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The abnormal detection of moving objects in intelligent video surveillance system plays an important role in early warning for
man-made disasters. However, the current abnormal detection methods cannot effectively perceive the cross-camera abnormal
movements of video objects. The main reason is that the existing methods ignore the spatial relationship between the fields of
view of different cameras and blind areas among the fields of view. This condition prevents them to effectively infer and
analyze the cross-camera movements of video objects combined with geospatial information. This paper proposes the detection
of multicamera pedestrian trajectory outliers in geographic scene to address this problem. This approach first spatializes the
video object trajectory and then realizes trajectory vectorization by extracting trajectory points with equal time difference. The
position trajectory outliers are detected by constructing isolation forest and scoring trajectory vectors, and the velocity
trajectory outliers are identified through vectors’ neighborhood comparison. Related experiments show that our method can
effectively improve the efficiency and accuracy of detecting trajectory outliers, which can enhance the early warning capability
of video surveillance systems for man-made disasters.

1. Introduction

In recent years, various man-made disasters have occurred
frequently in human production and living places, causing
immeasurable loss of lives and properties. Unlike natural
disasters, the occurrence of man-made disasters often has
early signs, and these signs are closely related to human
abnormal behavior. We can provide early warning for
disasters by detecting and analyzing abnormal behavior
[1], which can be taken in advance to reduce or avoid the
occurrence of man-made disasters. Human abnormal
behavior is usually difficult to detect by using artificial
methods. Thus, continuous monitoring and analysis of geo-
graphic scenes for detecting abnormal behavior are
required. Intelligent video surveillance is an ideal approach
for detecting human abnormal behavior. The identification
and positioning of abnormal behavior can be realized by
combining video and geographic information system
(GIS). This process can provide efficient real-time technical
support for early warning and emergency treatment of
man-made disasters [2, 3].

With the development of surveillance video system from
single camera to multicamera network [4], effective analysis
of video data becomes challenging. In the field of abnormal
detection, effectively determining whether abnormal behav-
ior occurs on the basis of the motion of the video object in
a single camera is often impossible. Comprehensively ana-
lyzing the video object’s information in multiple cameras is
necessary to reach an accurate conclusion. However, the cur-
rent trajectory outlier detection methods can only analyze
the object’s trajectory in a single camera’s field of view [5,
6]. These methods ignore the spatial relationship between
the fields of view of different cameras and blind areas among
the fields of view and cannot perceive the cross-camera
abnormal movements of video objects. In response to the
above problems, this paper proposes the detection of multi-
camera pedestrian trajectory outliers in geographic scene
(Figure 1). Trajectory outliers are detected by analyzing the
video object trajectories and the spatial elements of geo-
graphic scene. This approach first spatializes the video object
trajectories by associating the trajectories of video objects in
different cameras and then realizes trajectory vectorization
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by extracting trajectory points with equal time difference.
The position trajectory outliers are detected by constructing
isolation forests and scoring trajectory vectors, and the
velocity trajectory outliers are identified through vectors’
neighborhood comparison. The types of trajectory outlier
detection are divided into predefined outlier detection and
undefined outlier detection [7]. The former determines
whether the video object meets specific motion conditions
to determine the anomaly, and the latter detects a small
number of objects where their movement modes are differ-
ent from a large number of video objects. This article only
detects the undefined anomaly. This paper only detects out-
liers for pedestrian trajectories due to the large differences in
the activity characteristics and the outlier determination cri-
teria between pedestrians and vehicles [8].

The rest of this paper is organized as follows: Section 2
introduces the related research work. Section 3 describes
the methods of spatialization and vectorization of video
object trajectories in geographic scene. Section 4 presents
the detection method of position trajectory outliers. Section
5 presents the detection of velocity trajectory outliers. Sec-
tion 6 analyzes the related performance of this method
through experiments. Finally, Section 7 provides the conclu-
sion and summary of this paper.

2. Related Works

This paper involves three research fields: Video+GIS disaster
management, video-geographic scene data fusion organiza-
tion, and video object trajectory outlier detection. The
related researches are as follows.

