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Abstract

In this work, we present SeqFormer, a frustratingly sim-
ple model for video instance segmentation. SeqFormer fol-
lows the principle of vision transformer that models in-
stance relationships among video frames. Nevertheless, we
observe that a stand-alone instance query suffices for cap-
turing a time sequence of instances in a video, but atten-
tion mechanisms should be done with each frame indepen-
dently. To achieve this, SeqFormer locates an instance in
each frame and aggregates temporal information to learn
a powerful representation of a video-level instance, which
is used to predict the mask sequences on each frame dy-
namically. Instance tracking is achieved naturally with-
out tracking branches or post-processing. On the YouTube-
VIS dataset, SeqFormer achieves 47.4 AP with a ResNet-50
backbone and 49.0 AP with a ResNet-101 backbone with-
out bells and whistles. Such achievement significantly ex-
ceeds the previous state-of-the-art performance by 4.6 and
4.4, respectively. In addition, integrated with the recently-
proposed Swin transformer, SeqFormer achieves a much
higher AP of 59.3. We hope SeqFormer could be a strong
baseline that fosters future research in video instance seg-
mentation, and in the meantime, advances this field with
a more robust, accurate, neat model. The code and the
pre-trained models are publicly available at https://
github.com/wjf5203/SeqFormer.

1. Introduction

Video Instance Segmentation (VIS) [26] is an emerg-
ing vision task that aims to simultaneously perform detec-
tion, classification, segmentation, and tracking of object in-
stances in videos. Compared to image instance segmenta-
tion [6], video instance segmentation is much more chal-
lenging since it requires accurate tracking of objects across
an entire video.

Previous VIS algorithms can be roughly divided into two
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Figure 1. Performance vs. Model Size. All results are reported
with single model and single-scale inference. SeqFormer signifi-
cantly outperforms the previous method with similar parameters.

categories. The first mainstream follows the tracking-by-
detection paradigm, extending image instance segmentation
models with a tracking branch [3,13,26,27]. These methods
first predict candidate detection and segmentation frame-
by-frame, and then associate them by classification [27, 27]
or re-identification [3, 13] to track the instance through a
video. However, the tracking process is sensitive to occlu-
sions and motion blur that are common in videos. Another
mainstream predicts clip-level instance masks by taking a
video clip [1, 2] or the entire video [8, 24] as input. It di-
vides a video into multiple overlapping clips and generates
mask sequences with clip-by-clip matching on overlapping
frames. Recently, VisTR [24] adapts transformer [22] to
VIS and uses instance queries to obtain instance sequence
from video clips. After that, IFC [8] improves the perfor-
mance and efficiency by building communications between
frames in a transformer encoder.

In this paper, we present Sequential Transformer (Se-
qFormer), which follows the principle of vision trans-
former [4, 24] and models instance relationships among
video frames. As in [8], we observe that a stand-alone in-
stance query suffices although an object may be of different
positions, sizes, shapes, and various appearances. Neverthe-
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less, it is witnessed that the attention process shall be done
with each frame independently, so that the model will attend
to locations following the movement of instance through the
video. This observation aligns with the conclusion drawn
in action recognition [17, 28], in which the 1D time do-
main and 2D space domain have different characteristics
and should be handled in a different fashion.

Considering the movement of an instance in a video, a
model is supposed to attend to different spatial locations
following the motion of the instance. We decompose the
shared instance query into frame-level box queries for the
attention mechanism to guarantee that the attention focuses
on the same instance on each frame. The box queries are
kept on each frame and used to predict the bounding box
sequences. Then the features within the bounding boxes
are aggregated to refine the box queries on the current
frame. By repeating this refinement process through de-
coder layers, SeqFormer locates the instance in each frame
in a coarse-to-fine manner, in a similar way to Deformable
DETR [29].

However, to mitigate redundant information from non-
instance frames, those box queries are aggregated in a
weighted manner, where the weights are learned upon the
box embeddings. The generated representation, which re-
tains richer object cues, is used to predict the category and
generate dynamic convolution weights of mask head. Since
the box sequences are predicted and refined in the decoder,
SeqFormer naturally and succinctly establishes the associa-
tion of instances across frames.

