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Abstract

Adopting Neural Radiance Fields (NeRF) to long-
duration dynamic sequences has been challenging. Ex-
isting methods struggle to balance between quality and
storage size and encounter difficulties with complex scene
changes such as topological changes and large motions.
To tackle these issues, we propose a novel neural video-
based radiance fields (NeVRF) representation. NeVRF
marries neural radiance field with image-based rendering
to support photo-realistic novel view synthesis on long-
duration dynamic inward-looking scenes. We introduce
a novel multi-view radiance blending approach to predict
radiance directly from multi-view videos. By incorporat-
ing continual learning techniques, NeVRF can efficiently
reconstruct frames from sequential data without revisit-
ing previous frames, enabling long-duration free-viewpoint
video. Furthermore, with a tailored compression approach,
NeVRF can compactly represent dynamic scenes, making
dynamic radiance fields more practical in real-world sce-
narios. Our extensive experiments demonstrate the effec-
tiveness of NeVRF in enabling long-duration sequence ren-
dering, sequential data reconstruction, and compact data
storage.

1. Introduction
Neural Radiance Field (NeRF) [30] has facilitated a series
of breakthroughs in novel view synthesis, enriching the con-
tents for virtual reality, telecommunications, etc. Among
them is photo-realistic free-viewpoint video (FVV). How-
ever, generating dynamic radiance fields in practical set-
tings remains challenging due to their storage requirements
and the complexity of processing streaming input data.

Recent advances have improved NeRF content gen-
eration in many ways, such as accelerating the training
speed [9, 44], rendering speed [14, 33, 39], and reduc-
ing the storage in a compact representation [5, 46]. These
methods mainly focus on static scenes. Some methods in-
troduce space deformation [20, 34, 37] to handle dynamic
scenes. They disentangle motion and canonical space from
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Figure 1. Our method introduces a neural video-based radiance
field representation for dynamic scenes achieving photo-realistic
novel view synthesis with small storage (around 1.32MB per-
frame) in sequential input setting. NeVRF can continuously re-
construct a sequence without revisiting previous data, making it
suitable for long-duration sequences.

sequences to achieve fast training speed with sparse views
and further speed up by leveraging an explicit grid repre-
sentation [20]. However, the decreased number of views
can impair performance in scenes with large motion, and
limits their ability to handle topological changes due to the
use of canonical space. MLPs [37, 53] and space-time latent
codes [18] are used to capture motion information. While
they achieve relatively compact storage, they have large
computational complexity and their performance is con-
strained by the network capacity, which makes it challeng-
ing to deal with long-duration or large motion sequences. In
another line of work, grid-based methods usually require a
large memory [20], making the transmission and storage of
NeRF content challenging.

Furthermore, previous approaches require all sequence
data to be available throughout the entire training process
to enable i.i.d. sampling of rays for assembling training
batches. This becomes unfeasible for long-duration or end-
less sequences owing to the substantial surge in memory
consumption and the indeterminate length of data. Dynamic
scene data is naturally sequential and ordered by time, but
so far this property has not been exploited for more efficient
FVV generation.

In this paper, we present a novel Neural Video-based Ra-
diance Field (NeVRF) representation to tackle the issues
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and challenges of long-duration sequences with sequential
input, as illustrated in Figure 1. NeVRF directly infers the
radiance fields from the inward-looking input videos frame-
per-frame. At the core is a Multi-view Radiance Blend-
ing approach that predicts colors from multi-view frame
images. Specifically, we deploy a shared lightweight fea-
ture encoder to extract local context and semantic cues
from multi-view frame images. Another network learns to
predict views’ visibility and blending weights for sample
points along rays, avoiding traditional high-cost visibility
calculations. The density fields are represented using ex-
plicit volumetric grids, enabling it to be decoupled from the
appearance rendering process. This separative design en-
ables both high-quality rendering and efficient storage com-
pression. Our representation leverages off-the-shelf video
codecs and our proposed density fields compression algo-
rithm to achieve compact storage.

