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(a) Original video (b) Compressed videos at the same bit-rate (c) Our re-rendered novel-view results

Figure 1: Our method can re-create a talking-head video using only a single source image (e.g., the first frame) and a sequence
of unsupervisedly-learned 3D keypoints, representing motions in the video. Our novel keypoint representation provides a
compact representation of the video that is 10ˆ more efficient than the H.264 baseline can provide. A novel 3D keypoint
decomposition scheme allows re-rendering the talking-head video under different poses, simulating often missed face-to-face
video conferencing experiences. Click the image to play the video in a browser.

Abstract
We propose a neural talking-head video synthesis model

and demonstrate its application to video conferencing. Our
model learns to synthesize a talking-head video using a
source image containing the target person’s appearance
and a driving video that dictates the motion in the output.
Our motion is encoded based on a novel keypoint repre-
sentation, where the identity-specific and motion-related
information is decomposed unsupervisedly. Extensive ex-
perimental validation shows that our model outperforms
competing methods on benchmark datasets. Moreover, our
compact keypoint representation enables a video confer-
encing system that achieves the same visual quality as the
commercial H.264 standard while only using one-tenth of
the bandwidth. Besides, we show our keypoint represen-
tation allows the user to rotate the head during synthe-
sis, which is useful for simulating face-to-face video con-
ferencing experiences. Our project page can be found at
https://nvlabs.github.io/face-vid2vid.

1. Introduction
We study the task of generating a realistic talking-head

video of a person using one source image of that person and
a driving video, possibly derived from another person. The
source image encodes the target person’s appearance, and
the driving video dictates motions in the output video.

We propose a pure neural rendering approach, where we
render a talking-head video using a deep network in the
one-shot setting without using a graphics model of the 3D
human head. Compared to 3D graphics-based models, 2D-
based methods enjoy several advantages. First, it avoids 3D
model acquisition, which is often laborious and expensive.
Second, 2D-based methods can better handle the synthesis
of hair, beard, etc., while acquiring detailed 3D geometries
of these regions is challenging. Finally, they can directly
synthesize accessories present in the source image, including
eyeglasses, hats, and scarves, without their 3D models.

However, existing 2D-based one-shot talking-head meth-
ods [68, 82, 92] come with their own set of limitations. Due
to the absence of 3D graphics models, they can only syn-
thesize the talking-head from the original viewpoint. They
cannot render the talking-head from a novel view.

Our approach addresses the fixed viewpoint limitation and
achieves local free-view synthesis. One can freely change
the viewpoint of the talking-head within a large neighbor-
hood of the original viewpoint, as shown in Fig. 1(c). Our
model achieves this capability by representing a video using
a novel 3D keypoint representation, where person-specific
and motion-related information is decomposed. Both the key-
points and their decomposition are learned unsupervisedly.
Using the decomposition, we can apply 3D transformations
to the person-specific representation to simulate head pose
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changes such as rotating the talking-head in the output video.
Figure 2 gives an overview of our approach.

We conduct extensive experimental validation with com-
parisons to state-of-the-art methods. We evaluate our method
on several talking-head synthesis tasks, including video re-
construction, motion transfer, and face redirection. We also
show how our approach can be used to reduce the bandwidth
of video conferencing, which has become an important plat-
form for social networking and remote collaborations. By
sending only the keypoint representation and reconstructing
the source video on the receiver side, we can achieve a 10x
bandwidth reduction as compared to the commercial H.264
standard without compromising the visual quality.
Contribution 1. A novel one-shot neural talking-head syn-
thesis approach, which achieves better visual quality than
state-of-the-art methods on the benchmark datasets.
Contribution 2. Local free-view control of the output video,
without the need for a 3D graphics model. Our model allows
changing the viewpoint of the talking-head during synthesis.
Contribution 3. Reduction in bandwidth for video stream-
ing. We compare our approach to the commercial H.264
standard on a benchmark talking-head dataset and show that
our approach can achieve 10ˆ bandwidth reduction.

2. Related Works
GANs. Since its introduction by Goodfellow et al. [21],
GANs have shown promising results in various areas [48],
such as unconditional image synthesis [21, 23, 32, 33, 34,
49, 61], image translation [8, 12, 27, 29, 46, 47, 58, 67, 73,
84, 102, 103], text-to-image translation [62, 90, 95], image
processing [17, 18, 28, 36, 39, 41, 42, 44, 72, 78, 89, 94], and
video synthesis [2, 10, 35, 45, 50, 60, 63, 69, 82, 83, 101]. We
focus on using GANs to synthesize talking-head videos in
this work.
3D model-based talking-head synthesis. Works on trans-
ferring the facial motion of one person to another—face
reenactment—can be divided into subject-dependent and
subject-agnostic models. Traditional 3D-based methods usu-
ally build a subject-dependent model, which can only syn-
thesize one subject. Moreover, they focus on transferring the
expressions without the head movement [71, 75, 76, 77, 80].
This line of works starts by collecting footage of the tar-
get person to be synthesized using an RGB or RGBD sen-
sor [76, 77]. Then a 3D model of the target person is built
for the face region [6]. At test time, the new expressions are
used to drive the 3D model to generate the desired motions.