In summary, SeqFormer enjoys the following advan-
tages:

• SeqFormer is a neat and simple end-to-end framework.
Given an arbitrary long video as input, SeqFormer
predicts the classification results, box sequences, and
mask sequences in one step without the need for addi-
tional tracking branches or hand-craft post-processing.

• As shown in Fig. 1, SeqFormer sets the new state-
of-the-art performance on YouTube-VIS 2019 bench-
mark [26]. SeqFormer achieves 47.4 AP with a
ResNet-50 backbone and 49.0 AP with a ResNet-101
backbone without bells and whistles. Such achieve-
ment significantly exceeds the previous state-of-the-
art performance by 4.6 and 4.4, respectively. With a
ResNext-101 backbone, SeqFormer achieves 51.2 AP,
which is the first time that an algorithm achieves an
AP above 50. In addition, integrated with the recently-
proposed Swin transformer, SeqFormer achieves a
much higher AP of 59.3.

• With the query decomposition mechanism, SeqFormer
attends to locations following the movement of in-
stance through the video and learns a powerful repre-
sentation for instance sequences.

• The code and the pre-trained models are publicly avail-
able. We hope the SeqFormer, with the idea of mak-
ing attention follow the movement of object, could be
a strong baseline that fosters future research in video
instance segmentation, and in the meantime, advances
this field with a more robust, accurate, neat model.

2. Related Work
Image Instance Segmentation Instance Segmentation is
the most fundamental and challenging task in computer vi-
sion, which aims to detect every instance and segment every
pixel respectively in static images. Instance segmentation
was dominated by Mask R-CNN [6] for a long time, Mask
R-CNN [6] directly introduces fully convolutional mask
head to Faster R-CNN [18] in a multi-task learning manner.
Recently, one stage models emerged as excellent frame-
works for instance segmentation. Solo [23] and CondInst
[20] propose one stage instance segmentation pipeline and
achieve comparable performance. CondInst [20] proposes
to dynamically generate the mask head parameters for each
instance, which is used to predict the mask of the corre-
sponding instance. Dynamic mask head can be efficiently
adopted into video segmentation tasks because the same in-
stance in different frames can share the same mask head.

Video Instance Segmentation. Video instance segmenta-
tion is extended from the traditional image instance segmen-
tation, and aims to simultaneously segment and track all ob-
ject instances in the video. The baseline method MaskTrack
R-CNN [26] is built upon Mask R-CNN [6] and introduces
a tracking head to associate each instance in the video. Sip-
Mask [3] follows the similar pipeline based on the one-
stage FCOS [21]. MaskProp [2] introduces a mask prop-
agation module that propagates instance masks from each
video frame to all the other frames in a video clip, which
can improve the segmentation performance and compute
clip-level instance tracks. However, the temporal receptive
field of a clip modeling is limited by the length of the in-
put clip without having a global view from the whole video.
CrossVIS [27] proposes a new learning scheme that uses the
instance feature in the current frame to pixel-wisely localize
the same instance in other frames. Propose-Reduce [10] in-
troduces a new paradigm that adds an extra sequence prop-
agation across frames head upon Mask R-CNN [6], which
can achieve high performance, but it is very computation-
ally intensive.

Transformers. Transformer [22] was first proposed for
the sequence-to-sequence machine translation task and be-
came the basic component in most Natural Language Pro-
cessing tasks. Recently, Transformers [22] has been suc-
cessfully applied in many visual tasks. DETR [4] proposes
a new detection paradigm upon transformers, which sim-
plifies the traditional detection framework and abandons
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Figure 2. The overall architecture of SeqFormer. Given the feature maps of input frames, the initial instance query is decomposed into
frame-level box queries at the first decoder layer. The box queries are kept on each frame and serve as anchors without interacting with
each other. The features extracted by box queries from each frame are aggregated to the instance query after each decoder layer, which is
used for predicting dynamic mask head weight. Then the mask head convolves the encoded feature map to generate the mask sequences.

