

Detecting and Leveraging Finger Orientation
for Interaction with Direct-Touch Surfaces

Feng Wang1, Xiang Cao2, Xiangshi Ren1 and Pourang Irani3
1School of Information

Kochi University of Technology, Japan
wangfeng@acm.org

ren.xiangshi@kochi-tech.ac.jp

2Microsoft Research Cambridge
Cambridge CB3 0FB

United Kingdom
xiangc@microsoft.com

3Computer Science Dept.
 University of Manitoba

Canada
irani@cs.umanitoba.ca

ABSTRACT
Current interactions on direct-touch interactive surfaces are
often modeled based on properties of the input channel that
are common in traditional graphical user interfaces (GUI)
such as x-y coordinate information. Leveraging additional
information available on the surfaces could potentially
result in richer and novel interactions. In this paper we
specifically explore the role of finger orientation. This
property is typically ignored in touch-based interactions
partly because of the ambiguity in determining it solely
from the contact shape. We present a simple algorithm that
unambiguously detects the directed finger orientation
vector in real-time from contact information only, by
considering the dynamics of the finger landing process.
Results of an experimental evaluation show that our
algorithm is stable and accurate. We then demonstrate how
finger orientation can be leveraged to enable novel
interactions and to infer higher-level information such as
hand occlusion or user position. We present a set of
orientation-aware interaction techniques and widgets for
direct-touch surfaces.

ACM Classification: I.3.6 [Methodology and Techniques]:
Interaction techniques.

General terms: Design, Human Factors.

Keywords: Finger orientation, direct-touch surface,
orientation aware interface.

INTRODUCTION
Interactive techniques on touch and multi-touch surfaces
are generating significant appeal in the general public due
to their inherently natural affordances. One main reason for
this naturalness is derived from the ability to let users
employ their bare fingers and directly manipulate the
system without intermediary devices. Researchers have
demonstrated that direct-touch interactive displays offer a
more compelling method to interact with a system than
working indirectly with a mouse or with other types of
pointing devices [11, 15, 22, 30, 37] .

However, current multi-touch designs are mainly based on
multi-point information, i.e. the touch-sensitive devices
primarily use the center coordinates of the human finger’s
contact region as cursor positions. Therefore, most
interactions mainly rely on touch positions or variations in
touch movements. Relatively few research demonstrations
have used auxiliary information other than touch position,
such as the shape [7, 36] or size of the contact region [3]
for enhancing the naturalness of the interaction.

One potentially accessible piece of information from a
finger’s contact point is its orientation. Orientation is a
natural cue as it provides the direction a user is pointing in
and is used in many daily interactions, such as pointing to
communicate with others, to acquire or position an object,
or even to lead and direct attention. If we consider an
orientation vector consisting of a direction and an angle
from a point of reference, very few systems have used this
to enhance the naturalness of the interactions. By extracting
the longitudinal axis of a finger’s contact shape, it is
straightforward to detect the undirected angular
configuration (0°~180°) of a straight line that approximates
the user’s finger. However, this result is ambiguous. The
exact orientation vector of the finger could be one of two
opposite directions that align with the undirected line,
making it difficult to utilize the exact direction of the finger
for interaction (Figure 1a).

Figure 1. (a) Undirected orientation vs. directed
orientation vector of the finger. (b) Orientation
detection in action.

To address this limitation, we present a novel and robust
algorithm that accurately and unambiguously detects the
orientation vector by considering the dynamics in finger
contact (Figure 1b). This algorithm is general enough for
any direct-touch surface that generates contact shape
information, without resorting to additional sensors. We
demonstrate that finger orientation information is key in the
design of orientation-aware interactions and widgets, for
example to facilitate target selection, or to optimally orient

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

23

elements in the workspace to adapt to the user’s position.
Additional information about the user can also be inferred
from finger orientation, such as hand occlusion region or
the position of the user. These cues can in turn be
leveraged to further enrich the interaction on touch-
surfaces.

RELATED WORK

Direct-Touch Surface Technologies
In recent years we have witnessed an exponential growth
of technologies to support direct-touch interactive surfaces
[2, 9, 11, 15, 18, 19, 29, 34-37]. DiamondTouch [9], one of
the earlier multi-touch systems allows multiple users to
simultaneously interact on a tabletop. Through capacitive
coupling it associates touch regions with each user, useful
for supporting user-specific operations. The rough shape of
each finger contact is determined through an antenna
matrix.

Computer-vision-based technologies are also widely
employed to enable direct-touch surfaces. Han et al. [15]
introduced a multi-touch system based on Frustrated Total
Internal Reflection (FTIR), which recovers the surface
regions being depressed by fingers. An alternative
approach is based on Diffuse Illumination (DI), which
detects not only the contact regions but also fingers
hovering above the surface within a certain distance. This
is used on systems such as the Microsoft Surface [21].
Compared to capacitive-based sensing, vision-based
systems provide higher fidelity in detecting the contact
shape.

Briefly, current interactive surfaces provide contact shape
of the fingers, regardless of the underlying technology.
This is the basis of our algorithm, which aims at
determining the finger orientation from contact shape input
only.

User Interfaces Design
With advances in hardware functionality and improved
features with multi-touch systems, researchers are
expending parallel efforts in designing new techniques and
leveraging upon novel hardware designs. We relate our
work to two general categories of interaction techniques:
techniques that replicate mouse features on direct-touch
surfaces; and techniques that leverage upon additional hand
and finger properties.