More recent 3D model-based methods are able to per-
form subject-agnostic face synthesis [19, 20, 55, 57]. While
they can do an excellent job synthesizing the inner face re-
gion, they have a hard time generating realistic hair, teeth,
accessories, etc. Due to the limitations, most modern face
reenactment frameworks adopt the 2D approach. Another
line of works [15, 74] focuses on controllable face genera-
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Figure 2: Combining appearance information from the
source image, our framework can re-create a driving video
by just using the expression and head pose information from
the driving video. With a user-specified head pose, it can
also synthesize the head pose change in the output video.

tion, providing explicit control over the generated face from
a pretrained StyleGAN [33, 34]. However, it is not clear
how they can be adapted to modifying real images since the
inverse mapping from images to latent codes is nontrivial.
2D-based talking-head synthesis. Again, 2D approaches
can be classified into subject-dependent and subject-agnostic
models. Subject-dependent models [5, 88] can only work on
specific persons since the model is only trained on the target
person. On the other hand, subject-agnostic models [4, 9,
11, 20, 22, 24, 30, 56, 60, 68, 70, 81, 82, 86, 92, 93, 100] only
need a single image of the target person, who is not seen
during training, to synthesize arbitrary motions. Siarohin et
al. [68] warp extracted features from the input image, using
motion fields estimated from sparse keypoints. On the other
hand, Zakharov et al. [93] demonstrate that it is possible
to achieve promising results using direct synthesis methods
without any warping. Few-shot vid2vid [82] injects the
information into their generator by dynamically determining
the the parameters in the SPADE [58] modules. Zakharov et
al. [92] decompose the low and high frequency components
of the image and greatly accelerate the inference speed of
the network. While demonstrating excellent result qualities,
these methods can only synthesize fixed viewpoint videos,
which produce less immersive experiences.
Video compression. A number of recent works [3, 16, 26,
43, 52, 65, 87] propose using a deep network to compress
arbitrary videos. The general idea is to treat the problem
of video compression as one of interpolating between two
neighboring keyframes. Through the use of deep networks
to replace various parts of the traditional pipeline, as well
as techniques such as hierarchical interpolation and joint
encoding of residuals and optical flows, these prior works
reduce the required bit-rate. Other works [53, 85, 91, 97]
focus on restoring the quality of low bit-rate videos using
deep networks. Most related to our work is DAVD-Net [97],
which restores talking-head videos using information from
the audio stream. Our proposed method is different from
these works in a number of aspects, in both the goal as well
as the method used to achieve compression. We specifically
focus on videos of talking faces. People’s faces have an in-
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Figure 3: Source and driving feature extraction. (a) From
the source image, we extract appearance features and 3D
canonical keypoints. We also estimate the head pose and the
keypoint perturbations due to expressions. We use them to
compute the source keypoints. (b) For the driving image,
we again estimate the head pose and the expression defor-
mations. By reusing canonical keypoints from the source
image, we compute the driving keypoints.

herent structure—from the shape to the relative arrangement
of different parts such as eyes, nose, mouth, etc. This allows
us to use keypoints and associated metadata for efficient
compression, an order of magnitude better than traditional
codecs. Our method does not guarantee pixel-aligned output
videos; however, it faithfully models facial movements and
emotions. It is also better suited for video streaming as it
does not use bi-directional or B-frames.

3. Method

Let s be an image of a person, referred to as the source
image. Let td1, d2, ..., dNu be a talking-head video, called
the driving video, where di’s are the individual frames, and
N is the total number of frames. Our goal is to generate
an output video ty1, y2, ..., yNu, where the identity in yi’s
is inherited from s and the motions are derived from di’s.
Several talking-head synthesis tasks fall in the above setup.
When s is a frame of the driving video (e.g., the first frame:
s ” d1.), we have a video reconstruction task. When s is not
from the driving video, we have a motion transfer task.

We propose a pure neural synthesis approach that does
not use any 3D graphics models, such as the well-known
3D morphable model (3DMM) [6]. Our approach contains
three major steps: 1) source image feature extraction, 2)

driving video feature extraction, and 3) video generation. In
Fig. 3, we illustrate 1) and 2), while Fig. 5 shows 3). Our
key ingredient is an unsupervised approach for learning a set
of 3D keypoints and their decomposition. We decompose
the keypoints into two parts, one that models the facial ex-
pressions and the other that models the geometric signature
of a person. These two parts are combined with the target
head pose to generate the image-specific keypoints. After
the keypoints are estimated, they are then used to learn a
mapping function between two images. We implement these
steps using a set of networks and train them jointly. In the
following, we discuss the three steps in detail.

3.1. Source image feature extraction

Synthesizing a talking-head requires knowing the appear-
ance of the person, such as the skin and eye colors. As shown
in Fig. 3(a), we first apply a 3D appearance feature extraction
network F to map the source image s to a 3D appearance
feature volume fs. Unlike a 2D feature map, fs has three
spatial dimensions: width, height, and depth. Mapping to a
3D feature volume is a crucial step in our approach. It allows
us to operate the keypoints in the 3D space for rotating and
translating the talking-head during synthesis.

We extract a set of K 3D keypoints xc,k P R3 from s
using a canonical 3D keypoint detection network L. We set
K “ 20 throughout the paper unless specified otherwise.
Note that these keypoints are unsupervisedly learned and dif-
ferent from the common facial landmarks. We note that the
extracted keypoints are meant to be independent of the face’s
pose and expression. They shall only encode a person’s
geometry signature in a neutral pose and expression.

Next, we extract pose and expression information from
the image. We use a head pose estimation network H to
estimate the head pose of the person in s, parameterized by a
rotation matrix Rs P R3ˆ3 and a translation vector ts P R3.
In addition, we use an expression deformation estimation
network ∆ to estimate a set of K 3D deformations δs,k—the
deformations of keypoints from the neutral expression. Both
H and ∆ extract motion-related geometry information in
the image. We combine the identity-specific information
extracted by L with the motion-related information extracted
by H and ∆ to obtain the source 3D keypoints xs,k via a
transformation T :

xs,k “ T pxc,k, Rs, ts, δs,kq ” Rsxc,k ` ts ` δs,k (1)

The final keypoints are image-specific and contain person-
signature, pose, and expression information. Figure 4 visual-
izes the keypoint computation pipeline.

