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ABSTRACT

While progress has been made in the field of portrait reenactment,
the problem of how to efficiently produce high-fidelity and accu-
rate videos remains. Recent studies build direct mappings between
driving signals and their predictions, leading to failure cases when
synthesizing background textures and detailed local motions. In
this paper, we propose the Video Portrait via Grid-based Codebook
(VPGC) framework, which achieves efficient and high-fidelity por-
trait modeling. Our key insight is to query driving signals in a
position-aware textural codebook with an explicit grid structure.
The grid-based codebook stores delicate textural information lo-
cally according to our observations on video portraits, which can
be learned efficiently and precisely. We subsequently design a Prior-
Guided Driving Module to predict reliable features from the driving
signals, which can be later decoded back to high-quality video por-
traits by querying the codebook. Comprehensive experiments are
conducted to validate the effectiveness of our approach.
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Figure 1: Qualitative results of our method. We focus on
high-fidelity personalized video portrait reenactment, which
animates a target portrait according to the input driving
videos. The synthesized results are supposed to have the same
mouth shapes, facial expressions, and head poses as the driv-
ing videos. The figures are selected from the HDTF [Zhang
et al. 2021] dataset © Attribution 4.0 International (CC BY 4.0).
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1 INTRODUCTION

Video portrait reenactment aims to animate a target portrait with
similar movements with input driving videos. It has received con-
siderable attention due to its increasing applications in real-world
scenarios, such as filmmaking, computer game, virtual avatar cre-
ation, and multimedia entertainment. A majority of recent stud-
ies [Doukas et al. 2021; Drobyshev et al. 2022; Khakhulin et al. 2022;
Siarohin et al. 2019; Sun et al. 2022b; Wang et al. 2021, 2022; Yang
et al. 2022; Zakharov et al. 2020, 2019; Zhou et al. 2019, 2021] focus
on animating a portrait with only one or few face images. However,
they normally fail to preserve the identity of the target portrait and
lead to visible artifacts.

On the other hand, researchers have also been committed to
modeling realistic personalized portraits [Gafni et al. 2021; Guo
etal. 2021; Kim et al. 2019, 2018; Suwajanakorn et al. 2017; Thies et al.
2016; Wang et al. 2020; Wu et al. 2018]. Their paradigm can usually
be summarized as directly building the mapping between the driving
guidance (e.g., 2D landmarks or 3D morphable parameters) and the
corresponding texture. Although different techniques, including 2D
generative models [Goodfellow et al. 2020; Wu et al. 2018], neural
rendering [Kim et al. 2018], and neural radiance fields (NeRF) [Gafni
et al. 2021; Guo et al. 2021; Mildenhall et al. 2020] are incorporated,
their generated results usually suffer from perceptual degradation,
unstable textures, or over-smooth issues, leading to unrealistic
video portraits.

Recently, VQGAN [Esser et al. 2021a] has shown success in
various generative tasks [Chang et al. 2023, 2022; Gu et al. 2022; Liu
etal. 2022; Zheng et al. 2022b; Zhou et al. 2022]. It stores high-quality
local textural information in a pre-learned codebook and queries
tokens during inference instead of direct prediction. Such practice
has been successfully adopted in face restoration studies [Gu et al.
2022; Zhou et al. 2022], which shares certain similarities with our
goal of driving high-fidelity portraits.

Inspired by previous studies, we propose to integrate codebook
learning into high-fidelity personalized portrait reenactment. One
straightforward idea is to build one personalized codebook for each
target portrait based on captured monocular videos. However, two
major problems severely influence the modeling efficiency and accu-
racy: 1) The learning of the codebook and the auto-encoder network
is extremely time-consuming. It takes more than 36 hours to model
a 4-minute portrait video; 2) Local texture with similar patterns
might be recognized as the same code due to the quantization error,
which possibly leads to inaccurate portrait modeling.

In this paper, we propose the Video Portrait via Grid-based
Codebook (VPGC) framework, which produces high-fidelity video
portraits with high efficiency and vivid details. Our key insight is
to query driving signals in a position-aware textural codebook with
an explicit grid structure. Specifically, the grid-based codebook is
designed according to the spatial distribution of portrait images,
where each local region roughly corresponds to a specific semantic
(e.g., the upper part for hair, the middle part for face, and the bottom
part for neck or torso). We thus correlate spatial positions in the
portrait space with a relatively small number of codes in the grid.
In this way, the traditional codebook where textures are stored in
an unordered manner is reformulated into a grid structure of three
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dimensions, which shares similarities with recent efficient volume
rendering approaches [Chen et al. 2022; Miiller et al. 2022].

We identify several advantages of our grid-based codebook be-
yond the vanilla codebook [Esser et al. 2021a]. 1) The learning of
our grid-based codebook can be intuitively regarded as dividing the
vanilla learning procedure into sub-tasks at each spatial position.
This naturally accelerates the convergence process and improves
accuracy; 2) We are able to perform more fine-grained portrait
modeling at each position by adopting a more flexible Soft-Indexing
strategy, which can effectively alleviate inaccurate modeling caused
by quantization [Esser et al. 2021a]. 3) The codebook itself can fur-
ther facilitate reenactment training as prior information.