the hand-crafted post-processing module. Deformable Detr
[29] achieves better performance by using local attention
and multi-scale feature maps. VisTR [24] is the first method
that adapts DETR [4] to the VIS task and uses instance
queries to obtain instance sequence from video clips. How-
ever, VisTR can not handle variable-length or long-time
video sequences due to the fixed number of input queries
hardcoded with video length. IFC [8] improves the per-
formance and efficiency of VisTR by building communica-
tions between frames in the transformer encoder instead of
flatting the space-time features into one dimension. How-
ever, both of them still flatten the space-time features for
the transformer decoder. Our model is designed to carry
out the instance feature capturing independently on differ-
ent frames, which makes the model attend to locations fol-
lowing the movement of instance through the video.

3. Method

3.1. Architecture

The network architecture is visualized in Fig. 2. Seq-
Former has a CNN backbone and a transformer encoder
for extracting feature maps from each frame independently.
Next, a transformer decoder is adapted to locate the instance
sequences and generate a video-level instance representa-
tion. Finally, three output heads are used for instance clas-
sification, instance sequences segmentation, and bounding

box prediction, respectively.

Backbone Given an input video xv ∈ RT×3×H×W with 3
color channels and T frames of resolutionH×W , the CNN
backbone (e.g., ResNet [7]) extracts feature maps for each
frame independently.

Transformer Encoder First, a 1× 1 convolution is used to
reduce the channel dimension of the all the feature maps
to C = 256, creating new feature maps {f′t}Tt=1, f

′
t ∈

RC×H′×W ′
, t ∈ [1, T ]. After adding fixed positional en-

codings [4], the transformer encoder performs deformable
attention [29] on the feature maps, resulting in the output
feature maps {ft}Tt=1, with the same resolutions as the in-
put. To perform attention mechanisms on each frame inde-
pendently, we keep the spatial and temporal dimensions of
feature maps rather than flattening them into one dimension.

Query Decompose Transformer Decoder Given a video,
humans can effortlessly identify every instance and asso-
ciate them through the video, despite the various appear-
ance and changing positions on different frames. If an in-
stance is hard to recognize due to occlusion or motion blur
in some frames, humans can still re-identify it through the
context information from other frames. In other words, for
the same instance on different frames, humans treat them
as a whole instead of individuals. This is the crucial differ-
ence between video and image instance segmentation. Mo-
tivated by this, we propose Query Decompose Transformer



Decoder, which aims to learn a more and robust video-level
instance representation across frames.

We introduce a fixed number of learnable embeddings
to query the features of the same instance from each
frame, termed Instance Queries. Different from the in-
stance queries corresponding to frame-level instances in
VisTR [24], our instance queries correspond to video-level
instances. Since the changing appearance and position of
the instance, the model should focus on different exact spa-
tial locations of each frame. To achieve this goal, we pro-
pose to decompose the instance query into T frame-specific
box queries, each of which serves as an anchor for retriev-
ing and locating features on the corresponding frame.

At the first decoder layer, an instance query Iq ∈ RC is
used to query the instance features on features maps of each
frame independently:

B1
t = DeformAttn(Iq, ft), (1)

where B1
t ∈ RC is the box query on frame t from the 1-st

decoder layer, and DeformAttn indicates deformable atten-
tion module in [29] . Given a query element and the frame
feature map ft, deformable attention only attends to a small
set of key sampling points. At the l-th (l > 1) layer, the box
query Bl−1t from last layer is used as input:

Blt = DeformAttn(Bl−1t , ft), (2)

and the instance query aggregates the temporal features by
a weighted sum of all the box queries, where the weights
are end to end learned upon the box embedding:

Ilq =
∑T
t=1 Blt × FC(Blt)∑T

t=1 FC(Blt)
+ Il−1q . (3)

After Nd decoder layers, we get an instance query and
T box queries for each instance. The instance query is
a shared video-level instance representation, and the box
query contains the position information for predicting the
bound box on each frame. TheN instance queries are trans-
formed into an output instance embedding and T box em-
beddings {BEt}Tt=1,BEt ∈ RN×d.

