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Abstract

For augmented reality (AR), it is important that virtual
assets appear to ‘sit among’ real world objects. The virtual
element should variously occlude and be occluded by real
matter, based on a plausible depth ordering. This occlu-
sion should be consistent over time as the viewer’s camera
moves. Unfortunately, small mistakes in the estimated scene
depth can ruin the downstream occlusion mask, and thereby
the AR illusion. Especially in real-time settings, depths in-
ferred near boundaries or across time can be inconsistent.
In this paper, we challenge the need for depth-regression as
an intermediate step.

We instead propose an implicit model for depth and use
that to predict the occlusion mask directly. The inputs to
our network are one or more color images, plus the known
depths of any virtual geometry. We show how our occlusion
predictions are more accurate and more temporally stable
than predictions derived from traditional depth-estimation
models. We obtain state-of-the-art occlusion results on the
challenging ScanNetv2 dataset and superior qualitative re-
sults on real scenes.

1. Introduction

Augmented reality and digital image editing usually en-
tail compositing virtual rendered objects to look as if they
are present in a real-world scene. A key and elusive
part of making this effect realistic is occlusion. Looking
from a camera’s perspective, a virtual object should ap-
pear partially hidden when part of it passes behind a real
world object. In practice this comes down to estimating,
for each pixel, if the final rendering pipeline should dis-
play the real world object there vs. showing the virtual ob-
ject [53, 24, 36].

Typically, this per-pixel decision is approached by first
estimating the depth of each pixel in the real world image
[19, 91, 36]. Obtaining the depth to each pixel on the vir-
tual object is trivial, and can be computed via traditional
graphics pipelines [33]. The final mask can be estimated by
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Figure 1. We address the problem of automatically estimating oc-
clusion masks to realistically place virtual objects in real scenes.
Our approach, where we directly predict masks, leads to more ac-
curate compositing compared with Lidar-based sensors or tradi-
tional state-of-the-art depth regression methods.

comparing the two depth maps: where the real world depth
value is smaller, the virtual content is occluded, i.e. masked.

We propose an alternative, novel approach. Given im-
ages of the real world scene and the depth map of the virtual
assets, our network directly estimates the mask for com-
positing. The key advantage is that the network no longer
has to estimate the real-valued depth for every pixel, and
instead focuses on the binary decision: is the virtual pixel
in front or behind the real scene here? Further, at infer-
ence time we can use the soft output of a sigmoid layer to
softly blend between the real and virtual, which can give
visually pleasing compositions [43], compared with those
created by hard thresholding of depth maps (see Figure 1).
Finally, temporal consistency can be improved using ideas
from temporal semantic segmentation that were difficult to
apply when regressing depth as an intermediate step.
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We have three contributions:

1. We frame the problem of compositing a virtual object
at a known depth into a real scene as a binary mask
estimation problem. This is in contrast to previous ap-
proaches that estimate depth to solve this problem.

2. We introduce metrics for occlusion evaluation, and
find our method results in more accurate and visually
pleasing composites compared with alternatives.

3. We show that competing approaches flicker, leading to
jarring occlusions. By framing the problem as segmen-
tation, we can use temporal smoothing methods, which
result in smoother predictions compared to baselines.

Our ‘implicit depth® model ultimately results in
state-of-the-art occlusions on the challenging ScanNetv2
dataset [17]. Further, if depths are needed too, we can com-
pute dense depth by gathering multiple binary masks. Sur-
prisingly, this results in state-of-the-art depth estimation.

2. Related work

Early approaches to occluding virtual assets in real
scenes relied on user annotations of object boundaries
[53, 65], precluding general real-time use. The typical ap-
proach for automated occlusion is to pixel-wise compare a
depth map of the real scene with the virtual depth map [7].
The real image depth map can be estimated, e.g. using struc-
tured light [24], or from images [19, 91]. When sparse
depths are available, they can be densified [36] or used to
rescale relative depths to metric depth [1]. Direct estima-
tion of an occlusion mask has been previously performed
for segmentation for AR sky replacement [105] or hands
grabbing virtual objects [86]. In contrast, our method en-
ables general object compositing. A detailed review of oc-
clusion handling in AR is outlined in [61, 8].

Depth estimation. Depth estimation is a key compo-
nent of many AR occlusion systems. Depth can be es-
timated directly if binocular cameras are available at test
time [34, 47, 11, 15]. This approach requires specialized
hardware, as does depth estimation from structured light,
Lidar, or time-of-flight devices [28]. Further, depth from
such devices may not be accurate enough for realistic oc-

clusions without further processing [92, 45].
It is attractive to estimate depth directly from color im-
ages, for example from a single image [27, 22, 21, 29, 97].

When a sequence of images is available, Multi-View Stereo
(MVS) estimates depth for a reference image using one or
more source images [25, 79], which assumes that the scene
being observed is static. Recent MVS approaches match
image pixels [94, 39] or deep features [41, 20] to create a
cost volume, which can then be processed using convolu-
tional layers. Other works have improved upon this basic
setup by refining the final output [99], through injection of
additional metadata [78], by handling occluded pixels be-
tween views [59], or with a Gaussian process prior [37].

Alternative approaches have dropped the reliance on super-
vised data through the use of self-supervision [29, 27, 30,
]. There have been attempts to improve the quality of
depth estimation around depth discontinuities, e.g. using a
gradient or normal loss [71, 55, 38] or a learned network
to post-process predictions [70]. Higher quality depths can
also be computed via an offline optimization on test se-
quences [50, 60, 10, 14, 51], but this precludes online use.

In contrast to these depth estimation approaches, we di-
rectly estimate an occlusion compositing mask. However, in
Section 4 we show that our models can also be adapted to
predict depths equivalent to state-of-the-art methods with-
out requiring retraining.

