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Abstract

‘We present a multiscale deformed implicit surface network (MDISN) to reconstruct
3D objects from single images by adapting the implicit surface of the target object from
coarse to fine to the input image. The basic idea is to optimize the implicit surface
according to the change of consecutive feature maps from the input image. And with
multi-resolution feature maps, the implicit field is refined progressively, such that lower
resolutions outline the main object components, and higher resolutions reveal fine-
grained geometric details. To better explore the changes in feature maps, we devise a
simple field deformation module that receives two consecutive feature maps to refine
the implicit field with finer geometric details. Experimental results on both synthetic
and real-world datasets demonstrate the superiority of the proposed method compared
to state-of-the-art methods. Pre-trained models and codes will be released for research
purposes upon paper acceptance.

Keywords: Single-view 3D Reconstruction, Implicit Neural Representation,

Multiscale Deformation

1. Introduction

3D reconstruction from a single RGB image is one of the fundamental problems
in computer vision. Recently, many learning-based methods have been proposed and
achieved significant progress in single-image shape reconstruction. They generate var-

ious shape representations, including point clouds, meshes, voxels, and implicit fields,

*Corresponding author

Preprint submitted to Visual Informatics March 21, 2022



from which implicit models [1, 2, 3, 4, 5, 6, 7] achieves much better reconstruction
quality compared to others.

The implicit fields for image-based 3D reconstruction seek a mapping from a 3D
point and the latent vector of image feature to the corresponding value, e.g., signed dis-
tance. To better align the generated shapes with 3D objects in the image, some works
have specifically addressed pixel-aligned 3D reconstruction [8, 9, 10]. They concerned
the reconstructed 3D shapes precisely aligned to the acquired images at the pixel level.
To achieve this, they assign each 3D coordinate with a local image feature to describe
its local property. Local image features are obtained by projecting 3D points to the
image plane using a camera pose. With the help of local image features, the gener-
ated surfaces can be better aligned to the image, leading to a significant performance
improvement.

A local image feature is composed of multiple feature vectors extracted from mul-
tiscale image feature maps [8, 9, 10]. Intuitively, at the high resolution of the feature
map (that has smaller receptive fields), the feature describes local details of the object,
while at the low resolution (larger receptive fields), it only tells the global structure
information. And by increasing the resolution of the feature map, the geometric details
appear from coarse to fine. Also, a lower resolution shape with simpler geometry and
topology is less sensitive to the variation of image appearance and camera poses and
can be fit easier with less complex functions. Thus it is natural to construct the sur-
face from a simple structure and iteratively adjust it with increasing surface details. To
this end, we propose a new network for implicit surface reconstruction that leverages
multiscale image feature maps for progressively surface optimization.

Starting from an initial implicit field, we iteratively refine it by considering the
changes of two consecutive feature maps. Figure 1 shows several examples of the
feature maps and the coarse-to-fine results, where the feature maps are blurry at low
resolution with very little shape information, and at higher resolution, the outlines and
details of the shape become clearer. Note that the feature maps are high-dimensional
tensors, and we use grey images for better illustration.

To better explore the changes in the feature maps, we develop a field deformation

module that transforms the input field conditioning on two consecutive feature maps,
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Figure 1: Examples of the reconstructed shapes from single images using our method. The reconstruction
is adapted stepwise from coarse to fine. The main components (highlighted by boxes) of the objects can
be reconstructed with low-resolution image features, and by increasing the resolution of feature maps, finer
geometric details are restored. Note that the refinement of shapes follows the changes in consecutive feature

maps.

i.e., the one with a lower resolution corresponds to the input field, and the other with a
higher resolution provides more information for refinement upon the lower one. Since
there are no ground truth shapes that correspond to the individual scale of the feature
maps, we can only apply supervision on the output layer for training the network. Thus
there is no supervision applied at each step of deformation. Even though, as shown
in Figure 1, the sequential shapes reconstructed change smoothly with increasing de-
tails from low resolution to high resolution, especially at higher resolutions. And each
reconstructed shape is highly related to the corresponding feature map from the appear-
ance.