2.1. Video+GIS Disaster Management. For the research of
video combined with GIS in the field of disaster manage-
ment, the causes of disasters are classified into natural disas-
ters, such as fire [9], extreme weather [10], and man-made
disasters [11]. The response areas are divided into disaster
early warning and preparedness and disaster emergency
response. Research on disaster prevention is mainly used
for early warning of abnormal crowd behavior associated

with man-made disasters, such as crowd abnormal motion
detection [12] and scene population statistics [13]. In disas-
ter emergency response, relevant research mainly integrates
the video transmitted by unmanned aerial vehicle [14, 15],
balloon [16], satellite [17], and other platform load cameras
with GIS information to evaluate and analyze the disaster
situation. For specific research, one mainly focuses on the
system construction level, and the other mainly focuses on
the data analysis level. The former includes as CCTV-
based disaster identification and response system [18], adap-
tive emergency video communication system [19], and cloud
computing perception analysis system [20]. The latter
includes disaster loss assessment using spatial video [3],
disaster semantic integration based on text report and on-
site video [21], and disaster video detection based on deep
learning [22].

2.2. Video-Geographic Scene Data Fusion Organization. The
data fusion organization of video and geographic scene is the
basis of video target analysis combined with geospatial infor-
mation. On the basis of the concepts of multimedia GIS [23],
geo-video [24], and video GIS [25], previous research con-
structed data organization methods, such as metadata
description method [26] and global positioning system asso-
ciation method [27], and realized the geographic retrieval
and playback of video images by describing the geographic
location of video frames.

In recent years, more attention has been paid to the
fusion of video content and geographical scene. A video
scene data fusion organization method has been formed on
the basis of camera spatial model [28] by constructing the
image-geospatial mapping relationship [29]. Typical camera
spatial models include quadrilateral model in 2D scene [30]
and pyramid model in 3D scene [31]. On the basis of the
developed data fusion organization methods of the above
model, such as R-tree index based on view [32] and camera
topological relationship [33], the data are fused and orga-
nized by analyzing the spatial relationship of cameras’ fields
of view. The other method uses texture association [34], spa-
tiotemporal behavior association [35], semantic association
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Figure 1: Flowchart of detection of trajectory outliers.
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[36], and other methods of moving target to fuse and orga-
nize data.

2.3. Detection of Video Object Trajectory Outliers. The detec-
tion of video object trajectory outliers usually detects and
extracts a small number of trajectories where their location
or velocity is greatly different from other trajectories [37].
The common method is to detect trajectory outliers in unla-
beled datasets by marking datasets [38, 39].

However, in practical application, labeled datasets are
not always available due to the problems of complex trajec-
tory shape and difficult real-time update of classifier; thus,
some trajectory outlier detection methods use unlabeled
datasets [40, 41]. Unlabeled dataset outlier detection is more
efficient and accurate than labeled dataset outlier detection,
but trajectory features are difficult to define accurately. At
the algorithm level, trajectory outlier detection methods are
mainly divided into two categories: distance-based and
clustering-based methods. On the basis of the distance
method, the differences in different attributes of trajectories
are calculated, and then, the weighted sum of different differ-
ences is used to detect trajectory outliers. Typical methods
include trajectory start and end+velocity direction detection
method [42], t-partition detection method using minimum
description length principle [1], and angle threshold division
detection method [4]. However, such methods usually need
accurate trajectory division, and time complexity is high.
The trajectory dataset is reasonably clustered on the basis
of clustering methods, and then, the detection of outliers is
conducted. Typical methods include trajectory outlier detec-
tion methods based on neighborhood [43], feature learning
model detection methods based on sparse coding [44], and
anomalous point detection methods [45]. Although these
methods use machine learning to improve the accuracy of
trajectory outlier detection, they cannot be applied to
unmarked trajectory datasets.

3. Vectorization of Video Object Trajectories in
Geographic Scene

The video object trajectories in image space need to be trans-
formed into geospatial trajectory vectors to realize the
anomaly detection of video target in geographical scene.
This chapter introduces related works of vectorization.

3.1. Spatialization of Video Object Trajectories. Trajectory
spatialization needs to be realized first to realize trajectory
vectorization. In this paper, video target subgraph and
ground contact points are taken as positioning points sam-
pled at a certain time interval [46]. The contact point of
the video target with the ground will be transformed from
image space into object space. The video object trajectories
in the geographic scene are obtained by constructing the
mapping relationship between image space and geospatial
[28, 47], as shown in Figure 2.