We also introduce a tailored continual learning paradigm
for the setting. We leverage replay-based continual learn-
ing [38, 41] against catastrophic forgetting [7, 16, 27] of
the old network knowledge. NeVRF caches important rays
instead of images in the experience buffer, avoiding the re-
quirement of accessing previous data during training. This
inter-frame independent design makes NeVRF well-suited
for long sequences while maintaining a fixed memory foot-
print regardless to the length of the sequences. The intro-
duction of continual learning allows NeVRF to reconstruct
new frames while still performing well on previous frames.
So the proposed method can pause and resume learning
at any point and playback the learned previous frames in-
stantly. The rendering pipeline is differentiable so that net-
works and density volumes can be jointly optimized in an
end-to-end fashion.

In summary, our contributions are:
• We introduce a novel video-based radiance field represen-

tation with separative geometry and appearance informa-
tion to achieve compact storage for dynamic sequences.

• We propose a novel image-based rendering pipeline
paired with the representation, achieving high-quality re-
sults.

• We present a new continual learning paradigm to deal
with sequential data, supporting long-duration or endless
sequences.

2. Related Work

Image-based Rendering. Early work on IBR synthesizes
novel view images by blending color pixels from a set of
reference views. Most of IBR methods require an explicit
proxy geometry, like a plane [17], 3D meshes [2, 8, 15], lay-
ered depth [6, 43], or silhouettes [25, 26], to render images
at new viewpoints. The rendering quality of these meth-
ods depends on the camera setting [17, 26] and the accu-

racy of the geometry [2, 15]. Defects in geometry, such as
missing or inaccuracy parts, will cause artifacts, e.g. ghost-
ing effects. Recent work alleviates this problem by lever-
aging additional information or knowledge, such as opti-
cal flow [4, 10] and soft blending [36, 40]. Nevertheless,
they are still fundamentally limited by the geometry accu-
racy. Conventional 3D reconstruction methods [3, 47] rely
on multi-view input images’ quality. Textureless or reflec-
tive regions on images will cause failures easily, and these
methods cannot handle semi-transparent surfaces. In con-
trast to the traditional image-based rendering methods, we
use density fields as the proxy geometry and build an end-
to-end differentiable rendering pipeline. As a result we can
take advantage of neural rendering to avoid some issues of
3D reconstruction.

Neural Representations for Novel View Synthesis. The
recent progress of neural rendering shows the ability to
achieve photo-realistic novel view synthesis. They are
based on various scene representations, such as point
clouds [1, 50], voxels [21] and implicit functions [29, 42].
The emergence of Neural Radiance Fields (NeRF) [30] has
greatly boosted the development of scene modeling and
rendering techniques. NeRF exploits coordinate-based net-
works to represent radiance fields and introduces an end-to-
end differentiable rendering pipeline with volume render-
ing. DVGO [44] replaces MLPs in NeRF with grid-based
representations, and Instant-NGP [32] leverages a multi-
resolution hash table to represent radiance fields. Other
methods [22, 52] utilize special volumetric data structures
to access scene space efficiently. They have greatly im-
proved the training and rendering efficiency but require a
considerable amount of memory. IBRnet [49] infers the
scene purely from multi-view images and has generalization
ability to new scenes, but it has difficulty with domain gaps.
Different from IBRnet, our method represents geometry us-
ing explicit density grids instead of predicting directly den-
sity from reference views, enabling high-accurate render-
ing. Neural radiance fields can also be represented in ten-
sors [5], which has a fast training and rendering speed while
having a relatively compact storage. However, these meth-
ods mainly focus on static scenes while dynamic scenes
have an exponentially larger amount of data.

