
PromptChainer: Chaining Large Language Model Prompts
through Visual Programming

Tongshuang Wu∗†
wtshuang@cs.washington.edu
University of Washington

USA

Ellen Jiang†
ellenj@google.com
Google Research

USA

Aaron Donsbach
donsbach@google.com

Google Research
USA

Jeff Gray
jeffgray@google.com
Google Research

USA

Alejandra Molina
alemolinata@google.com

Google Research
USA

Michael Terry
michaelterry@google.com

Google Research
USA

Carrie J. Cai
cjcai@google.com
Google Research

USA

ABSTRACT
While LLMs have made it possible to rapidly prototype new ML
functionalities, many real-world applications involve complex tasks
that cannot be easily handled via a single run of an LLM. Recent
work has found that chaining multiple LLM runs together (with the
output of one step being the input to the next) can help users accom-
plish these more complex tasks, and in a way that is perceived to be
more transparent and controllable. However, it remains unknown
what users need when authoring their own LLM chains – a key step
to lowering the barriers for non-AI-experts to prototype AI-infused
applications. In this work, we explore the LLM chain authoring
process. We find from pilot studies that users need support trans-
forming data between steps of a chain, as well as debugging the
chain at multiple granularities. To address these needs, we designed
PromptChainer, an interactive interface for visually programming
chains. Through case studies with four designers and developers,
we show that PromptChainer supports building prototypes for a
range of applications, and conclude with open questions on scaling
chains to even more complex tasks, as well as supporting low-fi
chain prototyping.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Interactive systems and ools; • Computing methodologies→Ma-
chine learning.

∗The work was done when the author was an intern at Google Inc.
†Equal contribution.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9156-6/22/04.
https://doi.org/10.1145/3491101.3519729

ACM Reference Format:
Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J. Cai. 2022. PromptChainer: Chaining Large Lan-
guage Model Prompts through Visual Programming. In CHI Conference on
Human Factors in Computing Systems Extended Abstracts (CHI ’22 Extended
Abstracts), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3491101.3519729

1 INTRODUCTION
Large language models (LLMs) have introduced new possibilities
for prototyping with AI [18]. Pre-trained on a large amount of text
data, models like GPT-3 [3] and Jurassic-1 [10] encode enough infor-
mation to support in-context learning: they can be easily customized
at run time (without any re-training needed) to handle new tasks,
simply by taking in natural language instructions called prompts.
For example, a user could customize a pre-trained, general purpose
LLM to create an ad-hoc search engine for musicians by giving it
the prompt string: “Genre: Jazz; Artist: Louis Armstrong. Genre:
Country; Artist: ”. An LLM would likely continue the prompt with
the name of a country artist, e.g. “Garth Brooks.” Beyond this toy
example, non-ML experts have used prompting to achieve various
ML functionalities in real-time, including code generation, ques-
tion answering, creative writing, etc. [3, 13, 15]. Recent work on
prompt-based prototyping [8] found that, with LLMs’ fluid adap-
tation to natural language prompts, non-ML experts (e.g. designers,
product managers, front-end developers) can now prototype cus-
tomML functionality with lower effort and less time, as they bypass
the otherwise necessary but expensive process of collecting data
and training models upfront [2, 8].

Despite the demonstrated versatility of LLMs, many real-world
applications involve complex or multi-step tasks that are nontrivial
for a single run of an LLM. For example, a music-oriented chatbot
(which we build in Figure 2) may require an AI to first determine
a user’s query type (e.g. find artists by genre (as shown above), or
find songs given artists, etc.), before generating a response based on
the query type. As a result, designers and developers may struggle
to prototype realistic applications with only a single LLM prompt.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491101.3519729

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Wu and Jiang et al.

A

C

B

D

Figure 1: The PromptChainer interface. (A) The Chain View visualizes the chain structure with node-edge diagrams (enlarged
in Figure 2), and allows users to edit the chain by adding, removing, or reconnecting nodes. (B) The Node View supports im-
plementing, improving, and testing each individual node, e.g., editing prompts for LLM nodes. PromptChainer also supports
running the chain end-to-end (C).