The 3D keypoint decomposition in (1) is of paramount
importance to our approach. It commits to a prior decom-
position of keypoints: geometry-signatures, head poses, and
expressions. It helps learn manipulable representations and
differs our approach from prior 2D keypoint-based neural
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Figure 4: Keypoint computation pipeline. For each step, we show the first five keypoints and the synthesized images using
them. Given the source image (a), our model first predicts the canonical keypoints (b). We then apply the rotation and
translation estimated from the driving image to the canonical keypoints, bringing them to the target head pose (transformations
illustrated as arrows). (c) The expression-aware deformation adjusts the keypoints to the target expression (e.g. closed eyes).
(d) We visualize the distributions of canonical keypoints estimated from different images. Upper: the canonical keypoints from
different poses of a person are similar. Lower: the canonical keypoints from different people in the same pose are different.
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Figure 5: Video synthesis. We use the source and driving keypoints to estimate K flows, wk’s. These flows are used to
warp the source feature fs. The results are combined and fed to the motion field estimation network M to produce a flow
composition mask m. A linear combination of m and wk’s then produces the composited flow field w, which is used to warp
the 3D source feature. Finally, the generator G converts the warped feature to the output image y.

talking-head synthesis approaches [68, 82, 92]. Also note
that unlike FOMM [68], our model does not estimate Jaco-
bians. The Jacobian represents how a local patch around the
keypoint can be transformed into the corresponding patch
in another image via an affine transformation. Instead of
explicitly estimating them, our model assumes the head is
mostly rigid and the local patch transformation can be di-
rectly derived from the head rotation via Js “ Rs. Avoiding
estimating Jacobians allows us to further reduce the trans-
mission bandwidth for the video conferencing application,
as detailed in Sec. 5.

3.2. Driving video feature extraction

We use d to denote a frame in td1, d2, ..., dNu as indi-
vidual frames are processed in the same way. To extract
motion-related information, we apply the head pose estima-
tor H to get Rd and td and apply the expression deformation

estimator ∆ to obtain δd,k’s, as shown in Fig. 3(b).
Now, instead of extracting canonical 3D keypoints from

the driving image d using L, we reuse xc,k, which were
extracted from the source image s. This is because the
face in the output image must have the same identity as the
one in the source image s. There is no need to compute
them again. Finally, the identity-specific information and
the motion-related information are combined to compute the
driving keypoints for the driving image d in the same way
we obtained source keypoints:

xd,k “ T pxc,k, Rd, td, δd,kq “ Rdxc,k ` td ` δd,k (2)

We apply this processing to each frame in the driving video,
and each frame can be compactly represented by Rd, td,
and δd,k’s. This compact representation is very useful for
low-bandwidth video conferencing. In Sec. 5, we will intro-
duce an entropy coding scheme to further compress these



quantities to reduce the bandwidth utilization.
Our approach allows manual changes to the 3D head pose

during synthesis. Let Ru and tu be user-specified rotation
and translation, respectively. The final head pose in the
output image is given by Rd Ð RuRd and td Ð tu ` td. In
video conferencing, we can change a person’s head pose in
the video stream freely despite the original view angle.

3.3. Video generation

As shown in Fig. 5, we synthesize an output image by
warping the source feature volume and then feeding the result
to the image generator G to produce the output image y. The
warping approximates the nonlinear transformation from s
to d. It re-positions the source features for the synthesis task.

To obtain the required warping function w, we take a
bottom-up approach. We first compute the warping flow wk

induced by the k-th keypoint using the first order approxi-
mation [68], which is reliable only around the neighborhood
of the keypoint. After obtaining all K warping flows, we
apply each of them to warp the source feature volume. The
K warped features are aggregated to estimate a flow com-
position mask m using the motion field estimation network
M . This mask indicates which of the K flows to use at each
spatial 3D location. We use this mask to combine the K
flows to produce the final flow w. Details of the operation
are given in Appendix A.1.

3.4. Training

We train our model using a dataset of talking-head videos
where each video contains a single person. For each video,
we sample two frames: one as the source image s and the
other as the driving image d. We train the networks F , ∆,
H , L, M , and G by minimizing the following loss:

LP pd, yq ` LGpd, yq ` LEptxd,kuq`

LLptxd,kuq ` LHpRd, R̄dq ` L∆ptδd,kuq (3)

In short, the first two terms ensure the output image looks
similar to the ground truth. The next two terms enforce
the predicted keypoints to be consistent and satisfy some
prior knowledge about the keypoints. The last two terms
constrain the estimated head pose and keypoint perturba-
tions. We briefly discuss these losses below and leave the
implementation details in Appendix A.2.
Perceptual loss LP . We minimize the perceptual loss [31,
84] between the output and the driving image, which is
helpful in producing sharp-looking outputs.
GAN loss LG. We use a multi-resolution patch GAN where
the discriminator predicts at the patch-level. We also mini-
mize the discriminator feature matching loss [82, 84].
Equivariance loss LE . This loss ensures the consistency of
image-specific keypoints xd,k. For a valid keypoint, when
applying a 2D transformation to the image, the predicted
keypoints should change according to the applied transforma-

tion [68, 98]. Since we predict 3D instead of 2D keypoints,
We use an orthographic projection to project the keypoints
to the image plane before computing the loss.
Keypoint prior loss LL. We use a keypoint coverage loss
to encourage the estimated image-specific keypoints xd,k’s
to spread out across the face region, instead of crowding
around a small neighborhood. We compute the distance
between each pair of the keypoints and penalize the model
if the distance falls below a preset threshold. We also use a
keypoint depth prior loss that encourages the mean depth of
the keypoints to be around a preset value.
Head pose loss LH . We penalize the prediction error of the
head rotation Rd compared to the ground truth R̄d. Since
acquiring the ground truth head pose for a large-scale video
dataset is expensive, we use a pre-trained pose estimation
network [66] to approximate R̄d.
Deformation prior loss L∆. The loss penalizes the magni-
tude of the deformations δd,k’s. As the deformations model
the deviation from the canonical keypoints due to expression
changes, their magnitudes should be small.

4. Experiments
Implementation details. The network architecture and
training hyper-parameters are available in Appendix A.3.
Datasets. Our evaluation is based on VoxCeleb2 [13] and
TalkingHead-1KH, a newly collected large-scale talking-
head video dataset. It contains 180K videos, which are
often with higher quality and larger resolution than those in
VoxCeleb2. Details are available in Appendix B.1.