The multiscale optimization lends the flexibility to control the size of the network
and reconstruct the field from any selected resolution of image feature maps while
terminating at any higher resolutions. Moreover, exploring image feature maps and

their relations provides an intuitive way for understanding the creation procedure of



3D shapes and how to improve them.

We extensively evaluate our model on both synthetic and real-world 3D shape
datasets — the ShapeNet Core dataset [11] and the Pix3D dataset [12], using a com-
bination of standard metrics (e.g., Chamfer Distance, Earth Mover’s Distance, and In-
tersection over Union). The experiments demonstrate that our method can provide
state-of-the-art 3D shape reconstruction results from single images compared to previ-
ous work. Ablation experiments showcase the effectiveness of the core components of

our network.

2. Related Work

We briefly review the extensive research on the task of single-view 3D reconstruc-
tion based on Deep Learning. Many methods have been proposed to learn 3D repre-
sentations, including Points [13, 14, 15], Voxels [16, 17, 18, 19], Meshes [20, 21, 22,
23, 24, 25] and Primitive [26, 27, 28], by the supervisions on 3D groundtruth shape or,
even more difficult, the 2D images [29, 30, 31, 32, 33, 14].

For explicit surface representation, AtlasNet [20] represents 3D shapes as a union of
multiple surface patches predicted by multiple learned multilayer perceptrons (MLPs).
Pixel2Mesh [21] generates shapes by deforming an ellipsoid to the target. Since the
ellipsoid is genus-zero and the deformation does not change the edge connections,
the reconstruction always has the same topology. 3DN [22] also deforms a template
mesh to the target. They train a differentiable mesh sampling operator that moves the
sampled points to the target position.

Unlike explicit 3D representations, which have little flexibility in changing shape
resolution and topology, implicit functions for 3D objects have shown advantages in
representing complicated geometry [1, 2, 8, 9, 34, 35, 36, 37, 10, 5, 38]. It com-
monly uses an MLP-based neural network to generate implicit fields of 3D objects,
as introduced by ImNet [2], OccNet [1] and DeepSDF [3]. The implicit results show
great improvement in contrast to the explicit surface representations. Specifically, Oc-
cNet [1] generates an implicit volumetric shape by inferring the probability of whether

each grid cell is empty or occupied. The shape resolution can be iteratively refined by



upsampling on the cells of interest.

More recently, some works have specifically addressed pixel-aligned 3D recon-
struction [8, 9, 10]. In addition to capturing the global shape structure, they introduce
a pixel-level alignment between shape and image. DISN [8] extracts a local image
feature for each 3D point sampling, and then the local image feature is extended by
including the symmetric point of the point sampling in Ladybird [9]. In this work, we
explore image feature maps for iteratively surface refinement in the framework of the
implicit surface network to achieve better 3D reconstruction from single images.

The most related work that also leverages multiscale implicit fields comes from [7].
The work generates multiscale implicit surfaces for shape generation, completion, and
super-resolution tasks. Different from it, we design MDISN for image-based shape re-
construction, focusing on building the connection between 2D images and 3D implicit
fields. MDISN extends the 2D-to-3D mapping to sequential deformations, achieving
better exploration of multiscale image feature maps, and finally leads to significant

improvement of the 3D reconstruction.

3. Method

3.1. Overview

Given an RGB image of an object, our goal is to reconstruct the 3D object that
precisely aligns with the input image. We represent the shape by the signed distance
function and approximate it with an MLP-based neural network. To generate the im-
plicit surface, we sample a set of points from the canonical shape space such that each
3D point sampling p = (7, y, z) € R3, and predict the corresponding signed distance
s. Then the surface is extracted as the isosurface of SDF(-) = 0 by the Marching
Cubes algorithm [39].

From a given image I, the prediction of SDF conditions on the global feature of 1.
We denote the image encoder as m and the signed distance function as f, then SDF is

generated as follows,

f(p, Fy) =s,s €R, (€))

from which the Fy, is a global image feature.