In response, we previously proposed Chaining multiple LLM runs
together [17], i.e., decomposing an overarching task into a series
of highly targeted sub-tasks, mapping each to a distinct LLM step,
and using the output from one step as an input to the next. They
observed that people can effectively use Chaining: they could com-
plete more complex tasks in a more transparent and controllable
way. However, it remains an open question how to support users
in authoring their own LLM chains. For designers and developers
to apply chaining to their own prototypes, they need to not only
prompt within each individual LLM step, but also design the overar-
ching task decomposition. Such a process requires targeted tooling,
akin to end-user programming [4, 5].

In this work, we examine the user experience of authoring LLM
chains. Through formative studies, we distill three unique chal-
lenges that emerge from the extreme versatility of LLMs: (1) the
overhead of fully utilizing LLM capabilities, (2) the tendency of
inadvertently introducing errors to the chain when prompting, and
(3) the cascading errors caused by blackbox and unstable LLM gen-
erations. Addressing these challenges, we propose PromptChainer,
a chain authoring interface that provides scaffolds for building a
mental model of LLM’s capabilities, handling arbitrary LLM data
formats, defining a “function signature" for each LLM step, and
debugging cascading errors. We conduct case studies with four
designers and developers, who proposed and built chains for their
own realistic application ideas (e.g., chatbots, writing assistants,
etc.) Our qualitative analysis reveals patterns in how users build
and debug chains: (1) users build chains not only for addressing
LLM limitations, but also for making their prototypes extensible;
(2) some users constructed one step of a chain at a time, whereas
others sketched out abstract placeholders for all steps before filling
them in; (3) the interactions between multiple LLM prompts can be
complex, requiring both local and global debugging of prompts.

We also observed some additional open challenges, and conclude
with discussion on future directions: First, how can we scale chains
to tasks with high interdependency or logical complexity, while
still preserving global context and coherence? Second, how can we
find a “sweet spot” for prompting such that users can quickly low-fi

prototype multiple alternative chains, without investing too much
time designing any single prompt?

2 BACKGROUND: LARGE LANGUAGE
MODELS, PROMPTING AND CHAINING

A generative language model is designed to continue its input with
plausible output (e.g., given a prompt “I went to the”, it might
auto-complete with “coffee shop”). However, when pre-trained on
billions of samples from the Internet, recent LLMs can be adapted
on-the-fly to support user-defined use cases like code generation,
question answering, creative writing, etc. [3, 15]. To invoke the
desired functionalities, users need to write prompts [1, 11, 12]
that are appropriate for the task. The most common patterns for
prompting are either zero-shot or few-shot prompts. Zero-shot
prompts directly describe what ought to happen in a task. For
example, we can enact Classification in Figure 4 with a prompt
such as “Is the statement: ‘hey there, what’s up’ about music?” In
contrast, few-shot prompts show the LLM what pattern to follow
by feeding it examples of desired inputs and outputs: “[Dialog] Play
some music I like. [Class] is_music [Dialog] hey there, what’s up
[Class]”. Given this prompt, the LLMmay respond with “not_music”
(full prompt in Figure 4).

While a single LLM enables people to prototype specific ML
features [8], their inherent limitations (e.g., lack of multi-step rea-
soning capabilities) make them less capable of prototyping complex
applications. In response, we previously proposed proposed the no-
tion of chaining multiple LLM prompts together, and demonstrated
the utilities of using chains [17]. We follow up on their work to
explore how users can author effective chains for prototyping.

3 PROMPTCHAINER: INTERFACE
REQUIREMENT ANALYSIS & DESIGN

3.1 Requirement Analysis
To inform the design of PromptChainer, we conducted a series of
formative studies with a team of two software engineers and three
1From Tensorflow.js https://github.com/tensorflow/tfjs-models/tree/master/toxicity

https://github.com/tensorflow/tfjs-models/tree/master/toxicity

PromptChainer: Chaining Large Language Model Prompts through Visual Programming CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Branch: music relevance

Get factual answers Parse the list

Call YouTube API

Format the response
Input utterances 21

4 5

7

8

Branch: music intention3

Extract entities6

Filter: toxic response10Generate response9

Music chatbot: Respond to unstructured
statements about music

For artist-The Beatles,
I found 1. Get back
2. Hey Jude
3. Love me Do!