Depth via classification. Our implicit depth approach
is related to classification-based depth estimation. Xie et
al. [97] is an early approach which learned depth via clas-
sification, in the context of depth from stereo. In [23], the
output domain is divided into discrete bins, and the final
output head classifies each pixel as in front or behind each
depth bin. Alternatively, [57, 9, 98, 89] classify the prob-
ability that the depth lands in a bin itself. Other works
have relaxed the requirement for fixed bin centres, allow-
ing them to be adapted on a per-image [5] or per-pixel [6]
basis. Bi3D [3] pose stereo depth estimation as a binary
classification task, but where a scalar query depth is pro-
vided to the network. Also related to depth classification
approaches are works which decompose images into two or
more layers, e.g. foreground and background [18, 90, 54].

We also frame geometry estimation as classification, but
our approach classifies if a per-pixel virtual depth is in front
or behind the real world object at that depth. We can there-
fore estimate a full compositing mask with a single forward
pass, without a dense output tensor. We compare to classi-
fication approaches and show that our method is superior in
terms of accuracy and compute.

Image and video segmentation. Our work is related to
object segmentation [31, ], salient object segmentation
[44], and alpha-matting [56, 80, 12]. Like these, we esti-
mate a binary mask, but our mask is conditioned on an input
rendered virtual depth map. Similar to video segmentation
[26, 68], we encourage temporal consistency across frames
to prevent flicker.

Occlusion boundaries and regions. There are works
which focus on detecting pixels which become occluded
and disoccluded between frames in a video [40, 93, 35, 84,

1. We differ as we recover the occlusion mask of a virtual
object in real input images.

Implicit volumes. Finally, our approach is related to
works on implicit volumes e.g. [58, 66, 62, 75, 76, 77, 16,

, 67], where a 3D shape is represented by a trained multi-
layer perceptron (MLP). When evaluated at each location in
3D space, the MLP’s binary output indicates if that location



is inside or outside an object. However, we operate in im-
age space, and predict if a pixel in the real world scene is in
front or behind a virtual target’s depth map. Zhu et al. [104]
used an implicit function for RGBD completion, operating
on ray-voxel pairs. Neural radiance fields [03, 4, 64, ]
(NeRFs) are an alternative implicit approach which can es-
timate depths and color images from novel viewpoints. This
can be used for AR effects, but NeRFs are typically not
suited to online applications in novel scenes.

3. Method

Our goal is to automatically composite virtual objects
into images of real scenes, respecting any real occluding
objects that are ‘in the way’. At inference time, we assume
we have an RGB image I, as input, together with a tem-
porally preceding sequence of RGB source images and cor-
responding camera intrinsics and poses. We denote the full
sequence of I, together with source images as Z.,. We
also assume knowledge of a 3D virtual object that we wish
to place in the scene, which can change over time. From
the 3D virtual object and camera poses, we extract for each
frame a color rendering of the virtual object Iyjrua With an
associated virtual depth map Dyiryar-

3.1. Our approach

Given the rendering of the asset, the job of an occlusion
step is to estimate which virtual pixels should be shown, and
which should be hidden, to create the final image I, . This
can be described by a compositing equation [69, 83], using
the two images and a per-pixel compositing mask C, so

Iﬁnal = C111'ea] + (1 - C’)Ivirluab (1)

This compositing equation is only applied to pixels covered
by the virtual object, outside of which we only show I;e;;.
Traditional occlusion methods, e.g. [70, 91], use a depth
map to estimate C'. The depth map D;., is the output of a
network 1), which takes Z., as input, $0 Dieyt = ¥(Ziea)-
Here the compositing mask C' was formed using the relation

C= [Dreal < Dvirtual]a (2)

where [] is the Iverson bracket.

Training this network to instead directly predict C' is a
potentially attractive alternative solution. However, this di-
rect prediction is not feasible without Dy, as the network
has no context at inference time of where the virtual object
should be positioned in the world and therefore would be
unable to produce a plausible mask.

In our approach, we instead use a deep network ¢ to di-
rectly estimate C', conditioned on both Ty and Dy, as
input, so

C= ¢(Ireal7 Dvirtual)- (3)

The final image is then formed using Eqn. 1 from above.

Advantages of our depth informed mask prediction.
We hypothesize that it is easier for our network to directly
predict a binary ‘in front vs. behind’ value at each pixel lo-
cation, compared with existing methods that predict a con-
tinuous value to regress the absolute depth.

3.2. Predicting an occlusion map

A natural choice for our network ¢ would be an image-
to-image network. This would take the concatenation of
Trear and Dyiar as input, and then output C. However, at
training time such an architecture would need to see both re-
alistic images and realistic virfual depth maps correspond-
ing to the scene. Generating realistic virtual depths for a
scene is difficult, as we do not know what the final use case
of the system might be, and thus placing virtual objects in
a scene automatically at training time is a non-trivial task.
We instead take a different approach, and propose an archi-
tecture with two parts: (i) a backbone network for image
encoding, followed by (ii) a per-pixel MLP (see Figure 2).
Our virtual depths are only provided to the per-pixel MLP,
meaning our training-time virtual depths do not need to be
realistic virtual depth maps.

Backbone network for image encoding. Our backbone
network maps the RGB image I, to a pixel-aligned fea-
ture encoding F' with K channels per pixel. While we could
use any backbone to extract features, for most of our exper-
iments we use a multi-view stereo approach as in [78]. This
requires temporally preceding source frames and known
camera poses. See Section 3.4 for details.

Predicting the occlusion mask with an MLP. The final
prediction of the compositing mask at pixel location p relies
on three inputs:

1. The image features at p, i.e. F(p). Inspired by [49],
we interpolate features from F' at arbitrary sub-pixel
locations. This enables us to make final predictions at
arbitrary locations and resolutions.

2. The virtual object depth at p, i.e. Dyja(p). Again,
we can sample Dy, at arbitrary sub-pixel locations.

3. The warped previous temporal prediction at p, as de-
scribed next. This enables the network to use temporal
information for more stable predictions.