Output Heads As shown in Fig. 2, we add mask head, box
head, class head on the top of the decoder outputs. A linear
projection acts as the class head to produce the classification
results. Given the instance embedding from the transformer
decoder with index σ(i), class head output a class probabil-
ity of class ci (which may be ∅) as p̂σ(i)(ci) .

The box head is a 3-layer feed forward network (FFN)
with ReLU activation function and a linear projection
layer. For BEt of each frame, the FFN predicts the nor-
malized center coordinates, height and width of the box
w.r.t. the frame. Thus, for the instance with index
σ(i), we denote the predicted box sequence as b̂σ(i) =

{b̂(σ(i),1), b̂(σ(i),2), ..., b̂(σ(i),T )}. Since instance embed-
ding contains the information of instance on all frames, it
can be regarded as a more robust instance representation.
We can use instance embedding to efficiently generate the
entire mask sequences. To this end, we leverage dynamic
convolution as mask head. First, a 3-layer FFN encodes the
instance embedding into parameters ωi of mask head with
index σ(i), which has three 1× 1 convolution layers. Each
convolution layer has 8 channels and uses ReLU as the ac-
tivation function except for the last one, following [20].

As shown in Fig. 2, there is a mask branch that provides
the feature maps for mask head to predict instance masks.
We employ an FPN-like architecture to make the use of
multi-scale feature maps from transformer encoder and gen-
erate feature maps sequences {F̂

1

mask, F̂
2

mask, ..., F̂
T

mask} that
are 1

8 of the input resolution and have 8 channels for each

frame independently. Then the feature map F̂
t

mask is con-
catenated with a map of the relative coordinates from cen-
ter of b̂(σ(i),t) in corresponding frames to provide a loca-
tion cue for predicting the instance mask. Thus we get
the {Ftmask}Tt=1,F

t
mask ∈ R10×H

8 ×
W
8 . The sequence feature

maps Ftmask is sent to the mask head to predict the mask se-
quences:

{mt
i}Tt=1 = {MaskHead(Ftmask, ωi)}Tt=1, (4)

where MaskHead performs three-layer 1 × 1 convolution
on given feature maps with the kernels reshaped from ω.
By sharing the same mask head, our method can efficiently
perform instance segmentation on each frame. Similar to
DETR [4], we add output heads and Hungarian loss af-
ter each decoder layer as an auxiliary loss to supervise the
training stage. All output heads share their parameters.

3.2. Instance Sequences Matching and Loss

Our method predicts a fixed-size set of N predictions
in a single pass through the decoder, and N is set to
be significantly larger than the number of instances in a
video. To train our network, we first need to find a bipar-
tite graph matching between the prediction and the ground
truth. Let y denotes the ground truth set of video-level in-
stance, and ŷi = {ŷi}Ni=1 denotes the predicted instance
set. Each element i of the ground truth set can be seen as
yi = {ci, (bi,1,bi,2, ...,bi,T )}, where ci is the target class
label including ∅, and bi,t ∈ [0, 1]4 is a vector that defines
ground truth bounding box center coordinates and its rela-
tive height and width in the frame t. For the predictions of
instance with index σ(i), we take the output of class head
p̂σ(i)(ci) and predicted bounding box b̂σ(i). Then we define
the pair-wise matching cost between ground truth yi and a
prediction with index σ(i).

Lmatch(yi, ŷσ(i)) = −p̂σ(i)(ci) + Lbox(bi, b̂σ(i)), (5)



where ci 6= ∅.
Note that Eq. (5) does not consider the similarity be-

tween mask prediction and mask ground truth, as such
mask-level comparison is computationally expensive. To
find the best assignment of a ground truth to a prediction,
we search for a permutation of N elements σ ∈ Sn with the
lowest cost:

σ̂ = argmin
σ∈Sn

N∑
i

Lmatch(yi, ŷσ(i)). (6)

Following prior work [4, 24], the optimal assignment is
computed with the Hungarian algorithm [9]. Given the op-
timal assignment σ̂ , we use Hungarian loss for all matched
pairs to train our network:

LHung(y, ŷ) =
N∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci 6=∅}Lbox(bi, b̂σ̂(i))

+1{ci 6=∅}Lmask(mi, m̂σ̂(i))
]
.