Music
search

Play music by
the Beatles.

[Garth Brooks,
George Strait,
Dolly Parton]

Music
info.

Who are some
Country artists?

I'm chillin', what can
I do for you?

Not
Music

Hey! what up?

You also suck!
Not

Music
You suck!

3

3

2

2

8

5

9

10

Figure 2: An example chain for prototyping music chatbot, modified from a pilot user’s chain (its overview is in Figure 1). We
provide primary input-output examples, and annotate the node functionalities are annotated inline.

Node Type Description Example in Figure 2

LL
M Generic LLM Use the LLM output directly as the node output. 4 6 9

LLM Classifier Use LLM output to filter and branch out inputs. 2 3

H
el
pe
r Evaluation Filter or re-rank LLM outputs by human-designed criteria, e.g., politeness. 10 Toxicity classifier1

Processing Pre-implemented JavaScript functions for typical data transformation. 5 Split by number

Generic JavaScript User-defined JS functions, in case pre-defined helpers are insufficient. 8 Format the query

Co
m
m
. Data Input Define the input to a chain. 1

User Action Enables external (end user) editing on intermediate data points. (Figure 5 11)

API Call Call external functions to connect professional services with LLMs. 6 Call YouTube API

Figure 3: A summary of node types, including the core LLM nodes, helper nodes for data transformation and evaluation, and
communication nodes for exchanging LLM data with external users or services.

designers over the course of three months. These formative studies
included sessions reflecting on their experiences authoring LLM
chains without any assistance, as well as iterative design sessions
where they proposed and built their chains-of-interest in early
prototypes for several rounds, reporting back their pain points (the

chains from pilot studies are in Appendix A). We summarize our
observations into the following authoring challenges:
C.1 The versatility of LLMs and need for data transforma-

tions: The versatility of LLMs means that users need to
develop a mental model of their capabilities. LLMs also pro-
duce outputs in arbitrary string formats, making it nontrivial

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Wu and Jiang et al.

D
at

a
pr

ev
ie

w
s

M
ul

ti-
le

ve
l,

in
te

ra
ct

iv
e

de
bu

gg
in

g[Dialog] Good weather!
[Class] not_music

[Dialog] Play some music I like.
[Class] is_music

[Dialog] How tall is Barak Obama?
[Class] not_music

[Dialog] Hey Sophia, play
yesterday by the Marvin Gaye.
[Class] is_music

[Dialog] [[user]]
[Class] is_music / not_music

Pr
om

ot
M

od
el

 o
ut

pu
ts

A

a4

a2

a1

b3

c1

c2

c3

a3

B C

Figure 4: An expansion of Figure 2, is about music: (A) Node visualization: the node has an status icon (a1), a list of named input
(a2) and output handles (a3), as well as detailed data previews (a4). (B) Implementation: the handle names are synchronized
with the underlying prompt template (b1). (C) We can debug the node at multiple levels.

to transform the output of upstream LLM steps to be com-
patible with the input to downstream steps.

C.2 The instability of LLM function signatures: LLMs also
lack stable function signatures, i.e., the semantic types of their
outputs easily vary with LLM prompts. This complicates lo-
cal chain iterations: for example, if a user’s edits on a prompt
unintentionally make an LLM step output numbered lists
instead of short phrases, this would introduce input errors to
the following steps, and thereby break the entire chain.

C.3 The likelihood of cascading errors: The black-box nature
of LLMs means that sub-optimal or even unsafe output in a
single step could potentially lead to cascading errors across
an LLM chain (see [14] for a similar observation in traditional
machine learning pipelines).

3.2 Interface Design
We design the interface in Figure 1 in response to the challenges,
with a Chain View (Figure 1A) for authoring the chain structure,
a Node View (Figure 1B) for authoring a single step (node) of the
chain, and support for chain debugging.

