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Figure 1: Nod to Auth user identifcation pipeline. 

ABSTRACT 
With AR/VR devices becoming increasingly common around us, 
their user authentication has posed a critical challenge. While typ-
ing passwords is straightforward with a keyboard, it has been 
cumbersome with conventional AR/VR input techniques such as 
in-air gestures and hand-held controllers. In this work, we devel-
oped a fuent authentication technique that allows AR/VR users 
to unlock their profles with simple head gestures (e.g., nodding). 
This resembles the powerful “Slide to Unlock" interaction on touch 
screen devices. Specifcally, we extract bio-features such as neck 
length and head radius from IMU sensor readings of these head 
gestures for user identifcation with machine learning. Though 
our approach is less strict compared with conventional password-
based methods, we believe its swiftness greatly facilitates scenarios 
with frequent user switching (e.g., device sharing across team and 
family members) which demand quick authentications. Through 
a 10-participant evaluation, we demonstrated that our system is 
robust and accurate with an average accuracy of 97.1% on groups 
of 5, simulating family and lab use. 
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1 INTRODUCTION 
With the emerging success of AR/VR devices, their authentication 
techniques have received an increasing amount of research efort. 
Password-based authentication approaches have mostly relied on 
external input devices which can be cumbersome to carry around 
and use. Additionally, unlike smartphones and wearables, AR/VR 
headsets are often shared across users (e.g., entire family sharing 
one VR headset), making their authentication more frequent than 
that of personal devices. All of these demand fuent authentication 
approaches for AR/VR which users could perform swiftly with little 
interaction overhead. 

In this research, we propose Nod to Auth, a novel AR/VR authen-
tication technique that allows users to unlock their headsets by 
one-stroke gestures as simple as nodding. Our approach is built 
around IMU sensors featured on most AR/VR devices, which means 
our approach can be easily and cheaply scaled to a wide variety 
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of devices from hobbyists’ toys to high-end commodity devices. 
Specifcally, we utilize the IMU sensor to extract biometric features 
of its wearer’s head-neck section. Such features include average 
neck length, changes in neck length and head orientation during 
head gestures, and characteristics of the head gesture trajectory, 
which capture minor but distinctive patterns difering across users. 
We then use a standard machine learning model to identify users, 
which according to a 10-participant evaluation, achieves an average 
accuracy of 97.1%, 97.7%, 98.5%, and 99.1% for group sizes of 5, 4, 3, 
and 2. 

2 RELATED WORK 

2.1 Human Head-Neck Modeling 
The human head-neck section comprises seven cervical vertebrae 
connecting via rotational joints [7]. In early studies, the neck was 
modeled as a continuum beam with straight, elastic, and homo-
geneous materials while the head was usually treated as a rigid 
body [14]. With the aid from computers, researchers have devel-
oped models that are more sophisticated and accurate. Three types 
of models are usually used for describing head-neck kinematics: 
two-pivot models [10], discrete parameter models [26], and fnite el-
ement models [29]. The two-pivot model presented by Wismans et 
al. [30] simplifes the head-neck-torso as a three-segment two-joint 
model, modeling the neck as a rigid or scalable link connecting 
head and torso. In the discrete parameter model, head and vertebrae 
are represented by ten rigid bodies, using linear viscoelastic ele-
ments to represent the intervertebral soft tissues and muscles. The 
most complex one is the fnite element model [15, 29]. It describes 
cervical spine geometry and material behavior in detail with high 
complexity and computational redundancy. 

2.2 User Identifcation Based on Bio-features 
Fluent user identifcation has long been sought after – many previ-
ous system leveraged sensors deployed in environments [2, 24, 27]. 
In this section, we focus on mobile solutions which are more related 
to Nod to Auth. On this front, high-end commodity mobile devices 
have included biometric sensors such as Face ID and fngerprint 
sensors. In the research domain, BiLock [35] leverages dental oc-
clusion diferences across users which manifest on characteristic 
sounds of teeth clicking. CapAuth [12] recognizes users by their 
hand shapes on touchscreens. Bio-impedance diferences across 
user forearms have also been used for identifcation [5]. Another 
common approach recognizes users by extracting their motion char-
acteristics with IMU sensors. People leveraged built-in IMU sensors 
on smartphones to gather motion data from their smartphone uses 
[4] and from various implicit activities [9, 17]. It is also possible to 
leverage custom-built wearable sensors on user fngers [31]. 

