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ABSTRACT 
Current interactions on direct-touch interactive surfaces are 
often modeled based on properties of the input channel that 
are common in traditional graphical user interfaces (GUI) 
such as x-y coordinate information. Leveraging additional 
information available on the surfaces could potentially 
result in richer and novel interactions. In this paper we 
specifically explore the role of finger orientation. This 
property is typically ignored in touch-based interactions 
partly because of the ambiguity in determining it solely 
from the contact shape. We present a simple algorithm that 
unambiguously detects the directed finger orientation 
vector in real-time from contact information only, by 
considering the dynamics of the finger landing process. 
Results of an experimental evaluation show that our 
algorithm is stable and accurate. We then demonstrate how 
finger orientation can be leveraged to enable novel 
interactions and to infer higher-level information such as 
hand occlusion or user position. We present a set of 
orientation-aware interaction techniques and widgets for 
direct-touch surfaces. 

ACM Classification: I.3.6 [Methodology and Techniques]: 
Interaction techniques.  

General terms: Design, Human Factors. 

Keywords: Finger orientation, direct-touch surface, 
orientation aware interface. 

INTRODUCTION 
Interactive techniques on touch and multi-touch surfaces 
are generating significant appeal in the general public due 
to their inherently natural affordances. One main reason for 
this naturalness is derived from the ability to let users 
employ their bare fingers and directly manipulate the 
system without intermediary devices. Researchers have 
demonstrated that direct-touch interactive displays offer a 
more compelling method to interact with a system than 
working indirectly with a mouse or with other types of 
pointing devices [11, 15, 22, 30, 37] .   

However, current multi-touch designs are mainly based on 
multi-point information, i.e. the touch-sensitive devices 
primarily use the center coordinates of the human finger’s 
contact region as cursor positions. Therefore, most 
interactions mainly rely on touch positions or variations in 
touch movements. Relatively few research demonstrations 
have used auxiliary information other than touch position, 
such as the shape [7, 36] or size of the contact region [3] 
for enhancing the naturalness of the interaction. 

One potentially accessible piece of information from a 
finger’s contact point is its orientation. Orientation is a 
natural cue as it provides the direction a user is pointing in 
and is used in many daily interactions, such as pointing to 
communicate with others, to acquire or position an object, 
or even to lead and direct attention. If we consider an 
orientation vector consisting of a direction and an angle 
from a point of reference, very few systems have used this 
to enhance the naturalness of the interactions. By extracting 
the longitudinal axis of a finger’s contact shape, it is 
straightforward to detect the undirected angular 
configuration (0°~180°) of a straight line that approximates 
the user’s finger. However, this result is ambiguous. The 
exact orientation vector of the finger could be one of two 
opposite directions that align with the undirected line, 
making it difficult to utilize the exact direction of the finger 
for interaction (Figure 1a).  

  

Figure 1. (a) Undirected orientation vs. directed 
orientation vector of the finger. (b) Orientation 
detection in action. 

To address this limitation, we present a novel and robust 
algorithm that accurately and unambiguously detects the 
orientation vector by considering the dynamics in finger 
contact (Figure 1b). This algorithm is general enough for 
any direct-touch surface that generates contact shape 
information, without resorting to additional sensors. We 
demonstrate that finger orientation information is key in the 
design of orientation-aware interactions and widgets, for 
example to facilitate target selection, or to optimally orient 
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elements in the workspace to adapt to the user’s position. 
Additional information about the user can also be inferred 
from finger orientation, such as hand occlusion region or 
the position of the user. These cues can in turn be 
leveraged to further enrich the interaction on touch-
surfaces. 

RELATED WORK 

Direct-Touch Surface Technologies  
In recent years we have witnessed an exponential growth 
of technologies to support direct-touch interactive surfaces 
[2, 9, 11, 15, 18, 19, 29, 34-37]. DiamondTouch [9], one of 
the earlier multi-touch systems allows multiple users to 
simultaneously interact on a tabletop. Through capacitive 
coupling it associates touch regions with each user, useful 
for supporting user-specific operations. The rough shape of 
each finger contact is determined through an antenna 
matrix.  