We then present a Prior-Guided Driving Module which maps
the simplest driving signals of 2D landmarks to realistic portraits.
As the grid-based codebook shares the same spatial structure with
the encoded driving information, it can serve as a reliable texture
prior and provide essential global contextual information to the
driving stage. Specifically, the texture prior provides complemen-
tary information for the sparse 2D landmarks, which enables faster
and more stable training. Furthermore, a global discriminative fea-
ture is leveraged to alleviate ambiguity in regions without specific
guidance. Finally, the enhanced driving features query our learned
grid-based codebook for recovering high-fidelity portraits.

Our contributions are summarized as follows:

e We propose the Video Portrait via Grid-based Codebook
(VPGC) framework to achieve efficient video portrait reen-
actment with fine-grained details.

o We delicately design the grid-based codebook with outstand-
ing properties that benefit both the portrait modeling process
and the subsequent driving procedure.

e We propose a Prior-Guided Driving Module to mitigate un-
certainty and enhance the learning procedure of the mapping
between the driving guidance and portrait texture.

2 RELATED WORKS

Face Reenactment. Recent studies [Siarohin et al. 2019; Wang et al.
2021, 2022; Zakharov et al. 2019] proposed to achieve face reen-
actment by extracting the motion representation from the driving
video and applying it to the target image. These approaches tend to
generate video portraits based on only one or a few frames of the tar-
get portrait in a warping-based paradigm. However, these methods
usually suffer from identity distortion and low generation quality.
To achieve stable and photo-realistic video portraits, the structural
representation of human-like 3D face morphable model [Blanz and
Vetter 1999] is explicitly used for driving portraits. Some early at-
tempts [Kim et al. 2019, 2018] focus on developing personalized
models which rely on the 3DMM face model [Blanz and Vetter 1999]
for human head rendering and a 2D generative model for the torso
and background synthesis. While LSP [Lu et al. 2021] proposes to
use 2D facial landmarks projected from 3D geometry as the driv-
ing guidance, its generated results are quite sensitive to the input
landmarks. The latest studies [Gafni et al. 2021; Grassal et al. 2022;
Guo et al. 2021; Zheng et al. 2022a] take advantage of neural radi-
ance field to produce high-fidelity video portraits through volume
rendering. Nerface [Gafni et al. 2021] builds a talking head system
by combining a dynamic radiance field with a low-dimensional
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morphable model. Similarly, NHA [Grassal et al. 2022] also presents
a hybrid representation, including a morphable model and two
feed-forward networks for vertex offset and expression texture pre-
diction, which consumes much time on pre-processing and joint
optimization.

Our VPGC avoids the time-consuming volume rendering as well
as tedious pre-processing and develops an efficient framework for
high-quality face reenactment by using the simplest 2d landmarks
as driving signals.

Quantization-based Image Modeling. Image modeling has re-
cently achieved significant progress after taking inspiration from
Transformer networks. VQVAE [Van Den Oord et al. 2017] and
VQGAN [Esser et al. 2021a], as the pioneer of quantized image
modeling, have received extensive attention from multiple works
on high-resolution image synthesis and editing.

Quantized image modeling is performed via an autoencoder
network and a learnable codebook. The key insight of these ap-
proaches is to replace the discrete representations from the encoder
with the codes queried from the learned codebook. VQGAN [Esser
et al. 2021a] and ImageBART [Esser et al. 2021b] leverage a trans-
former to synthesize images in an auto-regressive manner, while
MaskGIT [Chang et al. 2022] proposes to model an image from mul-
tiple directions instead of the sequential prediction as in VQGAN.
CodeFormer [Zhou et al. 2022] achieves remarkable face restoration
by learning a high-quality texture dictionary and building a reliable
mapping with much less uncertainty. VQFR [Gu et al. 2022] designs
a parallel decoder to replace the commonly used transformer for
reconstructing high-fidelity human face details.

Despite the success achieved by these methods, all of them re-
quire large amounts of time for training due to the unordered learn-
able codebook. Differently, we propose a novel codebook with an
explicit grid structure to store local textures for neighboring regions
and enable efficient and high-quality video portrait modeling.

3 METHODOLOGY

The overview of our proposed Video Portrait via Grid-based Code-
book (VPGC) framework is illustrated in Fig 2, where our framework
performs high-quality video portrait modeling and reenactment
training. In the following, we first introduce the formulation of our
task and review the preliminaries of VQGAN in Sec. 3.1. Then grid-
based codebook learning and soft indexing are demonstrated in
Sec. 3.2. The Prior-Guided Driving Module is introduced in Sec. 3.3.

3.1 Task Formulation and Preliminaries

Task Formulation. For each target portrait video V = {I1, ..., I},
we leverage the 3D reconstruction approach DECA [Feng et al.
2021] to produce a 3D parametric head with morphable parame-
ters (i.e., shape, pose, and expression) and project the 3D driving
landmarks as 2D heatmaps vi=y1,. .. ,I;}. When animating the
target portrait with a different driving portrait at the inference
stage, we replace the shape parameter of the driving portrait with
that of the target portrait to reproduce the driving heatmaps.