Adapting Mouse Interactions. There exist several
motivations for adapting mouse-based interactions on
direct-touch surfaces. Touch-based interactions are known
to result in imprecise selections. Researchers have
proposed numerous solutions to improve the precision of
bare finger interactions [1, 3, 25, 28, 32] and these
solutions can be categorized as follows: direct touch
improvement [28], cursor offset [3, 28, 32], target zoom-in
or control-display ratio adjustment [4, 27] and on-screen
widget [1] to precisely select a target. Furthermore,
researchers have explored the benefits of using multi-point
input to interact with traditional GUI elements [23-25].

To ensure compatibility with traditional legacy applications,
researchers have studied cursor control and mouse
simulation techniques. The DiamondTouch-mouse [10]
supports a right-click by tapping with a second finger.
DTMouse [11] further enhances the functionality of the
DiamoundTouch-mouse by addressing issues such as
mouse-over, smooth toggling of left mouse button,
ergonomics and precise input. In DTMouse, states of the
mouse were determined based on timeout intervals of
holding a finger down.

Matejka et al. [20] presented SDMouse to emulate the
functionality of a conventional mouse, including a tracking
state, three buttons and chording. The first finger down is
used as a tracking finger, and the combination of two or
three fingers are used to trigger left-click, right-click or
scrolling events based on the side and the distance of finger
touch points. However, these systems are based solely on
extracting the coordinates of the finger contact points on
the screen. Such systems can be unstable or need
redefinition if the user triggers these states in a different
orientation.

Leveraging Additional Finger Properties. In addition to
using the center coordinates of the contact region,
researchers have proposed techniques that use finger or
hand properties for new interactions. Benko et al. [3]
proposed the use of contact size to simulate pressure input
on the tabletop. They introduced rocking and pressing
gestures to define various states, including a “click” event.
Wilson et al. [36] used the contact contours to emulate
physical reactions between touch input and digital objects.
Cao et al. [7] presented ShapeTouch that leverages the
contact shape to enable richer interactions similar to those
in the real world. Davidson et al. [8] demonstrated a
pressure-based depth sorting technique using a pressure-
sensitive surface, which extends standard two-dimensional
manipulation techniques, particularly those controlled by
multi-touch input.

Finger orientation was firstly adopted by Malik et al. [19]
in the Visual Touchpad system. The system uses a pair of
overhead cameras to track the entire hand of the user, and
infers finger orientations accordingly. Microsoft Surface
[21] determines full finger orientations by leveraging
additional hover information enabled by the DI technology.
Both these approaches rely on a specific sensing
technology, and are therefore not generally applicable to
other systems. These systems also did not investigate
interaction designs that specifically utilize finger
orientation.

Wang and Ren [33] empirically investigated finger contact
properties such as size, shape, width, length and orientation
using a FTIR-based multi-touch surface. They have
speculated a few interaction designs leveraging finger
orientation, but did not provide an algorithm to detect
finger orientation in real time. Inspired by some of their
findings, we propose in this paper a general finger
orientation detection algorithm that requires contact shape

24

information only. We then further explore novel
interactions that leverage upon finger orientations.

FINGER ORIENTATION DETECTION ALGORITHM
In this section we describe our algorithm that detects the
directed orientation vector of the user’s finger, based on
real-time information collected from the shape of the finger
contact. Here the finger orientation refers to the 2D
orientation of the finger’s projection on the surface. Prior
literature [3, 12] points at two types of finger touch on
interactive surfaces: vertical touch and oblique touch
(Figure 2). A vertical contact occurs when the finger is
directly pointing downward, toward the surface (Figure 2a).
Obviously this does not provide usable orientation
information. Conversely, an oblique touch occurs when the
finger lands on the surface at an oblique angle (Figure 2b).
Considering common practices handling physical objects,
as well as the necessity to accommodate long fingernails by
some people (especially women), we expect that the
oblique touch is more likely to happen when people touch
interactive surfaces. A unique finger orientation can be
determined from an oblique touch, which is the basis of our
algorithm.

Figure 2. Two ways of finger touch. (a) vertical
touch. (b) oblique touch.

For each frame of input that contains all contact pixels on
the surface, we first conduct a connected component
analysis to extract all finger contact regions. Then for each
finger contact, its orientation is determined by our
algorithm. The algorithm has four major steps: fitting the
contact shape; detecting the oblique touch; disambiguating
the finger direction; and continually tracking the
orientation.

Fitting Contact Shape
When a finger obliquely touches the surface, its contact
region appears as an elliptic shape (Figure 3). This shape
can then be fitted into a perfect ellipse described by
Equation 1 using least-square fitting, as presented in [33]:

1

2/

sincos

2/

sincos

2

00

2

00

width

xxyy

length

yyxx

 (1)

The length (magnitude of the long axis), width (magnitude
of the short axis), and slant angle θ (0 ≤ θ ≤ π) describe the
shape of the ellipse; and (x0, y0) is the center coordinate of
the finger contact. The area of the contact region can be
calculated by simply counting the pixels within it. The slant
angle θ describes the undirected orientation of the finger.

Figure 3. Finger contact region fitted to an ellipse.
Width, length and slant angle can be obtained from
results of the fit.