Computer-vision-based technologies are also widely 
employed to enable direct-touch surfaces. Han et al. [15] 
introduced a multi-touch system based on Frustrated Total 
Internal Reflection (FTIR), which recovers the surface 
regions being depressed by fingers. An alternative 
approach is based on Diffuse Illumination (DI), which 
detects not only the contact regions but also fingers 
hovering above the surface within a certain distance. This 
is used on systems such as the Microsoft Surface [21]. 
Compared to capacitive-based sensing, vision-based 
systems provide higher fidelity in detecting the contact 
shape. 

Briefly, current interactive surfaces provide contact shape 
of the fingers, regardless of the underlying technology. 
This is the basis of our algorithm, which aims at 
determining the finger orientation from contact shape input 
only.  

User Interfaces Design 
With advances in hardware functionality and improved 
features with multi-touch systems, researchers are 
expending parallel efforts in designing new techniques and 
leveraging upon novel hardware designs. We relate our 
work to two general categories of interaction techniques: 
techniques that replicate mouse features on direct-touch 
surfaces; and techniques that leverage upon additional hand 
and finger properties. 

Adapting Mouse Interactions. There exist several 
motivations for adapting mouse-based interactions on 
direct-touch surfaces. Touch-based interactions are known 
to result in imprecise selections. Researchers have 
proposed numerous solutions to improve the precision of 
bare finger interactions [1, 3, 25, 28, 32] and these 
solutions can be categorized as follows: direct touch 
improvement [28], cursor offset [3, 28, 32], target zoom-in 
or control-display ratio adjustment [4, 27] and on-screen 
widget [1] to precisely select a target. Furthermore, 
researchers have explored the benefits of using multi-point 
input to interact with traditional GUI elements [23-25].  

To ensure compatibility with traditional legacy applications, 
researchers have studied cursor control and mouse 
simulation techniques. The DiamondTouch-mouse [10] 
supports a right-click by tapping with a second finger. 
DTMouse [11] further enhances the functionality of the 
DiamoundTouch-mouse by addressing issues such as 
mouse-over, smooth toggling of left mouse button, 
ergonomics and precise input. In DTMouse, states of the 
mouse were determined based on timeout intervals of 
holding a finger down.  

Matejka et al. [20] presented SDMouse to emulate the 
functionality of a conventional mouse, including a tracking 
state, three buttons and chording. The first finger down is 
used as a tracking finger, and the combination of two or 
three fingers are used to trigger left-click, right-click or 
scrolling events based on the side and the distance of finger 
touch points. However, these systems are based solely on 
extracting the coordinates of the finger contact points on 
the screen. Such systems can be unstable or need 
redefinition if the user triggers these states in a different 
orientation.  

Leveraging Additional Finger Properties. In addition to 
using the center coordinates of the contact region, 
researchers have proposed techniques that use finger or 
hand properties for new interactions. Benko et al. [3] 
proposed the use of contact size to simulate pressure input 
on the tabletop. They introduced rocking and pressing 
gestures to define various states, including a “click” event. 
Wilson et al. [36] used the contact contours to emulate 
physical reactions between touch input and digital objects. 
Cao et al. [7] presented ShapeTouch that leverages the 
contact shape to enable richer interactions similar to those 
in the real world. Davidson et al. [8]  demonstrated a 
pressure-based depth sorting technique using a pressure-
sensitive surface, which extends standard two-dimensional 
manipulation techniques, particularly those controlled by 
multi-touch input.  

Finger orientation was firstly adopted by Malik et al. [19] 
in the Visual Touchpad system. The system uses a pair of 
overhead cameras to track the entire hand of the user, and 
infers finger orientations accordingly. Microsoft Surface 
[21] determines full finger orientations by leveraging 
additional hover information enabled by the DI technology. 
Both these approaches rely on a specific sensing 
technology, and are therefore not generally applicable to 
other systems. These systems also did not investigate 
interaction designs that specifically utilize finger 
orientation. 

Wang and Ren [33] empirically investigated finger contact 
properties such as size, shape, width, length and orientation 
using a FTIR-based multi-touch surface. They have 
speculated a few interaction designs leveraging finger 
orientation, but did not provide an algorithm to detect 
finger orientation in real time. Inspired by some of their 
findings, we propose in this paper a general finger 
orientation detection algorithm that requires contact shape 
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information only. We then further explore novel 
interactions that leverage upon finger orientations. 