While traditional methods directly build the mapping between
driving landmarks and portrait images, we propose to involve an
intermediate codebook for producing results of higher quality. The
whole training paradigm is divided into the training of the codebook
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and the mapping between driving signals and codebook embed-
dings. During inference, we map the driving signals to a set of
embeddings by querying the learned codebook, which are later
translated back to the image domain through the pre-trained de-
coder.

Preliminaries of VOQGAN. VQGAN [Esser et al. 2021a] is able to
synthesize high-resolution images by compositing discrete quan-
tized codes from a learnable codebook. Specifically, it is composed
of two convolutional networks denoted as the Encoder E, and
the Decoder D.. The Encoder E, first encodes the input image
I € REXWX3 into a feature map Z € RP*WX4_ Then the quantiza-
tion process forces each of its vectors Z(, ) € R4 to search the
closest code from the learnable codebook C = {c¢; € Rd}ﬁo_l via
minimizing feature distance:

A(up) = argmin 1Z(w0) = cill2, (1)
1

where (u, v) denotes the coordinates on the feature map. In this way,
I is encoded into a set of discrete indices, which are subsequently
de-quantized back to the feature map Zg = {cq,,), - - -» Ca(,,) } Via
looking up the codebook.

To achieve end-to-end training, a differentiable loss function is
adopted by copying the gradients from the decoder to the encoder:

Lvo = lIsglZ] = Zgll2 + lIsg[Zg] = Zl2. )

Here sg[] denotes the “stop gradient” operation. In terms of the
image generation quality, the L; reconstruction loss L1, adversar-
ial loss L,p, [Wang et al. 2018], and perceptual loss [Johnson et al.
2016] Lper are leveraged in the self-reconstruction training. The
total loss function for codebook learning is described as follows:

Lop=Lr1+ Lper + -EVQ + AL apo- ®3)

3.2 Grid-based Codebook and Soft Indexing

As stated in Sec. 1, our goal is to design a more efficient portrait
modeling framework. Recently, volumetric rendering [Chen et al.
2022; Miiller et al. 2022; Sun et al. 2022a; Tang et al. 2022] studied
to store 3D scene features in a grid structure for training accelera-
tion. Moreover, we observe that in portrait videos, the semantics
of different regions roughly keep the same in the 2D plane, which
further inspires us to correlate codebook embeddings with spatial
information. Thus we propose a grid-based codebook learning pro-
cedure to achieve more efficient and accurate prior learning. The
meanings of the notations below are kept unchanged as in Sec. 3.1.

Grid-based Codebook. We design our codebook G € R wxKexde
with an explicit grid structure, which shares the same spatial di-
mension h X w with the encoded feature map Z. Different from
the codebook C € RNXd in VQGAN, which is an orderless data
structure without clear semantics, our codebook stores K. embed-
dings of length d. at each grid position (u, v). Here, the parameters
used in VQGAN (N, d, h, w) are set as (1024, 256, 16, 16), while our
newly proposed parameters (K, d¢) are set as (256,4) by default.

Note that the mission of our grid-based codebook is just to reor-
ganize the vanilla unordered code learning [Esser et al. 2021a] into
an ordered procedure. It actually shares the same numbers of param-
eters as the vanilla codebook in VQGAN (i.e., Nxd = hxw XK Xd)
without consuming extra memory. In this case, the query vector



SIGGRAPH 23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

Kaisiyuan Wang, Hang Zhou et al.

e N
Personalized Grid-based o | PGC | [VaGAN]
Codebook Learning e obees Venila
window query
(o) == | W00200
. 1 o)
Z ! Z
------------------ E \Codebook Hard Indexing )
; Prior-Guided Driving Module {® softindexing |
@ PGC : @ Mean Pooling :
= ;J : @ Concatenation |
@—LT_I E, 1 ) Fixed Modue_,
[ P [
EH
L F
I Z F t

Figure 2: Overview of our VPGC framework. To store delicate textual information for the target portrait, we first build a
Personalized Grid-based Codebook as shown in the upper part. The novel codebook learning strategy employs a position-aware
grid structure and soft indexing to replace the vanilla unordered codebook and hard indexing used in VQGAN [Esser et al.
2021a]. By taking advantage of the textural prior from the pre-trained Personalized Grid-based Codebook, we subsequently
propose a Prior-Guided Driving Module to recover high-fidelity video portraits from the input driving signal. The portrait is

selected from the HDTF [Zhang et al. 2021] dataset (CC BY 4.0).

Z(4,0) can be represented as K; = d/d. embeddings within G, ),
where Ky is an integer. Thus Z(,, ;) can be formulated into a matrix
zs e RKaxde,

(u,0)

Receptive Window. Considering that our grid-based codebook
may overemphasize the texture synthesis at each local position
while neglecting the correlation with neighboring regions, we adopt
a receptive window with the size of r X r to enlarge the receptive
field from a single position to a local neighborhood W around the
target position.

Our intuition is that the r X r region around G, ), which con-
sists of r? - K. embeddings of length d,, should be able to cap-
ture all possible textures appearing at the querying position (u,v).
All embeddings within this region can be formulated as a matrix
GE’Z’U) € R'Z'KCXdC, where r is set as 4 by default.