Identifying Oblique Touch
In order to generate reliable finger orientation, we need to
determine whether the finger is currently in an oblique
touch state. Two properties of the finger contact region are
critical for identifying an oblique touch: area and aspect
ratio. Equation 2 shows the identification criteria:

ts
width

length
ratioaspect

taarea
 (2)

where ta and ts are empirically determined thresholds. Both
criteria need to be satisfied for an oblique touch to be
identified, otherwise we consider the finger to be in either
vertical or accidental touch and ignore its orientation.
These two criteria were determined based on pilot trials
and previous literature.

Area Criterion. As found in prior investigations of finger
input properties [33], the contact area is significantly
different in vertical and oblique touches. The mean contact
area in vertical touch is between 28.48 and 33.52 mm2,
whereas the mean contact area in oblique touch is
significantly larger (between 165.06 and 292.99 mm2).
After further validation by pilot trials, we set the threshold
ta to be 120 mm2.

Aspect Ratio Criterion. Area alone is not reliable enough to
identify an oblique touch because a large contact area can
also result from pressing harder in a vertical touch. The
undirected finger orientation information is stable only
when the finger contact is elongated. The larger the aspect
ratio (i.e., the more oblique the finger is), the more accurate
is our estimation of the orientation. In our algorithm, based
on pilot trials of comfortable manipulations, we set the
aspect ratio threshold ts to be 120%.

Disambiguating Finger Direction
From the contact shape fitting step we have acquired the
undirected finger orientation θ. However, the true direction
of the finger could be either θ or 180° + θ. The key
innovation of our algorithm is to resolve this ambiguity by
considering the dynamics in the finger landing process.

The human finger has soft and deformable tissues. The
distortion of the finger muscle is inevitable upon contact.
Since it is difficult to extract full orientation from a single
finger contact, we instead closely examine the deformation
of the finger’s contact region in the process of it landing on

25

the surface. Figure 4 shows the contact region across time
when a finger is landing.

Figure 4. Finger contact deformation over time. The
crosshair shows the center of the contact region.

It is apparent that the center point of the finger contact
moves inward, towards the user’s palm. This movement
can be explained by closely examining the landing process
in an oblique touch: the finger tip gets in contact with the
surface first; as the pad of the finger increases its contact
area the center of the contact region shifts inward.

Considering the finger’s deformation, by tracking the
variation of the contact center during the landing process,
we can roughly infer which side the user’s palm lies in, and
in turn which direction the finger is pointing to. Figure 5
shows the variation of the contact center between two
consecutive frames t-1 (blue) and t (red). Frame t-1 is the
last frame of non-oblique touch state and frame t is the first
frame of oblique touch state. We can then calculate angle α
as a rough estimation of the directed finger orientation by
taking the azimuth angle of vector (-∆x, -∆y) = (x(t-1) – x(t),
y(t-1) – y(t)), which points away from the palm.

Figure 5. Finger direction disambiguation. (a) Finger
contact at frame t-1 and t. (b) Rough estimation of
directed finger orientation.

Finally, α is used as the cue to disambiguate the undirected
finger orientation θ, so that the final directed finger
orientation Φ is consistent with α.

)90(180

)90(

 (3)

Continual Orientation Tracking
Once the complete finger orientation has been
unambiguously determined for one frame using the
previous step, this step need not be repeated for the
following frames. The orientation disambiguation of the
following frames then depends on the fact that no abrupt
change of orientation will occur between each two
consecutive frames. Due to the finger’s range-of-motion
and the limitations imposed by the physical anatomy of the

finger, the variation in the finger’s orientation is likely to
be very gradual.

In every subsequent frame t+1, the directed finger
orientation in the previous frame Φ(t) is used as the cue to
disambiguate the current undirected finger orientation
θ(t+1), i.e.:

)90)1()((180)1(

)90)1()(()1(
)1(

ttt

ttt
t

 (4)

PERFORMANCE EVALUATION

Goal
We conducted an experimental evaluation to assess the
performance of our finger orientation detection algorithm,
including the stability and precision in determining
orientation of static and dynamic fingers. We note that
given the irregular shape of a finger and different viewing
perspectives, in practice the finger orientation is largely
subject to human interpretation. An objective “true value”
does not exist in a strict sense. Instead, to best inform
interaction designs, in this evaluation we compare the
detected orientation to the finger orientation subjectively
perceived by the user; this is what users would rely on for
real interactions if no visual feedback is provided.

Apparatus
The apparatus we used in the study is a direct-touch
tabletop surface based on Frustrated Total Internal
Reflection (FTIR) technology [15]. The tabletop is
approximately 27"×18" in size, and 0.8m in height. A
camera installed beneath the surface captures the input
image, working at a resolution of 640×480 pixels and at a
capture rate of 30 fps. The experimental software is built
upon the Touch-Lib open source API [26], augmented by
our orientation detection algorithm. The system runs on a
2.4GHz Duo Core PC with Windows XP SP2 OS.

Participants
Eight volunteers, four male and four female, 26-37 years
old, participated in the experiment. All were right-handed
and had no prior experience with direct-touch surfaces.

Task
We evaluated the algorithm with four tasks, each
examining a different aspect of the algorithm. The
participant sat in front of the tabletop and used the right
index finger to complete each task. We did not provide any
visual feedback concerning the orientation of the finger as
detected by the algorithm. As a result, participants had to
completely rely on their subjective perception of the finger
orientation.