Neural Rendering for Dynamic Scenes. Rendering dy-
namic scenes with neural rendering is an important branch
of novel view synthesis. Previous work exploits multi-
view image features [23], a coarse proxy geometry [35, 50]
paired with a differentiable rendering pipeline to handle
dynamic scenes. With the emergence of neural radiance
field techniques, how to encode temporal information in
an implicit representation becomes the key problem. In-
stead of inquiring 3D points in a radiance field represen-
tation, learnable latent codes for individual frame [18],
spatio-temporal coordinates [11, 51], and Fourier coeffi-
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Figure 2. Illustration of the proposed rendering pipeline under the novel neural video-based radiance field representation. NeVRF extracts
feature maps from selected reference views. fi are the extracted multi-view features, and u is their mean; vi and θ̂i are feature variances
and relative viewing directions respectively. NeVRF exploits the multi-view radiance blending method to predict its RGB color as the
density is directly interpolated on the density grid.

cients [48] are used to model dynamic sequences. However,
the length of sequences is limited due to the network capac-
ity, and their fully implicit representations cause high com-
putational complexity. Another stream of dynamic NeRF
methods [20, 34, 37, 53] disentangle motions from the scene
as a deformation field and predict colors and densities by
mapping point coordinates into a canonical space. They
can model dynamic scenes efficiently and support sparse
inputs, but they tend to fail when the scene has large mo-
tion and topological changes due to the use of the stationary
canonical space. A series of grid-based methods [12, 20]
dramatically accelerates the training and rendering speed
but bring high storage cost [20]. The recent method, EN-
eRF [19], exploits neural networks to inference per-frame
geometry via multi-view consistency and achieves efficient
rendering. [54] leverages an explicit animated mesh with
multi-view neural blending scheme [45] to balance qual-
ity and bandwidth, but it can only handle scenes without
translucent parts. Our method aims at dealing with long-
duration dynamic scenes, with low storage cost and fine de-
tails.

3. Overview
The proposed NeVRF marries neural radiance fields with
image-based rendering and continual learning techniques
to support free-viewpoint photo-realistic view synthesis on
long duration dynamic scenes. Assuming that sequential
data Dt2

t1 = {Dt1 , ...,Dt2} are fed into our algorithm one
by one. Dt = {Iti,Pt

i}
Nc
i=1 contains multi-view images Iti

at time instance t and camera projection matrices Pt
i of the

corresponding views, where Nc is the number of views.
We design a three-step pipeline to process every incom-

ing sequential data. In the first step, we leverage a fast re-
construction approach to acquire coarse geometry. In the
second step, we introduce a multi-view based rendering
method on the density field and pair it with a tailored learn-
ing scheme to adapt the model to the newest frames and
previous frames to maintain high fidelity rendering quality.
In the third step, we propose a novel compression solution
to achieve small storage size.

4. Neural Video-based Radiance Field
In this section, we first review the Neural Radiance Fields
in § 4.1. Then we propose a novel Multi-view Radiance
Blending method to take advantage of compact video rep-
resentations (§ 4.2). Lastly, we introduce the three-step
pipeline for sequential data with continual learning to en-
able long-duration sequence rendering and lightweight stor-
age (§ 4.3).

4.1. Preliminaries

NeRF [30] models a 3D scene with a function Ψ which
takes as input the coordinate x ∈ R3 and view direction
d = (θ, ϕ) for each point in the space and maps them into
a color c and density σ to represent the properties of the
point:

c, σ = Ψ(x,d). (1)

For each pixel in the target view, NeRF exploits volume
rendering equations to accumulate the properties of sam-
ple points along camera rays and obtain their pixel col-
ors. DVGO [44] follows a similar rendering pipeline and
leverages explicit and discrete grid-based representations to



achieve fast training and rendering speed. In our proposed
method, inspired by DVGO, the scene geometry is repre-
sented in the form of density grids Vt

σ . The raw density of
sample point x is obtained by:

σ̈ = interp(x,Vt
σ) (2)

where interp(·) is a trilinear interpolation function on
the grids. In terms of color prediction, we utilize multi-
view videos and propose a Multi-view Radiance Blending
scheme to avoid the large data size of grids with high-
dimensional features.

4.2. Multi-view Radiance Blending

Our proposed Multi-view Radiance Blending aims at pre-
dicting colors C = {ci} for sample points X = {xi} us-
ing images from multi-view data Dt. Specifically, for each
sample point, we first select k nearby camera views from
Dt by selecting the top k views with smallest angular dif-
ference, denoted as D̂t = {Itj ,Pt

j}kj=1. Simply blending
pixel colors from all viewpoints, as done in [2], can cause
severe ghosting artifacts, especially when including view-
points where the point is not visible. Alternatively, comput-
ing visibility for source views on the density representation
is costly; it requires depth values by sampling additional
points.