Soft Indexing Strategy. Since VQGAN quantizes feature vectors
to integral tokens, textures with similar patterns may easily be
recognized as the same embedding, which causes inevitable loss
to the representative power of VQGAN. To handle this problem,
we remove the quantization process and propose a soft indexing
strategy to achieve more accurate portrait modeling.

The idea is to integrate all embeddings within the local code-

book GV
(u,0)

similarity with the query matrix Z

based on the attention mechanism according to their
S

(u,0)
the similarity matrix M, ,) between Z7 . and e}

(u,0) (u,0)’
defined as:

. Particularly, we calculate

which is

M) = softmax(qu’U) * GYZL)), 4)

where the sof tmax operation is conducted on each row of M(,, ;) €

REKaxr Z'KC, and * denotes the matrix multiplication. Finally, we can
represent the separated vector qu v) with sufficient embeddings
in the local dictionary G(,, ) via weighted summation rather than

querying a fixed embedding:

Z(u,v) = M(u,v)G(u,v)~ (5

Grid-based Codebook Learning. The training of the grid-based
codebook is identical to the vanilla codebook as described in Sec. 3.1.
The training objectives in Eq. 3 are all applied in training our grid-
based codebook.

3.3 Prior-Guided Driving Module

After building the personalized texture dictionary, we move forward
to the problem of how to learn the mapping between the driving
guidance and the portrait texture. Intuitively, we start by employing
an encoder Ef, with similar architecture as E,, to encode the driving
heatmaps I' into feature map Z!, where Z is used as supervision.

Nevertheless, we observe two interesting issues during the empir-
ical exploration. 1) The convergence process is sometimes unstable
at the early training stage, which easily leads to sub-optimal per-
formance; 2) Unexpected jittering or artifacts occasionally occurs
at the regions without landmark guidance, such as hair boundary
and other clothing accessories(e.g., earrings and collars). We at-
tribute these problems to insufficient guidance from both texture
and geometry information, since the input signal is degraded from
detailed portrait images to sparse facial landmarks.
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To tackle these problems, we propose two feature map enhance-
ment strategies, respectively, for alleviating the domain gap be-
tween the driving heatmaps and the portrait texture.

Texture Prior from Grid-based Codebook. As the input heatmaps
can only provide limited geometry guidance from sparse landmarks,
it is challenging to build a direct mapping between the input signal
and the portrait texture, which leads to unstable convergence in
the training process, especially at the beginning phase. Considering
that our grid-based codebook shares the same spatial structure with
the feature map Z !"and Z, the local texture dictionary at each posi-
tion G(,, ) can intuitively serve as a reliable and easily accessible
texture prior. In practice, we obtain the texture prior for this posi-
tion P(,, 5y = mean(G(y,,)) by averaging all codebook embeddings
in G(y, ), where mean denotes the mean pooling operation. Given
this reliable texture prior P, ) € R% we concatenate it with the
feature vector Z' éu v O produce a texture-enhanced feature vector

via a three-layer MLP network, which is defined as:
Flup) = MLP(quSU) ® P(u0)); (6)
where @ denotes the channel-wise concatenation.

Discriminative Geometry Guidance. In terms of the temporal
inconsistency in some regions, we suppose it is owing to the ambi-
guity caused by lacking clear guidance. Particularly, the movement
information of the non-facial regions (e.g., forehead, hair, and torso)
is not covered by the driving heatmaps. To cope with this issue,
we propose to enlarge the difference of these uncovered regions
between frames by adding additional discriminative features. Specif-
ically, we employ mean pooling operation on the spatial dimension
of F to extract global context Fg e R4 for this frame, which is sub-
sequently attached to F at each position. Up to this point, we finally
obtain the feature map F € Rr*WXd ephanced by both texture and
geometry priors by using another MLP network:

Flup) = MLP(F(y4) © Fy). (7)

In addition, we follow VQGAN [Esser et al. 2021a] to leverage
a three-layer vision transformer module [Dosovitskiy et al. 2021]
for further improving the hallucination modeling ability of our
framework. The output of the transformer module F; will be fed
into our grid-based codebook and finally projected back into a
high-quality portrait image via the pre-trained decoder network.

Training Objective. Since both the grid-based codebook and the
decoder network aforementioned are well-trained in advance, our
training objective is to reduce the difference between the final
feature map of driving landmarks F; and its corresponding ground-
truth Z, where the loss function is defined based on L; loss:

Liear = MIF: = ZIly, ®

where A is set as 10 by default. Note that Z denotes the feature map
of the target portrait image encoded by the pre-trained encoder.

4 EXPERIMENTS
4.1 Experiment Settings

Dataset and Pre-processing. We use eight portrait videos cap-
tured by static cameras as our training dataset, which includes one
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video from AD-Nerf [Guo et al. 2021] dataset, one video from Ner-
face [Gafni et al. 2021] dataset and six videos from the HDTF [Zhang
et al. 2021] dataset. In terms of pre-processing, we extract frames
from each video with the frame rate of 60 and crop 512 X 512 por-
trait images out of the original frames. For evaluation, we randomly
select 1000 consecutive frames (i.e., around 17 seconds in length)
from each test video clip as the test set.