In this paper, the mapping model is constructed by using
projection matrix method. Assuming that q is the image
coordinate of a point and Q is the geospatial coordinate,
the homogeneous coordinates of q and Q can be expressed

as follows:

q = xy1½ �T,
Q = XYZ1½ �T:

ð1Þ

The projection matrix is calculated from the premea-
sured image space and geographic space corresponding to
the same name point group data. Let the projection matrix
be M, and the relationship between q and Q is as follows:

q = PQ: ð2Þ

After scaling, translation, and rotation transformation
from image plane to the cameras’ fields of view plane in
geospatial, the projection matrix P can be decomposed into
the following:

P = s∙W∙R, ð3Þ

where s is the scaling factor; W is the camera translation
transformation matrix; R is the 3 × 4D rotation transforma-
tion matrix.

W =

f u 0 u

0 f v v

0 0 1

2
664

3
775,

R = r1r2r3e½ �,

ð4Þ

where f u and f v represent the product of the physical focal
length of the lens and the size of the sensor in the transverse
and longitudinal axes of each unit; u and v represent the off-
set of the image imaging center relative to the main optical
axis in the horizontal axis and the vertical axis, respectively;
r1, r2, and r3 represent the rotation relationship of the coor-
dinate system in the direction of X axis, Y axis, and Z axis in
physical space, respectively; e represents the translation rela-
tionship between coordinate systems.

When using the projection matrix method, the cameras’
fields of view plane in geospatial space are assumed to be a
horizontal plane; that is, the plane is Z = 0. Therefore, the
mapping relationship from image space to geospatial space
can be regarded as the mapping from one plane to another.
To simplify the calculation, we remove Z in Q and rotate r3
around the Z axis in R. The projection matrix P is simplified
as follows:

P = s∙

f u 0 u

0 f v v

0 0 1

2
664

3
775∙ r1r2r3e½ �: ð5Þ

In accordance with the solution of matrix P, the geospa-
tial coordinates of video object trajectories can be obtained.

3.2. Trajectory Vectorization. After spatialization in Section
3.1, map the positions of all video objects in each frame of
surveillance videos to a unified 2D plane coordinate system
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[46]. Through video image target reidentification, cross-
camera trajectories’ association can be achieved [48].

This paper presents a trajectory vectorization method
based on position and azimuth. The video object trajectory
Trai is represented as a set of 2D points.

Trai = pi,j j = 1,⋯, lenið Þ
n o

,

pi,j = xi,j, yi,j
� �

:

ð6Þ

For ∀Trai, a set of trajectory vectors ℸ is obtained
through trajectory vectorization.

ℸi = ui,k k = 1,⋯, len Traið Þ − 1ð Þ� �
,

ui,k = xi,k, yi,k, xi,k+1, yi,k+1, θi,k
� �T, ð7Þ

where θ represents the azimuth of the vector. The direction
of 0° (usually chooses the north of the geographical position)
is defined in the scene. For ∀k, the azimuth θ is defined as 0°
rotates counterclockwise to the angle turned by pi,k, pi,k+1

�����!.
The vectorization process of multicamera video object

trajectories is shown in Figure 3. A trajectory (Trai) succes-
sively passes through 3 camera fields of view and 2 blind
areas. For trajectories in cameras’ fields of view, the position
of adjacent frames is used as the starting points and end
points of the vector. For trajectories in blind areas, the exit
from the previous camera position and entry to the next
camera position of trajectories are taken as starting points
and end points of the vector.

4. Detection of Position Trajectory Outliers
Based on Isolation Forest

Isolation forest [49], as a data anomaly detection method,
is composed of a large number of isolation trees. Based on
partition isolation and ensemble learning, the abnormal
data is found by constructing a large number of isolation
trees. For each isolation tree, a random hyperplane is
designed to cut the data space. One cut can generate two
subtrees and then continue to use a random cut until
there is only 1 data point in each subtree. Due to the
low density of abnormal data, the number of divisions is
less than that of normal data, so the average depth is dee-
per on isolation forest. Isolation forest has the advantages
of not needing to calculate related distance, density, and
other indicators, low time complexity, and high recogni-
tion accuracy. Therefore, we use isolation forest to calcu-

late location anomaly score for trajectory vectors. The
anomaly score for each trajectory vector is calculated by
inputting all the trajectory vectors of the dataset into the
isolation forest.