Task 1: Static Orientation Stability. This task examines the
stability of the algorithm when the finger is kept still. The
participant touches the surface at an arbitrary position and
finger orientation, and dwells in the position for more than
5 seconds. The user lifts the finger when prompted by the
experimenter. All the values of finger orientation were
recorded and the data up to 5 seconds are used to evaluate
the orientation stability during this period.

26

Task 2: Static Orientation Precision. This task examines the
orientation detection precision for a static finger. A red cross
is displayed on the surface. An arrow on the red cross
indicates the orientation to point at by the participant.
Participants touch the center of the cross while matching the
finger orientation as accurately as possible to the direction of
the cross (Figure 6a). We use four directions for the task:
165°, 150°, 135°, and 120° (counterclockwise from east), as
these can be comfortably achieved by the right index finger.
If necessary, the participant can further adjust the finger
orientation after landing on the surface. Once satisfied, the
participant presses a key on the keyboard to indicate
completion. We record the detection error (detected finger
orientation minus actual arrow direction, at the moment of
task completion) for each trial.

 Figure 6. Evaluation tasks. (a) Static orientation
precision task. (b) Dynamic orientation precision
task. (c) Involuntary Position Variation task.

Task 3 - Dynamic Orientation Precision. This task examines
the orientation detection precision when the finger is
moving and rotating on the surface. Participants trace the
index finger along a circular arc displayed on the surface
from a start to an end point (Figure 6b). At any given point
during the movement, the finger orientation needs to be
aligned with the arc (i.e. its tangential direction at the point)
as precisely as possible. Two arcs are used for the task:
counterclockwise from 315° to 45°; and clockwise from
225° to 135°. This arc tracing task effectively enables us to
continuously acquire the (perceived) orientation “ground
truth” during a dynamic operation. For each point on the
arc, we record the detection error (detected finger
orientation minus tangential direction at the point).

Task 4 – Involuntary Position Variation in Rotation. This
task examines the involuntary variation of finger position
coordinates (x, y) associated with a finger rotation. An
involuntary variation in position occurs when the user
incidentally moves the center coordinate of the finger
during a rotation. In this task, the participant placed the
finger on a red cross displayed on the surface, and rotated it
clockwise from 0° to 270° while keeping the finger
position static (Figure 6c). We record the range in variation
of the finger's center position during the rotation.

For all tasks, the participant was asked to repeat the trial if
the orientation disambiguation result was incorrect (i.e.,
providing the opposite orientation). Within each task, all
trials were randomly ordered to prevent practice effects.

Design
Participants performed each task with six repetitions. The
full evaluation consisted of: 8 participants × [Task-1 + (4
orientations in Task-2) + (2 arcs in Task-3) + Task-4] × 6
repetitions = 384 trials in total.

Result
Disambiguation Success Rate. For all tasks, the
disambiguation algorithm generated 13 errors in total. This
resulted in a success rate of 96.7% (384 out of 397 trials),
indicating good performance of the algorithm.

Static Orientation Stability (Task 1). The average variation
range during each finger dwelling period is 0.59° (std.
dev.= 0.15°). This demonstrates that our algorithm is very
stable. The low level of random noise is caused by both the
user’s unconscious finger jitter, and the imaging noise
introduced by the camera. According to this result, in
practice we can ignore finger orientation changes that are
less than 1°.

Static Orientation Precision (Task 2). Results of Task 2
show that the detected finger orientation matches closely
with the finger orientation perceived by the user. The
average detection error (absolute value) is 2.69° (std. dev.
= 1.76°). ANOVA showed no significant difference
between the detected finger orientation and the perceived
orientation, indicating the detection error was not biased
towards one specific direction. When considering the signs
of the error, we obtained an upper bound of +5.84° and a
lower bound of -4.70° at the 95% confidence interval.

Note that this is the detection error when there is no visual
feedback and therefore incorporates both the imprecision
of the algorithm and variations in user perception. This
indicates that for interactions that involve a single touch
action without visual feedback, our algorithm can provide a
precision within approximately ±5°. Across the complete
360° orientation range, this gives 36 usable orientation
levels (each with the tolerance interval of 10°) that can be
reliably detected for interaction. However, in the presence
of visual feedback, the user can adjust their input
accordingly and perform closed-loop actions with much
higher accuracy (~1°) as suggested by our results on static
orientation stability.

Dynamic Orientation Precision (Task 3). The results of task-
3 show that the continual orientation tracking algorithm is
reasonably accurate across the whole movement range. The
average orientation error (absolute value) is 14.35° (std.
dev. = 9.53°). Again ANOVA showed no significant
difference between the detected finger orientation and the
perceived orientation, indicating the lack of systematic
detection bias. The upper and lower bound of signed error
at the 95% confidence interval was +29.69° and -26.81°
respectively. This increased error is partly explained by the
difficulty for the user to smoothly and precisely control
finger orientation during finger movement. Based on our
observation, instead of continuously rotating the finger
throughout the trial, most participants made discrete
compensation changes of finger orientation when they

27

noticed it deviated from the arc. This observation is likely
to hold in other actions of simultaneous finger movement
and rotation as well. According to this, in interaction
designs we should ideally avoid requiring the user to
precisely control the finger orientation while moving the
finger, especially if no visual feedback is provided. No
significant difference in orientation detection resulted
between clockwise and counterclockwise movements.

