes the depth map by minimizing
a feature-metric cost. Note that in contrast to DRO [23], which
uses temporal neighboring features from video sequences for their
refinement network, our approach generates virtual-view features
to provide meaningful 3D geometry for the proposed 3DVA-Refiner.

Virtual-View Features vs. Temporal Neighboring Features
We present the results of using virtual-view features and temporal
neighboring features in Table 5. The significant improvement in
performance, with a reduction in "Abs Rel" error from 0.059 to 0.050,
indicates that the virtual view features of our VVF-simulator could
provide representative spatial cues and 3D geometry to the model.
Contrastive Learning Loss We replace the MSE loss with the
contrastive representation learning loss [57] to learn the virtual-
view features. The performance gain demonstrates the effectiveness
of contrastive learning in producing more accurate and meaningful
virtual-view features by comparing different view feature pairs.
3D-Aware Virtual Attention.We add 3DVA after the cost map to
obtain 3D-aware virtual attention bymodeling the spatial relation. It
learns the 3D geometric constraints between reference view feature
maps and virtual-view feature maps. As a result, the learned 3D-
aware virtual attention features are fed to the GRU optimizer and
yield a noticeable performance gain. As the Table 5, the "Abs Rel"
error is reduced from 0.047 to 0.043.

5 CONCLUSION
In this work, we propose V2Depth, a novel monocular depth estima-
tion framework with virtual view feature simulations and 3D-aware
refinements. To address the issue of limited spatial cues giving
merely a single image, we design a virtual view feature simulator
with the contrastive learning strategy. It generates virtual view fea-
tures to provide representative 3D geometry for depth prediction.
Next, we propose a 3D-aware virtual attention refiner to exploit
the abundant information of reference and virtual view features.
It leverages the cost minimization to iteratively optimize the ini-
tial depth estimations. As a result, our V2Depth overcomes the
performance bottleneck of the monocular depth estimation on the
challenging KITTI benchmark, as well as the Virtual KITTI2 and
DrivingStereo datasets. In the future, we would like to apply our
virtual-view feature simulator to more 3D scene understanding
tasks in autonomous driving.
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