We set out to aggregate features from multi-view data
and determine their visibility directly inside a forward pass.
We use a pre-trained convolutional neural network to extract
a feature map Ft

j from each image Itj . For each sample
point xi, we back-project it to all source views in D̂t and
then collect features {f ti,j}kj=1 and pixel colors {ĉti,j}kj=1.
Then we deploy Multilayer Perceptrons (MLPs) to infer the
visibility weights. More specifically, the proposed pipeline
is illustrated in Figure 2. The blending network Ψv aims
at predicting weights for selected views. Views that cannot
see the sample point will be assigned weights very close
to zero. We compute the mean u and per-view variance
vj from features vectors {f ti,j}kj=1 to capture global infor-
mation. To account for geometric relationships, we incor-
porate relative viewing direction information {θ̂i,j}, which
are calculated as the cosine distance between the vectors
of target ray and the pixel rays where the point is back-
projected onto the selected view. We concatenate them
along with original features vectors to form a new fea-
ture vector f̂ ti,j = [f ti,j , θ̂i,j ,vj ,u]. Ψv determines weights
wt

i ∈ Rk of views based on local feature and semantics
multi-view consistency of {f̂ ti,j}kj=1, which is formulated
as:

wt
i = Ψv({f̂ ti,j}kj=1), (3)

where
∑

wt
i = 1.0. The Blended point color is formulated

as:

cti =
∑
j

wt
i,j · ĉti,j , (4)

Combining the Equ. 3, 4, and 2, we can obtain the properties
of sample points and render novel views via volume render-
ing. Note that this is a differentiable rendering pipeline.
Therefore, we are able to optimize both the network param-
eters and the density grid during training. Our method sepa-
rates density and color inference, avoiding the need for visi-
bility reasoning along the entire rays in IBRnet [49], leading
to faster inference speeds and more accurate, deterministic
geometry modeling.

4.3. Sequential Learning Scheme

We also present a novel learning scheme tailored for se-
quential data to reconstruct geometry and update the net-
works efficiently. We process each newly coming data Dt2

t1
with the following three training steps in order.

Fast Density Reconstruction. NeVRF requires a density
grid for each frame as a geometry proxy. To obtain density
grids for Dt2

t1 , we first follow the learning procedure of De-
VRF [20], which speeds up the training by two orders of
magnitude and avoids per-frame training. Then a 4D voxel
deformation field Vmotion together with a density grid Vt1

σ

and a feature grid in canonical space are obtained. Note that
as the number of frames grows or with large motions, the
rendering quality of DeVRF degenerates a lot, as demon-
strated in Figure 6. However, the reconstructed geometry
of the scene remains reasonable and can be refined in later
stages. We extract density grids from DeVRF and regard
it as coarse proxy geometry and discard its appearance fea-
tures. The obtained coarse density grids will be optimized
further during NeVRF training.

Continual Neural Blending Learning. The blending net-
work, denoted as Ψv , is designed to weight views based on
their occlusion status. However, in dynamic scenes, occlu-
sion conditions can change over time, necessitating the net-
work to be updated with new incoming data. Because of the
sequential nature of the inputs, it is not feasible to sample
from the entire sequence data assuming independence and
identical distribution (i.i.d.) for joint batch training. More-
over, training a separate network for each frame individu-
ally is expensive and time-consuming. Therefore, we opt
for a shared network for all frames. Nevertheless, updating
the network on new data Dt2

t1 is tricky. The over plasticity of
neural networks [31] leads to degradation of the quality for
previous frames when using the newly learned network pa-
rameters, known as catastrophic forgetting [13, 27], accord-
ing to the ”plasticity-stability dilemma” [28]. Therefore, we
adopt a continual learning technique, called Experience Re-
play [41], to handle this problem.
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Figure 3. Illustration of the proposed ray-based replay strategy.
The experience buffer contains samples sampled based on training
errors (pink), temporal motions (green), and stochastic selection
(blue). The importance maps visualize the pixels that have either
large training error or large motion.

