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Abstract

Synthesizing dynamic appearances of humans in motion
plays a central role in applications such as AR/VR and video
editing. While many recent methods have been proposed to
tackle this problem, handling loose garments with complex
textures and high dynamic motion still remains challeng-
ing. In this paper, we propose a video based appearance
synthesis method that tackles such challenges and demon-
strates high quality results for in-the-wild videos that have
not been shown before. Specifically, we adopt a StyleGAN
based architecture to the task of person specific video based
motion retargeting. We introduce a novel motion signature
that is used to modulate the generator weights to capture
dynamic appearance changes as well as regularizing the
single frame based pose estimates to improve temporal co-
herency. We evaluate our method on a set of challenging
videos and show that our approach achieves state-of-the-
art performance both qualitatively and quantitatively.

1. Introduction

Generating plausible video based animations of an ac-
tor has several applications in AR/VR and video editing. A
common approach to tackle this generation task is to trans-
fer or retarget a motion sequence extracted from a source
video to the target actor. Such approaches often depend on
learning an actor specific appearance model from a training
performance of the actor which is later utilized to synthesize
the actor in novel poses.

While many recent approaches that leverage advances in
machine learning have been proposed to the video-based
performance retargeting problem, extending them to in-the-
wild scenarios still remains challenging. First of all, many
methods make simplifying assumptions about the appear-

Figure 1. We present a method to synthesize the dynamic appear-
ance of an actor given a target motion sequence. Our approach
works well for actors wearing loose garments with complex tex-
tures and performing complex motions.

ance of the actor such as wearing tight clothing. Some re-
cent work that extend to actors wearing loose garments [16],
on the other hand, requires very long training videos of the
actor which limit the applicability of the approach. Fur-
thermore, such methods are often limited in terms of the
complexity of the motions they can handle. We observe
that with loose garments and complex motion sequences,
state-of-the-art pose estimation methods [3, 10] often suffer
from wrong predictions, missing parts, and temporal noise;
making it particularly challenging to learn a consistent ap-
pearance model for the actor which can capture motion de-
pendent appearance changes.

In this work, we propose a novel approach to learn the
dynamic appearance of an actor, potentially wearing loose
garments (which may be far away from the body and may
have significant dynamics under motion), and synthesize
unseen complex motion sequences (see Fig. 1). Our ap-
proach adopts the state-of-the-art photo-realistic genera-
tive models for human portraits and bodies, such as Style-
GAN [18, 19] and StylePoseGAN [33], to the task of
person-specific appearance modeling and motion retarget-
ing. In order to disentangle the pose and appearance of the
actor, we utilize off-the-shelf keypoint [3] or dense corre-
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spondence [10] estimations to represent the target pose and
provide as spatial features to the StyleGAN architecture.
The core of our approach is to learn an effective motion
representation that is used to demodulate the weights of the
generator. This modulation not only helps to capture the
appearance of loose garments that heavily depend on the
underlying body motion but also captures plausible motion
specific appearance changes (see Fig. 6). Since keypoint or
dense correspondence estimation methods operate on single
images, they often result in pose representations that are not
perfect and temporally coherent. We show that we can also
use the motion features to refine the per-frame pose features
and provide significant improvements in terms of temporal
coherency as well.

We evaluate our method on several challenging motion
sequences as well as target actors with loose garments con-
sisting of complex texture patterns. We show that our results
can synthesize plausible garment deformations while also
maintaining high quality visual results. We also perform
extensive qualitative and quantitative comparisons with pre-
vious methods and demonstrate state of the art results. In
summary, our contributions are as follows:

• We adopt the StyleGAN architecture to the task of
actor specific video based motion retargeting. We
demonstrate results that capture the dynamic appear-
ance of loose garments under complex motion se-
quences that have not been shown before.

• We introduce an explicit motion representation that is
used for demodulation of the generator weights. Such
motion features are used to both capture motion spe-
cific appearance changes as well as generating tempo-
rally coherent results.

2. Related Work

Rendering of humans in different poses, from different
viewpoints has attracted a lot of attention both from the
graphics and vision communities. Below, we review the
previous work most related to our method.