Implementation Details. Our models are trained using Adam
optimizer with an initial learning rate of 5e-5 and batch size of
4. For a 5-minute video, it normally takes 5 hours to train the
grid-based codebook and 2 hours for the driving module on a 40G
NVIDIA A100 GPU. For inference, our VPGC can run at 29 fps at the
cost of 5.6 GB GPU memories. Please refer to our supplementary
for more details on implementation and network architectures.

Comparison Methods. We compare our VPGC with three person-
agnostic methods and four person-specific methods. The person-
agnostic methods consist of three latest state-of-the-art methods,
LIA [Wang et al. 2022], Facev2v [Wang et al. 2021] and Style-
Heat [Yin et al. 2022]. In terms of the person-specific methods,
we choose a 2D generative model method LSP [Lu et al. 2021] and
four 3D-based methods including neural Head Avatar (NHA) [Gras-
sal et al. 2022], IMAvatar [Zheng et al. 2022a], AD-Nerf [Guo et al.
2021] and Nerface [Gafni et al. 2021] as our counterparts.

4.2 Quantitative Evaluation

Comparison Setting. We perform quantitative evaluation under
the self-reenactment setting on four datasets (denoted as Testset
A, B, C and Nerface dataset). Note that these comparison methods
may have different requirements for cropping and alignment, we
thus crop the shared facial parts detected by landmark detectors
and resize them to the same size for comparison.

Evaluation Metrics. Similar to [Gafni et al. 2021], we use standard
metrics PSNR, SSIM, and LPIPS to evaluate the quality of the pre-
dicted results. Furthermore, we follow [Ji et al. 2022, 2021] to adopt
landmark distance on the whole face (F-LMD) for synchronization
assessment, which considers both lip-sync and head pose accuracy.

Evaluation Results. The quantitative results on HDTF and Ner-
face datasets are summarized in Tab 1 and 2. According to the
results in Tab 1, our VPGC shows superior performance in terms of
all the metrics on generation quality beyond the counterparts due to
the well-learned texture codebook. On the other hand, our F-LMD
value is much lower than those of person-agnostic methods and
comparable to the state-of-the-art personalized method LSP, which
indicates that our VPGC achieves satisfactory synchronization.

In terms of the results on the Nerface dataset, neither Nerface nor
DVP [Gafni et al. 2021; Kim et al. 2018] is able to synthesize satisfac-
tory human face images, leading to much worse performance when
compared with our VPGC. Please also refer to our supplementary
video for visual results.

4.3 Qualitative Evaluation

We also perform qualitative experiments under the cross-reenactment
setting along with a user study to subjectively demonstrate the dif-
ferences between our method and its counterparts. Since AD-Nerf
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Table 1: The quantitative results of on Testset A, B, and C. We compare our VPGC against recent SOTA methods [Grassal et al.
2022; Guo et al. 2021; Lu et al. 2021; Wang et al. 2021, 2022; Zheng et al. 2022a] under self-reenactment setting in terms of four
metrics. For LPIPS and F-LMD the lower the better, and the higher the better for other metrics.

Testset A Testset B Testset C

Methods PSNRT SSIMT LPIPS| F-LMD| PSNRT SSIMT LPIPS| F-LMD| PSNRT SSIMT LPIPS| F-LMD |
Ground Truth N/A 1.00 0 0 N/A 1.00 0 0 N/A 1.00 0 0
Facev2v 30.16 0.70 0.16 2.52 29.58 0.67 0.14 2.47 30.99 0.78 0.09 2.45
LIA 28.79 0.71 0.22 2.51 29.41 0.66 0.18 2.82 30.22 0.74 0.13 3.03
StyleHeat 28.40 0.62 0.24 2.63 27.91 0.60 0.20 2.72 28.22 0.64 0.16 3.16
NHA 30.49 0.67 0.28 2.22 29.79 0.68 0.17 2.14 30.84 0.72 0.24 2.23
IMAvatar 29.77 0.65 0.31 2.96 29.20 0.64 0.22 3.01 29.89 0.68 0.27 2.75
AD-Nerf 30.30 0.67 0.18 3.60 29.45 0.64 0.20 3.49 30.41 0.67 0.15 2.84
LSP 31.26 0.76 0.08 2.04 30.39 0.70 0.10 2.22 31.44 0.79 0.07 2.04
VPGC 32.19 0.78 0.07 2.04 31.86 0.72 0.09 2.19 32.26 0.81 0.06 2.05

Table 2: The quantitative comparison with previous meth-
ods [Gafni et al. 2021; Kim et al. 2018] on the Nerface dataset.

Nerface Dataset

Methods PSNRT SSIMT LPIPS| F-LMD |
Ground Truth N/A 1.000 0 0
DVP 28.10 0.71 0.36 4.59
Nerface 29.58 0.77 0.24 3.88
VPGC 33.17 0.85 0.07 2.16

requires a template video from the same portrait as the pose input,
we do not involve it in our comparison.

Evaluation Results. The key frames from two video clips are il-
lustrated in Fig. 3. Although Facev2v and LIA achieve satisfying
movements in the animation, their results are quite dependent on
the selected source images, which always cause blurry and unde-
sirable texture. StyleHeat fails to preserve the identity information
where main facial components (e.g., eyes, nose, and mouth) all suf-
fer from severe distortion. In terms of person-specific methods,
NHA and IMAvatar tend to produce over-smooth textures with-
out essential components (e.g., teeth) and require time-consuming
pre-processing. LSP fails to create reasonable textures at some local
regions (e.g., face boundary and collar) due to insufficient guidance.
Our VPGC can generate fine-grained details and achieve satisfac-
tory synchronization simultaneously.

