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ABSTRACT
With the development of deep neural networks, especially gener-
ation networks, gray image coloring technology has made great
progress. As one of the fields, remote sensing image colorization
needs to be solved urgently. This is because remote sensing images
cannot obtain clear color images due to the limitations of shooting
equipment and transmission equipment. Compared with ordinary
images, remote sensing images are characterized by the uneven
spatial distribution of objects, therefore, it is a great challenge to en-
sure the spatial consistency of coloring. To embrace this challenge,
we propose a new joint stream DCGAN including a micro stream
and a macro stream, in which the latter is set as a prior to constrain
the former for colorization. In addition, the Low-level Correlation
Feature Extraction (LCFE) module is proposed to obtain the salient
shallow detail feature with global correlation, which is used to en-
hance the global constraints as well as supplement the low-level
information to the micro stream. What’s more, we propose the
Gated Selection (GSM) module by selecting useful information us-
ing a gated scheme to fuse features from two streams appropriately.
Comprehensive comparison and ablation experiments are imple-
mented and verify the proposed method performs surpasses other
methods in both qualitative and quantitative metrics.

CCS CONCEPTS
• Computing methodologies → Computer vision problems.
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1 INTRODUCTION
Remote sensing images are regarded as the essential material for
people to explore and understand the earth process. The natural
pseudo color image is regarded as one of the critical approaches
for morphology understanding correspond to human perception.
However, due to the limitations of shooting means and sensing
equipment, as well as the constraints of natural phenomena such
as haze, it is difficult to obtain high-quality remote sensing images
with full colors. While the exploration and deep understanding
of earth’s processes urgently require high-contrast color images
that match human perception. Therefore, the colorization task of
grayscale remote sensing image is imminent.

Image colorization approaches could be divided into two cat-
egories [37]: user-based colorization and fully automatic image
colorization. User-based colorization requires human interaction
to achieve colorization, therefore, the quality of the images gen-
erated by these algorithms depends on the rationality of the cues
given by the human, which makes them labor-intensive. While
the automatic coloring method realizes end-to-end colorization by
learning the relationship between input data and corresponding
color images without any human involvement. The development
of the depth generation model provides an effective fully automatic
technique for common image colorization, especially a series of
generative adversarial models (GANs) [3, 10, 21, 24, 35]. For the
ordinary images colorization, Isola et al. [12] proposed a coloring
method based on the Conditional Generative Adversarial Network
(CGAN) [21] which does not need to define the unique loss function
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according to the unique problem. On this basis, Nazeri et al.[22] pro-
posed a redefined loss function, which takes the probability of the
maximization discriminator error instead of the correct probability
of the minimization generator to resolve the problem of the col-
orization process fluctuation and accelerate network convergence.
However, different from ordinary images, the global structure of
remote sensing images is according to the physical earth surface
with immensely imbalanced object distribution. For instance, there
always exist micro-objects such as buildings that emerge in a large
range of continuous texture regions. Under this condition, if we
focus on learning the distribution of local pixels, it will deteriorate
the space inconsistency problem in the whole image. For this prob-
lem, Limmer et al.[19] proposed a multi-scale pyramid structure
infrared colorization method based on CNN. Li et al. [18] solved
this problem by proposing multi-scale discriminators and they set
up a discriminator for each layer feature in the generator’s decod-
ing process. Although the multi-scale discriminators optimizes the
measurement of Jensen-Shannon divergence [9], it could not sup-
ply a strong constraint to macro scale space stability. Wu et al.[31]
proposed a multi-scale generator by using multiple convolutions
with different kernel sizes to realize colorization. After that, Wu
et al.[32] transferred the colorization task from RGB to YUV color
space and used the multi-scale convolution kernels to improve
the coloring effect. Although the above approaches can achieve
high-quality colorization, there are three problems in the remote
sensing colorization task: (1) The missing low-level information
are not adequately supplemented in the deep layer ; (2) The macro
context constraint is weak which cannot guarantee coloring spatial
consistency of remote sensing images with an imbalanced spatial
distribution. (3) The effect of the simple fusion method is poor
since it cannot choose useful information in massive redundant
information from the different scales.