(7)
For Lbox, we use a linear combination of the L1 loss and the
generalized IoU loss [19]. The mask sequences {mt

i}Tt=1

from mask head with 1
8 of the video resolution which may

loss some details, thus we upsample the predicted mask to
1
4 of the video resolution, and downsample the ground truth
mask to the same resolution for mask loss, following [20].
The mask loss Lmask is defined as a combination of the
Dice [16] and Focal loss [11]. We calculate box loss and
mask loss on each frame and take the average for Hungar-
ian loss.

4. Experiment
4.1. Datasets and Metrics

We evaluate our method on YouTube-VIS 2019 [26] and
YouTube-VIS 2021 [25] datasets. YouTube-VIS 2019 is
the first and largest dataset for video instance segmentation,
which contains 2238 training, 302 validation, and 343 test
high-resolution YouTube video clips. It has a 40-category
label set and 131k high-quality instance masks. In each
video, objects with bounding boxes and masks are labeled
every five frames. YouTube-VIS 2021 is an improved and
extended version of YouTube-VIS 2019 dataset, it contains
3,859 high-resolution videos and 232k instance annotations.
The newly added videos in the dataset include more in-
stances and frames.

Video instance segmentation is evaluated by the metrics
of average precision (AP) and average recall (AR). Differ-
ent from image instance segmentation, each instance in a
video contains a sequence of masks. To evaluate the spatio-
temporal consistency of the predicted mask sequences, the
IoU computation is carried out in the spatial-temporal do-
main. This requires a model not only to obtain accurate seg-

mentation and classification results at frame-level but also
to track instance masks between frames accurately.

4.2. Implementation Details

Model settings ResNet-50 [7] is used as our backbone net-
work unless otherwise specified. Similar to [29], we use
the features from the last three stages as {C3, C4, C5} in
ResNet, which correspond to the feature maps with strides
{8, 16, 32}. And adding the lowest resolution feature map
C6 obtained via a 3 × 3 stride 2 convolution on the C5. We
set sampled key numbers K=4 and eight attention heads for
deformable attention modules. We use six encoder and six
decoder layers of hidden dimension 256 for the transformer,
and the number of instance queries is set to 300.

Training We used AdamW [15] optimizer with base learn-
ing rate of 2 × 10−4, β1 = 0.9 , β2 = 0.999, and weight
decay of 10−4. Learning rates of the backbone and linear
projections used for deformable attention modules are mul-
tiplied by a factor of 0.1. We first pre-train the model on
COCO [12] by setting the number of input frames T = 1.
Given the pretrained weights, we train our models on the
YouTube-VIS dataset with input frames T = 5 sampled
from the same video.

The training data of the YouTube-VIS dataset is not suffi-
cient, which makes a model prone to overfitting. To address
this problem, we adopt 80K training images in the COCO
for compensation, following [1,10]. We only use the images
with 20 overlapping categories in COCO and augment them
with ±10◦ rotation to generate a five-frame pseudo video.
We train our model on the mixed dataset including COCO
and the video dataset for 12 epochs, and the learning rate
is decayed at the 6-th and 10-th epoch by a factor of 0.1.
The input frame sizes are downsampled so that the longest
side is at most 768 pixels. The model is implemented with
PyTorch-1.7 and is trained on 8 V100 GPUs of 32G RAM,
with 2 video clips per GPU.

Inference SeqFormer is able to model a video of arbitrary
length without grouping frames into subsequences. We take
the whole video as input during inference, which is down-
scaled to 360p, following MaskTrack R-CNN [26]. Seq-
Former learns a video-level instance representation used for
dynamic segmentation on each frame and classification, and
the box sequences are generated in the decoder. Thus, no
post-processing is needed for associating instances.

4.3. Main Results

The comparison of SeqFormer with previous state-of-
the-art methods on YouTube-VIS 2019 are listed in Table 1.
MaskProp [2] and ProposeReduce [10] are the state-of-the-
art methods, which take a strong backbone to extract spatial
features and use mask propagation to improve the segmen-
tation and tracking, but suffer from low inference speed.