Involuntary Position Variation in Rotation (Task 4). The
average position variation during finger rotation was
2.02mm for x-coordinate (std. dev. = 0.96mm); and
2.00mm for y-coordinate (std. dev. = 1.08mm). Aside from
detection noise, this variation can be explained by two
factors: the user unconsciously moves the finger during
rotation; and the user’s perceived rotation center does not
precisely match the finger center detected by the system.
This variation in finger position needs to be taken into
account when designing interactions based on finger
rotation. Displacements under 2mm of the finger’s position
during rotation should be ignored in such interactions.

On the other hand, the detected orientation across each
rotation trial shows that it changes continuously and
smoothly at a relatively constant rate, different from the
discrete jumps observed in Task 3. This confirms that the
user is able to finely control finger orientation for
interactions when the finger position is kept static.
Combining this with results from Task 3, for interactions
that involve both finger translation and rotation, the best
strategy may be to let the user first move and rotate the
finger simultaneously for coarse maneuver, but to also
allow the user to “park” the finger for finer orientation
adjustment in the end.

INTERACTIONS USING FINGER ORIENTATION
Finger orientation information as detected by our algorithm
may lead to a set of new interaction designs.

Enhancing Target Acquisition
Finger orientation can be employed to design new target
acquisition techniques on interactive surfaces.

Figure 7. (a) Regular bubble cursor. (b) Directed
bubble cursor. (c) Distance weights according to
finger orientation.

Directed Bubble Cursor. Bubble cursor [13] is an efficient
target selection technique that dynamically resizes the
activation region of an area cursor [17] so that it always
select the one target at the shortest distance to the center of
the cursor (Figure 7a). On a direct-touch surface, we can
further enhance the bubble cursor by considering the finger
orientation, so that the selection is biased towards targets in

front of the finger direction, and against targets to the back
of it. The shape of the activation region may also become
slightly skewed to reflect this (Figure 7b). This is realized
by applying different multiplying weights to the target
distances based on the target’s relative azimuth angle
compared to the finger center and orientation. Targets with
an azimuth angle of 0° (i.e. in line with the finger
orientation) have the smallest weight, and those with an
azimuth angle of 180° (i.e. opposite to the finger
orientation) have the largest weight (Figure 7c). By
choosing the target with the shortest weighted distance, the
directed bubble cursor displays a behavior that is consistent
with real-world conventions when using a finger to refer to
objects, where both finger position and direction play a role.

Aim and grab. The finger orientation can also be utilized to
select objects that are far away on the interactive surface by
distant pointing. To do so, the user touches the finger on
the surface to cast a selection ray aligned to the finger
orientation. The first object intersected by the ray gets
selected. The user can rotate the finger to aim at different
targets. To switch between multiple objects intersected by
the selection ray, the user can move the finger forward or
backward along the ray. This is similar to the Depth Ray
selection technique proposed by [14] for 3D volumetric
displays. A finger flick inward brings the selected object to
the user (Figure 8).

Figure 8. Aim and grab. (a) Aim finger to select an
object. (b) Move finger along the orientation vector
to switch between multiple objects. (c) Flick finger
inward to bring the selected object.

As discussed in [33], we can also use the intersection of
two selection rays determined by two fingers for precise
selection of distant targets (Figure 1b).

Orientation-Sensitive Widgets
Finger orientation can be treated as an additional direct
input dimension for interface widgets. Figure 9 shows two
example designs of such orientation-sensitive widgets.

Figure 9. Orientation-sensitive controls.

(a) Orientation-sensitive button. (b) Orientation dial.

An orientation-sensitive button (Figure 9a) allows the user
to use the finger orientation to specify the parameter of the
button functionality while hitting the button. By doing so,
function invocation and parameter specification are

28

combined into a single step (a valuable substitute to
widgets such as combo boxes on GUIs). As discussed
previously, for such a widget with no continuous visual
feedback we can support an orientation resolution of 10°.

An orientation dial (Figure 9b) allows the user to
continuously adjust a parameter with high precision.
Compared to other parameter adjustment widgets such as a
slider, this supports a large range of parameter values while
requiring minimal finger movement and screen estate.

INFERENCES FROM FINGER ORIENTATION
In addition to directly utilizing finger orientation for input,
we can make further inferences about the user by
considering the finger orientations and positions.

Estimating Occlusion Region
For the design of direct-touch interactions, hand and finger
occlusion is often a major concern that cannot be entirely
avoided. However, based on the position and orientation of
the finger touch, we could effectively estimate the hand
occlusion region on the fly, and adapt interface layouts to
minimize the impact of occlusion.

Considering the anatomy of the human finger and palm, we
estimate the occlusion region to be a circular sector
opposite to the finger orientation Φ, with the vertex at the
center of the finger tip (x, y), and the central angle at
approximately δ = 60° (angular value selected from[5];
Figure 10).

Figure 10. Occlusion region estimation.

With knowledge of the occlusion region, we can
dynamically place content and interface elements outside it.
In addition, we can design special interface widgets that
adapt to accommodate the finger orientation and avoid
occlusion. For example, a pie-menu or torus-menu with a
gap can dynamically reorient itself so that the gap is always
aligned with the body of the finger (Figure 11) [33].
Brandl et al. [6] explored similar occlusion-aware menu
designs, but required the user to use a pen and rest the palm
on the surface simultaneously to determine the menu
orientation. Comparatively, our finger orientation detection
algorithm allows these designs to be broadly applied to
various scenarios and technologies.

Figure 11. Menus adapting to finger orientation to
avoid occlusion. (a) Pie menu. (b) Torus menu.