Rendering based approaches. Given very high qual-
ity geometry and appearance representations, a traditional
approach to controllable synthesis of humans is to em-
ploy classical rendering techniques. Hence, several works
have focused on reconstructing such geometry and ap-
pearance representations from multi-view captures of hu-
mans [40, 4, 7]. With the recent success of deep learn-
ing, more recent methods have replaced certain compo-
nents of such a pipeline with neural networks. For exam-
ple, given a person specific 3D template of an actor, some
methods learn dynamic appearances of the actor with neu-
ral networks [23, 22, 11, 43]. Although providing explicit
control, the 3D template requirement limits the application

of such methods. Another recent thread of work has ex-
plored the use of neural textures [39, 8] and neural ren-
dering [38] to synthesize humans under different poses and
viewpoints [35, 34, 32, 29]. Most of these approaches, how-
ever, assume humans wear tight clothing and cannot handle
complex motion sequences as our method.

Image generation methods. Image generation meth-
ods have gained significant popularity in the human repos-
ing problem, i.e., generating a new image of a person
given a source image and a target pose. Approaches that
synthesize images from target poses represented as key-
points [26, 31, 36, 45], dense uv coordinates [28, 9, 30],
and heatmaps [27] have been presented. Some methods
have explored the use of warping techniques along with
GANs [24] to improve the quality of the results. In the
context of synthesizing human performance videos, while
some approaches have explored temporal cues as training
losses [5, 1], others have also utilized the temporal infor-
mation at inference time [41, 2]. In both single image and
video-based generation methods, one problem that has been
relatively less explored is to handle actors with loose cloth-
ing. Very recently, Kappel et al. [16] have presented a recur-
rent network architecture that performs video-based anima-
tion for actors wearing loose garments. Starting from a set
of 2D keypoints, they predict semantic part labels, a struc-
ture map that encodes garment wrinkles and texture pat-
terns, and the final appearance of the actor. While showing
impressive results, our experiments show that the method
requires relatively long training sequences and is limited in
terms of the complexity of the motions it can handle.

In the context of face generation, StyleGAN [18, 19] has
shown impressive results and many follow up work has fo-
cused on providing control in the latent space of the gener-
ator [37]. Compared to faces, however, controllable synthe-
sis of full human bodies is more challenging. Very recently,
StylePoseGAN [33], VOGUE [21], and TryOnGAN [20]
present earlier examples of adopting the StyleGAN archi-
tecture to the tasks of reposing and virtual try on. While
our work is inspired by such approaches, we focus on the
different and challenging task of dynamic motion synthesis.

3. Methodology

3.1. Overview

Our framework learns the dynamic appearance of a spe-
cific actor X from a reference video of the actor. We repre-
sent the reference video as a sequence of RGB image and
pose pairs {Ii,Pi}, i = 1, · · ·N . We assume the camera is
fixed so the pose of the actor is represented by image-space
pose representations such as 2D keypoints [3] and dense
uv renderings [10]. At test time, given a motion sequence
consisting of query poses {P′i}, i = 1, · · ·M , the network
synthesizes the corresponding appearance of X performing
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Figure 2. Pipeline overview. Our network takes the 2D body dense UV and keypoints as input and learns a pose feature for each frame.
By concatenating the pose inputs for the past few frames, we also learn motion features. The learned motion features are used to refine
the pose features to improve the temporal coherency. We synthesize the final motion-aware dynamic appearance of the character using a
StyleGAN based generator conditioned on the refined pose features and modulated by the motion features.

the motion. We adopt a StyleGAN based generator which
has recently been shown to be effective in synthesizing high
quality full body images [33]. In order to guide the genera-
tion of the actor performing a specific pose, we extract spa-
tial pose features for each frame given Pi similar to [21, 33].
Unlike static image generation, however, the appearance of
the garments, specifically if they are loose, are heavily af-
fected by the motion of the actor. In order to capture such
dynamic appearance changes (e.g., folds and wrinkles and
secondary movement of loose clothes and hair), we intro-
duce an explicit motion feature representation that is ex-
tracted from the past K frames. We use such motion fea-
tures as the latent style code to demodulate the generator.
Furthermore, we observe two common limitations of the
off-the-shelf pose estimators [3, 10] as shown in Fig. 3.
First, being trained on single images, they often produce
temporally jittery results when run on a video sequence.
Second, in case of complex poses with self-occlusions, they
are prone to missing parts and incorrect estimations. Since
past frames provides strong cues to overcome these limi-
tations, we propose a refinement module to regularize the
spatial pose features based on the learned motion features.
With the refined spatial pose features and the learned mo-
tion features, our generator synthesizes the final output im-
age, I′i. Fig. 2 provides an overview of our pipeline.