To generate the pixel-aligned implicit field, we obtain a local image feature to de-
scribe individual point samplings. With both global and local image features, we gen-
erate SDF as follows,

f(szl(a)7Fg):S7seR7 (2)

where a = 7(p) is the corresponding image pixel of point sampling p, and Fj(a) =
m(I(a)) is the local image feature. The local image features are retrieved at the lo-
cation a of the 2D projection of the 3D point samplings over the camera pose c¢. We
address the details of camera projection in Appendix A.3 (' 3D-to-2D Camera Projec-
tion).

A local image feature F;(a) is composed of multiple features from the multireso-
lution feature maps of the image encoder m. Specifically, we use a VGG-style image
convolutional network that has six convolutional layers. The resulting feature maps
are [y, ..., lg, from which each feature map has a different resolution. We resize the
multiscale feature maps to the same resolution using bilinear interpolation. Then we
apply a deformation module A to each pair of consecutive feature maps to transform
the implicit field. For simplicity, we initialize the field with a template generator 7
instead of using the global image feature [, that is encoded from image feature maps.

The formulation with deformation modules can be written in recurrence as follows,

so(p) = 7(p),
s1(p) = fi(p,s0(p), l1(a)), (3)

=

Sn+l(p) = fat1 (p7 Sn(p), lﬂ(a): lny1(a)),n=1,...,5

where 7 generates initial implicit field and f,, deforms the fields. ,,(a) € F(a) is the
local image feature utilized at the n-th feature map and at the image location a.

As suggested by Ladybird, we utilize two local image features to describe a 3D co-
ordinate. They are extracted from the 2D projections of the 3D coordinate and its self-
reflectional symmetric coordinate and concatenated as a joint feature. For a schematic

representation of the proposed model, see Figure 2.
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Figure 2: The workflow of our method. Given an input image, our network progressively refines the signed
distance fields, from coarse to fine, to reconstruct the underlying 3D object. The field is initialized by a
template generator and iteratively refined by a series of deformation modules that follow the changes in the
consecutive image feature maps. For better illustration, the 3D tensors of feature maps are shown by gray

images.
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Figure 3: Illustration of implicit field deformation. The deformation is guided by the changes of feature

images.

3.2. Implicit Field Deformation

We use a deformation module at the individual scale of the image feature map
to gradually refine the generated implicit field towards the target. To better explore
the image features and also to emphasize the smoothness of the field deformation,
we develop the deformation module to use the changes of the image feature maps, as
shown in Figure 3. The consecutive feature images contain different shape information,
e.g., image Feat. [,, implies a coarse layout of the underlying object, while in image
Feat. [, the object components, such as the scope, can be seen more clearly.

In addition to feature maps, we also introduce a state vector into our deformation
module to store the contextual information of the sequential deformations. It is similar
to the recurrent neural network, which uses a latent code to memorize the historical

messages. We then combine the implicit field, image feature maps, and state vector into
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Figure 4: The implicit field deformation module takes as input the signed distance S D[, of a point sam-
pling, together with its point feature, its corresponding local image features [, [,,+1 and a state vector, and
outputs the deformed signed distance SDFy,41. The image feature I,, from the previous stage is also in-
cluded to control the deformation in accordance with the transition from feature , to l,,4+1. ® and & mean

concatenate and sum operations.

a unified vector and use it to predict a residual field for modification and an updated
state vector. The residual field is added to the input field to obtain the refined field. A

schematic illustration of the deformation module can be found in Figure 4.

3.3. Implementation Details

Our network consists of a 3-layer Multi-layer Perceptron (MLP) as a point sam-
pling embedding network, a 3-layer MLP as a template generator, six 3-layer MLP as
implicit field deformation modules, and a fully convolutional network of VGG-16 [40]
as an image encoder. We use the official VGG pre-trained model to initialize the con-
volutional modules and the PyTorch default initialization scheme for other modules.

Please refer to the Appendix for more implementation details.