In response to the above problems, we propose a novel joint
stream DCGAN to realize remote sensing images colorization with
high space consistency. The LCFE module is proposed to obtain
the salient low-level feature with global correlation. Then, the ob-
tained feature through the LCFE module is fused with the deep
layer feature of the micro stream to enhance the context constraints
as well as to supplement their missing low-level information during
the downsampling operation. For the fusion of the two streams,
we propose the GSM module by estimating the usefulness of each
feature vector pixel-wise to select significant information and avoid
them drowning in the massive useless information. To evaluate the
performance of our method, contrast and ablation experiments are
conducted on AID Data Set and NWPU Data Set. The qualitative
and quantitative indicators demonstrate the effectiveness of the pro-
posed architecture, which indicates our model has the capability of
reducing the abrupt pixels and improving the stability and smooth-
ness of the colored remote sensing images. The contributions of
our research are as follows:

• We propose a novel joint stream DCGAN introducing macro
scale which constraints micro scale to ensure the high space
consistency as well as the object visibility of the colored
remote sensing images.

• We propose the LCFE module to obtain the salient low-level
feature with the global correlation which is supplemented

to the micro stream to supplement shallow information and
enhance context constraints.

• We propose the GSM module by gated selection scheme to
choose effective information to ensure rational fusion of
information from multi-scale streams.

2 RELATEDWORK
The two main categories of image colorization approaches [2, 20,
29, 37] are user-based colorization and fully automatic image col-
orization. The difference between the two is that the user-based
approach, including scribbling-based colorization[7, 8, 11, 25, 26],
exemplar-based colorization [15–17, 23, 28, 34] and colorization
based on language and text[4, 13, 36], requires human involvement
while the automatic approach does not.

Due to the complex spatial distribution of remote sensing images,
the user-guided coloring method is difficult to apply, in contrast,
the automatic coloring method is widely popular. Isola et al.[12]
proposed a coloring method based on Conditional Generative Ad-
versarial Network (CGAN) which optimizes the network without
the defined unique loss function but the game between the gen-
erator and the discriminator. They chose U-Net architecture [27]
as the generator to mining the rules of generation and they pro-
pose PatchGAN as the discriminator which divide the input into
patches for discrimination to deal with the high-frequency part
of the image. Nazeri et al. [22] proposed a colorization method
for high-resolution images. They used the redefined loss function,
which takes the probability of the maximization discriminator error
replace the correct probability of the minimization generator focus
on resolving the problem of the unstable colorization process and
expedite network convergence.

Different from the above single scale network, Limmer et al.
[19] proposed a infrared colorization method using the multi-scale
pyramid structure based on CNN and they supplemented the de-
tails of the input image by simple addition operation to complete
post-processing. According to the pyramid structure, Li et al. [18]
proposed a GAN with multi-discriminators to achieve colorization
of high-resolution remote sensing images. They chose U-Net as the
generator of their method and they refer to the idea of pyramid
structure and input the features proposed by each layer of generator
into the discriminator for judgment. What’ more, the features of
the local layer are added to the next layer of discriminator in order
to make the discriminator fuse the feature from different levels.
This method promotes the discriminator to better guide the gener-
ator, so as to increase the stability of the generated color space and
produce a better coloring effect. Wu et al.[32] realized the remote
sensing images colorization by multi-scale feature extraction using
the convolution kernels with different size.