3.2. Input

Given a sequence of RGB images {Ii}, i = 1 · · ·N ,
extracted from a captured video stream, we run Dense-
Pose [10] to predict dense body IUV maps which are three
channel images of the same size of the input image. We
also use OpenPose [3] to predict keypoints, i.e., skele-
ton, face, and hand landmarks, which are represented as
RGB images of the same size (W,H) as the input image.
We concatenate the two sources of information to form

a pose signature Pi ∈ R6×W×H for each input frame i.
In order to extract explicit motion features, as explained
in the next section, we also provide the pose signature of
K = 10 frames sampled unevenly from the past 20 frames
as input to our network. Specifically, we use the frames
{1, 2, 3, 4, 6, 8, 10, 13, 16, 20} to build a motion signature
Mi ∈ R60×W×H . The frames are sampled unevenly as
closer frames have more impact on the current frame.

Figure 3. The current state of the art pose detection methods suffer
from artifacts such as jitter, missing parts, and wrong detections.
Given a reference image, we show the predictions for two con-
secutive frames. (Left) The dense body UV predicted by Dense-
Pose [10] has mistakes in the left arm and leg regions, it also
misses the right arm. (Right) The keypoints predicted by Open-
Pose [3] miss the shoulder and the legs.

3.3. Learning Pose/Motion Features

Inspired by [33], we extract 2D spatial pose features Pi

from the pose signature Pi to condition the generator to syn-
thesize an image of the actor performing a specific pose.
Since our generator is trained on a reference video of a spe-
cific actor, the global appearance of the actor is implicitly
embedded into the generator weights. Unlike single-image
generation case, however, the overall shape and appearance
of the garments heavily depend on the motion being per-
formed (e.g., the overall movement of a loose skirt, vary-
ing wrinkle and fold patterns). In order to capture such dy-
namic appearance changes, we propose to extract a 1D mo-



tion feature Mi from the motion signature Mi which are
used to demodulate the generator via the AdaIN operations.
To this end, we use a convolutional neural network EP to
encode the pose signature Pi ∈ R6×W×H into a pose fea-
ture Pi ∈ R512×Ws×Hs , where Ws = W/16, Hs = H/16.
Similarly, we extract the motion features with another con-
volutional neural network, EM, which consists of a reshape
operation and some fully connected layers to produce a 1D
motion feature with a dimension of 2048. We refer to the
supplementary material for the detailed architecture.

Temporal coherent refinement. As shown in Fig. 3, the
current state of the art pose detection methods suffer from
artifacts such as jitter, missing parts, and wrong detections.
We hypothesize that observing the past motion, although
imperfect, provides strong cues to identify and regularize
such artifacts. Therefore, we propose to use the motion fea-
turesMi to refine the pose feature of the current frame Pi.
To realize such a refinement operation, we first concatenate
Mi to each spatial location of Pi ∈ R512×Ws×Hs along the
channel dimension to obtain an intermediate pose feature
Pint
i ∈ R2560×Ws×Hs . Pint

i is then passed through another
convolutional neural network ERefine which produces a re-
fined pose feature P̃i ∈ R512×Ws×Hs . In Fig. 7 and Fig. 8,
we show that ERefine learns to effectively regularize the
input pose of the current frame based on the motion feature
which is learned from the past frames.

3.4. Style-based Generator

We use the style-based generator proposed by [19] for
our image generation task. The original StyleGAN archi-
tecture takes a constant spatial tensor as input, and a la-
tent noise vector passed through a mapping network to de-
modulate the intermediate layers to control the details of
final generated image. As inspired by [21, 33], we use our
learned spatial pose feature P̃i instead of the constant tensor
to condition the generator. Different from previous work,
we use the motion feature to control the dynamic appear-
ance. Specifically, our generator, T(P̃i,Mi), takes the spa-
tial pose feature P̃i as input and passes it through a set of
convolutional layers. The convolutional weights are then
demodulated by the 1D motion featureMi. Our generator
converts the spatial feature from size 512 × Ws × Hs to
3×W ×H after four residual blocks and four upsampling
residual blocks, with random noise injection at every layer
similar to [19]. Therefore, our full pipeline can be written
as:

T(ERefine(EP(Pi),EM(Mi))|EM(Mi)) = I′i (1)

3.5. Loss Function

We train our framework in an end-to-end manner. For
a specific frame, i, in the training sequence, we directly su-
pervise the generated image, I′i, with the ground truth image