At location p, we concatenate the above three inputs to
make a K +2-dimensional feature. This is given to an MLP
to produce the final compositing output for that location
C(p). The final layer of the MLP has a sigmoid activa-
tion, so C(p) is continuous € [0, 1]. This can be interpreted
as the probability that Iy (p) is occluding the virtual object
at depth Dyirya (P)-

Temporal stability. Temporally stable occlusions are im-
portant for seamless and believable AR immersion as per-
frame depth or semantic predictions can vary over time,
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Figure 2. Left: Given RGB images of a real scene, and renderings of a virtual asset, our aim is to realistically composite the virtual asset
into the scene. Top: Conventional approaches first estimate a depth map from the real image(s), before comparing each pixel with the
virtual depth to generate a compositing mask C. Bottom: We instead directly estimate the mask given the real image(s) and virtual depth
as input. Additionally, our method also employs a lightweight temporal smoothing input to generate more stable predictions.

leading to visual ‘flickering’. To combat this, we encourage
the network to be temporally stable, inspired by [88, 68].
To achieve this, we feed to the MLP the previous prediction
for the pixel at location p, C(p), defined as C*~ ! (warp[p)).
warp[] uses the known relative camera transform to back-
wards warp the pixels’ locations at time ¢ to time step £ — 1
using [42]. This warping requires known depth at time ¢, for
which we use the rendered virtual depth. This is in contrast
to [88] which does not use geometric information.

Relationship to prior work. While previous approaches
(e.g. [3]) have trained a network which takes a single query
depth as input, our approach is novel as our query depth
can vary spatially per pixel, so each pixel can have a differ-
ent query depth. Methods like [3] would require exhaustive
evaluation of all depth values to be able to composite an
object. Our approach can be seen as producing ‘implicit
depths’, similar to prior work in 3D, e.g. [66].

3.3. Training our network

Our goal at training time is to update the weights of our

network ¢ (i.e. both feature encoder and MLP) to accurately
predict occlusions. We use training datasets, e.g. [17, 72],
where we have access to sequences of training images Zc,
with pixel-aligned ground truth depth maps Dy, and asso-
ciated camera poses and intrinsics. However, these datasets
do not come with augmented virtual depths Dyira, SO We
need to synthesize these at training time.
Our training samples. We require training tuples with an
image location p, a virtual depth at that location Dyirya (P),
and a ground truth label y; € {0, 1} stating if the virtual
depth is in front (0) or behind (1) the real image depth map.
Additionally, to encourage temporal stability, we require a
previous prediction for this location, C (p).

To generate a training sample, we choose a single train-
ing sequence Z.,, with associated depth map Dyey. We
sample a 2D location p uniformly in image space, and
subsequently sample a training-time feature F'(p). Given
the image location p, we have a choice to sample our
synthesized virtual depth Dyina(p) anywhere along p’s
camera ray. Sampling a random depth means we might
be far away from the difficult choices. The most diffi-
cult choices for depths are when Dy, 1S near Dieyy, SO
we bias a fraction of our training-time samples to come
from near the ground-truth depth surface Die,. Simi-
lar to [76, 77], with probability ¢ we sample from a
Gaussian with mean of the ground truth depth value at
pixel p, and variance 0.05. To ensure that we also
make sensible predictions away from real surfaces, with
probability 1 — ¢ we sample a training depth uniformly
between the minimum
and maximum depth
in Die,. The ground
truth depth map de- i
termines the label
y;, which, in turn, is
used to supervise the
network with binary
Cross-entropy.

camera Real Depths
Sampled Depths

» max depth

Training for temporal stability. As stated in Section 3.2,
we encourage temporal stability by giving the warped pre-
vious prediction as an additional input to our MLP. Dur-
ing training, to avoid the need to run inference for multi-
ple frames, we synthesize a previous prediction from the
ground truth label y; in a manner similar to [88]. We
corrupt y; to produce a pseudo previous prediction C (p)
by adding random noise, converting the binary labels into



Method

Occlusion evaluation

Depth evaluation

IoU Allf  IoU Surfacet IoU Boundary?  Abs Diff] AbsRell SqRell, RMSE| 6 <1.051
DPSNet [41] 46.17 21.68 23.50 1552 .0795 .0299 .2307 49.36
MVDepthNet [94] 44.64 21.06 23.22 .1648 .0848 .0343 .2446 46.71
DELTAS [82] 48.48 23.37 25.51 1497 .0786 .0276 2210 48.64
GPMVS [37] 46.52 22.43 23.98 .1494 .0757 .0292 2287 51.04
DeepVideoMVS, fusion [20]* 53.16 26.49 28.05 .1186 .0583 .0190 1879 60.20
SimpleRecon (ResNet) 58.91 31.48 33.03 .0978 .0487 .0151 1617 69.62
SimpleRecon [78] 60.52 32.44 34.52 .0871 .0429 .0125 .1460 74.01
SimpleRecon (ResNet) + Ours 60.14 33.29 36.54 .0988 .0498 .0149 1595 68.52
SimpleRecon [78] + Ours 62.61 35.48 38.01 .0862 .0436 0123 1426 73.74

Table 1. Occlusion and depth scores after converting our masks to depths compared with state-of-the-art prior works. Evaluation

is on the ScanNetv?2 test set keyframes [

], and follows the evaluation protocol for depth from [

occlusion and depth estimation. * indicates trained on additional data.
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Figure 3. Occlusion predictions on ScanNetv2. Comparison of
occlusion masks when a virtual plane sits at 3m from the camera.
ScanNetv2’s ground truth is noisy, especially near thin structures
and distant points > 5m. Regression is crisp but makes mistakes
affecting whole regions. Ours misclassifies part of a painting in
the example in the second column, but is better overall.

floats € [0, 1], simulating the output of a sigmoid. To teach
our model to be robust to incorrect previous predictions at
inference time, we set C'(p) = 1 — C(p) with probability
p1 during training. Additionally we use C(p) = —1 to indi-
cate the start of a sequence, and set this during training with
probability ps. For all experiments we use p; = p2 = 0.25.