Feature Maps. We extract feature maps from multiple layers of a convolutional net-
work. As shown in Figure 5, we use six feature maps from the vgg16 network that have

different resolutions.

Loss Function. We develop a loss function for training our network. For each image
I from the image collection Z, our network generates the underlying 3D object as
an implicit field, i.e., for each 3D coordinate, the predicted signed distance s(p) =

s6(p), as shown in Equation 3. We use L; norm to compute the distance between the
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Figure 5: Image feature maps extracted from the VGG-16 convolutional network at multiple layers.

generated implicit fields and the corresponding ground truth fields,

LS]_)F = ZZ(JJ S

1€ p

(])) - SDF(]))‘ (4)

where SDF denotes the ground truth SDF. w is set to w1, if SDF(p) < 4, and ws if

not. For all our experiments, the parameters are set to wy; = 4,ws = 1, and § = 0.01.

4. Experiments

In this section, we compare the qualitative and quantitative performance of MDISN
with state-of-the-art methods. We also perform an ablation study for the core compo-
nent of our network to show the impact of the multiscale reconstruction and the defor-
mation module. Further, we provide more results using the different combinations of

feature maps.

Dataset. We use the synthetic dataset, ShapeNet Core [11], and the real dataset, Pix3D [12],
for training and evaluation. In testing, we use the estimated camera parameters for eval-
uation on the ShapeNet dataset. For the Pix3D dataset, following Ladybird[9], we use

the ground truth camera parameters and image masks.

Evaluation Metrics. We use the standard metrics, including Chamfer Distance (CD),
Earth Mover’s Distance (EMD), and Intersection over Union (IOU), to measure the

similarity between the generated meshes and the ground truth meshes. CD and EMD



Table 1: Quantitative results on the ShapeNet Core dataset.

Metrics Methods|planebenchcabinet car chair display lamp speakerrifle sofa table phone watercraffmean
AtlasNet|39.2 34.2 20.7 22.0 25.7 364 21.3 232 453279 233 425 28.1 [30.0

IMNET |55.4 49.5 515 745 522 56.2 29.6 52.6 523 64.1 450 70.9 56.6 |54.6

OccNet |54.7 452 732 73.1 502 479 37.0 653 458 67.1 50.6 70.9 52.1 |56.4

I0U(%) 1 DISN |57.5 529 523 743 543 564 347 549 592659 479 729 559 |57.0
Ladybird| 60.0 53.4 50.8 74.5 553 57.8 362 556 61.068.5 48.6 73.6 61.3 |582
Ourscam|60.4 54.6 522 745 55.6 59.4 382 558 62.2685 48.6 735 604 |58.8

Ours |68.1 62.5 59.3 80.5 66.4 674 54.6 642 742743 60.0 79.2 68.6 |67.6

AtlasNet|3.39 322 3.36 3.72 3.86 3.12 529 3.75 3.353.14 398 3.19 439 |3.67

IMNET |2.90 2.80 3.14 2.73 3.01 2.81 5.85 3.80 2.652.71 3.39 2.14 275 |3.13

OccNet [2.75 2.43 3.05 2.56 2.70 2.58 3.96 3.46 227235 283 227 257 |2.75
EMD(x100)J| DISN |2.67 2.48 3.04 2.67 2.67 2.73 4.38 347 230262 3.11 2.06 277 |2.84
Ladybird|2.48 2.29 3.03 2.65 2.60 2.61 420 3.32 222242 282 2.06 246 |2.71
Ourscam|2.33 2.17 291 270 2.52 2.50 3.67 3.30 2.17 243 2.81 2.11 242 |2.62

Ours |1.88 1.94 2.62 242 220 2.12 2.82 287 1.642.17 253 1.85 201 (224

AtlasNet|5.98 6.98 13.76 17.0413.21 7.18 38.21 15.96 4.59 8.29 18.08 6.35 15.85 |[13.19