User Study. We also invite 15 users to participate in a subjective
evaluation of the cross-reenactment results generated by our VPGC
and other comparison methods. The participants are aged from 18
to 30 years old and come from universities or research institutes.
All of them are required to rate the generated video portraits from
three aspects following the Mean Opinion Scores rating protocol:
1) Generation Quality; 2) Video Realness; 3) Synchronization. The
rating ranges from 1 (worst) to 5 (best).

The results are reported in Tab 3. Our VPGC outperforms all its
counterparts in terms of generation quality and video realness, since

Table 3: User study results based on Mean Opinion Scores.
The rating is from 1 to 5, the higher the better.

Methods Generation Quality Video Realness  Synchronization
LIA 3.60 4.53 4.46
Facev2v 3.86 4.66 4.53
StyleHeat 2.67 1.73 4.33
NHA 3.33 3.20 3.80
IMAvtar 3.20 2.67 3.07
LSP 3.73 3.40 4.06
VPGC (Ours) 4.93 4.80 4.40

our generated results have shown more fine-grained texture details
and fewer dynamic artifacts in the animating process thanks to the
personalized texture codebook and the carefully designed prior-
guided driving module. In terms of synchronization, the person-
agnostic methods achieve only a slight advantage over our method
because of their more fluent lip movements. Overall, the users prefer
our results in more aspects.

4.4 Ablation Study

We take Testset A as an example to perform ablation studies on
the contributions of proposed strategies used in our VPGC, which
focus on the usage of different codebooks in portrait modeling and
different priors in the driving module.

Analysis on the different Codebooks. We first investigate the out-
standing properties of our grid-based codebook in portrait model-
ing. Specifically, we train two different models by using the vanilla
codebook and our grid-based codebook and evaluate the results
of these two models saved at different training iterations in the
early stage. The quantitative and qualitative results are shown in
Tab 4 and Fig. 4, which demonstrate that our grid-based codebook
enables faster and more stable portrait modeling compared to the
vanilla one. For a 5-minute portrait video, it takes vanilla codebook
learning 80,000 iterations (i.e., nearly 36 hours) to complete detailed
texture learning (e.g., blinks in Fig. 4), while our grid-based code-
book learning procedure saves more than 80% of its time-cost, which
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Figure 3: Qualitative comparison between our method and its counterparts. We compare our VPGC with the recent state-of-the-
art methods [Grassal et al. 2022; Lu et al. 2021; Wang et al. 2021, 2022; Yin et al. 2022; Zheng et al. 2022a] under cross-reenactment
setting. Please zoom in for better visualization. Both the two driving videos and the target portrait video in the left column are
selected from the HDTF [Zhang et al. 2021] dataset (CC BY 4.0), while the target portrait Obama in the right column is from

©White House Attribution 3.0 United States (CC BY 3.0 US).

takes only 5 hours on average to finish the texture learning. Please
refer to the supplementary video for better visualization.

Analysis on the different priors in Driving Module. We continue
to evaluate the contributions of the texture prior P and the discrim-
inative geometry prior F; used in our driving module. Specifically,
we build a baseline without priors (denoted as “Baseline”). In order
to evaluate these two priors, we first construct another variant

“Baseline w P” by adding only P into the baseline network, and the

baseline with both priors is denoted as “Full model”.

The quantitative results under the self-reenactment setting are
reported in Tab 5. Since these two priors are proposed to handle the
unstable texture issues, there is no obvious gap between their scores
on the metric F-LMD. While for image quality metrics, these two
variants without using the priors all suffer from certain degradation.
The employment of P tends to provide texture prior even when
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Figure 4: Qualitative comparison of different codebooks. It
takes much fewer iterations for our grid-based codebook
than the vanilla codebook to learn accurate and fine-grained
local textures on the mouth and eyes areas. The portrait is
from the HDTF dataset [Zhang et al. 2021] (CC BY 4.0)

Table 4: Visual comparison between vanilla codebook and
our grid-based codebook at different iterations.

PSNR
Codebook 5000 15000 25000 35000
Vanilla 28.15 29.37 30.86 31.29
Grid-based 30.82 31.69 32.01 32.27

Table 5: Ablation study results when using different driving
priors.

Testset A
Methods PSNRT SSIMT LPIPS| F-LMD |
Baseline 30.25 0.73 0.08 2.59
Baseline w P 31.69 0.74 0.07 2.73
Full model 32.36 0.79 0.06 2.27

processing unseen pose, while the usage of F; can dramatically
reduce the uncertainty of the prediction and alleviate unexpected
jittering around the hair area. Please refer to our demo video for
better understanding.

Kaisiyuan Wang, Hang Zhou et al.