The Chain View is the visual panel for building and view-
ing chains. As in Figure 1A, each rectangle depicts a node, which
represents a single step in the chain, with the edges between them
denoting how these nodes are connected, or how the output of one
node gets used as the input to the next.

Node visualization. As shown in Figure 4 (a zoomed-in node of
Figure 2 2), each node can have one or more named inputs (a2)
and outputs (a3), which are used to connect nodes. Inspired by
several existing node-edge-based visual programming platforms2,
we provide node previews to increase chaining transparency, in-
cluding a status icon highlighting whether the node contains errors
(Figure 4a1), as well as inline and detailed data views (a3 and a4).

Node Types. As summarized in Figure 3, we define several types
of nodes to cover diverse user needs. At its core are two types of
LLM nodes: Generic LLM nodes and LLM Classifier nodes (See the

2e.g.,Maya: https://www.autodesk.com/products/maya/overview; Node-RED: https:
//nodered.org/

node definitions and examples in Figure 3). Users can implement
these nodes by providing a natural language prompt, call an LLM
with the prompt as input, and use the LLM outputs accordingly.
PromptChainer also provides helper nodes that address common
data transformation (C.1 in Section 3.1) and evaluation needs (C.3),
or to allow users to implement their own custom JavaScript (JS)
nodes. Finally, to support users in prototyping AI-infused appli-
cations, PromptChainer provides communication nodes for ex-
changing data with the external world (e.g., external API calls).

Example gallery. To address the versatility challenge of LLMs
(C.1), PromptChainer provides examples of frequently composed
(sub-)chains, to help users develop a mental model of which capa-
bilities are likely to be useful. These examples also serve as a soft
nudge towards a set of prompting patterns, such that users’ prompts
are more likely to be compatible with predefined processing nodes.
For example, Figure 2 4 is forked from an Ideation example that
returns numbered lists “1) Garth Brooks 2) George Strait...”, which
is parsable with the provided 5 Split by number node.

The Node View allows users to inspect, implement, and
test individual nodes (Figure 1B). When a node is selected, the
panel changes in accordance with the Node Type. PromptChainer
automatically parses the input names of a node based on the LLM
prompt for that node (or, for JavaScript helper nodes, based on the
function signature). For example, in Figure 4, the input handle a1
“user” is synchronizedwith the bolded placeholder string [[user]]
(b1) in its corresponding prompt template, meaning that the input
to a1 will be used to fill in b1 in the prompt. If a user changes b1
to e.g., [[sentence]], a1 would get renamed to “sentence,” such
that there will be no outdated handles. As such, PromptChainer
automatically updates the global chain to be consistent with users’
local edits (addressing C.2).

Interactive debugging functionalities. To address the cascad-
ing error challenge (C.3), PromptChainer supports chain debugging
at various levels of granularity: First, to unit test each node, users
can use the provided testing block (Figure 4c1) to test each node,
with examples independent of the remaining chain. Second, to per-
form end-to-end assessment, users can run the entire chain and log
the outputs per node, such that the ultimate chain output is easy to

https://www.autodesk.com/products/maya/overview
https://nodered.org/
https://nodered.org/

PromptChainer: Chaining Large Language Model Prompts through Visual Programming CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

retrieve (Figure 4c2). Third, to help users map global errors to local
causes, PromptChainer supports breakpoint debugging (Figure 4c3),
and allows users to directly edit the output of a node before it is fed
into the next node. By fixing intermediate node outputs, users can
test a subset of downstream nodes independent of earlier errors.

4 USER FEEDBACK SESSIONS
We conducted a preliminary study to understand what kinds of
chainswould userswant to build, the extent towhich PromptChainer
supports their needs, and what additional challenges users face.