Replay-based methods maintain an experience buffer Qt

that stores samples as the memory of previous knowledge.
These samples remind the network how to process previous
frames and help to retain this capability when training on
sequential data. Storing images in the buffer is inefficient
because not all rays, especially those from background and
textureless unoccluded regions, contribute to network learn-
ing. Therefore, we convert the image-based samples into
ray-based ones for better efficiency. As illustrated in Fig-
ure 3, a ray-based sample q consists of multi-view feature
sets of a ray and the ground-truth color of its correspond-
ing pixel, i.e., q = ({f̂i,j}ns,k

i=1,j=1, c) with ns the number of
sample points along the ray and c the corresponding pixel’s
color. Qt stores ray samples since the training beginning.
Having this experience buffer, we can train the network with
a loss function LT formulated as:

LT =

Nc∑
v=1

L(f(Φ(Dt, v), θ), c) +
∑
Qt−1

L(f(q, θ), c) (5)

where L is the photometric loss; f(·) represents the ra-
diance blending function as described in Sec. 4.2, and θ
is their current network parameters. Φ(Dt, v) denotes the
multi-view image features for rendering the v-th view in the
current frame t.

We want to store ray-based samples that contain as much
representative knowledge as possible, so that the networks
can preserve previous knowledge with a small experience
buffer size. To this end, NeVRF selects ray-based sam-
ples according to their importance. We consider rays are
important if their training loss or color difference in two
consecutive frames is large. More specifically, we split the
experience buffer into three parts: error-based buffer Qt−1

e ,
motion-based buffer Qt−1

m , and stochastic buffer Qt−1
r re-

spectively. That is: Qt−1 = Qt−1
e ∪Qt−1

m ∪Qt−1
r . In error-

based buffer Qt−1
e , we sort ray-based samples according to

their training errors in descending order and keep only the
top-ranked samples. We append rays in the training batch to
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Figure 4. The demonstration of the proposed density grid com-
pression approach.

the motion-based buffer Qt−1
m if their color difference with

the next frame is above a threshold τ . The stochastic buffer
Qt−1

r stores samples randomly selected from the training
batch to provide diversity to the experience buffer. 20% of
ray samples in a training batch come from the experience
buffer. When the motion-based or stochastic buffer exceeds
capacity, we randomly discard samples from it.

Our training scheme trains each frame of Dt2
t1 in temporal

order. To improve the training performance, we only con-
duct continual learning on the first frame of Dt2

t1 . We fix
networks and only optimize the density field for the rest of
the frames with fewer iterations.

Density Fields Compression. The density grids exhibit lo-
cal structural similarity across frames in a sequence. We set
out to leverage this kind of redundancy on geometry to com-
press density grid sequences, as demonstrated in Figure 4.

Before training begins, we first align the 3D bounding
boxes of density grids across all frames according to the
camera positions. This alignment of density grids is bene-
ficial for our compression algorithm, as it ensures uniform
sizes and locations. We compress the density grids of Dt2

t1
simultaneously. These grids are divided into voxels of size
8 × 8 × 8 which are then flattened into vectors. This pro-
cess results in a data matrix M ∈ RNv×512, where each row
corresponds to a voxel from one frame, and Nv is the total
number of voxels over all frames considered. Subsequently,
we use singular value decomposition (SVD) to decompose
this data matrix. We retain only the top η = 20% of the
singular values to discard insignificant signals, resulting in
the compressed matrix M = UΣBT , where U ∈ RNv×k,
BT ∈ Rk×512, and k = η ×Nv . We consider a voxel to be
empty if the sum of its raw density values is below zero. To
further compress the data, we remove the rows correspond-
ing to the empty voxels in U.

4.4. Implementation Details

Each D contains 20 frames. The multi-view videos are com-
pressed by H265 codec with 1Mbps bitrate for each view.