FINGER ORIENTATION DETECTION ALGORITHM 
In this section we describe our algorithm that detects the 
directed orientation vector of the user’s finger, based on 
real-time information collected from the shape of the finger 
contact. Here the finger orientation refers to the 2D 
orientation of the finger’s projection on the surface. Prior 
literature [3, 12] points at two types of finger touch on 
interactive surfaces: vertical touch and oblique touch 
(Figure 2). A vertical contact occurs when the finger is 
directly pointing downward, toward the surface (Figure 2a). 
Obviously this does not provide usable orientation 
information. Conversely, an oblique touch occurs when the 
finger lands on the surface at an oblique angle (Figure 2b). 
Considering common practices handling physical objects, 
as well as the necessity to accommodate long fingernails by 
some people (especially women), we expect that the 
oblique touch is more likely to happen when people touch 
interactive surfaces. A unique finger orientation can be 
determined from an oblique touch, which is the basis of our 
algorithm. 

 

Figure 2. Two ways of finger touch. (a) vertical 
touch. (b) oblique touch.  

For each frame of input that contains all contact pixels on 
the surface, we first conduct a connected component 
analysis to extract all finger contact regions. Then for each 
finger contact, its orientation is determined by our 
algorithm. The algorithm has four major steps: fitting the 
contact shape; detecting the oblique touch; disambiguating 
the finger direction; and continually tracking the 
orientation. 

Fitting Contact Shape 
When a finger obliquely touches the surface, its contact 
region appears as an elliptic shape (Figure 3). This shape 
can then be fitted into a perfect ellipse described by 
Equation 1 using least-square fitting, as presented in [33]:  
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The length (magnitude of the long axis), width (magnitude 
of the short axis), and slant angle θ (0 ≤ θ ≤ π) describe the 
shape of the ellipse; and (x0, y0) is the center coordinate of 
the finger contact. The area of the contact region can be 
calculated by simply counting the pixels within it. The slant 
angle θ describes the undirected orientation of the finger. 

 
Figure 3. Finger contact region fitted to an ellipse. 
Width, length and slant angle can be obtained from 
results of the fit. 

Identifying Oblique Touch 
In order to generate reliable finger orientation, we need to 
determine whether the finger is currently in an oblique 
touch state. Two properties of the finger contact region are 
critical for identifying an oblique touch: area and aspect 
ratio. Equation 2 shows the identification criteria:  











ts
width

length
ratioaspect

taarea
                           (2) 

where ta and ts are empirically determined thresholds. Both 
criteria need to be satisfied for an oblique touch to be 
identified, otherwise we consider the finger to be in either 
vertical or accidental touch and ignore its orientation. 
These two criteria were determined based on pilot trials 
and previous literature. 

Area Criterion. As found in prior investigations of finger 
input properties [33], the contact area is significantly 
different in vertical and oblique touches. The mean contact 
area in vertical touch is between 28.48 and 33.52 mm2, 
whereas the mean contact area in oblique touch is 
significantly larger (between 165.06 and 292.99 mm2). 
After further validation by pilot trials, we set the threshold 
ta  to be 120 mm2. 

Aspect Ratio Criterion. Area alone is not reliable enough to 
identify an oblique touch because a large contact area can 
also result from pressing harder in a vertical touch. The 
undirected finger orientation information is stable only 
when the finger contact is elongated. The larger the aspect 
ratio (i.e., the more oblique the finger is), the more accurate 
is our estimation of the orientation. In our algorithm, based 
on pilot trials of comfortable manipulations, we set the 
aspect ratio threshold  ts  to be 120%. 

Disambiguating Finger Direction 
From the contact shape fitting step we have acquired the 
undirected finger orientation θ. However, the true direction 
of the finger could be either θ or 180° + θ. The key 
innovation of our algorithm is to resolve this ambiguity by 
considering the dynamics in the finger landing process.  

The human finger has soft and deformable tissues. The 
distortion of the finger muscle is inevitable upon contact. 
Since it is difficult to extract full orientation from a single 
finger contact, we instead closely examine the deformation 
of the finger’s contact region in the process of it landing on 
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the surface. Figure 4 shows the contact region across time 
when a finger is landing.  

 

Figure 4. Finger contact deformation over time. The 
crosshair shows the center of the contact region.  

It is apparent that the center point of the finger contact 
moves inward, towards the user’s palm. This movement 
can be explained by closely examining the landing process 
in an oblique touch: the finger tip gets in contact with the 
surface first; as the pad of the finger increases its contact 
area the center of the contact region shifts inward. 