4.1. The Set of Trajectory Vector Generation. Each video tar-
get in the whole dataset is spatialized and vectorized, and
then, all trajectory vectors are combined to obtain the set
of trajectory vectors:

V =
[

ℸi: ð8Þ

4.2. Isolation Tree Structure. The main steps to construct an
isolation tree are as follows:

(1) Randomly select s trajectory vectors from V as s root
nodes of isolation trees (in this paper, s = d1/60 ·NTe
, where NT is the total trajectory vectors of T)

(2) Randomly select one vector component

(3) Randomly select a split value mid between the min-
imum and maximum values in the selected vector
component. The split value divides the sample space
into two subtrees, and the one less than mid is
regarded as the left subtree. The one greater than
mid is regarded as the right subtree

(4) Repeat steps 2 and 3 for the two subtrees. Iterate
continuously until only one trajectory vector is left
on the leaf node or the depth of the specified tree is
reached

Through the above steps, s isolation trees are constructed
to form an isolation forest.

Figure 2: Schematic of the video object trajectory spatialization.

Trai

… …ui,1
ui,2 ui,len(Trai)-1

ui,k
ui,k+1

Figure 3: Schematic of multicamera trajectory vectorization.
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4.3. Position Anomaly Score Calculation of Trajectory
Vectors. After Section 4.1, each trajectory vector ui in
each isolation tree is obtained. Since average depth of iso-
lation trees grows in the order of log NT [7], it has a
structure equivalent to a BST [50]. We define the posi-
tion anomaly score of the vector uφ by the ratio of the
depth expectation of uφ to the average value of search
path length in BST.

Score uφ, p
	 


= 2−E h uφð Þð Þ/c pð Þ+1, ð9Þ

where hðukÞ is the depth of uk in the isolation tree, Eðh
ðuφÞÞ represents the depth expectation computed over
all trees in the forest of uφ, p represents the number of
samples, and cðpÞ represents the value of search path
length in BST given the number of samples p [51].

c pð Þ =
2H p − 1ð Þ − 2 p − 1ð Þ

n
, p > 2,

1, p = 2

0, p < 2,

8>>><
>>>:

,

H xð Þ = ln xð Þ + ξ,

ð10Þ

where ξ represents the Euler constant. To consider the
length difference between vectors in blind areas and vec-
tors in camera’s field of view, we make the following
adjustment to obtain the anomaly score of vectors in
blind areas. Assuming uo is the vector in blind areas,
its anomaly scoreðuo, pÞ will be adjusted to the following:

Score′ uo ,pð Þ = 2−E h uoð Þð Þ+ε/c pð Þ+1,

ε =
1/nout∑ uoutk k
1/nin∑ uink k ,

ð11Þ

where ε represents the adjustment coefficient; noutand nin
represent the number of vectors in blind areas contained
in the trajectory of uo and the number of vectors in cam-
era’s field of view contained in the trajectory of uo; uout
represents any vector in blind areas on the trajectory
where uo is located; uin represents any vector in camera’s
field of view on the trajectory where uo is located. kuoutk
and kuink represent the norm of uout and uin,
respectively.

The use of the depth expectation reflects the density
of the nearby vector data, because the sparser the trajec-
tory vector, the trajectory vector is easier to be separated
in hyperplanes and the greater the possibility of abnor-
mality [50]. The closer the value of scoreðuφ, pÞ is to 1,
the higher the probability that the sample is a trajectory
outlier vector.

4.4. Detection of Position Trajectory Outliers. The traditional
position trajectory outlier detection algorithm [1] regards
the ratio of the number of abnormal segments to the total
number of trajectory segments as the evaluation criteria.
However, for the multicamera trajectory mentioned in this
paper, sufficient abnormal segments may be ignored
because the trajectory is extremely long. Therefore, we
define the multicamera position trajectory outlier as a tra-
jectory with a sufficient proportion of position trajectory
outlier vectors or a sufficient number of position trajectory
outlier vectors and evaluate it in terms of the trajectory
position anomaly value. Determine whether ∀Trai satisfies
the following:

Sl Traið Þ > Tl,  Tl ∈ 0, 1½ �ð Þ, ð12Þ

where Trai is a position trajectory outlier and Tl is the
threshold of trajectory position outlier. The calculation
method of SlðTraiÞ is as follows:

where Sl1ðTraiÞ and Sl2ðTraiÞ represent the proportion of
trajectory position anomaly value and the number of trajec-

tory position anomaly value of trajectory Trai, NUM means
counting, μl is the trajectory vector isolation forest score
threshold ðgenerally ≤ 0:5Þ, and n1 is the location trajectory

outlier vector number threshold ðgenerally ≤ 1/2NUMðui,j
∈ TraiÞÞ. The closer μl is to 1 and the bigger is n1, the fewer

position trajectory outliers are detected. The specific value
shall be set according to the actual demand and the experi-
ence of experts.