Ii. Our loss function includes three terms. First, we use an
L1 reconsturction loss:

L1 = |I′i − Ii|. (2)

Second, we use the VGG-based perceptual loss [15] to
encourage perceptual similarity:

LV GG =
∑
k

MSE(V GGk(I′i)− V GGk(Ii)), (3)

where MSE(·) is the element-wise Mean-Square-Error,
V GGk(·) is the k-th layer of a VGG network pre-trained on
ImageNet. Finally, we use an adversarial loss LGAN which
utilizes a discriminator D identical to [19]. During training,
we minimize our objective L = L1 +LV GG +LGAN w.r.t.
the parameters of EP, EM, ERefine, and T; and maximize
LGAN w.r.t. D.

4. Experiments
We evaluate our approach on a set of Youtube videos

with complex motion sequences as well as the datasets from
existing work [5, 16] (Sec. 4.1). We provide both quan-
titative and qualitative comparisons with previous work
(Sec. 4.2) and perform ablation studies to motivate the var-
ious design choices (Sec. 4.3).

We implement our network in Pytorch operating on im-
ages of resolution 512 × 512. We use the Adam optimizer
with a learning rate of 0.02. For a training sequence of
6K frames, the training takes approximately 72 hours for
100K iterations when trained with a batch size of 16 on
4 NVIDIA V100 GPUS. Inference with our model takes
about 40 ms/frame on a single NVIDIA V100 GPU.

4.1. Datasets

To test the performance of our method on unconstrained
videos, we collect seven dancing sequences from Youtube.
The selected videos are captured with a fixed camera, and
show variation in terms of scenes (indoor vs. outdoor), gar-
ment types (tight clothing, loose or multilayer garments)
and appearances (plain color, grid or stochastic texture, text
logo). We also test our method on the sequences provided
by [5] and [16]. In order to quantify the complexity of
the motion sequences, we also calculate the corresponding
motion speed. Specifically, we calculate the average dis-
placement of all keypoints between two consecutive frames
which have been normalized to have a height of 1. In Ta-
ble 1 , we provide the different characteristics of each se-
quence along with the length of the sequences, i.e., the num-
ber of frames sampled with a frame rate of 24 fps. The
speed of the motion for the sequences in our dataset are
significantly higher than previous datasets demonstrating
the complexity of our examples. The duration of a typi-
cal Youtube dancing video is between 2-5 minutes, which
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Figure 4. We train our network for character specific appearance synthesis. Here are the exemplary results on the test set for some
sequences.

results in a sequence with 2k to 8k frames. This is sig-
nificantly shorter than previous sequences captured in con-
trolled lab settings, which often include more than 10k
frames. We note that shorter sequences are more challeng-
ing test cases with respect to generalization to unseen poses.

length
motion
speed clothes type texture

Seq 1 7.5k 3.7× loose plain
Seq 2 3.4k 2.9× loose grid
Seq 3 6.0k 3.0× loose plain
Seq 4 6.0k 4.3× loose stochastic
Seq 5 3.2k 4.0× tight text
Seq 6 6.5k 1.4× tight plain
Seq 7 6.1k 4.5× multi-layer stochastic

Seq 8 ([16]) 12.5k 0.006(1.0×) loose stochastic
Seq 9 ([5]) 11.4k 2.7× tight plain

Table 1. Statistics of our dataset. For the motion speed of each
sequence, we show the multiple of Seq 8.

4.2. Evaluation and Comparisons

For each sequence, we train our network with the first
85% of the frames and test with the last 10% of the frames.
We skip the intermediate 5% of frames to make sure that
the beginning of the test sequence is different from the end

of the train sequence. In Fig 4, we show example frames
from the testing sequences where we synthesize the appear-
ance of the character given different target poses and motion
signatures. We refer to the supplementary video for more
examples.