Inferring User Position
When a user puts a finger on a horizontal surface, typically
the finger points away from the user’s body (Figure 12).
For tabletop interaction, this provides a simple cue to infer
the rough position of the user. Although inherently
imprecise, this can be useful enough for simple scenarios
where the user can only take a few possible positions. In a
typical interactive tabletop usage scenario, the user sits
along either one of the two long sides of the tabletop.
Knowing the orientation of the finger touch, we can infer
that the operating user is sitting at the side opposite to the
finger orientation. This information is particularly useful
for orienting the interface and content (especially text) to
suit the user’s perspective.

Another common usage scenario is when two users sit on
opposite sides of the tabletop. By applying the same
heuristics, we provide a lightweight way of differentiating
finger touch inputs from different users without resorting to
technologies like the DiamondTouch [9]. Many user-
specific operations can then be easily supported, such as
the use of interface widgets that function differently
depending on who triggers them, or setting different
operation privileges for different users (Figure 12).

Figure 12. Inferring user position from finger
orientation.

Relationship between Multiple Fingers
The anatomy of the human hand imposes certain
constraints on the possible orientations and positions of
fingers from the same hand. We can exploit this
information to infer the relationship between multiple
fingers on the surface.

Figure 13. Typical hand configuration.

In natural and comfortable positions, the orientation of a
finger indicates a departure away from the center of the
palm. As a result, the lines of direction based on the
orientations of two or more fingers from the same hand
will intersect and provide a rough location of the user’s
palm. This location is usually to the opposite side of the
directions pointed by all finger, and within a reasonable
distance from the position of the fingertips (Figure 13).

29

Based on this information, for a pair of finger touch points,
we calculate the intersection point I of the two straight
lines aligned with their positions and orientations. For each
fingertip position P with orientation Φ, we calculate the
orientation angle ΦIP of ray IP (i.e. pointing from I to P). If
|ΦIP – Φ| < 90° and distance |IP| < td (td is an empirically
determined threshold, chosen to be 140 mm in our
implementation) for both fingers, we determine that they
belong to the same hand (Figure 14a). Otherwise the two
fingers belong to different hands (Figure 14b). In the latter
case we may also infer whether the two hands belong to
different users in some simple cases (Figure 14c). As
discussed previously, if assuming that the two users are
sitting in fixed positions across a horizontal surface, and
the orientations of the two fingers clearly point oppositely
to where the users are supposed to be sitting, we can then
associate these two hands with each user. When three or
more fingers are touching, we may determine their pair-
wise relationships, and make higher-level inferences if
necessary. Obviously, this approach does not account for
atypical cases such as when two hands overlap. However it
would be reliable enough for interaction purposes in
natural scenarios.

Figure 14. Inferring relationship between fingers. (a)
Same hand. (b) Two hands from same user. (c)
Two hands from different users.

Knowing the relationship between finger touches can be
particularly useful for various interactions. Moscovich and
Hughes [24] experimentally showed that multi-finger
manipulations by one hand and by two hands are suitable
for different tasks. Inspired by this, we could assign
different functionalities for each case. For example, fingers
from the same hand result in multi-finger inking on a
digital object; fingers from both hands by the same user
result in the classic rotation/scaling manipulation; and
fingers from multiple users could “tear apart” the object to
create multiple copies.

Enabling Orientation-Invariant Input
The direct-touch input on interactive surfaces naturally
affords using the finger to perform trajectory-based
gestures, similar to pen gestures that are broadly used on
tablet PCs or handheld devices. Pen gestures performed on
those devices usually have an unambiguous upright
orientation relative to the input panel. However, for
gestures performed on interactive surfaces, especially
horizontal tabletops, the orientation of the gesture inputted
can be arbitrary depending on the user’s position. This
creates a dilemma for unambiguous gesture recognition on
interactive tabletops. Either the system has to assume the
user is inputting from a fixed orientation, which constrains

the usage of the tabletop. Alternately the system has to
recognize input in a rotation-invariant way and avoid any
orientation-specific gesture, which largely limits the
gesture design space. This problem becomes even more
prominent if we want to introduce handwriting recognition
input on tabletops, since many of the English and
numerical characters are inherently orientation-specific
(Figure 15).

Figure 15. Ambiguous gestures caused by different
hand orientations.

By taking finger orientation into account, this problem
could be alleviated. Before recognition, the orientation of
the input gesture can be normalized by a compensated
rotation determined by the average finger orientation while
performing the gesture. As a result, the user could perform
finger gestures or handwrite unambiguously from any side
of the tabletop. Blasko et al. [5] explored similar concepts
on a handheld tablet by estimating its own orientation
through face tracking or stylus pose.

Another example of orientation-invariant input is to
support multi-finger mouse emulation on interactive
tabletops. Matejka et al. [20] presented SDMouse, an
efficient technique to simulate full mouse functionality by
mapping different buttons to different fingers on a multi-
touch screen. The technique differentiates “mouse buttons”
partly by their directional position with reference to the
index finger. For example, the finger on the left side of the
index finger is considered the thumb and mapped to the left
button. This poses a problem for migrating SDMouse onto
a tabletop surface, where the definition of “a side” is
ambiguous and varies with the hand orientation. Again, by
considering the orientation of the index finger, we can
unambiguously associate fingers to buttons located in a
reachable location regardless of the user’s position (Figure
16).

Figure 16. Orientation-invariant mouse emulation.