4.1. Talking-head image synthesis

Baselines. We compare our neural talking-head model
with three state-of-the-art methods: FOMM [68], few-shot
vid2vid (fs-vid2vid) [82], and bi-layer neural avatars (bi-
layer) [92]. We use the released pre-trained model on Vox-
Celeb2 for bi-layer [92], and retrain from scratch for others
on the corresponding datasets. Since bi-layer does not pre-
dict the background, we subtract the background when doing
quantitative analyses.
Metrics. We evaluate a synthesis model on 1) reconstruction
faithfulness using L1, PSNR, SSIM/MS-SSIM, 2) output
visual quality using FID, and 3) semantic consistency using
average keypoint distance (AKD). Please consult Appendix
B.2 for details of the performance metrics.
Same-identity reconstruction. We first compare the face
synthesis results where the source and driving images are
of the same person. The quantitative evaluation is shown in
Table 1. It can be seen that our method outperforms other
competing methods on all metrics for both datasets. To ver-
ify that our superior performance does not come from more
parameters, we train another large FOMM model with dou-
bled filter size (FOMM-L), which is larger than our model.
We can see that enlarging the model actually hurts the perfor-



Table 1: Comparisons with state-of-the-art methods on face reconstruction. Ò larger is better. Ó smaller is better.

VoxCeleb2 [13] TalkingHead-1KH
Method L1Ó PSNRÒ SSIMÒ MS-SSIMÒ FIDÓ AKDÓ L1Ó PSNRÒ SSIMÒ MS-SSIMÒ FIDÓ AKDÓ

fs-vid2vid [82] 17.10 20.36 0.71 Nan 85.76 3.41 15.18 20.94 0.75 Nan 63.47 11.07
FOMM [68] 12.66 23.25 0.77 0.83 73.71 2.14 12.30 23.67 0.79 0.83 55.35 3.76

FOMM-L [68] N/A N/A N/A N/A N/A N/A 12.81 23.13 0.78 Nan 60.58 4.04
Bi-layer [92] 23.95 16.98 0.66 0.66 203.36 5.38 N/A N/A N/A N/A N/A N/A

Ours 10.74 24.37 0.80 0.85 69.13 2.07 10.67 24.20 0.81 0.84 52.08 3.74

Source image fs-vid2vid OursFOMMBi-layer Ground truth

Figure 6: Qualitative comparisons on the Voxceleb2 dataset [13]. Our method better captures the driving motions.

Source image fs-vid2vid OursFOMM Ground truthFOMM-L

Figure 7: Qualitative comparisons on the TalkingHead-1KH dataset. Our method produces more faithful and sharper results.

mance, proving that simply making the model larger does not
help. Figures 6 and 7 show the qualitative comparisons. Our
method can more faithfully reproduce the driving motions.
Cross-identity motion transfer. Next, we compare results
where the source and driving images are from different
persons (cross-identity). Table 2 shows that our method
achieves the best results compared to other methods. Fig-

ure 8 compares results from different approaches. It can
be seen that our method generates more realistic images
while still preserving the original identity. For cross-identity
motion transfer, it is sometimes useful to use relative mo-
tion [68], where only motion differences between two neigh-
boring frames in the driving video are transferred. We report
comparisons using relative motion in Appendix B.3.



Table 2: Quantitative results on cross-identity motion trans-
fer. Our method achieves lowest FIDs and highest identity-
preserving scores (CSIM [93]).

VoxCeleb2 [13] TalkingHead-1KH
Method FIDÓ CSIMÒ FIDÓ CSIMÒ

fs-vid2vid [82] 59.84 0.593 52.72 0.703
FOMM [68] 84.06 0.582 87.32 0.542

Ours 55.64 0.753 46.99 0.777

Table 3: Face frontalization quantitative comparisons. We
compute the identity loss and angle difference for each
method and report the percentage where the losses are within
a threshold (0.05 and 15 degrees, respectively).

Method Identity (%)Ò Angle (%)Ò Both (%)Ò FIDÓ

pSp [64] 57.3 99.8 57.3 118.08
RaR [99] 55.1 87.2 50.8 78.81

Ours 94.3 90.9 85.9 23.87

Ablation study. We benchmark the performance gains from
the proposed keypoint decomposition scheme, the mask esti-
mation network, and pose supervision in Appendix B.4.
Failure cases. Our model fails when large occlusions and
image degradation occur, as visualized in Appendix B.5.
Face recognition. Since the canonical keypoints are inde-
pendent of poses and expressions, they can also be applied
to face recognition. In Appendix B.6, we show that this
achieves 5x accuracy than using facial landmarks.

4.2. Face redirection.

Baselines. We benchmark our talking-head model’s face
redirection capability using latest face frontalization meth-
ods: pixel2style2pixel (pSp) [64] and Rotate-and-Render
(RaR) [99]. pSp projects the original image into a latent
code and then uses a pre-trained StyleGAN [1] to synthesize
the frontalized image. RaR adopts a 3D face model to rotate
the input image and re-renders it in a different pose.
Metrics. The results are evaluated by two metrics: identity
preservation and head pose angles. We use a pre-trained
face recognition network [59] to extract high-level features,
and compute the distance between the rotated face and the
original one. We use a pre-trained head pose estimator [66]
to obtain head angles of the rotated face. For a rotated image,
if its identity distance to the original image is within some
threshold, and/or its head angle is within some tolerance to
the desired angle, we consider it as a “good” image.

We report the ratio of “good” images using our metric for
each method in Table 3. Example comparisons can be found
in Fig. 9. It can be seen that while pSp can always frontalize
the face, the identity is usually lost. RaR generates more
visually appealing results since it adopts 3D face models, but
has problems outside the inner face regions. Besides, both
methods have issues regarding the temporal stability. Only
our method can realistically frontalize the inputs.

Figure 8: Qualitative results for cross-subject motion transfer.
Ours captures the motion and preserves the identity better.