Although the above research has improved the coloring level to
a certain extent, there exist shortcomings in the specific field of
remote sensing images colorization. Most of them cannot guarantee
consistency of color space and visibility of objects. In contrast
to previous research in remote sensing images colorization, we
propose a novel Joint Stream DCGAN.
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Figure 1: Overview of our Joint Stream DCGAN which consists of a micro stream, a macro stream, and two main building
blocks: a Low-level Correlation Information Extraction (LCFE) module and a Gated Selection (GSM) module. The LCFE module
is proposed to obtain the salient low-level feature with global correlation, which is upsampled and then concatenated with
the micro stream deep layer feature to supplement the missing shallow information while strengthening the global context
constraints on the micro stream. The GSMmodule fuses two streams by a gated scheme which selects the useful information to
take advantage of the two streams properly.

3 METHOD
We propose a novel DCGAN with a joint stream generator[24] as
illustrated in Fig. 1. The two streams, i.e, micro stream and macro
stream, use U-Net as the backbone and the inputs of them are the
original grayscale and the down-sampled grayscale obtained by av-
erage pooling operation respectively. It is precisely due to the larger
receptive field that the macro stream can capture more contextual
information and pay more attention to global representation. In
addition, the macro stream can act as a constraint condition on
the micro stream to ensure the color space consistency. To fully
complement the low-level information lost in the deep layers and
enhance global context information, we propose the LCIEmodule to
obtain the extra shallow information with global correlation. Then,
the obtained feature is fused with deep layer feature of the micro
stream. After that, the obtained features from two streams are input
into the GSM module to realize the fusion of two streams by select-
ing useful information using gated scheme and the color images
are generated through this module. Finally, input the generated
and the corresponding real images to the discriminator together
to calculate the probability that the images are real. The overall
network structure is shown in Fig. 1.

3.1 LCFE module
To solve the problem that the low-level information missing in the
deep layer of the micro stream caused by downsampling operation
and further enhance the spatial consistency, we propose the LCFE

Figure 2: The structure of the Low-level Correlation Feature
Extraction (LCFE) module

module to obtain the salient low-level feature with the global cor-
relation which worked as the supplement to the deep layer of the
micro stream. We set the feature obtained by the first convolutional
layer of the macro stream as the LCFE module’s input, which is
processed by extracting the salient low-level information and calcu-
lating the global correlation, and then fusion them by matrix-wise
multiplication to obtain the output feature, which is concatenate
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with the micro stream last layer feature to supplement their missing
low-level information in the deep layer during the downsampling
operation as well as enhance the global context constraints.

The details of the LCFE module are shown in Fig. 2. On the
one hand, the input features are performed by two convolutions
with different 1*1 kernels to obtain two features and multiply them
matrix-wise to obtain the feature containing the global dependen-
cies between elements. Process the obtained feature by the Sigmoid
function to generate the global correlation weight feature. On the
other hand, the low-level feature highlighting the local details is
obtained by the spatial attention scheme[30]. Finally, multiply the
output of the two parts matrix-wise and the salient low-level feature
with the global context information can be obtained. The formula
of the operation is follows:

𝐹𝑐 = 𝑐𝑜𝑛𝑣1×1 (𝐹𝑖 ) ×
[
𝑐𝑜𝑛𝑣

′
1×1 (𝐹𝑖 )

]𝑇
,

𝐹𝑠 = 𝐹𝑖 · (𝜎 (max(𝐹𝑖 ) |𝑎𝑣𝑔(𝐹𝑖 ))),

𝐹𝑜 = 𝐹𝑖 + 𝜎 ( 𝐹𝑐√︁
𝑑𝑘

) × 𝐹𝑠

(1)

where, 𝐹𝑖 and 𝐹𝑜 denote the input and the output of the LCFE
module; 𝑐𝑜𝑛𝑣 ,𝑚𝑎𝑥 and 𝑎𝑣𝑔 represent convolution, max pooling and
average pooling operation respectively, and 𝜎 represents softmax
operation.

Upsampling the output feature and then concatenating it with
the last layer feature of the micro stream to complement the rich
low-level information and strong context constraints.