We also compare our approach with several previous ap-
proaches: (i) pix2pixHD [14], the state-of-the-art image-
to-image translation method that generates the full body
appearance from dense uv based pose representations, (ii)
its temporal extension vid2vid [41] which utilizes both
keypoint and dense uv based posed representations, (iii)
Everybody-Dance-Now (EDN) [5] which takes 2D key-
points as input, and (iv) the recently proposed recurrent
based architecture that focuses on actors with loose gar-
ments (HF-NHMT) [16]. We also include the nearest neigh-
bour (NN) baseline where for each query pose we select the
frame from the training set with the most similar pose. We
define the pose similarity as the L2 distance between the 2D
keypoints. This baseline cannot capture the desired target
poses since they are significantly different than the train-
ing poses. We train all the learning based alternatives on
the same set of training frames as our method until conver-
gence. In Fig 5, we provide visual results of our method, the
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Figure 5. We qualitatively compare our method with other related approaches. For the examples on the second row, we provide a close-up
view for the text pattern on the shirt to highlight the synthesis quality.

baseline methods, and the corresponding ground truth. In
Table 2, we provide quantitative evaluations with respect to
the ground truth using several metrics: (i) the mean square
error (MSE) of the pixel value normalized to the range
[−1, 1], (ii) the structural similarity index (SSIM) [42],
(iii) the perceptual similarity metric (LPIPS) [44], (iv) the
Fréchet Inception Distance (FID) [12], and (v) the tOF [6],
pixel-wise difference of the estimated optical flow between
each sequence and the ground truth. Our method outper-
forms the baselines with respect to all the metrics. Since
our motion features Mi are learned from a short clip of
past frames (a.k.a., motion window), it naturally encodes
the temporal information. Therefore, we observe that our
method generates more temporally smooth results without
the need of an extra temporal discriminator. We also ob-
serve that conditioning the synthesis of the current frame on
the motion features captures motion dependent appearance
changes while avoiding the problem of error accumulation
that is apparent in recurrent based approaches [16].

MSE ↓ SSIM ↑ LPIPS ↓ FID ↓ tOF ↓
pix2pixHD [14] 0.0212 0.9807 0.0474 36.1323 7.6282

vid2vid [41] 0.0276 0.9795 0.2318 58.2085 5.5523
EDN [5] 0.0201 0.9811 0.0423 30.6969 6.1260

HF-NHMT [16] 0.0743 0.9629 0.1498 53.6912 8.5114
Ours 0.0199 0.9813 0.0398 21.1877 5.4122

Table 2. Quantitative comparison to the related approaches. We
evaluate the MSE, SSIM, LPIPS, FID, and tOF score of each
method.

4.3. Ablation study

We perform various ablation studies to motivate our de-
sign choices. First, in order to demonstrate the effect of the
motion features on capturing dynamic appearance changes,
given the same pose signature P, we synthesize frames with
different motion signatures M. Specifically, given a testing
motion sequence, we synthesize a target frame by (i) com-
puting the motion signature from the original sequence of
past poses, i.e., forward motion, (ii) hallucinate a still mo-
tion, i.e., a frozen motion signature by using the same pose
for all the past frames, and (iii) hallucinate the backward
motion, i.e., a motion signature computed from the future
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Figure 6. We show that our model captures motion specific ap-
pearance changes. We synthesize the same target frame by using a
motion signature computed from (i) the original past frames, i.e.,
forward motion, (ii) from the same pose repeated for each past
frame, i.e., frozen motion, and (iii) from the future frames in the
reverse order, i.e., backward motion. In the forward motion, the
character is swinging from her left side to right resulting in the
skirt being dragged towards her left. While there is no significant
dragging of the skirt with frozen motion signatures, the dragging
is reversed with the backward motion.

Ground truthDensepose Vanilla OursReference

Figure 7. We cut a slice of vertical and horizontal pixels from a
sequence of 100 frames and concatenate them to form slice plots.
Due to the artifacts in the dense pose estimation, the vanilla model
generates jittery results. Ours refines the pose features and gener-
ates smoother results visually more similar to the ground truth.

frames in the reverse order. As shown in Fig 6, we show
that our method is able to synthesize the overall shape of
the garment that agree with the motion signature. While
the flow of the skirt is reversed when simulating the back-
ward motion, with frozen motion signatures, the skirt tends
to keep a more stable rest shape.