Regularization around depth discontinuities. Training
a model as described in Section 3.3 can give rise to arte-
facts in predicted compositing masks near depth discon-
tinuities. Due to the inherent ambiguity of occlusions in
these regions, our model tends to predict values close to
0.5, which leads to less visually pleasing results in the fi-
nal compositing. To combat this, during training we locate
depth discontinuities in the ground truth depth map using

]. Our model is state-of-the-art on both

Architecture / Method IoU AllT  IoU Surfacet IoU Boundary?
SimpleRecon [78] 60.52 32.44 34.52
SimpleRecon [78] + Ours 62.61 35.48 38.01
SimpleRecon (ResNet) 5891 31.48 33.03
SimpleRecon (ResNet) + Ours 60.14 33.29 36.54
ManyDepth [96] 55.68 29.18 30.47
ManyDepth [96] + Ours 56.55 31.56 3447
MonoDepth2 [30] 46.06 18.62 23.37
MonoDepth2 [30] + Ours 48.35 21.55 26.55

Table 2. Our method outperforms depth regression for the oc-
clusion task, regardless of the underlying architecture. All these
architectures were trained and evaluated on ScanNetv2 sequences
by us, using code published by the authors, and with automated
virtual object insertion to evaluate binary occlusion masks.

a Sobel filter [46], and apply an L1 regularizer to penalize
predictions near 0.5 in these regions. See the supplementary
material for details.

3.4. Implementation details

We train all models and baselines using the Adam opti-
mizer [48] with a batch size of 24 split across 2 GPUs. For
speed of convergence, we initialize our backbone network
with the weights of a depth regression network, and train
for 40k steps, with an initial learning rate of 0.0001 drop-
ping by a factor of 10 after 16k steps and 32k steps. Images
are augmented with standard flip and color augmentations,
as in [78]. We use ¢ = 0.25 for our probability of sampling
a virtual depth near the real depth surface. Similar to [30],
we supervise the network at 4 output scales, using ground
truth depth at a higher resolution than the feature maps, and
at test time only use the highest resolution output.

Backbone. Our backbone network is based on [78], where
a shallow feature extractor feeds a metadata infused plane
sweep volume, followed by a U-Net [74]. See the supple-
mentary material for full details.

MLP. Our compositing mask prediction uses an MLP with
three fully-connected layers, with K42 input channels and
a single channel final output. Both hidden layers have 128



dimensions. We use ELU activations after the first two lay-
ers, with the final activation being a sigmoid to map our
outputs to the range [0, 1]. Based on our backbone [78], our
full-scale feature map has K = 64.

Timings. Inference with our backbone (from [78]) takes
64ms and our MLP takes 0.5ms on an A100 GPU.

4. Experiments

Datasets.  We train and evaluate models using Scan-
Netv2 [17], with the standard train/val/test split. This allows
direct comparison, of occlusions or depths, with most prior
depth estimation methods that also train on ScanNetv2. For
qualitative comparisons, we also train a model on the syn-
thetic Hypersim [72] dataset. This synthetic data has bet-
ter aligned edges in the training data, so yields a model
with high edge fidelity. In visual occlusion comparisons,
we compare that model against Lidar depth sensing [2] and
a previous method which does not use a trained model [36].

Backbone variants. We present two variants of our
model; ‘SimpleRecon + Ours’ which uses the architecture
of [78] as a backbone, and a faster lower compute version
using a ResNet-18 [32] encoder, a lightweight decoder, and
a simple dot-product cost volume, referred to as ‘SimpleRe-
con (ResNet) + Ours’. We also train a ResNet variant with-
out a cost volume inspired by [30]: ‘MonoDepth2 + Ours’.

4.1. Evaluating virtual asset occlusion

We directly evaluate performance on the task of virtual
object insertion. We report scores using the standard seg-
mentation metric, intersection-over-union (IoU), to measure
occlusion quality. We compare our variants against state-of-
the-art depth estimation on the standard ScanNetv2 test set.

Since rendered virtual assets would add noise to the eval-
uation process, we use infinite planes that lie ahead of the
camera at each frame. These planes are placed at depths
d € {0.5m,1.0m,--- ,5.0m} along the look-at vector of
the camera, where each plane’s virtual depth map is D< .
We obtain a ground truth binary occlusion mask, YélT, for
each plane using the ground truth depth map, obtained from
depth sensors.

For our method, we compute the probability of occlusion
for each depth plane, C 4 which we threshold with 7 to pro-
duce )/pcrled‘ We pick 7 for each depth bin using a mini-val set
of 100 scans. We compute IoU for the occluded asset frag-
ments, IoU‘i, and the visible parts of the asset, IoUi. For
depth estimation methods, we obtain the predicted occlu-

sion mask directly by comparing D&, and Dg,,, to com-

pute IoUi and ToU? . We compute ToU All? for each plane
using the harmonic mean of IoU‘i and ToU% . We average
IoUs for each keyframe from [20] and then for each depth
plane. As regions near depth boundaries tend to be difficult,

Ours 1 step Ours 3 steps Ours 5 steps Ours 7 steps

Input GT Ours 12 steps

Figure 4. Our binary search converts our predictions to a full
depth map. First the backbone is run only once to extract features,
then the much faster binary prediction MLP is run once for each

step of binary search, iteratively refining a depth map.

following [13] we evaluate IoU Boundary, and separately,
regions near the geometry’s surface (loU Surface).

In Table 2, we combine our method with existing back-
bones by first training with regression losses [78], and then
finetuning with our approach on ScanNetv2. We compare
with several recent MVS methods, including SimpleRe-
con [78], ManyDepth [96], as well as a single frame depth
method MonoDepth2 [30]. In all cases, our method im-
proves occlusion scores, most notably in difficult cases
near surfaces. Additionally, our lightweight ResNet vari-
ant yields strong performance (sometimes exceeding [78])
while operating at a fraction of the compute time (20ms vs
64ms on an A100 GPU). Note that for fair comparison to
regression baselines, all results (except those in Table 4) are
without our temporal stability contribution.

4.2. Evaluating depth estimation

While our method is focused on estimating occlusions
for virtual assets, we can leverage our binary predictions to
iteratively refine a binary-searched depth map. We compare
against depth estimation methods on the ScanNetv2 test set
using the protocol from [20], presenting results in Table 1.

We can convert our binary predictions to depths by mak-
ing the observation that along each ray from every pixel
location p there lies a depth d where the prediction from
our network, C(p)?, is at the decision threshold 7. Gen-
erally 7 would be 0.5, but we use the best thresholds from
Section 4.1. Our optimal estimated depth map Dyeq is one
where C(p)? = 7 for all p.