2.3 AR/VR Authentication 
Previous systems looked into techniques that replaced password 
typing with natural interactions. For example, LookUnlock [11] 
allows users to input passwords by looking at virtual objects in an 
encoded sequence. It is also possible to recognize users based on 
their writing patterns [28]. Closer to our technique is prior work 
that extracts kinesiological characteristics from body motions (e.g., 

head, hand, and torso). For example, identifable signals can be ex-
tracted from physical tasks that users perform in VR environments, 
such as pointing, grabbing, walking, and typing [19, 20, 22]. Our 
work was directly inspired by these systems and was aimed for 
interactions that involve only head movements and built-in IMU 
sensors on AR/VR headsets to eliminate the need for external sen-
sors. As a result, our technique can be readily adopted by a wide 
array of existing devices. 

Closest to our work is Headbanger [18], which leverages distance 
computing algorithms including cosine, correlation, and DTW in 
two-label classifcation tasks to identify users (i.e., true vs. false 
subject). Headbanger requires users to perform multiple repetitive 
head gestures along with audio stimuli, taking from 5 seconds to 
10 seconds to complete one gesture. In comparison, by leveraging 
biometric features derived from user head-neck modeling, Nod to 
Auth requires users to perform head gestures with a single stroke, 
enabling a swift authentication similar to the phenomenal “Slide to 
Unlock" technique on touchscreen devices. 

3 SENSING PRINCIPLE 
Human head-neck section is complex and has many joints. Figure 2 
left shows its anatomical features and key components. As a compro-
mise to the constrained sensor type and location, our system adopts 
a ball-stick model which has only one joint (see Figure 2 middle). 
With this model, the entire system can be determined by angular 
motion parameters [16], which can be measured by IMU sensors 
from a single location (i.e., AR/VR headset). Head-neck motions are 
typically decomposed into three characteristics: 1) initial-end pos-
tures, 2) skeletal proportions, and 3) gesture dynamics [32]. Instead 
of relying solely on gesture dynamics, as shown in prior work, our 
system also incorporated the other two characteristics. Specifcally, 
we designed features around all characteristics that are consistent 
when a same user performs the same gesture from time to time. 
Section 6.3 describes these features in detail. 

4 HEAD GESTURES DESIGN 
We set out to include only one-stroke gestures – those users need to 
perform only once, same as “Slide to Unlock". Our head gesture set 
was drawn from prior work on head gesture interactions [18, 20, 33] 
and literature on head-neck biomechanics [23]. Figure 2 right shows 
the three gestures supported by Nod to Auth, including 1) nodding, 
2) turning, and 3) tilting. Each gesture requires users to perform 
the motion starting from one end and ending at the other, and our 
system supports both directions. Similar with “Slide to Unlock", 

Figure 2: From left to right: anatomical plot of human head-
neck section, the ball-stick model, three head gestures. 
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Nod to Auth also provides visual indicators which instruct users 
on which head gesture to perform while segmenting out the head 
gesture data from irrelevant head movements. 

5 PILOT STUDY 
We conducted a pilot study to test the sensing performance of 
smartphone IMU sensors and the signal fdelity in radius calculation 
with the ball-stick model. In this study, we used a wood stick with 
a smartphone attached to a range of positions, simulating diferent 
radiuses. We manually rotated the stick with a 180° rotation angle, 
and used the collected IMU sensor readings to reconstruct the 
rotation trajectory based on which we calculated the radius. Details 
of our algorithm will be described in Section 6.2 and 6.3. 