Second, we study the effect of the length of the past
frames used to compute the motion signature. Specifically,
we compare four different cases where we use the (i) past 4
frames, {1, 2, 3, 4}; (ii) past 10 frames, {1, 2, 3, 4, 6, 8, 10};
(iii) past 20 frames, {1, 2, 3, 4, 6, 8, 10, 13, 16, 20} (the set-
ting used in other experiments); and (iv) past 40 frames,
{1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 34, 40, 47, 56}. We
calculate mean square error (MSE) and the structural sim-
ilarity index (SSIM) [42] for the generated test sequences
with respect to the ground truth. In Table 3, we show that
using poses sampled in the past 20 frames provide a good
balance. Shorter motion windows are not sufficient to cap-
ture motion dependent dynamic appearance changes. The

Reference GT Vanilla Ours Reference GT Vanilla Ours

Figure 8. We use [13] to compute the flow map between the con-
secutive frames in the ground truth and generated sequences with
ours and the vanilla model. Our approach better captures the mo-
tion of the ground truth sequence.

trend shows the performance will decrease if the motion
window gets shorter. When training without motion feature
and pose refinement, the MSE and SSIM drops to 0.0213
and 0.9801 respectively. With longer motion windows, we
observe no significant improvement in terms of capturing
motion dependent appearance changes but training becomes
more difficult due to the increase in the network size. Please
also refer to the supplementary video for a qualitative com-
parison.

0 5 10 20 (ours) 40
MSE ↓ 0.0213 0.0208 0.0201 0.0199 0.0205
SSIM ↑ 0.9801 0.9809 0.9812 0.9813 0.9811

Table 3. We evaluate the MSE and SSIM score for different length
of the motion signature. Taking the past 20 frames is a good trade
of between complexity and high-fidelity.

Finally, we study the effect of our motion driven pose re-
finement on temporal coherency. Specifically, we compare
our proposed network with a vanilla motion driven pipeline
which directly feeds the generator T with the learned pose
feature Pi, instead of the refined features P̃i. We find that
the vanilla motion driven approach achieves similar per-
frame image synthesis quality but suffers from significant
temporal coherency artifacts. In Fig. 7, we identify a verti-
cal and a horizontal slice of pixels in a particular frame and
concatenate such slices over time (for 100 frames) along
the dimension denoted by the arrows to form a slice plot.
The corresponding video clip does not contain significant
movements around the leg resulting in smooth ground truth
slice plots along the time axis. However, the dense body
UV predictions [10] are not temporally stable producing
high frequency signals in the corresponding densepose slice
plots. The vanilla motion driven pipeline is affected by such
artifacts and reproduces the high frequency signals, while
ours with pose refinement produces a significantly smoother
slice plot. We also present the predicted flow map [13] be-
tween the consecutive frames in the ground truth and gen-
erated sequences in Fig. 8 to show that our approach best
captures the motion of the ground truth regardless the im-
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Figure 9. Our approach allows motion transfer from a source sequence to a target actor.

perfect pose input. The average mean square error between
the ground truth and generated flow maps also show the ad-
vantage of our method, ours and the vanilla version achieve
an error of 5.41 and 6.11 respectively.

Please refer to our supplementary material for more eval-
uation and experiments.

5. Application: Motion transfer

Once we have an actor specific network, a typical appli-
cation is to retarget a source motion extracted from a video
of another actor. Since the two actors might have differ-
ent body proportions, before retargeting, we first perform a
simple alignment. We adjust the height and width of the de-
tected skeletons and move them vertically so that they stand
on the ground of the target background image [5]. In Fig. 9,
we show some examples, please refer to our supplementary
video for more results.

6. Conclusion, Limitations and Future Work
In this paper, we present a StyleGAN based approach

for video synthesis of an actor performing complex motion
sequences. We propose a novel motion signature which is
used to modulate the generator to capture dynamic appear-
ance changes as well as refining the pose features to obtain
temporally coherent results. Our approach outperforms the
previous alternatives both quantitatively and qualitatively.

While showing impressive results, our method has some
limitations. We use image based pose representations which
are limited to capture poses such as 3D rotations. Incorpo-
rating 3D representations, e.g., SMPL [25], is an interest-
ing direction. The quality of the results can degrade with
very complex motions significantly different than training
sequences (see the supplementary material). Improving mo-
tion generalization is a promising direction. We want to
extend our work to videos captured with moving cameras
and incorporate the motion of the camera into the genera-
tion process. We present a simple retargeting and alignment
process for motion transfer. More sophisticated retarget-
ing strategies are needed to transfer motion between actors



with significantly different body shapes. While our method
generates reasonable face and hand regions, further refining
these body parts with specialized modules is worth investi-
gating. Currently the model is trained for a specific identity,
supporting multiple identities by conditioning our network
on an extra channel that denotes the character identity is an
interesting direction for future work. Finally, adopting ad-
vanced GAN architectures, e.g., Alias-Free GAN [17], may
further improve the performance without much change in
the overall design.
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