Figure 9: Qualitative results for face frontalization. Our
method more realistically frontalizes the faces.

5. Neural Talking-Head Video Conferencing
Our talking-head synthesis model distills motions in a

driving image using a compact representation, as discussed
in Sec. 3. Due to this advantage, our model can help reduce
the bandwidth consumed by video conferencing applications.
We can view the process of video conferencing as the re-
ceiver watching an animated version of the sender’s face.

Figure 10 shows a video conferencing system built using
our neural talking-head model. For a driving image d, we
use the driving image encoder, consisting of ∆ and H , to
extract the expression deformations δd,k and the head pose
Rd, td. By representing a rotation matrix using Euler angles,
we have a compact representation of d using 3K ` 6 num-
bers: 3 for the rotation, 3 for the translation, and 3K for the
deformations. We further compress these values using an
entropy encoder [14]. Details are in Appendix C.1.

The receiver receives the entropy-encoded representation
and uses the entropy decoder to recover δd,k and Rd, td.
They are then fed into our talking-head synthesis framework
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Figure 10: Our video compression framework. On the
sender’s side, the driving image encoder extracts keypoint
perturbations δd,k and head poses Rd and td. They are then
compressed using an entropy encoder and sent to the receiver.
The receiver decompresses the message and uses them along
with the source image s to generate y, a reconstruction of
the input d. Our framework can also change the head pose
on the receiver’s side by using the pose offset Ru and tu.

Figure 11: Automatic and human evaluations for video com-
pression. Ours requires much lower bandwidth due to our
keypoint decomposition and adaptive scheme.

to reconstruct the original image d. We assume that the
source image s is sent to the receiver at the beginning of
the video conferencing session or re-used from a previous
session. Hence, it does not consume additional bandwidth.
We note that the source image is different from the I-frame in
traditional video codecs. While I-frames are sent frequently
in video conferencing, our source image only needs to be
sent once at the beginning. Moreover, the source image can
be an image of the same person captured on a different day,
a different person, or even a face portrait painting.

Adaptive number of keypoints. Our basic model uses a
fixed number of keypoints during training and inference.
However, since the transmitted bits are proportional to the
number of keypoints, it is advantageous to change this num-
ber to accommodate varying bandwidth requirements dy-
namically. Using keypoint dropouts at training time, we
derive a model that can dynamically use a smaller number of
keypoints for reconstruction. This allows us to transmit even
fewer bits without compromising visual quality. On average,
with the adaptive scheme, the number of sent keypoints is
reduced from K “ 20 to 11.52 (Appendix C.2).

Benchmark dataset. We manually select a dataset of 222
high-quality talking-head videos. Each video’s resolution is
512ˆ512 and the length is up to 1024 frames for evaluation.

Baselines. We compare our video streaming method with
the popular H.264 codec. In order to conform to real-time
video streaming cases, we disable the use of bidirectional B-
frames, as this uses information from the future. By varying

the constant rate factor (CRF) while encoding the ground
truth input videos, we can obtain a set of videos of varying
qualities and sizes suitable for a range of bandwidth availabil-
ity. We also compare with FOMM [68] and fs-vid2vid [82],
which also use keypoints or facial landmarks. For a fair
comparison, we also compress their keypoints and Jacobians
using our entropy coding scheme.
Metrics. We compare the compression effectiveness using
the average number of bits required per pixel (bpp) for each
output frame. We measure the compression quality using
both automatic and human evaluations. Unlike traditional
compression methods, our method does not reproduce the
input image in a pixel-aligned manner but can faithfully
reproduce facial motions and gestures. Metrics based on
exact pixel alignments are ill-suited for measuring the quality
of our output videos. We hence use the LPIPS perceptual
similarity metric [96] for measuring compression quality [7].

As shown on the left side of Fig. 16, compared to the
other neural talking-head synthesis methods, ours obtains
better quality while requiring much lower bandwidth. This
is because other methods send the full keypoints [68, 82]
and Jacobians [68], while ours only sends the head pose and
keypoint deformations. Compared with H.264 videos of the
same quality, ours requires significantly lower bandwidth.
For human evaluation, we show MTurk workers two videos
side-by-side, one produced by H.264 and the other produced
by our method’s adaptive version. We then ask the workers
to choose the video that they feel is of better quality. The
preference scores are visualized on the right side of Fig. 16.
Based on these scores, our compression method is compara-
ble to the H.264 codec at a CRF value of 36, which means
our adaptive and 20 keypoint scheme obtains 10.37ˆ and
6.5ˆ reduction in bandwidth compared to the H.264 codec,
respectively. To handle challenging corner cases for our
video conferencing system and out-of-distribution videos,
we further develop a binary latent encoding network that can
efficiently encode the residual at the expense of additional
bandwidth, the details of which are in Appendix C.3.

6. Conclusion
In this work, we present a novel framework for neural

talking-head video synthesis and compression. We show
that by using our unsupervised 3D keypoints, we are able to
decompose the representation into person-specific canonical
keypoints and motion-related transformations. This decom-
position has several benefits: By modifying the keypoint
transformation only, we are able to generate free-view videos.
By transmitting just the keypoint transformations, we can
achieve much better compression ratios than existing meth-
ods. These features provide users a great tool for streaming
live videos. By dramatically reducing the bandwidth and
ensuring a more immersive experience, we believe this is an
important step towards the future of video conferencing.
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A. Additional Network and Training Details
Here, we present the architecture of our neural talking-

head model. We also discuss the training details.