3.2 GSM module
The simply combining method, such as concatenation, will hide the
effective information in massive ineffective information making the
features from two streams cannot be used reasonably. Therefore, an
efficient fusion approach is demanded to selectively collect useful
information from different features coming from the two streams.
Focus on this, we propose the GSM module, as shown in Fig.1, by
using a gated scheme to select the useful information in the massive
redundant information to fuse the two streams. Through the gating
mechanism, the validity of each feature vector is measured and
controlled to decide whether propagate or not, by which the GSM
module can realize the efficient use of the information from the
two streams.

The input of the GSM module is the supplemented micro stream
output feature and the upsampled macro stream output feature.
The formula of the operation is follows:

𝑋 = (1 +𝐺𝑖 ) · 𝑋𝑖 + (1 −𝐺𝑖 ) ·𝐺𝑎 · 𝑋𝑎 (2)

where 𝑋𝑖 and 𝑋𝑎 denote the input from micro branch and macro
branch respectively; 𝐺𝑖 and 𝐺𝑎 denote a gated selection for the 𝑋𝑖
and 𝑋𝑎 using the softmax [5] function; and the ‘·’ represents the
element-wise multiplication.

Through our proposed dual-gated scheme to filter useful infor-
mation while suppressing redundant noise, an efficient joint stream
fusion is achieved.

3.3 Objective Function
According to the objective function of GAN, and for our joint stream
network, we propose the objective functions of the generator and
the discriminator respectively, which are shown in equ (3) and equ
(4). In addition to the loss of the GAN, the objective function of the
generator we proposed involves the traditional loss.

min
\G1 ,\𝐺2

𝐽 (𝐺1,𝐺2) (\𝐷 , \𝐺1 , \𝐺2 )

= min
\G1 ,\𝐺2

(−E𝑥1∼𝑃 (𝑥1),𝑥2∼𝑃 (𝑥2) [log(𝐷 (𝐺 (𝑥1, 𝑥2)))]

+_ | |𝐺 (𝑥1, 𝑥2) − 𝑦 | |1)

(3)

max
\𝐷

𝐽 (𝐷) (\𝐷 , \𝐺1 , \𝐺2 ) = max
\𝐷

(𝐸𝑦 [log(𝐷 (𝑦 |𝑥1, 𝑥2))]

+𝐸𝑥1∼𝑃 (𝑥1),𝑥2∼𝑃 (𝑥2) [log(1 − 𝐷 (𝐺 (𝑥1, 𝑥2) |𝑥1, 𝑥2))])
(4)

where 𝐺1 and 𝐺2 represent the micro stream and macro stream;
𝐷 denotes the discriminator; 𝑥1 and 𝑥2 represent the input of the
micro stream and macro stream; y denotes the groundtruth; _ is
a hyperparameter set to 100. The generator and discriminator are
trained alternately to realize network optimization.

4 EXPERIMENTS
4.1 Dataset and implementation details
The latest two Data sets of remote sensing images are AID Data
Set[33] and NWPU Data Set[6]. NWPU-resisc45 data Set is a com-
mon remote sensing data set created by Northwestern Polytechni-
cal University that work as a remote sensing image classification
benchmark. The dataset consisted of 31,500 images, composed of 45
different scene categories. The size of the images in this dataset is
256*256. In addition, AID Dataset is a remote sensing image Dataset
jointly published by Huazhong University of Science and Technol-
ogy and Wuhan University. The dataset contains images from 30
different scene categories, with 220 to 420 images in each category,
for a total of 10,000 images. For the above two data sets, we divided
each class into training sets, test sets, and validation sets in a ratio
of 3:1:1.

4.2 Training Details
We train our approach on NVIDIA Tesla V100-SXM2-16GB GPU
using the TensorFlow framework [1]. We train 30 epochs to choose
the best result and set 8 as the batch size.We use theAdam algorithm
[14] with a learning rate of 0.003. The super parameter _ is set to
100 to control traditional loss.