IMNET |12.6515.10 11.39 8.86 11.27 13.77 63.84 21.83 8.7310.3017.82 7.06  13.25 |16.61

OccNet |7.70 6.43 9.36 5.26 7.67 17.54 26.46 17.30 4.86 6.72 10.57 7.17  9.09 |9.70

CD(x1000)J | DISN [9.96 8.98 10.19 5.39 7.71 10.23 25.76 17.90 5.58 9.16 13.59 6.40 1191 |[10.98
Ladybird|5.85 6.12 9.10 5.13 7.08 8.23 21.46 14.75 5.53 6.78 9.97 5.06 6.71 |8.60
Ourscam|5.77 629 8.78 521 6.68 8.13 15.59 14.54 6.98 6.96 10.36 536  6.20 |8.22

Ours |3.74 424 746 4.17 499 541 8.15 9.39 5.034.88 837 4.02 427 |5.70

perform on point clouds sampled from meshes, while IOU performs on solid voxeliza-
tion of meshes.
More details on data processing, ablation networks, and training procedures can be

found in the Appendix.

4.1. Comparision

‘We compare our method to state-of-the-art methods, including AtlasNet [20], Im-
Net [2], OccNet [1], DISN [8], and Ladybird [9]. All methods are trained across all
categories. We report two versions of our method. One uses the ground truth cam-

era and is called Ours, and the other uses estimated camera parameters and is called

10
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Figure 6: Qualitative Results on the ShapeNet Core dataset.

Ourscqm.-

We report numerical results of the ShapeNet dataset in Table 1. MDISN outper-
forms other methods on most of the categories and achieves the best average perfor-
mance. Note that it does not consistently perform best in all categories. Part of the
reason is that cross-category training is unstable and sensitive to the diversity and num-
ber of samples in individual categories. For large categories, such as Airplane and
Chair, the training becomes more stable, and the numerical result of MDISN consis-
tently outperforms others on all the metrics.

To better illustrate the differences between the results generated by the methods,
we show some randomly generated shapes in Figure 6. We use the pre-trained models
from the Mesh R-CNN, OccNet, and DISN. For Ladybird, we reimplement the network
and train it according to their implementation description. In general, all methods can
reconstruct the correct 3D objects, and the pixel-aligned methods can better approxi-
mate the ground truth shapes, recovering fine-grained details. Although being able to
recover geometric details, DISN and Ladybird tend to include more structure noise,
and in contrast, our method has less noise and better details.

For real-world images, we present the quantitative evaluation of the Pix3D dataset

11
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Table 2: Quantitative results on the Pix3D dataset.

10U(%)t EMD(x100)) CD(x1000)

Ladybird | Ours | Ladybird | Ours | Ladybird | Ours
bed 70.7 724 2.80 2.50 9.84 7.61
bookcase 443 48.4 291 2.65 10.94 8.89
chair 57.3 59.0 2.82 2.53 14.05 7.42
desk 51.2 60.0 3.18 2.72 18.87 | 12.21
misc 29.8 45.8 4.45 3.63 36.77 | 18.18
sofa 86.7 85.8 2.02 2.02 4.56 4.84
table 56.9 60.0 2.96 2.48 21.66 8.97
tool 41.3 43.5 3.70 3.39 7.78 17.87
wardrobe 87.5 87.6 1.92 1.96 4.80 5.07
mean 58.4 62.5 2.97 2.65 1436 | 10.12

in Table 2. Following Ladybird, we use ground truth image masks and camera poses
for evaluation. Since there is no official training/test split for the Pix3D dataset, we
randomly select 80% of images from the dataset for training and use the remaining
images for testing. We train and evaluate Ladybird and MDISN using the same setting.
The numerical results show that our method outperforms Ladybird in terms of CD,
EMD, and IOU.

In addition to the quantitative results, we also show surface reconstruction results
from real-world images in Figure 7. Compared to the synthetic images from the
ShapeNet dataset, the real-world images are more diverse in terms of camera views,
object sizes, and appearances. The reconstructed shapes from MDISN are much better

than Ladybird.