A.1. Network architectures

The implementation details of the networks in our model
are shown in Fig. 12 and described below.
Appearance feature extractor F . The network extracts 3D
appearance features from the source image. It consists of a
number of downsampling blocks, followed by a convolution
layer that projects the input 2D features to 3D features. We
then apply a number of 3D residual blocks to compute the
final 3D features fs.
Canonical keypoint detector L. The network takes the
source image and applies a U-Net style encoder-decoder to
extract canonical keypoints. Since we need to extract 3D
keypoints, we project the encoded features to 3D through a
1 ˆ 1 convolution. The output of the 1 ˆ 1 convolution is
the bottleneck of the U-Net. The decoder part of the U-Net
consists of 3D convolution and upsampling layers.
Head pose estimator H and expression deformation es-
timator ∆. We adopt the same architecture as in Ruiz et
al. [66]. It consists of a series of ResNet bottleneck blocks,
followed by a global pooling to remove the spatial dimen-
sion. Different linear layers are then used to estimate the
rotation angles, the translation vector, and the expression
deformations. The full angle range is divided into 66 bins
for rotation angles, and the network predicts which bin the
target angle is in. The estimated head pose and deformations
are used to transform the canonical keypoints to obtain the
source or driving keypoints.
Motion field estimator M . After the keypoints are pre-
dicted, they are used to estimate warping flow maps. We
generate a warping flow map wk based on the k-th keypoint
using the first-order approximation [68]. Let pd be a 3D
coordinate in the feature volume of the driving image d. The
k-th flow field maps pd to a 3D coordinate in the 3D feature
volume of the source image s, denoted by ps, by:

wk : RsR
´1
d ppd ´ xd,kq ` xs,k ÞÑ ps. (4)

This builds a correspondence between the source and driving.
Using the flow field wk obtained from the k-th keypoint

pair, we can warp the source feature fs to construct a candi-
date warped volume, wkpfsq. After we obtain the warped
source features wkpfsq using all K flows, they are con-
catenated together and fed to a 3D U-Net to extract fea-
tures. Then a softmax function is employed to obtain the
flow composition mask m, which consists of K 3D masks,
tm1,m2, ...,mKu. These maps satisfy the constraints that
ř

kmkppdq “ 1 and 0 ď mkppdq ď 1 for all pd. These
K masks are then linearly combined with the K warping
flow maps, wk’s, to construct the final warping map w by

řK
k“1mkppdqwkppdq. To handle occlusions caused by the

warping, we also predict a 2D occlusion mask o, which will
be inputted to the generator G.

Generator G. The generator takes the warped 3D appear-
ance features wpfsq and projects them back to 2D. Then, the
features are multiplied with the occlusion mask o obtained
from the motion field estimatorM . Finally, we apply a series
of 2D residual blocks and upsamplings layers to obtain the
final image.

A.2. Losses

We present details of the loss terms in the following.

Perceptual loss LP . We use the multi-scale implementa-
tion introduced by Siarohin et al. [68]. In particular, a
pre-trained VGG network is used to extract features from
both the ground truth and the output image, and the L1 dis-
tance between the features is computed. Then both images
are downsampled, and the same VGG network is used to
extract features and compute the L1 distance again. This
process is repeated 3 times to compute losses at multiple
image resolutions. We use layers relu 1 1, relu 2 1,
relu 3 1, relu 4 1, relu 5 1 of the VGG19 net-
work with weights 0.03125, 0.0625, 0.125, 0.25, 1.0, respec-
tively. Moreover, since we are synthesizing face images,
we also compute a single-scale perceptual loss using a pre-
trained face VGG network [59]. These losses are then
summed together to give the final perceptual loss.

GAN loss LG. We adopt the same patch GAN implemen-
tation as in [58, 84], and use the hinge loss. Feature match-
ing [84] loss is also adopted to stabilize training. We use
single-scale discriminators for training 256 ˆ 256 images,
and two-scale discriminators [84] for 512ˆ 512 images.

Equivariance loss LE . This loss ensures the consistency of
estimated keypoints [68, 98]. In particular, let the original
image be d and its detected keypoints be xd. When a known
spatial transformation T is applied on image d, the detected
keypoints xTpdq on this transformed image Tpdq should be
transformed in the same way. Based on this observation,
we minimize the L1 distance }xd ´T´1pxTpdqq}1. Affine
transformations and randomly sampled thin plate splines
are used to perform the transformation. Since all these are
2D transformations, we project our 3D keypoints to 2D by
simply dropping the z values before computing the losses.

Keypoint prior loss LL. As described in the main paper,
we penalize the keypoints if the distance between any pair
of them is below some threshold Dt, or if the mean depth
value deviates from a preset target value zt. In other words,

LL “

K
ÿ

i“1

K
ÿ

j“1

maxp0, Dt ´ }xd,i ´ xd,j}
2
2q ` }Zpxdq ´ zt}

(5)
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Figure 12: Architectures of individual components in our model. For the building blocks, please refer to Fig. 13
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Figure 13: Building blocks of our model. For the 3D coun-
terparts, we simply replace 2D convolutions with 3D convo-
lutions in the blocks.

where Zp¨q extracts the mean depth value of the keypoints.
This ensures the keypoints are more spread out and used
more effectively. We set Dt to 0.1 and zt to 0.33 in our
experiments.

Head pose loss LH . We compute the L1 distance between
the estimated head pose Rd and the one predicted by a pre-
trained pose estimator R̄d, which we treat as ground truth.
In other words, LH “ }Rd ´ R̄d}1, where the distance is
computed as the sum of differences of the Euler angles.

Deformation prior loss L∆. Since the expression deforma-
tion ∆ is the deviation from the canonical keypoints, their
magnitude should not be too large. To ensure this, we put a
loss on their L1 norm: L∆ “ }δd,k}1.

Final loss The final loss is given by:

L “λPLP pd, yq ` λGLGpd, yq ` λELEptxd,kuq`

λLLLptxd,kuq ` λHLHpRd, R̄dq ` λ∆L∆ptδd,kuq
(6)

where λ’s are the weights and are set to 10, 1, 20, 10, 20, 5
respectively in our implementation.

A.3. Optimization

We adopt the ADAM optimizer [38] with β1 “ 0.5 and
β2 “ 0.999. The learning rate is set to 0.0002. We apply
Spectral Norm [54] to all the layers in both the generator and
the discriminator. We use synchronized BatchNorm for the
generator. Training is conducted on an NVIDIA DGX1 with
8 32GB V100 GPUs.