Backbone Method Params AP AP50 AP75 AR1 AR10

MaskTrack R-CNN [26] 58.1M 30.3 51.1 32.6 31.0 35.5
STEm-Seg [1] 50.5M 30.6 50.7 33.5 37.6 37.1
SipMask [3] 33.2M 33.7 54.1 35.8 35.4 40.1
CompFeat [5] - 35.3 56.0 38.6 33.1 40.3
SG-Net [13] - 34.8 56.1 36.8 35.8 40.8

ResNet-50 VisTR [24] 57.2M 36.2 59.8 36.9 37.2 42.4
MaskProp [2] - 40.0 - 42.9 - -
CrossVIS [27] 37.5M 36.3 56.8 38.9 35.6 40.7
Propose-Reduce [10] 69.0M 40.4 63.0 43.8 41.1 49.7
IFC [8] 39.3M 42.8 65.8 46.8 43.8 51.2
SeqFormer 49.3M 47.4 69.8 51.8 45.5 54.8

MaskTrack R-CNN [26] 77.2M 31.8 53.0 33.6 33.2 37.6
STEm-Seg [1] 69.6M 34.6 55.8 37.9 34.4 41.6
SG-Net [13] - 36.3 57.1 39.6 35.9 43.0
VisTR [24] 76.3M 40.1 64.0 45.0 38.3 44.9

ResNet-101 MaskProp [2] - 42.5 - 45.6 - -
CrossVIS [27] 56.6M 36.6 57.3 39.7 36.0 42.0
Propose-Reduce [10] 88.1M 43.8 65.5 47.4 43.0 53.2
IFC [8] 58.3M 44.6 69.2 49.5 44.0 52.1
SeqFormer 68.4M 49.0 71.1 55.7 46.8 56.9

MaskProp [2] - 44.3 - 48.3 - -
ResNeXt-101 Propose-Reduce [10] 127.1M 47.6 71.6 51.8 46.3 56.0

SeqFormer 112.7M 51.2 75.3 58.0 46.5 57.3

Swin-L SeqFormer 220.0M 59.3 82.1 66.4 51.7 64.4

Table 1. Quantitative results of video instance segmentation on YouTube-VIS 2019 validation set. The best results with the same backbone
are in bold.

We list the methods with different backbones for fair com-
parison. It can be observed that SeqFormer significantly
surpasses all the previous best reported results by at least 4
AP with the same backbone. SeqFormer with a ResNet-
50 backbone can even achieve competitive performance
against state-of-the-art methods with a ResNeXt-101 back-
bone. By adopting Swin transformer [14] as our backbone
without further modifications, SeqFormer can first achieve
59.3 AP on this benchmark, outperforming the best previ-
ous results by a large margin of 11.7 AP. In Fig. 3, we visu-
alize the results of SeqFormer with four challenging cases.
It can be seen that SeqFormer can handle these situations
well. We also evaluate our approach on the recently intro-
duced YouTube-VIS 2021 dataset, which is a more chal-
lenging dataset with more videos and a higher number of
instances and frames. As shown in Table 2, SeqFormer
achieves 40.5 AP with a ResNet-50 backbone, surpassing
previous methods by 3.9 AP. We believe that our effective
method will serve as a strong baseline on these benchmarks
and facilitate future research in video instance segmenta-
tion.

Method AP AP50 AP75 AR1 AR10

MaskTrack 28.6 48.9 29.6 26.5 33.8
SipMask 31.7 52.5 34.0 30.8 37.8
CrossVIS 34.2 54.4 37.9 30.4 38.2
IFC 36.6 57.9 39.3 - -
SeqFormer 40.5 62.4 43.7 36.1 48.1
SeqFormer-S 51.8 74.6 58.2 42.8 58.1

Table 2. Quantitative results on YouTube-VIS 2021 validation set.
We use a ResNet-50 as backbone for all the experiment expect
Swin transformer for SeqFormer-S.

4.4. Ablation Study

This section conducts extensive ablation experiments
to study the effects of different settings in our proposed
method. All the ablation experiments are conducted with
the ResNet-50 backbone and training on YouTube-VIS
2019 dataset rather than the mixed dataset.