5.1 Apparatus and Procedure 
We used an Android smartphone (HUAWEI CAZ-TL10) and aligned 
its screen center to previously marked positions on the stick. The 
other end of the stick was tied to a fxed pivot point. We tested 
diferent radiuses (10, 20, 30, 40cm). For each radius, we rotated the 
stick 180° (i.e., approximately the maximum angle range for human 
head) 5 times. The data was streamed to a laptop through TCP/IP 
for radius calculation. 

5.2 Radius Test 
Figure 3 shows the mean error rate for diferent wood stick lengths. 
The results indicate an averaged absolute distance error of 0.33cm. 
Overall, longer radius lengths are more prone to error. However, 
even the largest error is still below 2% of the total stick length, 
which we considered as a promising result – it shows enough 
signal fdelity to disambiguate users we expect to have biometric 
variances larger than 2%. Additionally, this error could be compen-
sated by leveraging features drawn from other head-neck motion 
characteristics. 

5.3 Angle Test 
We conducted an ofine angle test by selecting data points from 
a range of angles (30° to 180° with a 30° step) centering around 
center points of rotation trajectories. Figure 4 shows the averaged 
absolute distance error across angle range. We found that error 
increases with angle range, caused by the fact that velocity changes 
more dramatically (i.e., acceleration and deceleration) towards the 
starting and ending points of trajectories. Some examples can be 
found in Figure 5, which shows that trajectories towards the ends 
indeed yield errors higher than those from around the center. Based 
on this result, we decided to use only the central part of the trajec-
tory, which translates to an angle range of around 20° of head-neck 
motions for a more stable radius calculation. 

6 SYSTEM IMPLEMENTATION 

6.1 Hardware 
Our proof-of-concept AR/VR hardware is based on an Android 
smartphone (HUAWEI CAZ-TL10) with Google Cardboard. HUAWEI 
CAZ-TL10 features a built-in BOSCH BMI160 sensor (Accelerome-
ter + Gyroscope) and an AK09911 Magnetometer. We confgured 
the smartphone to stream raw sensor readings and the rotation 

Figure 3: Distance errors of calculated radius across wood 
stick length (i.e., tested radius). 

Figure 4: Distance errors of calculated radius across angle. 

Figure 5: Example error plots. 

vector (i.e., Quaternion components along the three axes and a 
scalar component) to a laptop for further computation at 200 FPS. 
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6.2 Signal Processing 
Nod to Auth biometric feature extraction relies on an accurate head 
trajectory reconstruction, which we discuss next. 

6.2.1 Coordinate System Transformation. We frst map the linear 
acceleration of human head rotation from phone coordinates to 
world coordinates, with a commonly used transformation approach. 
Below is the rotation matrix derived from the Quaternion provided 
by the rotation vector. 

q = [q0, q1, q2, q3]
T 

2 2 2 2 
0 + q1 − q2 − q 2q1q2 + 2q0q3 2q1q3 − 2q0q23 
2q1q2 − 2q0q3 

Then, we calculate the head-neck motion trajectory d with the 
′calibrated velocity (v ) by t 

′ ′ v (t − ∆t) + v (t)
dt = dt −∆t + t t ∆t

2 

6.3 Feature Extraction and Machine Learning 
We engineered features around user head-neck motion character-
istics (i.e., initial-end postures, skeletal proportions, and gesture 
dynamics) for machine learning. Specifcally, we frst calculate user 
head-neck radius based on a circumcircle approach – for every 
three consecutive points on the central 20° segment of a motion tra-
jectory, we calculate the radius of their circumcircle. This method  

2 2 2 2 
0 − q1 + q2 − q yields multiple radius results with which we calculate the mean 

radius and standard deviation as features. We draw the rest of the 
features from initial-end postures (i.e., orientation variations or-

2q2q3 + 2q0q1R(q) = 

q q 3 2 2 2 2 
0 − q1 − q2 + q2q1q3 + 2q0q2 2q2q3 − 2q0q1 q 3 

Assuming that the device and the earth coordinates are denoted 
as d and e respectively, then a vector expressed in the device frame 
vd can be rotated to the earth frame ve by multiplying the rotation 
matrix R(q)[8]. 