Considering the finger’s deformation, by tracking the 
variation of the contact center during the landing process, 
we can roughly infer which side the user’s palm lies in, and 
in turn which direction the finger is pointing to. Figure 5 
shows the variation of the contact center between two 
consecutive frames t-1 (blue) and t (red). Frame t-1 is the 
last frame of non-oblique touch state and frame t is the first 
frame of oblique touch state. We can then calculate angle α 
as a rough estimation of the directed finger orientation by 
taking the azimuth angle of vector (-∆x, -∆y) = (x(t-1) – x(t), 
y(t-1) – y(t)), which points away from the palm.   

 

Figure 5. Finger direction disambiguation. (a) Finger 
contact at frame t-1 and t. (b) Rough estimation of 
directed finger orientation. 

Finally, α is used as the cue to disambiguate the undirected 
finger orientation θ, so that the final directed finger 
orientation Φ is consistent with α. 
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Continual Orientation Tracking 
Once the complete finger orientation has been 
unambiguously determined for one frame using the 
previous step, this step need not be repeated for the 
following frames. The orientation disambiguation of the 
following frames then depends on the fact that no abrupt 
change of orientation will occur between each two 
consecutive frames. Due to the finger’s range-of-motion 
and the limitations imposed by the physical anatomy of the 

finger, the variation in the finger’s orientation is likely to 
be very gradual.  

In every subsequent frame t+1, the directed finger 
orientation in the previous frame Φ(t) is used as the cue to 
disambiguate the current undirected finger orientation 
θ(t+1), i.e.: 
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PERFORMANCE EVALUATION 

Goal 
We conducted an experimental evaluation to assess the 
performance of our finger orientation detection algorithm, 
including the stability and precision in determining 
orientation of static and dynamic fingers. We note that 
given the irregular shape of a finger and different viewing 
perspectives, in practice the finger orientation is largely 
subject to human interpretation. An objective “true value” 
does not exist in a strict sense. Instead, to best inform 
interaction designs, in this evaluation we compare the 
detected orientation to the finger orientation subjectively 
perceived by the user; this is what users would rely on for 
real interactions if no visual feedback is provided.  

Apparatus 
The apparatus we used in the study is a direct-touch 
tabletop surface based on Frustrated Total Internal 
Reflection (FTIR) technology [15]. The tabletop is 
approximately 27"×18" in size, and 0.8m in height. A 
camera installed beneath the surface captures the input 
image, working at a resolution of 640×480 pixels and at a 
capture rate of 30 fps. The experimental software is built 
upon the Touch-Lib open source API [26], augmented by 
our orientation detection algorithm. The system runs on a 
2.4GHz Duo Core PC with Windows XP SP2 OS.  

Participants 
Eight volunteers, four male and four female, 26-37 years 
old, participated in the experiment. All were right-handed 
and had no prior experience with direct-touch surfaces.  

Task 
We evaluated the algorithm with four tasks, each 
examining a different aspect of the algorithm. The 
participant sat in front of the tabletop and used the right 
index finger to complete each task. We did not provide any 
visual feedback concerning the orientation of the finger as 
detected by the algorithm. As a result, participants had to 
completely rely on their subjective perception of the finger 
orientation.  

Task 1: Static Orientation Stability. This task examines the 
stability of the algorithm when the finger is kept still. The 
participant touches the surface at an arbitrary position and 
finger orientation, and dwells in the position for more than 
5 seconds. The user lifts the finger when prompted by the 
experimenter. All the values of finger orientation were 
recorded and the data up to 5 seconds are used to evaluate 
the orientation stability during this period. 
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Task 2: Static Orientation Precision. This task examines the 
orientation detection precision for a static finger. A red cross 
is displayed on the surface. An arrow on the red cross 
indicates the orientation to point at by the participant. 
Participants touch the center of the cross while matching the 
finger orientation as accurately as possible to the direction of 
the cross (Figure 6a). We use four directions for the task: 
165°, 150°, 135°, and 120° (counterclockwise from east), as 
these can be comfortably achieved by the right index finger. 
If necessary, the participant can further adjust the finger 
orientation after landing on the surface. Once satisfied, the 
participant presses a key on the keyboard to indicate 
completion. We record the detection error (detected finger 
orientation minus actual arrow direction, at the moment of 
task completion) for each trial.  

 
 Figure 6. Evaluation tasks. (a) Static orientation 
precision task. (b) Dynamic orientation precision 
task. (c) Involuntary Position Variation task. 