Instance query decomposition Instance query decompo-
sition plays an important role in our method. Since an in-



Figure 3. Visualization of SeqFormer on the YouTube-VIS 2019 [26] validation dataset. The first row shows the instances with various
poses. The second row shows the case of a lot of similar instances that are close together with overlapping. The third row shows the
situation where an instance reappears after being occluded while in motion. The last row shows an instance severely occluded by the other
instance. The same colors depict the mask sequences of the same instances

Decompose AP AP50 AP75 AR1 AR10

w/o 34.1 53.7 34.9 34.8 40.9
w 45.1 66.9 50.5 45.6 54.6

Table 3. Instance query decomposition. Decomposing instance
query into frame-level box queries is critical for SeqFormer.

stance may have different positions on each frame, the it-
erative refinement of the spatial sampling region should be
performed independently on each frame. To keep the tem-
poral consistency of instances, we use the temporal-shared
instance query for deformable attention and get box queries
for each frame. The box queries will be kept through all
the decoder layers and serve as frame anchors for the same
instance. Experiments of models without box queries and
using the shared instance query for each decoder layer are
presented in Table 3. The model without query decompo-
sition manages to achieve only 34.1 AP. It is because the
query controls the sampling region of deformable attention.
Using the same instance query for each frame will result in
the same spatial sampling region on each frame, as shown
in Fig. 4 (a), which is inaccurate and insufficient for video-
level instance representation. We further visualize the sam-
pling points of the second and the last decoder layers in
Fig. 4 (b) and (c). The box queries decoupled from instance
query serve as anchors for locating features and iteratively
refining the sampling region on the current frame. It can
be seen that SeqFormer attends to locations following the

Feature AP AP50 AP75 AR1 AR10

flatten 35.1 56.8 35.6 38.1 41.8
single-scale 42.5 64.6 46.5 41.5 50.9
multi-scale 45.1 66.9 50.5 45.6 54.6

Table 4. Spatial and temporal dimensions. Keeping spatial-
temporal feature dimensions and performing instance feature cap-
ture independently on different frames brings about 7.4 AP gains.
Multi-scale feature maps can further bring 2.6 AP.

movement of instance through the video in a coarse-to-fine
manner. Please refer to the Sup. Mat. for more visualization
of sampling points.

Spatial and temporal dimensions Previous transformer-
based methods [8, 24] flatten the spatial and temporal di-
mensions of video features into one dimension for the trans-
former decoder. We argue that the temporal dimension
should not be flattened with spatial dimensions, since it
was recognized that the 2D space domain and 1D time do-
main have different characteristics and should be intuitively
handled in a different way [28]. Thus, we retain the com-
plete 3D spatio-temporal dimensions and perform explicit
region sampling and information aggregation on all frames.
In this experiment, we study the effect of this architec-
ture by replacing deformable transformer with vanilla trans-
former and flattening the spatial and temporal dimensions,
termed as ‘flatten’ in Table 4. For fair comparison, we use
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Figure 4. The sampling points from the first decoder layer is
shown in (a), which is coarse and inaccurate. The refined accu-
rate sampling points from the second and last decoder layer are
shown in (b) and (c).

single-scale deformable attention as the baseline, termed as
‘single-scale’, which use the same scale feature map with
‘flatten’, the default setting termed as ‘multi-scale’. By
keeping spatial-temporal dimensions of video features, the
AP increased from 35.1 to 42.5. The use of multi-scale fea-
ture maps can only improve 2.6 AP, which proves that the
success of our method mainly comes from the preservation
of the temporal dimension and the explicit spatial sampling.

Aggregation of temporal information The frame-level
box queries and the predicted boxes can align the instance
features from all frames, there are several ways to aggregate
the aligned features into the instance query. We conduct an
experiment to evaluate the different aggregation ways for
these features, as shown in Table 5. In the ‘sum’ setting, the
features from different frames are directly added together
as the instance feature of this decoder layer. In the ‘aver-
age’ setting, the feature on each frame is averaged as the
instance feature. In the ‘weighted-sum’ setting, we apply
a softmax layer and a fully-connected layer on box embed-
dings to get the weights of each frame, and the features are
aggregated in a weighted sum in Eq. (3). The result is 30.6
AP and 43.2 AP for ‘sum’ and ‘average’ settings respec-
tively. Direct summation will cause the value to be unstable
with different frame numbers. Since some instances only
appear in a few frames, directly averaging features from all
frames may cause the information to be diluted. Please re-
fer to the Sup. Mat. for more details and visualization of
different frame weights.