Sl Traið Þ =max Sl1 Traið Þ, Sl2 Traið Þð Þ,

Sl1 Traið Þ = NUM ui,j ∈ Trai, score ui,j, p
	 


> μl
	 
	 


NUM ui,j ∈ Trai
	 
 ,  μl ∈ 0, 1½ �ð Þ,

Sl2 Traið Þ =
1, NUM ui,j ∈ Trai, score ui,j, p

	 

> μl

	 
	 

≥ n1,

NUM ui,j ∈ Trai, score ui,j, p
	 


> μl
	 
	 

n1

, NUM ui,j ∈ Trai, score ui,j, p
	 


> μl
	 
	 


< n1 n1 ∈N+ð Þ,

8><
>:

ð13Þ
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5. Detection of Velocity Trajectory Outliers
Based on the Trajectory
Vectors’ Neighborhood

In this paper, the neighborhood comparison method is used
to compare the velocity difference between adjacent trajec-
tory vectors and determine the velocity trajectory outliers.

5.1. Trajectory Vectors’ Position Neighborhood Generation.
The concept of adjacency vectors for any trajectory vector
is described as trajectory vectors within the circular position
neighborhood. For ∀uφ = ½xφ, yφ, xφ+1, yφ+1, θφ�T ∈ T , if any
trajectory vector uλ = ½xλ, yλ, xλ+1, yλ+1, θλ�T ∈ T is the posi-
tion neighborhood vector of uφ, denoted as simDðuφ, uλÞ,
then uφ, uλ should satisfy the following:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xφ − xλ
	 
2 + yφ − yλ

� �2
r

<D: ð14Þ

In particular, if uφ is a vector in blind areas, in addition
to satisfying Equation (14), it must also satisfy the following:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xφ+1 − xλ+1
	 
2 + yφ+1 − yλ+1

� �2
r

<D: ð15Þ

Specifically, the neighborhood vectors of the trajectory
vector in cameras’ field of view are defined as trajectory
vectors adjacent to the starting point. The neighborhood
vector of the trajectory vector in blind areas is defined as
trajectory vectors adjacent to the exit point of the previous
camera and the entry point of the next camera. Figure 4
shows the neighborhood representation method of the tra-
jectory vectors in different situations. The green arrow
represents the original trajectory vector, the red circle rep-
resents the neighborhood of the beginning and end of the
trajectory vector, and blue arrows represent the neighbor-
hood vectors.

5.2. Detection of Velocity Trajectory Outliers. Due to different
scenes, the average speed of pedestrians under each camera

is very different. We cannot simply use velocity threshold
to detect anomalies in trajectories under different cameras.
We define the multicamera velocity trajectory outlier as a
trajectory with a sufficient proportion of velocity trajectory
outlier vectors where the standard deviation of the neighbor-
hood exceeds the threshold or a sufficient number of trajec-
tory vectors where the standard deviation exceeds the
threshold. Evaluation is made on the basis of trajectory
velocity anomaly value.

On the basis of the result of the neighborhood genera-
tion of trajectory vectors, the velocity trajectory outliers are
detected by comparing the velocity of the original vector
with the vector in the neighborhood. The velocity of the tra-
jectory vector is described as the norm of the trajectory vec-
tor to time.

v uφ
	 


=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xφ+1 − xφ
	 
2 + yφ+1 − yφ

� �2
r

Δt
, ð16Þ

where Δt is the sampling time difference between the begin-
ning and the end of the vector. We use the standard devia-
tion of the velocity of the trajectory vector and its
neighborhood vectors to judge velocity outliers. Given the
trajectory vector ui,j in trajectory Trai, its standard deviation
SDðui,j ∈ TraiÞ is as follows:

SD ui,j ∈ Trai
	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NUM simD ui,j, uφ

	 
	 
 〠
simD ui, j ,uφð Þ

v ui,j
	 


− v uφ
	 
	 
2vuut :

ð17Þ

Determine whether ∀Trai satisfies the following:

Sv Traið Þ > Tv,  Tv ∈ 0, 1½ �ð Þ, ð18Þ

where Trai is a velocity trajectory outlier and Tv is the
threshold of trajectory velocity anomaly. The calculation
method of SvðTraiÞ is as follows:

Sv Traið Þ =max Sv1 Traið Þ, Sv2 Traið Þð Þ,

Sv1 Traið Þ = NUM SD ui,j ∈ Trai
	 


> μv
	 

NUM ui,j ∈ Trai

	 
 ,

Sv2 Traið Þ
1, NUM SD ui,j ∈ Trai

	 

> μv

	 
	 

≥ n2,

NUM SD ui,j ∈ Trai
	 


> μv
	 


n2
, NUM SD ui,j ∈ Trai

	 

> μv

	 
	 

< n2,

8><
>:

ð19Þ
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where Sv1ðTraiÞ and Sv2ðTraiÞ represent the proportion of
velocity anomaly value and the number of trajectory velocity
anomaly value of trajectory Trai, μv is the threshold of the
mean of standard deviation, n2 is the number of velocity tra-
jectory outlier vectors’ number threshold, and n2 ∈N+,
respectively. The parameter selection rules here are the same
as for location trajectory outliers.

6. Experimental Analysis

6.1. Experimental Environment. The experimental data in
this paper are the open-source data provided by
DukeMTMC [46]. These data include 8 channels of video
image data synchronously captured by cameras with fixed
spatial position and attitude (Figure 5), and geographical
position data of all cameras and cameras’ field of view and
camera correction parameters (Figure 6). The data also
include more than 1845 cross-camera dynamic object trajec-
tories that are marked by the image bounding box generated
by automatic detection and tracking by computer vision
+manual labeling and correction. In this experiment, all of
trajectories in DukeMTMC are selected as the experimental
data.

Experimental environment includes software (Windows
10, Python3.6+ sklearn0.0) and hardware (Intel(R) Core
(TM) i7-10510U CPU @ 1.80GHz, RAM 12.0GB, NVIDIA
GeForce MX250).

The preprocessing algorithm of obtaining video moving
target trajectories is as follows: the video dynamic object
detection algorithm is Mask-RCNN [52], the tracking algo-
rithm is CSRT [53], and the cross-camera recognition algo-
rithm is an improved method to generate unlabeled
samples based on generative adversarial network [54].

6.2. Detection and Analysis of Position Trajectory Outliers.
We choose trajectory outlier detection methods based on
segmentation but based on distance and clustering for com-
parison. Results show that the method of this paper is more
efficient than the traditional.

The original dataset lacks the true value of position tra-
jectory outliers [55]. Taking each trajectory as a sample, we
selected five volunteers for each sample to manually vote
to determine the position trajectory outliers. At least two
of the five volunteers’ considered position trajectory outliers
are taken as negative samples and other trajectories as posi-
tive samples (position normal trajectories). After the above
manual processing, we extracted 316 negative samples from
1845 video target trajectories, with an exception rate of 17%.

To realize the effective selection of parameters, we use F1
-score [56] index to obtain the harmonic average of accuracy
and recall through calculation for parameter optimization.
When the maximum value F1 is taken, we substitute the
corresponding parameters as the optimal parameters in the
subsequent experiments.

1
2

3
4

5
6

7
8

Figure 5: Eight channels of surveillance video image.

3

5

7
6

2

1

8

Figure 6: Camera’s field of view distribution of monitoring camera.

(a) (b)

Figure 4: Schematic of trajectory vector neighborhood and neighborhood vectors. (a) Beginning point neighborhood of the trajectory vector
and its neighborhood vectors in the single camera’s field of view. (b) Beginning and end of the trajectory vector and its neighborhood vectors
in camera blind areas.
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F1 =
2∙precision∙recall
precision + recall

: ð20Þ

In accordance with the above formula, calculate the
value of F1 under different parameter value combinations,
as shown in Table 1.

As shown in Table 1, when the parameter is n1 = 24, Tl
= 0:21, μl = 0:3, the maximum value is F1. We take this
group of parameters for the detection of trajectory outliers,
and the results are shown in Figure 7.

We use density-based segmentation detection method
[57] and distance-based segmentation detection method
[1] to compare and verify the effectiveness of our
method.