12



Table 3: Ablation study of our network. Ground truth camera parameters are used for the ablation study.

Metrics Methods plane bench cabinet car chairdisplay lamp speaker rifle sofa table phone watercraftf mean
Oursyo—refine | 40.3 43.8 57.0 67.5 60.5 555 40.7 575 31.8 652 557 51.0 439 |516
Ours,o_deform| 639 515 57.9 747 632 630 484 612 718 705 563 753 620 | 635

foueor Ours 68.1 625 593 805 664 674 546 642 742 743 60.0 792 68.6 | 67.6
Oursyo—refine | 14.30 931 3.54 10.57 441 7.22 860 7.01 1849 7.14 4.16 1324 1425 | 9.40

EMD(x100)¢Oursno*defm‘m 312 653 283 526 261 342 377 3.66 245 4.11 3.80 3.37 455 |38l

Ours 1.88 1.94 2.62 242 220 212 282 287 1.64 217 253 1.85 201 |2.24

Oursyo—re fine [932.54 297.4 37.09 337.8287.94196.00249.57 162.47 762.36179.4864.74421.25 575.67 (300.33

Ours,o—de form|49.00 199.14 14.82 93.69 14.30 54.16 24.31 39.00 37.14 79.01 52.66 59.06 96.70 |62.54
CDOI000y Ours 374 424 746 417 499 541 815 939 503 4.88 837 4.02 427 |5.70

4.2. Ablation Study

Influence of Core Components. We study two main variants of our network, one using
no deformation modules, denoted Ours,,,— de form» and the other considering no coarse-
to-fine generation, denoted Ours,o_r¢ fine. In OUrs,o_geform. the output fields from
each feature map are accumulated as the final result. In Qurs,,o_ . fine, all feature maps
are combined as a union and predict only one field as the final result. See the appendix
for details.

From Table 3, we can see that both Ours,,,—4e form and Ours,,_r¢fine are unable
to work adequately. The multiscale features could fail if having no additional global
field as in DISN and Ladybird or multiscale deformed fields as in Ours. To understand
this, we show a commonly failed example in Figure 8, where we find that many outliers
and noise are created around the 3D object. Those unexpected surface patches lie at the
boundaries that increase the Euclidean distance between testing sampling and ground
truth samplings, leading to large EMD and CD values. The impact of outlier patches
on IOU is smaller since IOU counts spatial occupancy. Thus in Table 3 the IOU makes
sense, while EMD and CD do not.

Variants of deformation module. The initial field is generated from a template gener-
ator, and deformed by the deformation modules following the changes of consecutive

feature maps. The module contains a state vector and a pair of consecutive feature

13
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(A) Left View (B) Bottom View (C) Front View

Figure 8: A failed example generated by the variants of our network that do not use the multiscale deforma-
tion modules. As can be seen from various views (A-C), the reconstructed shape contains surface fragments
that lie on the boundaries of the canonical 3D shape space. Such results frequently occur from the ablation

networks.

Table 4: Ablation study of our deformation module.

Results
IOU | EMD | CD
714 1.67 | 2.95

Template | Previous Feat. | State

v v 72.0 1.64 | 2.58
v v 72.2 1.63 | 2.35
v v 734 | 159 | 175
v v v 737 | 159 | 1.68

maps. Therefore, we perform the ablation study considering three different factors, the
template, the state, and the previous feature map from the feature pairs. We use the
category ‘Rifle’ for the evaluation. From Table 4, we can see that the module performs
best when all factors are considered and worst when removing all factors. In particular,

the template and the previous feature map are more important than the state vector.

4.3. More Results

While the feature maps dominate the refinement process, the effectiveness of the
individual feature maps is uncertain. In the following, we will show the learned tem-

plates and the influence of the feature maps.

14
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Figure 9: Learned shape templates visualized by implicit fields and 3D surfaces. From (A-C), the templates

are learned from all shape categories, the ‘Car’ category and the ‘Lamp’ category respectively.