Robust instance representation Our decoder explicitly

Aggregation AP AP50 AP75 AR1 AR10

sum 30.6 44.5 34.3 37.2 45.0
average 43.2 65.2 48.5 43.4 52.8
weighted-sum 45.1 66.9 50.5 45.6 54.6

Table 5. Temporal information aggregation. Weighted sum brings
a performance gain of 1.9 in AP.

Frames AP AP50 AP75 AR1 AR10

1 38.1 58.3 41.3 38.7 47.5
3 43.4 65.4 47.6 42.4 51.3
5 44.6 66.5 49.7 44.8 54.6
10 44.7 66.9 49.5 44.3 53.5
all 45.1 66.9 50.5 45.6 54.6

Table 6. Fewer frames for instance representation.We evenly sam-
ple fewer frames from a video to generate the mask head.

aligns and aggregates the information from each frame to
learn a video-level instance representation. In this experi-
ment, we try to generate instance representation with fewer
frames. To evaluate the instance representation, we use it to
generate a mask head and apply mask head on each frame to
get the mask sequences, as shown in Table 6. Surprisingly,
with only one frame as input, the generated mask head can
produce a competitive result of 38.1 AP. With five frames
as input, the performance is only 0.5 AP worse than tak-
ing all frames as input. This result shows that the mask
head learned by our method can generalize well to unseen
frames.

4.5. Limitation

SeqFormer takes the entire video as input to generate the
segmentation results of all frames in one step, so it cannot
be directly applied to the online segmentation scenario.

5. Conclusion

In this paper, we have proposed an effective transformer
architecture for video instance segmentation, named Se-
qFormer, which performs attention mechanisms on each
frame independently and learns a shared powerful instance
query for each video-level instance. With the proposed
instance query decomposition, our network can align the
instance features and naturally tackle the instance track-
ing without additional tracking branches or post-processing.
We demonstrated that our method surpasses all state-of-the-
art methods by a large margin. We believe that our simple
yet effective approach will serve as a strong baseline for fu-
ture research in video instance segmentation.
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Figure 5. Visualization of attention. We draw the sampling points that the deformable attention attends to. The four frames in each row are
from the same video. Each sampling point is marked as a filled circle whose color indicates its corresponding instance. (a) and (d) show
the sampling points from the first decoder layer. (b) and (e) show the sampling points from the second decoder layer. (c) and (f) show the
sampling points from the last decoder layer.

Appendix

Visualization of Attention

In Fig. 5, we show more qualitative results of the intermedi-
ate attention of transformer decoder. Since the same initial
instance query is used to predict sampling points for each
frame in the first decoder layer as show in Eq. (1), the dis-
tribution of sampling points on each frame is the same in
Fig. 5(a) and (d). After that, the initial instance query is
decomposed into frame-level box queries that are kept and
maintained independently on each frame. Starting from the

second layer of the SeqFormer decoder, the box query is
used to predict the sampling points of the current frame, and
the sampled features are used to refine the box query for the
next decoder layer. By doing so, SeqFormer attends to dif-
ferent spatial locations following the motion of the instance
in a coarse-to-fine manner.

Aggregation of Temporal Information

SeqFormer is able to attend to different spatial locations fol-
lowing the motion of the instance. The aligned features are
aggregated into an instance query to generate a video-level
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Figure 6. Visualization of the normalized softmax weights and the corresponding frames.

instance representation. However, an instance may not ap-
pear in every frame due to occlusion and camera motion.
The features from frames without instance are useless or
even harmful. To address this, SeqFormer aggregates tem-
poral features in a weighted manner, where the weights are
learned upon the box queries in Eq. (3). We visualize the
learned weights and the corresponding frames in Fig. 6. It
can be seen that the features from frames without instance
have lower weights.
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