We adopt a coarse-to-fine approach for training. We first
train our model on 256 ˆ 256 images for 100 epochs. We
then finetune on 512ˆ 512 images for another 10 epochs.

B. Additional Experiment Details
B.1. Datasets

We use the following datasets in our evaluations.

VoxCeleb2 [13]. The dataset contains about 1M talking-
head videos of different celebrities. We follow the training
and test split proposed in the original paper. where we use
280K videos with high bit-rates to train our model. We
report our results on the validation set, which contains about
36k videos.

TalkingHead-1KH. We compose a dataset containing about
1000 hours of videos from various sources. A large por-
tion of them is from the YouTube website with the creative
common license. We also use videos from the Ryerson
audio-visual dataset [51] as well as a set of videos that we
recorded with the permission from the subject ourselves. We
only use videos whose resolution and bit-rate are both high.
We call this dataset TalkingHead-1KH. The videos in the
TalkingHead-1KH are in general with higher resolutions and
better image quality than those in the VoxCeleb2.

B.2. Metrics

We use a set of metrics to evaluate a talking-head synthe-
sis method. We use L1, PSNR, SSIM, and MS-SSIM for



Table 4: Cross-identity transfer using relative motion.

VoxCeleb2 TalkingHead-1KH
Method FIDÓ CSIMÒ FIDÓ CSIMÒ

fs-vid2vid [82] 48.48 0.928 44.83 0.955
FOMM [68] 48.91 0.954 42.26 0.961

Ours 46.43 0.960 41.25 0.964

quantifying the faithfulness of the recreated videos. We use
FID to measure how close is the distribution of the recre-
ated videos to that of the original videos. We use AKD to
measure how close the facial landmarks extracted by an off-
the-shelf landmark detector from the recreated video are to
those in the original video. In the following, we discuss the
implementation details of these metrics.
L1. We compute the average L1 distance between generated
and real images.
PSNR measures the image reconstruction quality by com-
puting the mean squared error (MSE) between the ground
truth and the reconstructed image.
SSIM/MS-SSIM. SSIM measures the structural similarity
between patches of the input images. Therefore, it is more
robust to global illumination changes than PSNR, which is
based absolute errors. MS-SSIM is a multi-scale variant of
SSIM that works on multiple scales of the images and has
been shown to correlate better with human perception.
FID [25] measures the distance between the distributions
of synthesized and real images. We use the pre-trained
InceptionV3 network to extract features from both sets of
images and estimate the distance between them.
Average keypoint distance (AKD). We use a facial land-
mark detector [37] to detect landmarks of real and synthe-
sized images and then compute the average distance between
the corresponding landmarks in these two images.

B.3. Relative motion transfer

For cross-identity motion transfer results in our experi-
ment section, we transfer absolute motions in the driving
video. For completeness, we also report quantitative com-
parisons using relative motion proposed in [68] in Table 4.
As can be seen, our method still performs the best.

B.4. Ablation study

We perform the following ablation studies to verify the
effectiveness of our several important design choices.
Two-step vs. direct keypoint prediction. We estimate the
keypoints in an image by first predicting the canonical key-
points and then applying the transformation and the defor-
mations. To compare this approach with direct keypoint
location prediction, we train another network that directly
predicts the final source and driving keypoints in the image.
In particular, the keypoint detector L directly predicts the

Table 5: Ablation study. Compared with all the other alter-
natives, our model (the preferred setting) works the best.

Method L1 PSNR SSIM MS-SSIM FID AKD
Direct pred. 10.84 24.00 0.80 0.83 58.55 4.26

Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

2D Warp 11.64 23.38 0.79 0.82 58.75 4.20
Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

10 kp 11.49 23.36 0.79 0.82 56.27 4.31
15 kp 11.35 23.53 0.79 0.82 54.36 4.50

Ours (20 kp) 10.67 24.20 0.81 0.84 52.08 3.74

Source image Driving frame Synthesized result
Figure 14: Example failure cases. Our method still struggles
when there are occluders such as hands in the image.

final source and driving keypoints in the image instead of
the canonical ones, and there is no pose estimator H and
deformation estimator ∆. Since there is no pose estimator,
we do not need any pose supervision (i.e., head pose loss)
for this direct prediction network. Note that while this model
is only slightly inferior to our final (two-step) model quanti-
tatively, it has no pose control for the output video since the
head pose is no longer estimated, so a major feature of our
method would be lost.

3D vs. 2D warping. We generate 3D flow fields from the
estimated keypoints to warp 3D features. Another option is
to project the keypoints to 2D, estimate a 2D flow field, and
extract 2D features from the source image. The estimated
2D flow filed is then used to warp 2D image features.

Number of keypoints. We show that our approach’s output
quality is positively correlated with the number of keypoints.

As can be seen in Table 5, our model works better than
all the other alternatives on all of the performance metrics.

B.5. Failure cases

While our model is in general robust to different situa-
tions, it cannot handle large occlusions well. For example,
when the face is occluded by the person’s hands or other ob-
jects, the synthesis quality will degrade, as shown in Fig. 14



Table 6: Size of per-frame metadata in bytes for talking-head
methods before and after arithmetic compression.

Method Before After Compression
Compression Mean Min Max Median

fs-vid2vid [82] 504 231.42 158 599 238
FOMM [68] 240 171.09 159 210 169
Ours (20 kp) 132 84.44 78 104 84

Ours (adaptive) 81.16 53.03 25 102 45

B.6. Canonical keypoints for face recognition

Our canonical keypoints are formulated to be independent
of the pose and expression change. They should only contain
a person’s geometry signature, such as the shapes of face,
nose, and eyes. To verify this, we conduct an experiment
using the canonical keypoints for face recognition.