It is time consuming to naively iterate different depth
values to find d for which C'(p)? = 7. Instead we binary
search along the ray to find the optimal depth, relying on
directional predictions that signify if the current depth on
the ray is ahead or behind the real depth. We initialize our
min. and max. depths to 0.5m and 8m respectively. These
are updated each iteration, for each location p, as we search.
We take M = 12 binary search steps, achieving an effective
granularity of 4096 for each p (see Figure 4). Only the final
MLP head is run at each step, with the backbone only run



Method

Occlusion evaluation

Depth evaluation

IoU AllT  IoU Surfacet IoU Boundaryt AbsRell SqRell] RMSE] 4 < 1.051
Ours (no edge-regularization) 59.79 33.03 36.02 .0503 0155 1617 68.31
Ours (no high resolution supervision) 59.94 33.09 36.31 .0501 0157 .1628 68.44
Ours (monocular backbone) 48.24 21.46 26.72 1220 .0533 2740 34.71
DORN-style classification 56.81 29.54 31.29 .0535 0171 1743 65.41
Classification 55.95 29.49 31.44 .0617 .0220 .1937 60.75
Regression 58.91 31.48 33.03 0487 0151 1617 69.62
Ours 60.14 33.29 36.54 .0498 0149 1595 68.52

Table 3. Ablating our method, showing our contributions lead to better depth and occlusion scores. All are trained equivalently on
the ScanNetv2 dataset using the SimpleRecon (ResNet) backbone network.

Method Temporal Score], IoUA.T IoUS.t IoUB.t
Regression 233.1 77.84 43.44 41.29
Ours (w/o temporal) 235.1 79.09 44.73 42.44
Ours (with temporal) 164.5 79.28 44.50 42.90

Table 4. Evaluating temporal stability on ScanNetv2, by com-
paring predictions on temporally adjacent frames. Our temporal
approach leads to significantly less flicker, as seen in the large re-
duction in the temporal score, without impacting IoU.

once to produce feature maps that are reused.

Notably, when using [78] as a backbone, our method
achieves a new state-of-the-art on ScanNetv2 in depth es-
timation, alongside our core occlusion-IoU evaluation.

4.3. Temporal evaluation

Occlusion systems should exhibit temporal coherence
to ensure visually compelling results [36]. In the spirit
of [60, 36], we place a fixed virtual AR asset into a scene
(here a plane), and keep track of the change in predicted
visibility of the groundtruth scene mesh, provided in Scan-
Netv2, across a window of frames. Specifically, we use an
infinite vertical plane at a fixed position in front of the first
camera in a sequence, and compute a compositing mask,
C*, for each subsequent frame. We project scene mesh ver-
tices to the camera and store the visibility prediction from
C' for that vertex w.r.t the vertical plane. We tally the num-
ber of times the visibility prediction changes for each vertex
over 13 frames (i.e. 0.43 seconds). We normalize the count
by the number of frames to compute a temporal score. Eval-
uation is performed on the ScanNetv2 test scenes.

‘Ours (with temporal)’ results in a significant boost of al-
most 30% in temporal stability while achieving IoU scores
comparable to our non-temporal variant (see Table 4). We
also show a qualitative example of our more temporally sta-
ble approach in Figure 5. Please see our video for examples.

4.4. Ablation

We validate our approach by training variants of our
model with our contributions turned off, and show in Ta-
ble A2 that these models achieve worse scores. We train a
model without our edge-based regularization; without high

Time

<
«

(a) Ours without temporal
stability

(b) Ours with temporal
stability

Figure 5. Temporal stability. (Left) The basic method without

our temporal stability input displays prominent flickering i.e. big

changes in the predictions for each frame of this sequence. (Right)

Our predictions are more temporally stable over time, enabling

more immersive AR. Please also see the accompanying video.

resolution supervision, where our MLP is supervised at
the native model output resolution as in [78]; a non-MVS
monocular method; a DORN-style [23] classification net-
work, where we output a classification head with 80 bins
each with a BCE-trained sigmoid activation; and a dis-
cretized depth-classification loss.

4.5. Qualitative comparisons

Figure 6 shows qualitative results trained on Hyper-
sim [72] on a range of real-world scenes, comparing our ap-
proach to alternative state-of-the-art methods. Surprisingly,
our method produces visually equivalent, or better-quality,
predictions compared to those from on-device Lidar from an
iPhone 12 Pro. We also compare to the sparse-point densifi-
cation approach from [36]. Their approach relies on sparse
points as input. We found that ARKit’s SLAM points are
too sparse for their method, so we instead randomly sam-
pled 2,000 Lidar depth points for each test frame, and fed
these into their publicly available code. Visually, our re-



Input ARKit Lidar

Depth Dens. [

1 w/ Lidar SimpleRecon [78] SR + Ours

Figure 6. Qualitative occlusion comparisons using our own casually captured footage. We occlude virtual assets (rows 1-2) and a fixed
plane at 2m depth (rows 3-4). Our occlusions are typically more realistic than baselines, in particular around soft edges, e.g. leaves. We
also avoid catastrophic failures, e.g. around the bars in the final row. Please see the supplementary material for videos.

Figure 7. Additional qualitative results. On the right we see a
failure mode, where transparency through glass is not handled cor-
rectly. This is due to limitations in our training data [72]. Please
see our video for more results.

Figure 8. Moving objects. While our model was trained on static
scenes, we achieve surprisingly robust results on moving objects.

sults have better edge fidelity than their Lidar-guided pre-
dictions. We also found that our predictions are surprisingly
good on moving objects, given that our training data comes
from static scenes (see Figure 8). More results are shown in
Figures 3 and 7, and the supplementary video.