4.1 Study design
Because Chain authoring goes beyond single prompts to chaining
multiple prompts together, we recruited four participants (3 de-
signers, 1 developer within Google) who had at least some prior
experience with non-chained prompts: P1 and P2 had prior expe-
rience writing prompts, and P3 had seen some LLM demos. We
personally reached out to these participants in different product
teams, to prioritize interests and experience in a wide range of
domains. Before the study session, participants spent 30 minutes
on preparation: They watched a 10-minute tutorial on interface fea-
tures. They were also asked to prepare a task beforehand that they
believed would require multiple runs of the LLM, envision the LLM
call for each step, and draft each of those prompts. This way, the
study could focus on chaining prompts together rather than writ-
ing the initial prompts. In the hour-long actual study, participants
loaded their prompts and authored their envisioned Chain while
thinking aloud. To observe the extent to which PromptChainer
could support iteration, we asked participants to describe deficien-
cies (if any) in their Chain, and modify their Chains. We observed
and recorded their entire task completion sessions, and later tran-
scribed their comments for qualitative analysis. In total, participant
spent approximately 90 minutes, and received a $75 gift credit for
their time.

Underlying LLM.All of our experiments (including pilot study)
rely on the same underlying LLM called LaMDA [16]3: a 137B
billion parameter, general-purpose language model. This model
is roughly equivalent to the GPT-3 model in terms of size and
capability: it is trained with more than 1.5T words of text data,
in an auto-regressive manner using a decoder-only Transformer
structure. It has comparable performances with GPT-3 on a variety
of tasks, and behaves similarly in its ability to follow prompts.

4.2 Study Results
We analyze our study to answer the three questions listed below.
Q:What kinds of chains would users want to build?
A: Users proposed diverse tasks, some that used branching logic,
and some that iterated on content. They used chaining not only
to address single-prompt limitations, but also to make their
prototypes extensible.

Chaining patterns. All participants successfully built their de-
sired chains during the study session, with the chains containing
on average 5.5± 0.9 nodes. As shown in Figure 5, participants built
chains for various kinds of tasks, ranging from music chatbot, to

3We used a non-dialog version of the model.

ads generator, to writing assistants. Their chain structures reflect
different high-level patterns: (1) P1 and P2 built chains with paral-
lel logic branches, similar to decision trees [7]. For example, P2’s
chain sought to generate specialized descriptions for different kinds
of product review attributes. They first classified whether attributes
were “high end”, “discount”, or “generic” with 4 , which determined
which downstream node (specialized LLM description generator)
would run. (2) P3 and P4 built chains that incrementally iterate
on content. These chains usually take a divide-and-conquer strat-
egy [9]. For example, P4 wrote one story by first generating a list of
story outlines 10 , then generating paragraphs per point 12 , and
finally merging them back 13 .

Chaining rationales.While we primarily expected participants
to author chains for the purpose of combating LLM limitations
(as we previously observed [17]), interestingly, participants also
inserted chaining steps tomake their prototypes more general-
izable. For example, though P3 knew they could directly build an
ideation node for “summer vacation activities”, they instead chose
to build a more general ideator 6 combined with a summer activity
classifier 7 , such that they could “switch the classifier for any other
time or variables, for variability and flexibility.”

Q: To what extent does PromptChainer support users in itera-
tively authoring and improving their chains?
A: PromptChainer supported a variety of chain construction
strategies and enabled multi-level debugging.

Chain construction. Participants applied various chain con-
struction strategies. P1 performed a top-down approach, i.e., they
connected blank, placeholder nodes first to illustrate the imaginary
task decomposition before filling in the prompts. In contrast, the
other three participants worked on each node one at a time, be-
fore moving on to the next node: whereas P2 carefully ran and
tested each node, others created “rough drafts”, starting with basic
prompts and deferring detailed refinement of prompts until after
a draft chain was finished (P3: “I should probably move on with
this, I want to fine-tune my LLM prompt later.”). These varied chain
construction strategies indicate that PromptChainer can support
different pathways for chain prototyping, but that a common user
tendency may be to work one node at a time.

To further characterize the node utilities, we analyzed the node
distributions in both the user study chains and those from pilot
users (8 in total). We found that pre-defined helpers could cover
most of the chaining needs: participants used three times as many
pre-defined helpers (13 in total) as customized JS nodes (4). One
author further codified all the LLM nodes according to the primitive
LLM operations previously identified [17], and found that out of
the 27 LLM nodes, 7 were for categorizing inputs, 13 for sourcing
information from the LLM, and 7 for re-organizing the input. This
variety in utilization may have resulted from the PromptChainer’s
example galleries. For example, P4 successfully created their own
LLM classifier by forking a simple default example, even though
they were less familiar with prompting.