Learned Templates. Three different shape templates, the general template, the ‘Car’
template, and the ‘Lamp’ template, are shown in Figure 9. The templates are trained ei-
ther using all categories (general template) or using a single category (‘Car’ or ‘Lamp’
template). From the figures, the ‘Car’ and ‘Lamp’ templates have a more intuitive
meaning than the general template. In Table 4, using a template field also leads to
better performance. Therefore, 3D reconstruction can benefit from a proper initialized

implicit field.

Influence of Feature Maps. In Figure 10 we show more results of the multiscale recon-
struction. All the objects are from the category ‘Rifle’ with a similar shape structure.
From the figure, we can see that the feature maps of the first two levels cannot pro-
vide meaningful information about the shape. Starting from the third level, the global
structure of the object becomes notable in feature images and ao as the reconstructed

shapes. When given higher resolution features, the reconstructed 3D objects contain

Table 5: The influence of the feature maps. As the resolution increases, the performance improves. At the

lowest level, the performance is still reasonable.

Multiscale Feature maps Results

li | la | I3 |la]|l5]|ls | IOU | EMD CD

v | v | 604 3.41 12.47

V| Vv | Vv | 692 2.99 7.11

VvV | Vv | 734 267 5.58
VvV V| Vv]T194 ] 24 4.24
ViIiviIiv Vv |v |V | 8.5 242 4.17




Figure 10: Multiscale Feature-aligned 3D reconstruction. Feature maps (1-6) show different level of shape
details, from which we can see (3) is a key level. Before this level there is very little object-level information,
e.g. feature maps (1-2) of different objects are very similar. After this level, the outline of the object becomes

clearer in both the feature images and the reconstructed shapes.

more surface details and are more aligned with the feature images.

In Table 5 we give qualitative results using different combinations of feature maps.
We use the ‘Car’ category to evaluate multiscale results. The performance continuously
improves when the resolution of the feature maps increases from /; to lg. Larger im-
provement occurs at a lower resolution and becomes minor at higher resolution. This
is consistent with the visual results in Figure 10 and Figure 1. More multiscale results

from other categories are shown in Figure 11.
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Figure 11: Coarse-to-fine 3D object reconstruction.

4.4. Model Complexity

We show the model size and computation complexity in Table ??. We feed the
networks with a 137x137 image and 2048 points to compute the GLOPs. MDISN
has a smaller size but demands more computational resources. Nevertheless, MDISN
enables exhausted mining of images features that consequently leads to faster training

convergence, as shown in Figure 12.

5. Conclusion and Future Work

We present a multiscale deformed implicit surface network for single-image 3D
reconstruction. Our network has a sequence of implicit field deformation modules to
adapt the implicit field to the input image iteratively. The deformation module leverage
multiscale image feature maps and the change of consecutive feature map for implicit
field refinement. Experimental results on synthetic and real-world datasets show that

the proposed method performs better than state-of-the-art methods.

Table 6: Model size and complexity.

Model Model Size (Parameters) | Model Size (MB) | GLOPs (forward pass)

DISN 71.46M 266M 10.22
Ladybird 72.22M 276M 11.76
MDISN 23.5M 90M 24.04
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Figure 12: Convergence speeds. The training losses are similar for MDISN, Ladybird, and DISN, at epochs
30, 51, and 133.
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Appendix A. Data Processing

Appendix A.l1. Datasets.

The ShapeNet Core dataset [11] includes 13 object categories, and for each object,
24 views are rendered with resolution of 137x137 as in [16]. Pix3D Dataset [12]
contains 9 object categories with real-world images and the exact mask images. The
number of views and the image resolution varies from different shapes.We process all
the shapes and images in the same format for the two datasets. Specifically, all shapes
are normalized to the range of [-1,1] and all images are scaled to the resolution of

137x137.

Appendix A.2. 3D Point Sampling.