DISCUSSION

Algorithm Limitations
We have shown that our finger detection algorithm is
effective and accurate. However a few limitations do exist:

The algorithm assumes an oblique touch from the user,
which is the case for most common interaction scenarios.

30

However, as Forlines et al. [12] discussed, such an oblique
touch may be less obvious when the user touches a vertical
surface, or in areas of a tabletop that are very close to
themselves. For these scenarios, the interaction designs
would need to afford supplemental ways for the user to
indicate the concept of orientation.

The orientation disambiguation step relies on the finger
center displacement during the finger landing process and
assumes that this displacement is caused solely by the
deformation of the finger. This requires that the landing
action should consist of a downward vertical movement of
the finger only, which is typically true in regular cases. In
the less frequent case that the finger landing is
accompanied by a concurrent horizontal finger movement
(i.e. “sliding down”), the finger disambiguation algorithm
could be biased. However, the concurrent horizontal
movement during the short period of finger landing is
unlikely to be significant enough to reverse the
disambiguation result.

Although our experimental evaluation only examined the
algorithm performance with the index finger, in practice we
observed that the algorithm also works well with most
other fingers, with the only exception being the thumb.
Restricted by the anatomy of the human hand, a user would
typically touch the surface with the side face of the thumb,
instead of its pad. This does not display the usual center
displacement pattern as with other fingers, and usually
results in an incorrect detection by our algorithm. On the
other hand, when users do touch the surface with the pad of
the thumb, they usually do so with the thumb pointing
towards themselves, as opposed to it being away from
themselves as with other fingers. Our algorithm can
correctly detect the thumb orientation in this case. However
this action is less informative for inferring the user’s
position.

It should be noted that using finger orientation alone is not
the final answer for novel interaction designs on interactive
surfaces. By combining finger orientation with other input
properties of the hand such as size, shape, or pressure, the
limitations of our algorithms would be overcome in
interaction scenarios.

Technology Compatibility
We have tested our algorithm on a representative
computer-vision-based technology. Our algorithm requires
solely the contact shape of the finger to work. This input
requirement makes our algorithm largely compatible with a
variety of other sensing technologies, such as capacity-
based sensing or embedded optical sensor arrays [16].
However given the nature of the different technologies, the
parameters of the algorithm may need to be adjusted
accordingly. For example, FTIR-based devices often
require the user to press slightly harder to generate enough
touch area for processing. On the other hand, technologies
that provide certain additional information such as hover
state, as in ThinSight [16], can utilize these to further
improve the reliability of our algorithm.

3D Finger Orientation
In this paper we focused on the 2D orientation of the finger.
However, 3D finger orientation may also be interesting for
interacting with digital surfaces. This information could
potentially be acquired by using new sensing technologies
such as depth cameras (www.3dvsystems.com). For
example, with knowledge of the full 3D orientation of the
contact finger, we could enable tilt-based interactions such
as those explored with the TiltMenu [31] for pen-based
interactions. Alternatively, intuitive 3D manipulations of
digital objects may be explored on interactive surfaces by
using the finger as a proxy.

FUTURE WORK
Several open questions remain to be explored in the future:

First, we would like to further improve our algorithm to
overcome the limitations discussed previously, for example
by considering the detailed geometry of the fingers’ touch.
This would be led by a deeper investigation of the
properties of finger contact, including less typical scenarios
such as when the user touches with the side of a finger.
Particular attention would be given to the thumb, which has
several unique properties compared to other fingers. This is
especially important as some multi-touch manipulations
often involve the movement of both thumb and index
finger.

Additionally, based on the inference made from the
structural interrelationship of the fingers, we are interested
in experimenting with extracting higher-level information,
to cluster touch points into congruent hand configurations.
Continuous tracking of the user’s full hands may also be
possible by considering the dynamics of the fingers even
when they are not always touching the surface.

At the current time, most of our designs have been
implemented as proof-of-concepts, while “aim and grab”
and “orientation-sensitive widgets” are in design stage. In
the future we will iterate on these prototypes to improve
the design details. We have not yet implemented an
orientation-invariant gesture/handwriting recognition
engine as we proposed. We plan to develop and
experimentally evaluate such an engine, and also explore
its applications in other scenarios such as with handheld
devices.

CONCLUSION
Our contribution in this paper is two-fold. We first
presented a simple and generally applicable algorithm to
unambiguously detect the directed orientation of user’s
fingers on interactive surfaces from contact information
only. Researchers can apply this algorithm on various
direct-touch surfaces to serve their own applications. We
then explored user interface designs that leverage this
finger orientation information, as well as further inferences
that can be made from finger orientations. These designs
and inferences can be useful for interaction with a variety
of direct-touch devices that generate finger orientation
information, either using our general algorithm or other
more specialized sensing technologies. Our work shows

31

that finger orientation is a feasible and valuable input
dimension that can be utilized for novel interactions on
interactive surfaces.

ACKNOWLEDGEMENTS
We thank the members of Ren Lab in Kochi University of
Technology for discussion and support, study participants,
and anonymous reviewers for valuable insights.

REFERENCES
1. Albinsson, P.r.-A. and Zhai, S., High precision touch

screen interaction. CHI 2003, 105-112.
2. Benko, H., Wilson, A.D. and Balakrishnan, R., Sphere:

multi-touch interactions on a spherical display. UIST
2008, 77-86.