6.2.2 Sensor Error Compensation. Errors in acceleration measure-
ments can be amplifed through the double integration process, 
and thus we set to eliminate errors as much as possible early in 
the process. The acceleration measurements are composed of three 
main components: 

a = am + aд + ε 

thogonal to the head gesture), and from gesture dynamics which 
include angular velocity magnitude, properties of trajectory, and 
power spectral density of the linear acceleration magnitude. Table 1 
details all features we engineered. For our proof-of-concept imple-
mentation, we used Random Forest Classifer (by the scikit-learn 
library, 250 trees) in N-label classifcation tasks. 

Table 1: Extracted features from reconstructed head-neck 
motion trajectories. 

Features Notation and Description 

Head-Neck Radius mean_r : mean rotation radius of the 
head-neck motion trajectory 
std_r : standard deviation of rotation 
radiuses of the head-neck motion tra-
jectory 

Angular Velocity mean_gyro: mean of angular velocity 
Magnitude magnitude 

std_gyro: standard deviation of angu-
lar velocity magnitude 

Irrelevant Orientation 
Changes1 

pitch: degrees of rotation around the 
device x axis 
roll: degrees of rotation around the de-
vice y axis 
yaw: degrees of rotation around the 
device z axis 

Properties of Trajectory skewness: skewness of the whole tra-
Projections jectory projection 

kurtosis: kurtosis of the whole trajec-
tory projection 

Power Spectral Density 
of Linear Acceleration 
Magnitude 

mean_psd: average of acceleration 
power spectrum density 
std_psd: standard deviation of power 
spectrum density 
skew_psd: skewness of power spec-
trum density 
kurt_psd: kurtosis of power spectrum 
density 

where am is the actual acceleration due to head motion, aд is 
the acceleration caused by gravity, and ε is the error which can 
be decomposed of error plagued by sensor imperfectness, and the 
computational error resulted from model or calculation inaccuracy 
during double integration. 

We frst remove the gravitational acceleration using the default 
API. To remove non-zero errors when the smartphone is relatively 
stationary, which could accumulate over time, we used the Zero 
Velocity Updated algorithm [21, 25, 34] to segment out the motion 
signals and thus avoid the interference from errors in stationary 
signals. The main idea of this algorithm is to set a threshold to 
tell the moving state apart from the stationary period. Since user 
head movements result in more rotation than translation, we set 
a threshold on the magnitude of angular speed (i.e., maдGyro q = 

дx 
2 + дy 

2 + д2 where дx , дy , and дz are angular velocities along z 

x, y, and z axis). To avoid false positives, we adopt a 0.5-second 
window bufer – the extracted motion period has to be above the 
time threshold to trigger the segmentation. Finally, we adopt a 3th-
order low-pass digital Butterworth flter to remove high frequency 
sensor noise. 

6.2.3 Head-Neck Motion Trajectory Reconstruction. With the fl-
tered acceleration data from the motion segments, we frst derive 
velocity vt using the trapezoidal method [1]. To compensate for 
the non-zero velocity ve at the end time of the trajectory Te , we 
adopt a common calibration method which subtracts the velocity 
by an interpolation based on ve [1]: 

t − Ts′ [1] Irrelevant orientation changes are orthogonal to the head gesture, e.g., yaw and vt = vt − ve ,Ts < t < Te roll changes of a Nodding (pitch) head gesture. Te − Ts 
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7 EVALUATION 

7.1 Participants and Procedure 
We collected data from 10 participants of ages from 23 to 52 (5 
females). Before the study started, we measured biometric data 
from participants such as neck length and height. The neck length 
was measured from the mandibular angle to the mid-portion of the 
ipsilateral clavicle [13]. We measured an average neck length of 
13.2cm (SD=1.1). 