Like this paper, we optimized other method parameters
and use a receiver operating characteristic-area under the
curve (ROC-AUC) evaluation system [58] to compare and
analyze the detection effects of these methods in the best
case. ROC curve is a graph with false positive rate (FPR) as
the horizontal axis and true positive rate (TPR) as the verti-
cal axis. AUC represents the area enclosed by ROC curve
and its coordinate axis.

AUC =
1
2
〠
m−1

i=1
FPRi+1 − FPRið Þ · TPRi+1 − TPRið Þ,

FPR = FP
FP + TN

,

TPR =
TP

TP + TN
,

ð21Þ

Table 1: F1 value under different parameter value combinations.

(a)

n1 = 9 n1 = 18
T l = 0:1 T l = 0:21 T l = 0:24 T l = 0:1 T l = 0:21 T l = 0:24

μl = 0:1 0.901 0.878 0.569 0.901 0.891 0.633

μl = 0:3 0.900 0.900 0.668 0.900 0.935 0.797

μl = 0:5 0.900 0.896 0.669 0.899 0.931 0.806

μl = 0:9 0.899 0.894 0.668 0.899 0.928 0.802

(b)

n1 = 24 n1 = 30
T l = 0:1 T l = 0:21 T l = 0:24 T l = 0:1 T l = 0:21 T l = 0:24

μl = 0:1 0.901 0.891 0.635 0.901 0.892 0.636

μl = 0:3 0.900 0.944 0.857 0.900 0.938 0.883

μl = 0:5 0.899 0.939 0.872 0.899 0.932 0.905

μl = 0:9 0.899 0.936 0.868 0.899 0.929 0.900

(a) (b)

(c)

Figure 7: Detection results of undefined position trajectory outliers: (a) DukeMTMC dataset trajectories; (b) manually marked trajectory
outliers; (c) trajectory outliers detected by position trajectory outlier detection method.
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where the definitions of TP, TN, FN, and FP are shown in
Table 2.

As shown in Figure 8, we take some groups of parame-
ters for each method and draw the ROC curves of three algo-
rithms. The maximum AUC value of the proposed method
is 0.94, which is higher than that of the two traditional
methods by 0.79, indicating that the proposed method has
lower false detection rate and higher recall rate compared
with the two other methods. Through the analysis of the
principle of the algorithm, we believe that the traditional
clustering-based detection method cannot well determine
the cluster center, and the distance-based detection method
cannot accurately define the distance between trajectory seg-
ments, especially the angular distance between trajectories.
The two traditional methods only consider the proportion
of abnormal segments in the whole trajectory. Generally,
for multicamera trajectories, position anomalies account
for a small proportion. Thus, these methods cannot correctly
detect trajectory outliers. The definition of position trajec-

tory outliers in this paper considers the proportion and
number of trajectory vectors, thereby overcoming the short-
comings of traditional methods.

We investigate the time efficiency of the algorithm. The
processing time of the algorithm is counted in accordance
with the parameters when the highest AUC value is taken
for each algorithm. The results are shown in Table 3.

As shown in Table 3, the processing time of the pro-
posed algorithm is 124.06 s. The processing times of TRAOD
and F-DBSCAN are 14864.30 and 36255.07 s, respectively.
The results show that the efficiency of the proposed algo-
rithm is better than that of the traditional method when
the datasets are the same.

6.3. Detection and Analysis of Velocity Trajectory Outliers. In
practice, different scenarios or different users’ intentions will
lead to different velocity trajectory outliers. We select differ-
ent threshold values of standard deviation μv for algorithm
analysis. We detect multicamera velocity trajectory outliers
by setting different parameters in D = 5m, and the number
of trajectory outliers detected under each parameter is
shown in Table 4.

We show the velocity trajectory outliers under the four
parameters of n2 = 10, μv = 1:65, Tv = 20, n2 = 10, μv = 1:65,
Tv = 5, n2 = 10, μv = 1:9, Tv = 20, and n2 = 20, μv = 1:65, Tv
= 20, as shown in Figure 9. All of the trajectories not shown
in Figure 9 are normal velocity trajectories. Green segments
indicate the part with normal velocity, and red segments
represent the part with abnormal velocity.