Chain debugging. When they completed constructing their
chains, all participants ran the chain end-to-end (Figure 4C2) as an
“initial debugging strategy” (P1 and P4). Afterwards, they usually

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Wu and Jiang et al.

Ideate story spine bullet points Select the best option Write paragraphs per point Parse the list Join paragraphs together Add “The End”

Classify review themes Generate specified blurbs

Ideate destinations

Ideate vacation activities Classify & filter activities for summer

Generate descriptions

Image query generator: Generate descriptions
for imaginary summer vacation photos

People looking at art in the The San Diego Museum of Art(N/A)

Extract mentioned entities Parse the entity list Classify the entity Format the query Call external YouTube API

Writing assistant: Generate full stories from a character desc.

Once upon a time, there was a frog named...Morris was a small green amphibian with bulging eyes and a wide grin. He
hated eating flies, but he had no choice. Eating flies is what frogs do...he started trying to catch other animals.
He caught a few birds, a few squirrels, and even a few cats. But none of them tasted as good as flies. The End.

A frog name Morris who
lives in a pond and
hates eating flies

Music chatbot: respond to unstructured, music statements
1. Sting - Shape of My Heart
2. Sting - Desert Rose
3. Sting - Fields Of Gold

i love the
song by Sting,
so cool

P1

P2

P3

P4

1

3

9

4
5

6

7

1110

8

12

2

13

Ads generator: Generate editorial
blurbs from review attributes
mall, food court, deals, brands

Sprawling outlet mall featuring
discounted name-brand clothing &
accessories, plus a food court.

Discount

Figure 5: Four different chains built by user study participants. P1 and P2’s chains used parallel branching logic , whereas P3
and P4’s chains depict iterative content processing. The full details are in Figure 6, Appendix A.

attributed chain failure to particular LLM nodes (P1: “easy to pin-
point unexpected outputs from the data preview”), and performed
local debugging. P1 appreciated the breakpoint functionality (Fig-
ure 4C3), as they did not need to take the chain apart in order to
debug one of the nodes; P3, on the other hand, relied on the indepen-
dent testing block (Figure 4c1) when debugging the Description
Generator 9 , as a way to avoid expensive executions on multiple
inputs coming from prior nodes.

Interestingly, most participants made some non-trivial refine-
ments to their pre-built prompts in the interface, even though they
had spent a fair amount of time doing prompt engineering before
the study. We hypothesize that being able to observe the interaction
effects between nodes affected their understanding and expectations
of each local node. For example, when constructing the story cre-
ation chain, P4 wanted to add a final ending, “The End”, to the
generated story. They first tried to always generate “The End” as
the final bulletpoint in the story outline (“Story Spine") in 10 , but
realized that this would cause paragraph generator 12 to produce
a paragraph repeating “The End The End The End.” They therefore
removed this generation from 10 , and instead (with some help from

the study facilitator) made a final JavaScript helper node 13 for
appending the text “The End”. This suggests that PromptChainer
can help users discover errors, though future research is needed in
supporting them to resolve identified problems through alternative
solutions.

Q:What are remaining challenges in chain authoring?
A: Ensuring coherence between interdependent sub-tasks; track-
ing chains with complex logic.

Chains with interdependent parallel tasks can lead to de-
creased coherence. Because P4’s story writing chain indepen-
dently generated a paragraph for each point in the outline, the final
essay lacked coherence: though the first several sentences followed
the input description (“Morris...hates eating flies”), the final sen-
tence instead hinted that Morris likes flies (“none of them tasted
as good as flies”). One pilot study user faced a similar challenge,
and created another input node to manually track previous outputs.
In the future, it may be worthwhile to further investigate methods
that consider inter-dependency between parallel sub-tasks [15].