We extract canonical keypoints from 384 identities in
the VoxCeleb2 [13] dataset to form a training set. For each
identity, we also pick a different video of the same identity
to form the test set. The training and test videos of the same
subject have different head poses and expressions. A face
recognition algorithm would fail if it could not filter out
pose and expression information. To prove our canonical
keypoints are independent to poses and expressions, we
apply a simple nearest neighbor classifier using our canonical
keypoints for the face recognition task.

Overall, our canonical keypoints reaches an accuracy of
0.070, while a random guess has an accuracy of 0.0026
(Ours is 27ˆ better than the random guess.). On the other
hand, a classifier using the off-the-shelf dlib landmark de-
tector only achieves an accuracy of 0.013, which means our
keypoints are 5ˆ more effective for face recognition.

C. Additional Video Conferencing Details

C.1. Entropy encoder

We represent each rotation angle, translation, and defor-
mation value as an fp16 floating-point number. Each number
consumes two bytes. Naively transmitting the 3K ` 6 float-
ing numbers will result in transmitting 6K ` 12 bytes. We
adopt arithmetic coding [40] to encode the 3K ` 6 numbers.
Arithmetic coding is one kind of entropy coding. It assigns
different codeword lengths to different symbols based on
their frequencies. The symbol that appears more often will
have a shorter code.

We first apply the driving image encoder to a validation
set of 127 videos that are not included in the test set. Each
frame will give us 6K ` 12 bytes. We treat each of the bytes
separately and build a frequency table for each byte. This
gives us 6K ` 12 frequency tables. When encoding the test
set, we encode each byte using the associated frequency table
learned from the validation set. This results in a varying-

length representation that is much smaller than 6K ` 12
bytes on average.

Table 6 shows the sizes of the per-frame metadata in bytes
that needs to be transmitted for various talking-head methods
before and after performing the arithmetic compression for
an image size of 512ˆ512. Our adaptive scheme requires a
per-frame metadata size of 53.03 B, which corresponds to
p53.03ˆ 8{5122q “ 0.001618 bits per pixel.

C.2. Adaptive number of keypoints

Our basic model uses a fixed number of keypoints dur-
ing training and inference. However, on a video call, it is
advantageous to adaptively change the number of keypoints
used to accommodate varying bandwidth and internet con-
nectivity. We devise a scheme where our synthesis model
can dynamically use a smaller number of keypoints for re-
construction. This is based on the intuition that not all of
the images are of the same complexity. Some just require
fewer keypoints. Using fewer keypoints, we can reduce the
bandwidth required for video conferencing because we just
need to send a subset of δd,k’s. To train a model that sup-
ports a varying number of keypoints, we randomly choose
an index into the array of ordered keypoints, and dropout all
values from that index till the end of the array. This dropout
percentage ranges from 0% to 75%. This scheme is also
helpful when the available bandwidth suddenly drops.

C.3. Binary encoding of the residuals

When the contents of the video being streamed change
drastically, e.g. when new objects are introduced into the
video or the person changes, it becomes necessary to update
the source frame being used to perform the talking-head
synthesis. This can be done by sending a new image to
the receiver. We also devise a more efficient scheme to
encode and send only the residual between the ground truth
frame and the reconstructed frame, instead of an entirely new
source image. To encode a residual image of size 512ˆ 512,
we use a 3-layer network with convolutions of kernel size 3,
stride 2, and 32 channels, similar to the network proposed
by Tsai et al. [79]. We compute the sign of the latent code
of size 32 ˆ 64 ˆ 64 to obtain binary latent codes. The
decoder also consists of 3 convolutional layers of 128 filters
and uses the pixel shuffle layer to perform upsampling. After
arithmetic coding, the binary latent code requires 13.40 KB
on average. Note that we do not need to send the encoded
binary residual every frame. We just need to send it when the
current source image is not good enough to reconstruct the
current driving image. In the receiver side, we will use the
encoded residual to improve the quality of the reconstructed
image. The reconstructed image will become the new source
image for decoding future frames using the encoded rotation,
translation, and deformations. Example improvements after
adding the residual are shown in Fig. 15.
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Figure 15: Fixing artifacts in compressed images using our binary residual encoder. We are able to fix artifacts caused due to
the introduction of new objects, changes in background, as well as extreme poses by transmitting the residuals encoded as
binary values. Each residual binary latent code requires only about 13.40 KB and can replace sending new source images.

(a) (b) (c)

Figure 16: Automatic and human evaluations for video compression. Ours requires much lower bandwidth than the H.264 and
H.265 codecs and other talking-head synthesis methods thanks to our keypoint decomposition and adaptive scheme.

C.4. Dataset
For testing, we collect a set of high-resolution talking-

head videos from the web. We ensure that the head is of size
at least 512ˆ512 pixels and manually check each video to
ensure its quality. This results in a total of 222 videos, with
a mean of 608 frames, a median of 661 frames, and a min
and max of 20 and 1024 frames, respectively.

C.5. Additional experiment results
In Fig. 16(a), we show the achieved LPIPS score by our

approach under the adaptive setting (red circle), our approach
under the 20 keypoint setting (red triangle), FOMM (green
square), fs-vid2vid (orange diamond), H.264, and H.265 us-
ing different bpp rates. We observe that our method requires
much lower bandwidth than the competing methods.

User study. Here, we describe the details of our user study.
We use the Amazon Mechanical Turk (MTurk) platform

for the user preference score. A worker needs to have a
lift-time approval rate greater than 98 to be qualified for
our study. This means that the requesters approve 98% of
his/her task assignments. For comparing two competing
methods, we generate 222 videos from each method. We
show the corresponding pair of videos from two competing
methods to three different MTurk workers and ask them to
select which one has better visual quality. This gives 666
preference scores for each comparison. We report the aver-
age preference score achieved by our method. We compare
our adaptive approach to both H.264 and H.265. The user
preference scores of our approach when compared to H.264
and H.265 are shown in Fig. 16(b) and (c), respectively. We
found that our approach renders comparable performance
to H.264 with CRF value 36. For H.265, our approach is
comparable to CRF value 37. Our approach was able to
achieve the same visual quality using a much lower bit-rate.