Task 3 - Dynamic Orientation Precision. This task examines 
the orientation detection precision when the finger is 
moving and rotating on the surface. Participants trace the 
index finger along a circular arc displayed on the surface 
from a start to an end point (Figure 6b). At any given point 
during the movement, the finger orientation needs to be 
aligned with the arc (i.e. its tangential direction at the point) 
as precisely as possible. Two arcs are used for the task: 
counterclockwise from 315° to 45°; and clockwise from 
225° to 135°. This arc tracing task effectively enables us to 
continuously acquire the (perceived) orientation “ground 
truth” during a dynamic operation. For each point on the 
arc, we record the detection error (detected finger 
orientation minus tangential direction at the point).  

Task 4 – Involuntary Position Variation in Rotation. This 
task examines the involuntary variation of finger position 
coordinates (x, y) associated with a finger rotation. An 
involuntary variation in position occurs when the user 
incidentally moves the center coordinate of the finger 
during a rotation. In this task, the participant placed the 
finger on a red cross displayed on the surface, and rotated it 
clockwise from 0° to 270° while keeping the finger 
position static (Figure 6c). We record the range in variation 
of the finger's center position during the rotation. 

For all tasks, the participant was asked to repeat the trial if 
the orientation disambiguation result was incorrect (i.e., 
providing the opposite orientation). Within each task, all 
trials were randomly ordered to prevent practice effects. 

Design 
Participants performed each task with six repetitions. The 
full evaluation consisted of: 8 participants × [Task-1 + (4 
orientations in Task-2) + (2 arcs in Task-3) + Task-4] × 6 
repetitions = 384 trials in total. 

Result 
Disambiguation Success Rate. For all tasks, the 
disambiguation algorithm generated 13 errors in total. This 
resulted in a success rate of 96.7% (384 out of 397 trials), 
indicating good performance of the algorithm. 

Static Orientation Stability (Task 1). The average variation 
range during each finger dwelling period is 0.59° (std. 
dev.= 0.15°). This demonstrates that our algorithm is very 
stable. The low level of random noise is caused by both the 
user’s unconscious finger jitter, and the imaging noise 
introduced by the camera. According to this result, in 
practice we can ignore finger orientation changes that are 
less than 1°. 

Static Orientation Precision (Task 2). Results of Task 2 
show that the detected finger orientation matches closely 
with the finger orientation perceived by the user. The 
average detection error (absolute value) is 2.69° (std. dev. 
= 1.76°). ANOVA showed no significant difference 
between the detected finger orientation and the perceived 
orientation, indicating the detection error was not biased 
towards one specific direction. When considering the signs 
of the error, we obtained an upper bound of +5.84° and a 
lower bound of -4.70° at the 95% confidence interval. 

Note that this is the detection error when there is no visual 
feedback and therefore incorporates both the imprecision 
of the algorithm and variations in user perception. This 
indicates that for interactions that involve a single touch 
action without visual feedback, our algorithm can provide a 
precision within approximately ±5°. Across the complete 
360° orientation range, this gives 36 usable orientation 
levels (each with the tolerance interval of 10°) that can be 
reliably detected for interaction. However, in the presence 
of visual feedback, the user can adjust their input 
accordingly and perform closed-loop actions with much 
higher accuracy (~1°) as suggested by our results on static 
orientation stability. 

Dynamic Orientation Precision (Task 3). The results of task-
3 show that the continual orientation tracking algorithm is 
reasonably accurate across the whole movement range. The 
average orientation error (absolute value) is 14.35° (std. 
dev. = 9.53°). Again ANOVA showed no significant 
difference between the detected finger orientation and the 
perceived orientation, indicating the lack of systematic 
detection bias. The upper and lower bound of signed error 
at the 95% confidence interval was +29.69° and -26.81° 
respectively. This increased error is partly explained by the 
difficulty for the user to smoothly and precisely control 
finger orientation during finger movement. Based on our 
observation, instead of continuously rotating the finger 
throughout the trial, most participants made discrete 
compensation changes of finger orientation when they 
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noticed it deviated from the arc. This observation is likely 
to hold in other actions of simultaneous finger movement 
and rotation as well. According to this, in interaction 
designs we should ideally avoid requiring the user to 
precisely control the finger orientation while moving the 
finger, especially if no visual feedback is provided. No 
significant difference in orientation detection resulted 
between clockwise and counterclockwise movements. 