Figure 9(a) shows the result of outlier detection of n2 =
10, μv = 1:65, Tv = 20, and Figure 9(b) shows the result of
outlier detection of n2 = 10, μv = 1:65, Tv = 5, where n2 and
μv are unchanged compared with Figure 9(a). Trajectory
outliers in Figure 9(a) are a subset of trajectory outliers in
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False positive rate

Method of this paper: i = 24, p = 0.21, t = 3, AUC = 0.91
Method of this paper: i = 24, p = 0.23, t = 3, AUC = 0.94
TRAOD: p = 0.95, D = 80, F = 0.2, AUC = 0.77
TRAOD: p = 0.95, D = 80, F = 0.1, AUC = 0.73
TRAOD: p = 0.95, D = 55, F = 0.1, AUC = 0.79
F-DBSCAN, AUC = 0.79

0.20.0

Figure 8: RAC curves and AUC values of our method, TRAOD,
and F-DBSCAN in the best case.

Table 3: Processing time of different algorithms on the
DukeMTMC dataset.

Method Our method TRAOD F-DBSCAN

CPU time 124.06 s 14864.30 s 36255.07 s

Table 4: Number of velocity trajectory outliers under the
combination of different parameters.

(a)

n2 = 5 n2 = 10
Tv = 5 Tv = 10 Tv = 20 Tv = 5 Tv = 10 Tv = 20

μv = 1:15 779 754 752 660 463 424

μv = 1:4 497 476 475 390 201 173

μv = 1:65 221 204 202 152 52 36

μv = 1:9 94 82 79 75 27 17

(b)

n2 = 15 n2 = 20
Tv = 5 Tv = 10 Tv = 20 Tv = 5 Tv = 10 Tv = 20

μv = 1:15 657 349 206 656 346 158

μv = 1:4 387 160 94 386 153 78

μv = 1:65 151 45 14 151 45 13

μv = 1:9 75 24 8 75 24 7

Table 2: Contingency table.

Estimate True False

Truth value

True TP FN

False FP TN
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Figure 9(b). Figure 9(c) shows the result of outlier detection
of n2 = 10, μv = 1:9, Tv = 20. Compared with Figure 9(a), no
change is observed in n2 and Tv but μv increases. Thus, some
abnormal segments in Figure 9(a) are no longer detected as
outliers in Figure 9(c), resulting in a decrease in the number
of trajectory outliers. Compared with Figure 9(a),
Figure 9(d) shows the result of trajectory outlier detection
of n2 = 20, μv = 1:65, Tv = 20. Compared with Figure 9(a),
μv and Tv are unchanged but n2 increases. Therefore, some
trajectory outliers in Figure 9(a) are no longer detected as
outliers because they cannot reach the new threshold of the
number of abnormal segments, resulting in a decrease in
the number of trajectory outliers. Trajectory outliers in
Figure 9(d) are a subset of trajectory outliers in Figure 9(a).

The proposed method can get different outlier detection
results by adjusting the relevant parameters to relax or
tighten the standard.

7. Conclusions

This paper proposes a multicamera pedestrian trajectory
outlier detection method in geographical scene to solve the
problem that the current trajectory outlier detection
methods cannot effectively infer and analyze the cross-
camera abnormal movements of video objects based on
geospatial information. The proposed method is based on
the spatialization and vectorization of video object trajecto-
ries. Position trajectory outliers are detected by the isolation
forest, and velocity trajectory outliers are detected through
vectors’ neighborhood comparison. The experimental results
show that the recall, precision, and efficiency of this method
are higher than those of the traditional algorithm. In this
method, different velocity trajectory outlier detection results
can be obtained by adjusting the relevant parameters to relax
or tighten the detection standards. This paper does not com-
bine the spatial semantic features of geographical scenes for
trajectory anomaly analysis. Therefore, in the future work,

we will study a more scene adaptive video target anomaly
detection method.
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n2 = 10
𝜇v = 1.65
Tv = 20
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n2 = 10
𝜇v = 1.65
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𝜇v = 1.9
Tv = 20

(c)
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𝜇v = 1.65
Tv = 20
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Figure 9: Schematic of multicamera velocity trajectory outliers: (a) the result of velocity trajectory outlier detection of n2 = 10, μv = 1:65,
Tv = 20; (b) the result of velocity trajectory outlier detection of n2 = 10, μv = 1:65, Tv = 5; (c) the result of velocity trajectory outlier
detection of n2 = 10, μv = 1:9, Tv = 20; (d) the result of velocity trajectory outlier detection of n2 = 20, μv = 1:65, Tv = 20.
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