PromptChainer: Chaining Large Language Model Prompts through Visual Programming CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Chains that involve more complex decomposition can be
overwhelming to track. In P1’s music chatbot chain, the extractor
node 2 produces a list of candidate entities per input. Thus, it
became unclear how the entities fed into the classifier 3 mapped
to the original input node 1 . We hope to enhance the tracing
capabilities of PromptChainer. For example, future work could
enable customized chain grouping: Instead of running one or all
of the nodes, participants can explicitly select a subset to run. We
may also add execution visualizations (e.g., taking inspiration from
Python Tutor4), to highlight the mapping from the original input
all the way to the final output.

4.3 Discussion and Limitations
Because participants were asked to pre-create some LLM prompts
for their desired sub-tasks prior to the study, this may have un-
intentionally led to participants feeling invested in their prompts
and their particular chain decomposition, making them less in-
clined to consider other chain structures or scrap the prompts they
had already created. Yet, prior work in prototyping indicates that
concurrently considering multiple alternatives (e.g., parallel proto-
typing [6]) can lead to better outcomes. Thus, future work could
explore how to encourage low-fi prototyping of multiple possible
chains: in other words, how can users create half-baked prompts
for each step, such that the feasibility of an entire chain can be
rapidly tested, without investing too much time designing each
prompt? For example, PromptChainer could perhaps encourage
users to start with only one or two examples in a few-shot prompt,
or start with a very simple zero-shot prompt (even if they don’t
initially perform reliably) to reduce initial time invested in each
prompt.

Given time constraints in the study, users may have also picked
tasks that were naturally easy to decompose. In the future, it would
be worthwhile to explore task decomposition strategies for even
larger and more complex tasks. For example, PromptChainer could
help encourage users to further decompose a node in the chain into
more nodes, if extensive prompting efforts appear unsuccessful.

5 CONCLUSION
We identified three unique challenges for LLM chain authoring,
brought on by the highly versatile and open-ended capabilities of
LLMs. We designed PromptChainer, and found that it helped users
transform intermediate LLM output, as well as debug the chain
when LLM steps had interacting effects. Our study also revealed
interesting future directions, including supporting more complex
chains, as well as more explicitly supporting “half-baked" chain
construction, so that users can easily sketch out a chain structure
without investing too much time prompting upfront.

REFERENCES
[1] Gregor Betz, Kyle Richardson, and Christian Voigt. 2021. Thinking Aloud: Dy-

namic Context Generation Improves Zero-Shot Reasoning Performance of GPT-2.
ArXiv preprint abs/2103.13033 (2021). https://arxiv.org/abs/2103.13033

[2] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John

4https://pythontutor.com/

Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Kohd, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities
and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[4] Margaret Burnett. 2010. End-user software engineering and why it matters.
Journal of Organizational and End User Computing (JOEUC) 22, 1 (2010), 1–22.

[5] Margaret M. Burnett, Curtis R. Cook, and Gregg Rothermel. 2004. End-user
software engineering. Commun. ACM 47 (2004), 53 – 58.

[6] Steven P Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L Schwartz,
and Scott R Klemmer. 2010. Parallel prototyping leads to better design results,
more divergence, and increased self-efficacy. ACM Transactions on Computer-
Human Interaction (TOCHI) 17, 4 (2010), 1–24.

[7] Baocheng Geng, Qunwei Li, and Pramod K Varshney. 2018. Decision tree design
for classification in crowdsourcing systems. In 2018 52nd Asilomar Conference on
Signals, Systems, and Computers. IEEE, 859–863.

[8] Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J. Cai. 2022. Prompt-based Prototyping with Large
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems.

[9] Aniket Kittur, Boris Smus, Susheel Khamkar, and Robert E. Kraut. 2011. Crowd-
Forge: Crowdsourcing Complex Work. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (Santa Barbara, California,
USA) (UIST ’11). Association for Computing Machinery, New York, NY, USA,
43–52. https://doi.org/10.1145/2047196.2047202

[10] Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical
Details And Evaluation. Technical Report. AI21 Labs.