For each shape, 2048 points are sampled for training. We firstly normalize the
shapes to a unified cube with their centers of mass at the origin. Then we uniformly
sample 256 grid points from the cube and compute th SDF values for all the grid
samples. Following the sampling process of Ladybird [9], the 256° points are down-
sampled with two stages. In the first stage, 32,768 points are randomly sampled from
the four SDF ranges [-0.10,-0.03], [-0.03,0.00], [0.00,0.03], and [0.03,0.10], with the
same probabilities. In the second stage, 2048 points are uniformly sampled from the
32,768 points using the farthest points sampling strategy.

In testing, 65° grid points are sampled are fed to the network, and output the SDF
values. The object mesh is extracted as the zero iso-surface of the generated SDF using

the Marching Cube algorithm.

Appendix A.3. 3D-to-2D Camera Projection.

The pixel coordinate a of a 3D point sampling p is computed as two stages. Firstly,
the point is converted from the world coordinate system to the local camera coordinate
system ¢ based on the rigid transformation matrix A€, such that p¢ = A°p. Then in
the camera space, point p¢ = (z¢, y¢, z°) is projected to the 2D canvas via perspective
transformation, i.e., w(p®) = (z—c g—:) The projected pixel whose coordinate lies out
of an image will reset to 0 or 136 (the input image resolution is fixed as 137x137 in

our experiment).
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Appendix B. Network and Training Details

Appendix B.1. Traning Policy.

We implement our method based on the framework of Pytorch. For training on
the ShapeNet dataset, we use the Adam optimizer with a learning rate le-4, a decay
rate of 0.9, and a decay step size of 5 epochs. The network was trained for 20 epochs
with batch size 20. For training on the Pix3D dataset, we use the Adam optimizer with
a constant learning rate le-4, and smaller batch size 5. The network was trained for
50 epochs. For the ShapeNet dataset, at each epoch, we randomly sample a subset
of images from each category. Specifically, a maximum number of 36000 images are
sampled for each category. The total number of images in an epoch is 411,384 resulting

in 20,570 iterations. Our model is trained across all categories.

Appendix B.2. Network Architecture.

We introduce the details of the image encoder m, template generator 7, implicit

field deformation module A in our paper.

Appendix B.2.1. Image Encoder.

We use the convolution network of VGG-16 as our image encoder, which generates
multi-resolution feature maps. Similar to DISN [8], we reshape the feature maps to the
original image size with bilinear interpolation and collect the local image features of a
pixel from all scales of feature maps. Specifically, the local feature contains six sub-
features from the six feature maps, with the dimension of {64, 128, 256, 512, 512,

512} respectively.

Appendix B.2.2. Template Generator.

The template generator maps each point sampling to a SDF value. The point
is firstly promoted from R to the dimension of 512 using a multi-layer perceptron
(MLP). Then the embedded point feature is passed to another MLP to generate the
SDF.
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Template Generator g

Input a 3-dim point

— output a 1-dim SDF value

Operation Output Shape
ConvlD+ReLU (64,
Conv1D+ReLU (256,)
Conv1D+ReLU (512,)
ConvlD+ReLU (512)
ConvlD+ReLU (256,

ConvlD (1,)

Table B.7: Template Generator.

Appendix B.2.3. Deformation Module.

The implit field s is firstly embedded to a 256-dim feature by a 3-layer MLP
(64,128,256) before passing to the deformation module. Then the implicit field de-
formation module combine the feature of s, image feature maps /,, and /,, 1, and state
vector sv,, into a unified vector and use it to predict a residual field s and a new state
vector sv,41. Then the residual field is added to the input field to obtain the deformed

field, i.e., s,41 = sp + Is.

Deformation Module /

Input a D-dim vector

— output a 1-dim SDF value and a 256-dim state vector

Operation Output Shape
ConviD+ReLU (512,)
ConvlD+ReLU (256,

Conv1D | ConvlD (1,) | (256,)
Sum (1,)

Table B.8: Deformation Module.

Appendix C. Ablation Networks

Two main variants of our network, Ours,,o—deform and Ours,,_rcfine are shown

in Figure C.13.
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Figure C.13: Method variants, including Ours, Ours,,o—de form and Ours, o re fine-
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