4.3 Evaluation Metrics
We set accuracy and Amazon Mechanical Turk (AMT)[12] as the
metrics to evaluate the experimental results. Accuracy represents
the degree of similarity between the generated pixels with the
corresponding pixels of the original image. That is a quantitative
metric and the higher accuracy is, the closer the generated is to the
original image. AMT is a qualitative metric and a high AMT score
means the image is more in line with human perception.
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Table 1: Contrast experiments results on AID Data Set

Method acc2 acc5 AMT

U-Net[27] 22.89 78.82 36.67
PatchGAN[12] 23.07 78.04 40.46
DCGAN[22] 23.42 77.36 48.03
Multi-D[18] 24.15 77.18 62.11
Multi-G[32] 26.53 76.69 67.75

Ours 28.64 82.02 79.25

Table 2: Contrast experiments results on NWPU Data Set

Method acc2 acc5 AMT

U-Net[27] 36.05 88.42 48.29
PatchGAN[12] 37.56 86.61 56.15
DCGAN[22] 37.02 88.05 59.37
Multi-D[18] 38.30 87.12 70.59
Multi-G[32] 37.91 86.81 74.63

Ours 40.28 89.06 82.79

Table 3: The ablation experiments results on AID Data Set

Method acc2 acc5 AMT

Single stream 23.42 77.36 48.02
Joint stream 25.14 79.68 61.92

J-S+Concat (w/o LCFE) 25.73 80.27 66.48
J-S+LCFE 26.59 81.20 72.34

J-S+LCFE+GSM 28.64 82.09 79.29

Accuracy. The accuracy is obtained according to the proportion
of correctly colored pixels to total pixels. And we defined the dif-
ference between the generated values in all three channels at the
same position and the corresponding elements of the original image
within the specified range as accurate coloring. The formula is as
follows:

𝑎𝑐𝑐 (𝑥,𝑦) = 1
𝑛

𝑛∑︁
𝑝=1

3∏
𝑙=1

1[0,Y𝑙 ] ( |ℎ(𝑥)
(𝑝,𝑙) − 𝑦 (𝑝,𝑙) |) (5)

In equ (5), Y represents the threshold and we choose 2 and 5 as the
threshold to obtain the accuracy of different degrees of similarity.

Amazon Mechanical Turk(AMT) Perception Test. Since the most
important task of remote sensing image color is to generate color
images that meet human perception needs and obtaining a highly
subjective evaluation of color and color naturalness is also an impor-
tant standard to test the generation effect, we also adopt Amazon
Mechanical Turkey (AMT) perception test to obtain the qualitative
indicators.

We selected 20 people to participate in the AMT Perception
test. We will present a grayscale image and the corresponding
color image generated by different approaches. For each result,
participants were required to grade its color naturalness between
1 to 100, and the higher the score, the more naturalness it seems
for people. Each participant needs to judge 20 different images
generated by each network, and the scores of each participant will
get an average score. Take the sum of everyone’s average scores
and divide by 20 to get the final AMT score.

Table 4: The ablation experiments results on NWPU Data Set

Method acc2 acc5 AMT

Single stream 37.02 88.05 59.59
Joint stream 38.84 88.23 66.50

J-S+Concat (o/w LCFE) 39.21 88.58 73.37
J-S+LCFE 39.72 88.74 76.08

J-S+LCFE+GSM 40.28 89.06 82.92

4.4 Comparative Networks
• Ronneberger et al. ’s Method[27]: Use U-Net structure that
extracts features by the encoder, and then recoveries color
by the decoder. Encoder layers are superimposed on cor-
responding layers in the decoder to improve the coloring
effect.

• Isola et al.’s Method[12]: Use CGAN with U-Net as the gen-
erator. Add conditions to make the generated results more
realistic. Moreover, PatchGAN was used in the discriminator
to judge the generated results.