To emulate the use scenario of the application Nod to Auth in 
the real world as much as possible, we included two postures: sit-
ting and standing. Participants frst previewed the application and 
familiarized themselves with our head gestures after putting on 
the headset. We collected data from six diferent head motions – 2 
directions × 3 gestures (Figure 2 right). We recorded 10 trials for 
each motion from each user (5 for sitting, 5 for standing) with a 
30-second rest between trials when participants took of the headset 
and put it back on before the next trial started. In total, we collected 
600 data points (i.e., 5 trials × 2 postures × 2 directions × 3 gestures 
× 10 participants) 

7.2 Training and Classifcation 
Nod to Auth targets the user authentication among small user groups 
within for e.g., families, labs, and ofces. Therefore, we randomly 
selected 2, 3, 4, and 5 users from the 10 participants in our study 
to form groups within which we perform N-label classifcation 
tasks. Take a group size of N for example. There are C10 

N unique 
combinations. We collected 10 trials from each participant for each 
gesture, and thus in this group of size N, we had a total number 
of 10 × N trials for each gesture. Among these trials, we used one 
for testing while training the model with the rest. Our 30-second 
break in between trials avoids overftting because no data with time 
adjacency (i.e., data with unfair similarity) were included in both 
training and testing sets. Finally, we averaged the accuracies across 
all combinations across gestures and group sizes. Figure 6 shows 
the results, which we will discuss in detail next. 

7.3 Results 
7.3.1 User Identification Accuracy. Our result indicates an average 
accuracy of 98% (SD=0.01) across all user group sizes and head 
gestures. The performance slightly declines as the size of the user 
group increases. Among the three gestures (i.e., nodding, turning, 
and tilting), the tilting yields the best performance with all accu-
racies above 98% regardless of the user group size. The turning 
gesture performs slightly worse than other gestures, however, none 
of the performance diferences in this section was signifcant. Ad-
ditionally, user posture (i.e., standing vs. sitting) is not a signifcant 
factor on accuracy. 

7.3.2 Error Analysis. Figure 7 shows confusion matrices of the user 
identifcation results with the four group sizes we tested, averaged 
across all gestures. First, all participants achieved over 95% iden-
tifcation accuracy and we found no statistical outliers. We found 
that certain pairs of users were more likely to be confused than 
others. For example, the confusion between User5 and User6 was 
higher than that between others across almost all user group sizes. 
By looking into their biometrics (attached in the auxiliary fle), we 

Figure 6: User identifcation accuracy across user group sizes 
and head gestures. 

Figure 7: Confusion matrices of various group sizes. 

found that these two users shared identical heights and similar neck 
lengths, which might explain why it is challenging for Nod to Auth 
to disambiguate between them. A counterexample can be found 
from User1 and User9 who had very diferent bio-metrics and thus 
yielded accuracies of almost 100%. Finally, we did not fnd age and 
height to be signifcant factors on accuracy. 

8 DISCUSSION AND FUTURE WORK 
Nod to Auth achieves encouraging accuracies, which merits further 
investigation in our future work. First, we want to explore more 
complex biomechanic systems such as the two-pivot model (Figure 
2 left), including those that consider neck’s elasticity (i.e., elongation 
and compression), which have seen success in prior literature [3, 6]. 
Second, we will deploy our system in long-term evaluations, which 
will fully tease out our system’s performance especially against user 
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variance throughout a day. Finally, there might be opportunities to 
combine our technique with other sensors on AR/VR devices such 
as microphones and front cameras for multi-model sensing, which 
can potentially result in more natural interactions that do not rely 
on pre-defned gestures with superior performance. 

9 CONCLUSION 
We propose Nod to Auth, a user authentication technique that al-
lows users to quickly unlock their AR/VR devices by single-stroke 
head gestures. By leveraging the IMU sensors on AR/VR devices, we 
reconstruct the head-neck motion trajectory, from which we extract 
machine learning features based on three head-neck motion charac-
teristics (i.e., initial-end postures, skeletal proportions, and gesture 
dynamics). The results indicate an average accuracy of 97.1% (over 
95% for all participants). Nod to Auth demonstrates potentials to 
facilitate AR/VR users with swift and natural authentication, which 
we hope to further explore in the future. 
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