[11] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3? ArXiv
preprint abs/2101.06804 (2021). https://arxiv.org/abs/2101.06804

[12] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2021. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. ArXiv preprint abs/2104.08786 (2021). https:
//arxiv.org/abs/2104.08786

[13] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2021.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions.
ArXiv preprint abs/2104.08773 (2021). https://arxiv.org/abs/2104.08773

[14] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine Learning: The
High Interest Credit Card of Technical Debt. In SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop).

[15] Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen, and Monica Di-
nalescu. 2021. Story Centaur: Large Language Model Few Shot Learning as
a Creative Writing Tool. In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: System Demon-
strations. Association for Computational Linguistics, Online, 244–256. https:
//aclanthology.org/2021.eacl-demos.29

[16] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.
LaMDA: LanguageModels for Dialog Applications. ArXiv preprint abs/2201.08239
(2022). https://arxiv.org/abs/2201.08239

https://arxiv.org/abs/2103.13033
https://pythontutor.com/
https://arxiv.org/abs/2108.07258
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1145/2047196.2047202
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08773
https://aclanthology.org/2021.eacl-demos.29
https://aclanthology.org/2021.eacl-demos.29
https://arxiv.org/abs/2201.08239

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Wu and Jiang et al.

[17] Tongshuang Wu, Michael Terry, and Carrie J Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (NewOrleans, LA, USA) (CHI ’21). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3491102.3517582

[18] Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John Zimmerman. 2020. Re-
Examining Whether, Why, and How Human-AI Interaction Is Uniquely Difficult

to Design. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376301

A SAMPLE CHAINS FROM PILOT USERS

https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3313831.3376301

PromptChainer: Chaining Large Language Model Prompts through Visual Programming CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Classify review themes Generate specified blurbs

Ideate destinations

Ideate vacation activities Classify & filter activities for summer Generate descriptions

Extract mentioned entities Parse the entity list Classify the entity Format the query Call external YouTube API

P1

P2

P3

1

3

9

4

5

6

7

8

2

Writing assistant: Generate full stories from a character desc.
Once upon a time, there was a frog named...Morris was a small green
amphibian with bulging eyes and a wide grin. He hated eating flies,
but he had no choice. Eating flies is what frogs do...he started
trying to catch other animals. He caught a few birds, a few squirrels,
and even a few cats. But none of them tasted as good as flies.

A frog name
Morris who
lives in a
pond and hates
eating flies

P4

1110

12

13

Ideate story spine Select the best option Write paragraphs per spine Parse the list Join paragraphs together Add “The End”

Music chatbot: Respond to unstructured
statements about music

1. Sting - Shape of My Heart
2. Sting - Desert Rose
3. Sting - Fields Of Gold

i love the
song by Sting,
so cool

Ads generator: Generate editorial
blurbs from review attributes
mall, food court, deals, brands

Sprawling outlet mall featuring
discounted name-brand clothing &
accessories, plus a food court.

Discount
Image query generator: Generate descriptions
for imaginary summer vacation photos

People looking at art [in the The San Diego Museum of Art](N/A)

Figure 6: The full details of user study chains.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Wu and Jiang et al.

Music chatbot

Here are some songs by Sting
starting with 1. Shape of My
Heart, 2. Desert Rose, and
3. Fields of Gold.

find some song by sting

Classifier on whether a msg is
crucial enough to interrupt
current user action

Oven is off.

sitting in a cafe

I had to leave in a hurry.
Could you make sure my
oven is off?

Facebook Messenger

Msg

Source

User

Reading assistant: Summarize long essay

An essay about pros and
cons on tent camping.

Each year, thousands of people throughout the United States
choose to spend their vacations camping in the great
outdoors... These three types of camping troubles can
strike campers almost anywhere…[1000+ words] A how-to essay

Description

Style

A

B

C

Figure 7: The chains built by pilot users.

	Abstract
	1 Introduction
	2 Background: Large Language Models, Prompting and Chaining
	3 PromptChainer: Interface Requirement Analysis & Design
	3.1 Requirement Analysis
	3.2 Interface Design

	4 User Feedback Sessions
	4.1 Study design
	4.2 Study Results
	4.3 Discussion and Limitations

	5 Conclusion
	References
	A Sample Chains from Pilot Users