3. Benko, H., Wilson, A.D. and Baudisch, P., Precise
selection techniques for multi-touch screens. CHI 2006,
1263-1272.

4. Blanch, R., Guiard, Y. and Beaudouin-Lafon, M.,
Semantic pointing: improving target acquisition with
control-display ratio adaptation. CHI 2004, 519-526.

5. Blasko, G., Beaver, W., Kamvar, M., and Feiner, S.,
Workplane-orientation-sensing techniques for tablet
PCs. UIST 2004 Conf. Supplement, 1-2.

6. Brandl, P., Seifried, T., Leitner, J., Haller, M., Doray, B.
and To, P., Occlusion-Aware Menu Design for Digital
Tabletops. CHI 2009, 3223-3228.

7. Cao, X., Wilson, A.D., Balakrishnan, R., Hinckley, K.
and Hudson, S., ShapeTouch: Leveraging contact shape
on interactive surfaces. TABLETOP 2008, 129 - 136

8. Davidson, P.L. and Han, J.Y., Extending 2D object
arrangement with pressure-sensitive layering cues.
UIST 2008, 87-90.

9. Dietz, P. and Leigh, D., DiamondTouch: a multi-user
touch technology. UIST 2001, 219-226.

10. Esenther, A., Forlines, C., Ryall, K. and Shipman, S.
Support for Multi-User, Multi-Touch Applications,
2002.

11. Esenther, A. and Ryall, K., Fluid DTMouse: better
mouse support for touch-based interactions. AVI 2006,
112-115.

12. Forlines, C., Wigdor, D., Shen, C. and Balakrishnan, R.,
Direct-touch vs. mouse input for tabletop displays. CHI
2007, 647-656.

13. Grossman, T. and Balakrishnan, R., The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor's activation area. CHI 2005, 281-290.

14. Grossman, T. and Balakrishnan, R., The design and
evaluation of selection techniques for 3D volumetric
displays. UIST 2006, 3-12.

15. Han, J.Y., Low-cost multi-touch sensing through
frustrated total internal reflection. UIST 2005, 115-118.

16. Izadi, S., Hodges, S., Butler, A., Rrustemi, A. and
Buxton, B., ThinSight: integrated optical multi-touch
sensing through thin form-factor displays. workshop on
Emerging displays technologies, 6.

17. Kabbash, P. and Buxton, W.A.S., The ``prince''
technique: Fitts' law and selection using area cursors.
CHI 1995, 273-279.

18. Lee, S., Buxton, W. and Smith, K.C., A multi-touch
three dimensional touch-sensitive tablet. CHI 1985,
ACM, 21-25.

19. Malik, S. and Laszlo, J., Visual touchpad: a two-handed
gestural input device. Multimodal interfaces 2004, 289-
296.

20. Matejka, J., Grossman, T., Lo, J. and Fitzmaurice, G.,
The Design and Evaluation of Multi-Finger Mouse
Emulation Techniques. CHI 2009, 1073-1082

21. Microsoft. Microsoft Surface, 2007,
http://www.microsoft.com/surface.

22. Morris, M.J. Supporting Effective Interaction With
Tabletop Groupware, Meredith June Morris, Stanford
University, 2006.

23. Moscovich, T. Principles and Applications of Multi-
touch Interaction, Brown University, 2007.

24. Moscovich, T. and Hughes, J.F., Indirect mappings of
multi-touch input using one and two hands. CHI 2008,
1275-1284.

25. Moscovich, T. and Hughes, J.F., Multi-finger cursor
techniques. GI 2006, 1-7.

26. Nuigroup. Touchlib, Nui Group, 2009.
http://www.nuigroup.com

27. Olwal, A. and Feiner, S., Rubbing the Fisheye: precise
touch-screen interaction with gestures and fisheye
views. UIST 2003 Supplyment, 83-84.

28. Potter, R.L., Weldon, L.J. and Shneiderman, B.,
Improving the accuracy of touch screens: an
experimental evaluation of three strategies. CHI 1988,
27-32.

29. Rekimoto, J., SmartSkin: an infrastructure for freehand
manipulation on interactive surfaces. CHI 2002, 113-
120.

30. Scott, S.D., Carpendale, M.S.T. and Inkpen, K.M.,
Territoriality in Collaborative Tabletop Workspaces.
CSCW 2004, ACM, 294-303.

31. Tian, F., Xu, L., Wang, H., Zhang, X., Liu, Y., Setlur,
V. and Dai, G., Tilt menu: using the 3D orientation
information of pen devices to extend the selection
capability of pen-based user interfaces. CHI 2008,
1371-1380

32. Vogel, D. and Baudisch, P., Shift: a technique for
operating pen-based interfaces using touch. CHI 2007,
657-666.

33. Wang, F. and Ren, X., Empirical Evaluation for Finger
Input Properties In Multi-touch Interaction. CHI 2009,
1063-1072

34. Wilson, A.D. PlayAnywhere: a compact interactive
tabletop projection-vision system. UIST 2005, 83-92.

35. Wilson, A.D., TouchLight: an imaging touch screen
and display for gesture-based interaction. Multimodal
interfaces 2004, 69-76.

36. Wilson, A.D., Izadi, S., Hilliges, O., Garcia-Mendoza,
A. and Kirk, D., Bringing physics to the surface. UIST
2008, 67-76.

37. Wu, M. and Balakrishnan, R., Multi-finger and whole
hand gestural interaction techniques for multi-user
tabletop displays. UIST 2003, 193-202.

32