Regular Unseen or
Pose Extreme Poses
Driving ‘
Video
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Driving
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Figure 5: Visualization results of our method driven by un-
seen or extreme poses. The synthesized portrait suffers from
obvious artifacts. All the portraits are selected from the HDTF
dataset [Zhang et al. 2021] (CC BY 4.0)

5 CONCLUSION AND DISCUSSIONS

This paper presents the Video Portrait via Grid-based Codebook
(VPGC) framework, which synthesizes robust and high-fidelity
face reenactment results for specific portraits. We identify several
advantages of our design: 1) The grid-based codebook facilitates the
training of both the dictionary and the mapping between driving
signals and codebook embeddings. 2) Detailed expressions can
be accurately captured with our local learning paradigm. 3) Our
method produces high-fidelity and more realistic results that show
superiority over previous methods.

Limitations. Although our VPGC achieves superior performance
over the previous approaches, we still notice some challenging cases
that our VPGC cannot handle well, especially when there are rarely
seen or extreme movements in the driving videos. We suppose
this sensitivity is derived from the local-dependent nature of the
grid-based codebook, in which the preserved personalized textual
information is strongly entangled with the position (or explicit grid
structure). Here we provide several examples of the failure cases in
Fig. 5, from which we observe the generated portraits suffer from
severe facial texture loss and distortion. These artifacts usually
occur in certain regions that cannot be covered in the training data.

Ethical Considerations. As our method creates high-fidelity video
portraits, it might lead to negative and harmful effects on society
when used by the wrong hands. We would strictly limit the usage of
our model for research purposes only and share our results with the
deep fake detection community, which can benefit the development
of advanced detection algorithms. We believe that proper usage of
our technique will enhance development in both machine learning
research and multimedia entertainment in our daily life.



Efficient Video Portrait Reenactment via Grid-based Codebook

REFERENCES

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187-194.

Huiwen Chang, Han Zhang, Jarred Barber, A] Maschinot, Jose Lezama, Lu Jiang, Ming-
Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein, et al. 2023.
Muse: Text-To-Image Generation via Masked Generative Transformers. arXiv
preprint arXiv:2301.00704 (2023).

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. 2022. Maskgit:
Masked generative image transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 11315-11325.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. Tensorf:
Tensorial radiance fields. In Proceedings of the European Conference on Computer
Vision. 333-350.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. 2021. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations.

Michail Christos Doukas, Stefanos Zafeiriou, and Viktoriia Sharmanska. 2021.
HeadGAN: One-shot Neural Head Synthesis and Editing. In IEEE/CVF Interna-
tional Conference on Computer Vision.

Nikita Drobyshev, Jenya Chelishev, Taras Khakhulin, Aleksei Ivakhnenko, Victor
Lempitsky, and Egor Zakharov. 2022. MegaPortraits: One-shot Megapixel Neural
Head Avatars. Proceedings of the 30th ACM International Conference on Multimedia.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. 2021b. Imagebart:
Bidirectional context with multinomial diffusion for autoregressive image synthesis.
Advances in Neural Information Processing Systems 34 (2021).

Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021a. Taming transformers for high-
resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 12873-12883.

Yao Feng, Haiwen Feng, Michael J. Black, and Timo Bolkart. 2021. Learning an
Animatable Detailed 3D Face Model from In-The-Wild Images. ACM Transactions
on Graphics 40, 8. https://doi.org/10.1145/3450626.3459936

Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias Niefiner. 2021. Dynamic
neural radiance fields for monocular 4d facial avatar reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8649-8658.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139-144.

Philip-William Grassal, Malte Prinzler, Titus Leistner, Carsten Rother, Matthias Niefiner,
and Justus Thies. 2022. Neural head avatars from monocular RGB videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
18653-18664.

Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and Ming-Ming
Cheng. 2022. VQFR: Blind Face Restoration with Vector-Quantized Dictionary and
Parallel Decoder. In Proceedings of the European Conference on Computer Vision.

Yudong Guo, Keyu Chen, Sen Liang, Yongjin Liu, Hujun Bao, and Juyong Zhang. 2021.
AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis. In
IEEE/CVF International Conference on Computer Vision.

Xinya Ji, Hang Zhou, Kaisiyuan Wang, Qianyi Wu, Wayne Wu, Feng Xu, and Xun Cao.
2022. EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware
Motion Model. In ACM SIGGRAPH 2022 Conference Proceedings (SSGGRAPH ’22).
https://doi.org/10.1145/3528233.3530745

Xinya Ji, Hang Zhou, Kaisiyuan Wang, Wayne Wu, Chen Change Loy, Xun Cao,
and Feng Xu. 2021. Audio-driven emotional video portraits. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14080-14089.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In Proceedings of the European Conference on
Computer Vision. Springer, 694-711.

Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and Egor Zakharov. 2022. Re-
alistic one-shot mesh-based head avatars. In Proceedings of the European Conference
on Computer Vision. Springer, 345-362.

Hyeongwoo Kim, Mohamed Elgharib, Michael Zollhofer, Hans-Peter Seidel, Thabo
Beeler, Christian Richardt, and Christian Theobalt. 2019. Neural style-preserving
visual dubbing. ACM Transactions on Graphics 38, 6 (2019), 1-13.

Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng Xu, Justus Thies, Matthias
Niessner, Patrick Pérez, Christian Richardt, Michael Zollhéfer, and Christian
Theobalt. 2018. Deep video portraits. ACM Transactions on Graphics 37, 4 (2018),
1-14.