Involuntary Position Variation in Rotation (Task 4). The 
average position variation during finger rotation was 
2.02mm for x-coordinate (std. dev. = 0.96mm); and 
2.00mm for y-coordinate (std. dev. = 1.08mm). Aside from 
detection noise, this variation can be explained by two 
factors: the user unconsciously moves the finger during 
rotation; and the user’s perceived rotation center does not 
precisely match the finger center detected by the system. 
This variation in finger position needs to be taken into 
account when designing interactions based on finger 
rotation. Displacements under 2mm of the finger’s position 
during rotation should be ignored in such interactions.  

On the other hand, the detected orientation across each 
rotation trial shows that it changes continuously and 
smoothly at a relatively constant rate, different from the 
discrete jumps observed in Task 3. This confirms that the 
user is able to finely control finger orientation for 
interactions when the finger position is kept static. 
Combining this with results from Task 3, for interactions 
that involve both finger translation and rotation, the best 
strategy may be to let the user first move and rotate the 
finger simultaneously for coarse maneuver, but to also 
allow the user to “park” the finger for finer orientation 
adjustment in the end.  

INTERACTIONS USING FINGER ORIENTATION 
Finger orientation information as detected by our algorithm 
may lead to a set of new interaction designs. 

Enhancing Target Acquisition 
Finger orientation can be employed to design new target 
acquisition techniques on interactive surfaces. 

 
Figure 7. (a) Regular bubble cursor. (b) Directed 
bubble cursor. (c) Distance weights according to 
finger orientation. 

Directed Bubble Cursor. Bubble cursor [13] is an efficient 
target selection technique that dynamically resizes the 
activation region of an area cursor [17] so that it always 
select the one target at the shortest distance to the center of 
the cursor (Figure 7a). On a direct-touch surface, we can 
further enhance the bubble cursor by considering the finger 
orientation, so that the selection is biased towards targets in 

front of the finger direction, and against targets to the back 
of it. The shape of the activation region may also become 
slightly skewed to reflect this (Figure 7b). This is realized 
by applying different multiplying weights to the target 
distances based on the target’s relative azimuth angle 
compared to the finger center and orientation. Targets with 
an azimuth angle of 0° (i.e. in line with the finger 
orientation) have the smallest weight, and those with an 
azimuth angle of 180° (i.e. opposite to the finger 
orientation) have the largest weight (Figure 7c). By 
choosing the target with the shortest weighted distance, the 
directed bubble cursor displays a behavior that is consistent 
with real-world conventions when using a finger to refer to 
objects, where both finger position and direction play a role. 

Aim and grab. The finger orientation can also be utilized to 
select objects that are far away on the interactive surface by 
distant pointing. To do so, the user touches the finger on 
the surface to cast a selection ray aligned to the finger 
orientation. The first object intersected by the ray gets 
selected. The user can rotate the finger to aim at different 
targets. To switch between multiple objects intersected by 
the selection ray, the user can move the finger forward or 
backward along the ray. This is similar to the Depth Ray 
selection technique proposed by [14] for 3D volumetric 
displays. A finger flick inward brings the selected object to 
the user (Figure 8). 

 
Figure 8. Aim and grab. (a) Aim finger to select an 
object. (b) Move finger along the orientation vector 
to switch between multiple objects. (c) Flick finger 
inward to bring the selected object.  

As discussed in [33], we can also use the intersection of 
two selection rays determined by two fingers for precise 
selection of distant targets (Figure 1b). 

Orientation-Sensitive Widgets 
Finger orientation can be treated as an additional direct 
input dimension for interface widgets. Figure 9 shows two 
example designs of such orientation-sensitive widgets.  

 
Figure 9. Orientation-sensitive controls.  

(a) Orientation-sensitive button. (b) Orientation dial. 

An orientation-sensitive button (Figure 9a) allows the user 
to use the finger orientation to specify the parameter of the 
button functionality while hitting the button. By doing so, 
function invocation and parameter specification are 
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combined into a single step (a valuable substitute to 
widgets such as combo boxes on GUIs). As discussed 
previously, for such a widget with no continuous visual 
feedback we can support an orientation resolution of 10°.  

An orientation dial (Figure 9b) allows the user to 
continuously adjust a parameter with high precision. 
Compared to other parameter adjustment widgets such as a 
slider, this supports a large range of parameter values while 
requiring minimal finger movement and screen estate. 