5. Conclusion

We presented a novel approach for inserting virtual ob-
jects into real scenes. In contrast to existing depth-based
methods, we directly estimate compositing masks. We in-
troduce metrics for evaluating occlusion mask quality, and
showed that our approach allows for greater temporal sta-
bility than previous methods. Qualitative results highlight
that our method produces more realistic object insertions.
A natural continuation of our work is to train a model in a
fully ‘end-to-end’ fashion, where the network directly out-
puts the final composited image If,,. This could allow the
network to reason about lighting and shadows [52, 87] and
object positioning [7].
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A. Comparing ScanNetv2 vs. Hypersim models

In Figure A1, we compare models trained on ScanNetv2
with models trained on Hypersim. Compared with the Scan-
Netv2 model, we observe that Hypersim-trained models
generally have better edge fidelity, and better generalization
to outdoor scenes. However, irrespective of the choice of
training data, models trained with our contributions outper-
form the depth regression baselines.

B. Additional experiments

B.1. Additional temporal stability experiments

In Table A1 we present additional temporal stability

evaluation. Specifically, we compare:

e Qur regression baseline, evaluated on our temporal sta-
bility metrics.

* A version of our regression baseline, with temporal sta-
bility added. In spite of several attempts with different
settings, we found that adding versions of temporal sta-
bility to regression consistently made temporal scores
worse. In the table we show the best-performing ver-
sion, where we add one extra input channel to the final
decoder block at each scale. We use this additional
input channel to feed the previous prediction to try to
encourage temporal stability. At training time, we use
the ground truth depth to create a pseudo previous pre-
diction as in our implicit depth segmentation approach.
At test time, we feed the network the previous pre-
diction warped to the current frame as we do for our
implicit depth model. We additionally show results for
the same model but with no previous predictions at test
time (indicated by setting the previous prediction input
to —1).

* DVMVS [20], a regression baseline that uses an
LSTM. This should be considered a good option for
temporally stable predictions. However, we found that
it does not score well as it tends to flicker over time.

* Our main model, with temporal stability at training and
test time (by feeding the MLP the previous warped pre-
diction).

* Our main model, without temporal stability.

e Our main model, with temporal stability at training
time but not during evaluation. At test time we feed
—1 as the previous prediction input to the MLP for ev-
ery test image. We typically use —1 as a signal to the
MLP at training time to indicate that the previous pre-
diction is unavailable. In this setting, the model never
gets to see the previous frame.

e A variant of our model, with a re-implementation of
the augmentation method from [88], applied at both
training and test time. At training time, we simulate
‘previous’ predictions by feeding into the MLP a copy
of the current ground truth output. At test time, we
simply feed the previous (un-warped) prediction. This
is effectively our method but without our contributions
of (a) warping the previous prediction using the camera
motion, and (b) the addition of noise to simulate the
output of a sigmoid.
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Figure Al. Comparing models trained on Hypersim versus ScanNetv2. Hypersim results in superior edges and better generalization
on real data. Models trained on ScanNetv2 tend to have wider edges around objects and more catastrophic failures on outdoor scenes.
Regardless of the training data used, models with our contributions outperform regression models, as can be seen here.

Method Temporal Score]  IoU AllT  IoU Surfacef  IoU Boundary?
Regression (w/o temporal) 233.1 77.84 43.44 41.29
Regression (temporal) 262.1 75.75 42.04 39.90
Regression (temporal, with —1 at test time) 262.2 75.72 41.96 39.83
DVMVS [20] 249.6 68.35 34.55 32.87
Ours (temporal) 164.5 79.28 44.50 42.90
Ours (w/o temporal) 235.1 79.09 44.73 42.44
Ours (temporal, with —1 at test time) 259.4 78.91 44.12 42.30
Ours (temporal from [88]) 225.9 78.65 45.04 42.16

Table Al. Additional evaluation of temporal stability on ScanNetv2. This table is comparable to Table 3 in the main paper.

B.2. Additional ablations

In Table A2 present additional ablation experiments
omitted from the main paper for space reasons. These re-
sults confirm that our design choices help both depth and
occlusion metrics.

Naive sampling — Instead of our training-time sampling
(described in Section 3.3. in the main paper), we sam-
ple training depths uniformly between 0.5m and 8.0m.
Although this gives a slight improvement to overall
IoU, it results in a drop for the harder cases of IoU
Surface and IoU Boundary.

A model trained in the style of Bi3D — Bi3D [3] pro-
posed a stereo-matching network, which takes as in-
put a scalar depth value. The network uses this to
warp one view on to the other at the specified depth,
before predicting a binary mask corresponding to the
estimate of which pixels lie in front/behind the input

depth value. We adapt this to work with multi-view
stereo, and train this model in the spirit of Bi3D on
ScanNetv2, using our backbone. Specifically, we warp
seven source frames using the query depth plane in our
reference frame and concatenate the features at each
location. We then combine this with features from our
image encoder as in ours. This method struggles to
predict accurate occlusions compared to our approach.
We hypothesise that this is because [3] was designed
for stereo and not for MVS.

B.3. Additional datasets

Here we perform an additional quantitative evaluation on
the challenging 7Scenes [81] and HyperSim [72] datasets.
For the evaluation on 7Scenes, we used a model trained on
ScanNetv2, while for HyperSim we use the original train-
ing/test splits. These experiments are reported in Table A3.
We again found that our approach outperforms regression



Method IoU AllT
Bi3D [3] 34.20
Ours (naive sampling) 60.28
Ours 60.14

IoU Surfacet  IoU Boundary?t
20.43 23.98
33.18 36.16
33.29 36.54

Table A2. Additional ablations of binary depth handling and depth sampling. Here we compare to [3] style inference and a version
of our model that naively samples depth during training. All models are trained equivalently on the ScanNetv2 dataset, with the same
backbone network as SimpleRecon (ResNet). In all instances, our full model outperforms the alternatives, leading to better occlusion

scores.

baselines on these two datasets.

B.4. Comparison with SoTA monocular depth

While in the main paper we focused on depth prediction
from multiple frames, our method can also produce state-of-
the-art (SoTA) results for monocular depth estimation. Here
we compare with LeReS [100] a recent monocular depth
prediction method. Since LeReS uses a much larger back-
bone than ours (ResNeXt101 vs our ResNet18), we report
experiments for a mono version of our model with a com-
parably large backbone (ResNeXt101). The results for this
experiment are reported in Table A4. LeReS requires rescal-
ing of the depth maps based on ground truth depth at test
time, which gives a significant advantage to this method.
For a fairer comparison we report results for our method
with and without rescaling. A qualitative comparison also
shows the benefits of our method.