• Nazeri et al.’s Method[22]: Use DCGAN to color remote sens-
ing images, and the discriminator is composed of several
convolution layers. In addition, the objective function of
generating network is optimized to make the network more
stable.

• Li et al.’s Method[18]: Use a multi-scale discriminator to
generate color images of different scales and input them
into the corresponding layers of the discriminator to achieve
multi-scale discrimination.

• Wu et al.’s Method[32]: Use DCGAN which has a multi-scale
generator to color remote sensing images, and multi-scale
is carried out by using convolution kernels with different
sizes.

4.5 Comparison with state-of-the-arts
Table 1 and Table 2 show the results of the colorization method we
proposed compared to the state-of-art methods on AID Data Set
and NWPU Data Set. Higher qualitative and quantitative results
indicate that our method achieves better coloring results compared
with other comparison methods.

Fig.3 shows color images generated by the method we proposed
and comparative methods. From a sensory point of view, the images
generated by our method are most realistic and contain high spacial
consistency and object visibility. However, some images generated
by other methods have inconsistent coloring spaces such as the
blue areas in the first row and sixth column images in Fig. 3.

The obtained superior color images profit from the structure of
joint stream with different scales in which the macro stream works
as the context constraints on the micro stream to ensure the consis-
tency of the generated images. In addition, the LCFEmodule obtains
the salient low-level information with global correlation, which
is used to complement the lost local details of the micro stream
deep layer feature as well as to enhance global context constraints
on the micro stream, thereby enhancing the spatial consistency of
the coloring. Moreover, the GSM module fuses the features from
the micro and the macro stream by the dual gated scheme which
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Figure 3: The generated images of the contrast experiments. The generated images using our method have strong spatial
consistency and object visibility.

Figure 4: The generated images of the ablation experiments. The ‘J-s’ represents joint stream; ‘Concat (o/w LCFE)’ denotes
directly transport the first layer feature from the macro stream to the micro stream without executing the LCFE module.

realizes proper fusion by selecting the effective information in the
massive redundant information.

4.6 Ablation experiments
Ablation experiments are carried out to assess the importance of
each module we proposed. The single-stream method refers to Naz-
eri et al.’ s method which is set to be our baseline approach. Table 3
and Table 4 demonstrate the validity of each of the modules we pro-
posed and the generated color images by the ablation experiments
network are shown in Fig. 4.

The joint stream network is formed by introducing a macro-scale
stream into the baseline, improving the coloring space consistency.
For instance, the red road in the second row and third column in Fig.
4 becomes gray in the fourth column, making the generation appear
more holistic. The LCFE module is joined between two streams to
exact the salient low-level information with global correlation while
supplementing missing shallow information and enhancing the
macro context constraint to the micro stream. The image in the first
row and sixth column in Fig. 4 shows the higher space consistency
and more visible color object than the fourth column illustrating
the significance of the LCFE module. The images generated by
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introducing the GSM module become more attuned to the human
perception since the GSM module fuses the output of two streams
by suppressing the redundant noise and ensuring the reasonable
expression of useful information.

5 CONCLUSION
In this paper, we propose a novel joint stream DCGAN for remote
sensing image colorization. To address the problem of inconsistency
in the color space caused by unbalanced scene spatial distribution
of remote sensing images, we propose a generator using the macro
stream as a prior to guide the micro stream for ensuring the con-
sistency and stability of colorization. Aiming at supplementing
the low-level information lost in the network deep layer as well
as enhancing the global context constraints to generate images
with strong space consistency and object visibility, the LCFE mod-
ule is proposed to obtain the supplemented feature transported to
the micro stream. Moreover, to take full advantage of the useful
information, the GSM module is proposed to select the useful infor-
mation drowning in the massive redundant noise to fuse the feature
properly and further ensure the coloring effect. Compared with the
most advanced methods, our method can generate higher-quality
color images conforming to human perception.
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