Xian Liu, Qianyi Wu, Hang Zhou, Yuanqi Du, Wayne Wu, Dahua Lin, and Ziwei Liu.
2022. Audio-Driven Co-Speech Gesture Video Generation. Advances in Neural
Information Processing Systems (2022).

Yuanxun Lu, Jinxiang Chai, and Xun Cao. 2021. Live speech portraits: real-time
photorealistic talking-head animation. ACM Transactions on Graphics 40, 6 (2021),
1-17.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields

SIGGRAPH °23 Conference Proceedings, August 06-10, 2023, Los Angeles, CA, USA

for view synthesis. In Proceedings of the European Conference on Computer Vision.
Springer, 405-421.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics 41, 4 (2022), 1-15.

Aliaksandr Siarohin, Stéphane Lathuiliére, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe. 2019. First order motion model for image animation. Advances in Neural
Information Processing Systems 32 (2019), 7137-7147.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022a. Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459-5469.

Yasheng Sun, Hang Zhou, Kaisiyuan Wang, Qianyi Wu, Zhibin Hong, Jingtuo Liu,
Errui Ding, Jingdong Wang, Ziwei Liu, and Koike Hideki. 2022b. Masked Lip-Sync
Prediction by Audio-Visual Contextual Exploitation in Transformers. In SSIGGRAPH
Asia 2022 Conference Papers. 1-9.

Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-Shlizerman. 2017.
Synthesizing obama: learning lip sync from audio. ACM Transactions on Graphics
36, 4 (2017), 1-13.

Jiaxiang Tang, Kaisiyuan Wang, Hang Zhou, Xiaokang Chen, Dongliang He, Tianshu
Hu, Jingtuo Liu, Gang Zeng, and Jingdong Wang. 2022. Real-time Neural Radi-
ance Talking Portrait Synthesis via Audio-spatial Decomposition. arXiv preprint
arXiv:2211.12368 (2022).

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias
Niefiner. 2016. Face2face: Real-time face capture and reenactment of rgb videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2387-2395.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning.
Advances in Neural Information Processing Systems 30 (2017).

Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuogian Yang, Wayne Wu, Chen Qian,
Ran He, Yu Qiao, and Chen Change Loy. 2020. MEAD: A Large-scale Audio-visual
Dataset for Emotional Talking-face Generation. In ECCV.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation
with Conditional GANs. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition.

Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. 2021. One-shot free-view neural
talking-head synthesis for video conferencing. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10039-10049.

Yaohui Wang, Di Yang, Francois Bremond, and Antitza Dantcheva. 2022. Latent Image
Animator: Learning to Animate Images via Latent Space Navigation. In International
Conference on Learning Representations.

Wayne Wu, Yunxuan Zhang, Cheng Li, Chen Qian, and Chen Change Loy. 2018.
Reenactgan: Learning to reenact faces via boundary transfer. In Proceedings of the
European Conference on Computer Vision. 603-619.

Kewei Yang, Kang Chen, Daoliang Guo, Song-Hai Zhang, Yuan-Chen Guo, and Weidong
Zhang. 2022. Face2Face p: Real-Time High-Resolution One-Shot Face Reenactment.
In Proceedings of the European Conference on Computer Vision. Springer, 55-71.

Fei Yin, Yong Zhang, Xiaodong Cun, Mingdeng Cao, Yanbo Fan, Xuan Wang, Qingyan
Bai, Baoyuan Wu, Jue Wang, and Yujiu Yang. 2022. StyleHEAT: One-Shot High-
Resolution Editable Talking Face Generation via Pre-trained StyleGAN. In Proceed-
ings of the European Conference on Computer Vision.

Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya, and Victor Lempitsky. 2020.
Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars. In Proceedings
of the European Conference on Computer Vision. Springer, 524-540.

Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. 2019. Few-
shot adversarial learning of realistic neural talking head models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 9459-9468.

Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie Fan. 2021. Flow-Guided One-
Shot Talking Face Generation With a High-Resolution Audio-Visual Dataset. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3661-3670.

Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai, and Dinh Phung. 2022b. Bridging Global
Context Interactions for High-Fidelity Image Completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 11512-11522.

Yufeng Zheng, Victoria Fernandez Abrevaya, Marcel C Biihler, Xu Chen, Michael J
Black, and Otmar Hilliges. 2022a. Im avatar: Implicit morphable head avatars from
videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 13545-13555.

Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. 2019. Talking face
generation by adversarially disentangled audio-visual representation. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 9299-9306.

Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei
Liu. 2021. Pose-controllable talking face generation by implicitly modularized
audio-visual representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 4176-4186.

Shangchen Zhou, Kelvin Chan, Chongyi Li, and Chen Change Loy. 2022. Towards
robust blind face restoration with codebook lookup transformer. Advances in Neural
Information Processing Systems 35 (2022), 30599-30611.


https://doi.org/10.1145/3450626.3459936
https://doi.org/10.1145/3528233.3530745

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Task Formulation and Preliminaries
	3.2 Grid-based Codebook and Soft Indexing
	3.3 Prior-Guided Driving Module

	4 Experiments
	4.1 Experiment Settings
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation
	4.4 Ablation Study

	5 Conclusion and Discussions
	References