C. Additional implementation details
C.1. Backbone network

Our backbone network is based on SimpleRecon [78]
which uses plane sweeping to build a cost volume and a
U-Net++ [103] to output a final depth map. We base our
experiments on the author’s publicly available code.

First, a shallow feature extractor extracts features from
the target, I;.q1, and source view frames. Source view fea-
tures are warped to the viewpoint of the target frame at mul-
tiple hypothesis depth planes using known camera intrinsics
and extrinsics. A cost volume is then created by either tak-
ing the dot product of each target and source view pair at
each depth plane as in [20], or by a learned MLP [78]. The
cost volume is then passed to a cost volume encoder, to-
gether with deep image features extracted from the target
frame for further refinement. This is followed by a decoder,
which broadly follows the architecture of [30, 96, 95], i.e.
multiple convolutional layers, upsampling and skip connec-
tions from the shallow feature extractor, and the downsam-
pling network in a U-Net++ style [103].

For the SimpleRecon (ResNet) variant, we use a
ResNet18 network for our image encoder, a dot product be-
tween source and target features in the cost volume, and a
lightweight U-Net decoder from [30].

Input Ours No regularization
-

Figure A2. With and without depth regularization. Example
predictions for a vertical plane two meters from the camera from a
model trained with and without our regularization. Blue indicates
that the plane is behind the real world geometry, and red indicates
the plane is in front of the real world geometry. Notice the white
region of uncertainty in the predictions of the no regularization
model on the right column. This is present both when the virtual
plane is located far behind the observed scene (first row, bottom
right region) and also when the virtual plane is far in front of the
scene (second row, top right region).

C.2. Regularization around depth discontinuities

As discussed in Section 3.3 of the main paper, we in-
troduce an L1 regularizer during training to discourage ex-
cessively uncertain predictions near depth discontinuities.
Without this, predictions can have thin regions of high un-
certainty which leads to a less visually pleasing final com-
positing result. See Figure A2 for example predictions with
and without regularization, for vertical planes at two meters
from the camera.

To apply our regularization, we locate depth discontinu-
ities in the ground truth depth maps using a Sobel filter [46],
and threshold to obtain an edge mask M . For our threshold,
we use the 95th percentile of the per-image Sobel response.
We subsequently apply an L1 loss during training to penal-
ize predictions near 0.5, i.e.

% > 05— |C;—0.5]. (4)

€M

Lreg =

C.3. Hypersim training details

We use ScanNetv2-trained model weights from [78]
as pretrained weights for Hypersim [72] regression model



Training Test Architecture / Method IoU Allf  IoU Surf.t IoU Bound.t AbsRel|
ScanNetv2  7Scenes SimpleRecon [79] 32.42 16.33 19.90 0.0570
ScanNetv2  7Scenes SimpleRecon [79] + Ours 34.17 18.04 21.91 0.0565
HyperSim  HyperSim SimpleRecon [79] 79.42 52.48 63.22 0.1084
HyperSim  HyperSim  SimpleRecon [79] + Ours 79.99 56.05 66.26 0.1004

Table A3. Evaluation of our method on additional datasets. Our method outperforms a regression baseline on these two datasets.

Training Test Architecture / Method AbsRel |  Abs Rel | rescaled

Diverse data  ScanNetv2 LeReS [100] - 0.0899
ScanNetv2 ScanNetv2  ResNeXt101 Mono 0.1021 0.0511
ScanNetv2 ScanNetv2  ResNeXt101 Mono + Ours 0.1030 0.0530

Table A4. Comparison with state-of-the-art monocular depth.
Our method outperforms LeReS [100], a state-of-the-art method
for monocular depth estimation, when using a similar rescaling
procedure at test time.

training. These Hypersim-trained regression model weights
are then used to train our Hypersim implicit depth model
for occlusions. We removed scenes which are ‘broken’ in
the dataset from the training and validation sets, following
advice from the dataset providers'.

To make regression baselines work on Hypersim we
do not use the gradient, normals and multi-view losses
from [78]. This is due to instability we found during train-
ing, which we observed to especially occur in regions where
the depth for reflective objects appears to be represent re-
flected depth instead of the depth at the object as shown
in Figure A3. These large depths, occuring next to small
depths, gave extremely large values for normal and gradient
losses. We attempted to solve this issue with clipping, but
the issues persisted. We found that the Hypersim dataset
gave good results even with these losses disabled. Note that
our method was not susceptible to these issues, as we train
in a pixel-wise manner without gradient or normal losses.

To further help with training stability, we filtered out
frames where the camera is too far away from the scene or
too close to an asset. To do this, we discard images where
the most common RGB or depth pixel is greater than 30%
of the total pixel count for that image. An example of an
image removed using this filtering is shown in Figure A4.
Finally, after filtering and our keyframe selection step, we
are left with approximately 11, 500 training frames.

To be close to ScanNetv2’s depth range (where the depth
bins in the cost volume range from 0.25m to 5.0m), we filter
out scenes where the maximum of the mean depths for all
the frames in that scene is greater than 10m. Due to large

lhttps://qithub.com/apple/mlfhypersim/issues/22

Figure A3. Example of a typical Hypersim training frame (above)
and a bad frame (below) where the depth of an asset (table top) is
incorrect.

Figure A4. Example of a bad Hypersim training image that is re-
moved by our pre-filtering.

translations per frame, we use a maximum baseline of 2.5m
for keyframe selection. For Hypersim, due to much sharper
depth edges in the dataset, we do not need to use edge reg-
ularization.