Figure 5. Gallery of our example results. Our neural pipeline enables efficient training and photo-realistic rendering for dynamic scenes.
Note that the results are all rendered at novel viewpoints
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Figure 6. Qualitative comparisons on ’Basketball’ and ’Sport2’ scenes in NHR [50] dataset. These are rendered test images from 50-th
frame of the sequences.

5. Experiments

In this section, we compare and evaluate the proposed
NeVRF on a variety of dynamic scenes. Specifically, we
first use the NHR dataset [50] which contains large motions
and topological changes. We also test methods on Dynamic
Furry Animals (DFA) dataset [24], which is a non-human
dataset.

We set the target rendering resolution to 960 × 720 for
NHR dataset and 960 × 540 for DFA dataset. We split the
views into a training set and a test set, with the test set con-
sisting of four views for each scene. We run our experi-
ments on a single NVIDIA V100 GPU. Figure 5 demon-
strates some rendering results of our NeVRF.

5.1. Comparison

Comparison on NHR Dataset. We compare NeVRF with
the state-of-the art dynamic NeRF methods, DeVRF [20]
and TiNeuvox [12], on NHR dataset. The majority of se-
quences from NHR are approximately 200 frames in length.

Loading all this data into GPU memory is impractical, espe-
cially for sequences of longer duration. Consequently, for
DeVRF and TiNeuvox training, we restrict our analysis to
the initial 100 frames of each sequence. Despite the fact
that DeVRF and TiNeuVox support sparse view inputs, we
still use all training views in the experiments for fair com-
parisons. We also compare NeVRF with DVGO [44]. We
use DVGO to train each frame individually. The quantita-
tive results are shown in Table 1. Figure 6 demonstrates the
qualitative results.

As the results demonstrate, DVGO maintains high-
quality rendering with fast rendering speed, although it re-
quires large storage per frame. DeVRF greatly accelerates
the model training. TiNeuVox, with its more implicit repre-
sentation through MLPs, offers compact storage but incurs
high costs in training and rendering time. Both DeVRF and
TiNeuVox exhibit limitations when dealing with large mo-
tions and topological changes. TiNeuVox gets bad render-
ing performance due to the limited network capacity, while
DeVRF struggles to track motions due to the fixed topology
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Figure 8. The illustration of the intermediate results. The value of
training progress indicates the number of frames after which the
model used for evaluation was trained. (a) results with continual
learning;(b) results without continual learning.

of the canonical space. As a result, both models exhibit se-
rious distortions in appearance and reconstructed geometry.

In contrast, our method, which blends appearance di-
rectly from multi-view inputs, preserves high-frequency de-
tails. Paired with video codecs and our density compression
algorithm, NeVRF achieves a relatively small storage size.

Comparison on DFA Dataset. We also compare
NeVRF with DeVRF [20], TiNeuvox [12] and Artemis [24]
on a non-human dataset. We adopt its dynamic neural
rendering comparison setup and test methods on ’Panda’,
’Cat’, ’Dog’, and ’Lion’ scenes. Again, we limit our com-
parisons to the first 100 frames of each sequence or all
frames if the sequence length is shorter than 100. The quan-
titative results are shown in Table 2. Figure 7 demonstrates
the qualitative results.

5.2. Ablation Study

In this subsection, we evaluate the performance of our ap-
proach by comparing different training schemes and com-
pression parameters.

↑PSNR ↑SSIM ↓LPIPS
↓Size
(MB)

↓T.T.
(mins)

↓R.T
(secs)

DVGO 30.24 0.968 0.042 624 6 0.3
DeVRF 25.62 0.939 0.074 60.3 0.25 1.6
TiNeuvox 26.08 0.942 0.075 0.7 1.3 8.5
ours 32.15 0.976 0.034 1.32 3 1.9

Table 1. The quantitative results of comparisons on NHR dataset.
T.T. is the averaged per-frame training time, and R.T. is the aver-
aged per-frame rendering time. ’Size’ is the averaged per-frame
storage size including compressed density, videos, and networks.