D. Additional evaluation details
D.1. Plane evaluation full details

Here we expand on the description of the occlusion task
from Section 4.1 of the main paper. We compute the fi-
nal IoU for each evaluation plane using the harmonic mean,

d 2IoU4 ToU?
IoU All 1007 1007 -

keyframe from [20] and then for each depth plane. For each
image in the ScanNetv?2 test set, we place a virtual vertical
plane with a normal facing towards the camera at a fixed

We average the IoU for each


https://github.com/apple/ml-hypersim/issues/22

distance from the camera focal point. We use planes go-
ing from 1.5m up to Sm, spaced 0.5m apart, and evaluate
the compositing mask predictions for each plane against the
corresponding ground truth compositing mask Crye.

To focus evaluation on regions of difficulty, we also eval-
uate IoU around the ground truth edge boundary (i.e. around
the Trimap), as advocated by [13], referred to as loU Bound-
ary, as well as near the ground truth geometry surface, re-
ferred to as IoU Surface. For IoU Boundary, we evaluate all
pixels which lie within seven pixels of the ground truth edge
boundary. For IoU Surface, we evaluate any samples for
which the rendered asset depth is within 5% of the ground
truth depth.

D.2. Temporal consistency evaluation details

For our temporal consistency evaluation from Section
4.3 in the main paper, we use all 100 scenes from the Scan-
Netv2 test set. For each scene, we take the first 120 frames
which are then divided into 8 equal sub-sequences of 15
frames. For each of these sub-sequences, the vertical eval-
uation plane is placed at a fixed location directly in front of
the camera location of the first frame in the sub-sequence.
The plane is placed at a depth d.y, from the camera, where
deval 1s computed as the 75th percentile of the ground truth
depths values of this first frame in the sub-sequence. This is
done to ensure we always have a valid plane in front of the
camera for evaluation. The first 2 frames are not used in the
metric computation, i.e. only 13 frames per sub-sequence
are used. The 2 frames at the start of the sub-sequences are
considered “warmup”, which is important to obtain repre-
sentative results for multi-view methods.

D.3. Fast densification baseline details

For evaluating the baseline (‘Depth Dens. w/ Lidar’)
from [36], we used the Python code provided by the au-
thors®>. Their code requires sparse 2D points on each in-
put image with associated per-point depth. These are as-
sumed to be collected from a SLAM or SfM system. For
our sequences captured from the Apple iPhone, we found
the points returned were far too sparse, i.e. each frame had
only between 100 and 200 points returned, while the demo
sequence from [36] had around an order of magnitude more
points per frame.

So instead, we randomly sampled 2,000 points in im-
age space. To help improve temporal stability, for each se-
quence we used the same fixed 2,000 points for each image.
We also experimented with using a KLT tracker to provide
points, but these tended to be excessively clustered on tex-
tured regions and led to worse performance. For each of
our 2,000 points, we used the depth map from Apple Li-
dar to give each point a depth value. This implementation
of the [36] baseline is therefore an improved version as it

thtps://qithub.com/facebookresearch/ARfDepth

has access to Lidar, and highlights their performance in a
best-case scenario.

D.4. Improving the regression baselines

When making the occlusion mask with our regression
baselines, we enhance the qualitative results through the use
of blended masks. This improves the visual quality of this
baseline approach. When the predicted depth is near to the
virtual depth, we create a blended mask. Specifically, we
form a mask as follows,

Dreal - Dvirtual + b
b

C = clamp < ,0.0, 1.0> , (®)]

where b is the size of the blending band and
clamp(z, min, max) clamps the input z at min and
max. This expression results in a mask that linearly
interpolates between 0 and 1 as the real depth approaches,
and then goes behind the virtual depth. We found b = 0.2m
made the regression baselines look good. A comparison of
a regression baseline method with and without this blended
mask is shown in Figure AS.

With blended masks

Without blended masks

Figure AS5. A Hypersim-trained regression baseline without mask
blending (left) and with mask blending (right). Adding the blended
mask makes intersections of real and virtual geometry in the base-
line systems more believable. Best viewed zoomed in.

D.5. Complete depth results

In Table AS we show the depth results with additional
depth evaluation metrics that were omitted from Table 1
in the main paper for space reasons. We notice again our
model is the state-of-the-art in these metrics, matching or
beating prior work across each of the eight categories.

D.6. Probability visualization

Figure A6 shows the probability predicted by our model
for some specific pixels in a test image, for different values
of virtual depth. See the caption for more details.
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Abs Diff| AbsRel| SqRel] RMSE| logRMSE| § < 1.051 § < 1.101 § < 1.25 ¢

DPSNet (FT) [41] 1552 .0795 .0299 2307 1102 49.36 73.51 93.27
MVDepthNet (FT) [94] .1648 .0848 .0343 2446 1162 46.71 71.92 92.77
DELTAS [82] 1497 .0786 0276 2210 .1079 48.64 73.64 93.78
GPMVS (FT) [37] .1494 0757 .0292 2287 .1086 51.04 75.65 93.96
DeepVideoMVS, pairnetf* [20]  .1431 .0712 0253 2152 .0999 51.92 77.24 94.99
DeepVideoM VS, fusionf* [20] .1186 .0583 .0190 .1879 .0868 60.20 83.66 96.76
SimpleRecon (ResNet) .0978 .0487 0151  .1617 .0752 69.52 88.13 97.46
SimpleRecon [78] .0871 0429 0125  .1460 .0672 74.01 90.75 98.08
SimpleRecon (ResNet) + Ours .0988 .0498 0149 1595 .0743 68.52 87.53 97.42
SimpleRecon + Ours 0862 .0436 0123 .1426 0666 73.74 90.54 98.06

Table AS. Additional depth metrics for ScanNetv2. Here we expand on Table 1 from the main paper by adding the full set of standard
depth metrics used in existing work, e.g. [78]. ¥ two measurement frames. * trained on 90/10 split.

b)

Figure A6. Visualizing the probability of the asset’s occlusion
given its virtual depth. a) Output from our method with points
whose rays are plotted marked. b) Plot of the probability of oc-
clusion for each marker within a range of depths from the virtual
asset. c) A regression baseline output for the same frame. See
red marker: Our method outputs softer probabilities around edges
(solid red line in plot), whereas the regression baseline has to out-
put a hard decision at each depth location (dashed red line), leading
to hard incorrect boundaries around occlusions.