Method DeVRF TiNeuVox Artemis Ours

Panda
↑PSNR 32.88 36.51 33.63 41.19
↑SSIM 0.973 0.963 0.985 0.985
↓LPIPS 0.028 0.058 0.031 0.014

Cat
↑PSNR 32.82 31.354 37.54 40.29
↑SSIM 0.969 0.948 0.989 0.987
↓LPIPS 0.026 0.051 0.012 0.010

Dog
↑PSNR 30.37 34.58 38.95 40.85
↑SSIM 0.964 0.966 0.989 0.989
↓LPIPS 0.046 0.036 0.022 0.011

Lion
↑PSNR 29.09 32.78 33.09 38.52
↑SSIM 0.936 0.930 0.966 0.972
↓LPIPS 0.058 0.084 0.035 0.021

Table 2. The quantitative results of comparisons on DFA dataset.

Continual Learning Strategy. To evaluate the effec-
tiveness of the proposed continual neural blending learning
scheme, we save all trained network models after training
each group of data in the sequential input. Using these
intermediate models, we can evaluate the performance of
previous and future frames at various stages of the training
process to determine if the replay strategy helps mitigate the
issue of catastrophic forgetting. We evaluate our approach
using all frames of the ”Sport1” scene and present the per-
frame quality with and without continual learning in Fig-
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Figure 9. Demonstration of the compression results. The compari-
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setting. Values under the results are the averaged PSNR and the
per-frame storage size of only the density grids.

ure 8. The upper left corner of the continual learning results
is darker(higher db values) than the other areas, indicating
that the network still performs well on previous frames.

The Blending Network and Density Optimization. We
enable and disable the blending network and density opti-
mization separately when training NeVRF models and test
after that. As we can see in Figure 10, NeVRF without the
blending network causes ghosting effects. Our end-to-end
pipeline can refine the density and get better results.

Image Zoom-In. The image-based rendering scheme
accurately projects appearance from reference views onto
the 3D space, enabling high-frequency details. In this ex-
periment, we move the target camera progressively closer
to the object. Figure 11 demonstrates the qualitative results.

Density Compression. We test two compression config-
urations as demonstrated in Figure 9. Using a smaller voxel
size of 8× 8× 8 can compress the density fields more effi-
ciently. The qualitative comparison in this figure shows that
even though the density field is compressed to the extreme,
NeVRF can still produce plausible results due to our image-
based neural blending approach. Note that NeVRF is able
to achieve smaller storage size by adjusting η.

Ultra Long Sequence. We test methods on a sequence
with 3000 frames and report the per-frame PSNR of differ-
ent methods after entire training, as shown in Figure 12. As
frames increases, DeVRF degenerates while TiNeuVox at-
tains low PSNR and cannot handle the full length video as
it cannot load all data into memory during training. NeVRF
can still perform well at the end of the sequence.

6. Limitation and Conclusion
Similar to previous IBR methods [2, 15], NeVRF also re-
lies on dense reference views to minimize angular deviation
for good rendering quality. However, the multi-view radi-
ance blending is not well-suited for settings with very sparse
views. And there is still room for improvement in speed.

We introduce a new Neural video-based Radiance Field
(NeVRF) technique that efficiently models long-duration

(a) (b) (c)GT

Figure 10. Ablation Study. (a) Our full model; (b) Without the
blending network; (c) Without density optimization.

OursDVGO

Figure 11. Moving camera closer to the object. DVGO produces
blurry textures while NeVRF is capable of preserving details.
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Figure 12. TiNeuVox and DeVRF need access to all training
data simultaneously and therefore can only cope with around 100
frames before running out of memory. In contrast, our method gets
similar performance yet can keep processing new frames (results
are shown for our model trained on a total of 3000 frames).

dynamic scenes in a compact form. Our radiance blend-
ing approach effectively infers radiance from multi-view
videos, taking into account camera visibility. The in-
novative sequential training strategy with continual learn-
ing overcomes network ‘catastrophic forgetting‘, enabling
long-duration sequence training with low memory footprint.
NeVRF compresses dynamic scenes into a small size while
maintaining high-quality rendering. Extensive tests show
our method’s ability to reconstruct and render long-duration
sequences effectively.
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