INFERENCES FROM FINGER ORIENTATION 
In addition to directly utilizing finger orientation for input, 
we can make further inferences about the user by 
considering the finger orientations and positions.  

Estimating Occlusion Region 
For the design of direct-touch interactions, hand and finger 
occlusion is often a major concern that cannot be entirely 
avoided. However, based on the position and orientation of 
the finger touch, we could effectively estimate the hand 
occlusion region on the fly, and adapt interface layouts to 
minimize the impact of occlusion. 

Considering the anatomy of the human finger and palm, we 
estimate the occlusion region to be a circular sector 
opposite to the finger orientation Φ, with the vertex at the 
center of the finger tip (x, y), and the central angle at 
approximately δ = 60° (angular value selected from[5]; 
Figure 10).   

 

Figure 10. Occlusion region estimation. 

With knowledge of the occlusion region, we can 
dynamically place content and interface elements outside it. 
In addition, we can design special interface widgets that 
adapt to accommodate the finger orientation and avoid 
occlusion. For example, a pie-menu or torus-menu with a 
gap can dynamically reorient itself so that the gap is always 
aligned with the body of the finger (Figure 11) [33].  
Brandl et al. [6] explored similar occlusion-aware menu 
designs, but required the user to use a pen and rest the palm 
on the surface simultaneously to determine the menu 
orientation. Comparatively, our finger orientation detection 
algorithm allows these designs to be broadly applied to 
various scenarios and technologies. 

 
Figure 11. Menus adapting to finger orientation to 
avoid occlusion. (a) Pie menu. (b) Torus menu. 

Inferring User Position 
When a user puts a finger on a horizontal surface, typically 
the finger points away from the user’s body (Figure 12). 
For tabletop interaction, this provides a simple cue to infer 
the rough position of the user. Although inherently 
imprecise, this can be useful enough for simple scenarios 
where the user can only take a few possible positions. In a 
typical interactive tabletop usage scenario, the user sits 
along either one of the two long sides of the tabletop. 
Knowing the orientation of the finger touch, we can infer 
that the operating user is sitting at the side opposite to the 
finger orientation. This information is particularly useful 
for orienting the interface and content (especially text) to 
suit the user’s perspective.  

Another common usage scenario is when two users sit on 
opposite sides of the tabletop. By applying the same 
heuristics, we provide a lightweight way of differentiating 
finger touch inputs from different users without resorting to 
technologies like the DiamondTouch [9]. Many user-
specific operations can then be easily supported, such as 
the use of interface widgets that function differently 
depending on who triggers them, or setting different 
operation privileges for different users (Figure 12).  

 

Figure 12. Inferring user position from finger 
orientation. 

Relationship between Multiple Fingers 
The anatomy of the human hand imposes certain 
constraints on the possible orientations and positions of 
fingers from the same hand. We can exploit this 
information to infer the relationship between multiple 
fingers on the surface.  

 

Figure 13. Typical hand configuration. 

In natural and comfortable positions, the orientation of a 
finger indicates a departure away from the center of the 
palm. As a result, the lines of direction based on the 
orientations of two or more fingers from the same hand 
will intersect and provide a rough location of the user’s 
palm. This location is usually to the opposite side of the 
directions pointed by all finger, and within a reasonable 
distance from the position of the fingertips (Figure 13). 

29



 

 

Based on this information, for a pair of finger touch points, 
we calculate the intersection point I of the two straight 
lines aligned with their positions and orientations. For each 
fingertip position P with orientation Φ, we calculate the 
orientation angle ΦIP of ray IP (i.e. pointing from I to P). If  
|ΦIP – Φ| < 90°  and distance |IP| < td (td is an empirically 
determined threshold, chosen to be 140 mm in our 
implementation) for both fingers, we determine that they 
belong to the same hand (Figure 14a). Otherwise the two 
fingers belong to different hands (Figure 14b). In the latter 
case we may also infer whether the two hands belong to 
different users in some simple cases (Figure 14c). As 
discussed previously, if assuming that the two users are 
sitting in fixed positions across a horizontal surface, and 
the orientations of the two fingers clearly point oppositely 
to where the users are supposed to be sitting, we can then 
associate these two hands with each user. When three or 
more fingers are touching, we may determine their pair-
wise relationships, and make higher-level inferences if 
necessary. Obviously, this approach does not account for 
atypical cases such as when two hands overlap. However it 
would be reliable enough for interaction purposes in 
natural scenarios. 

 

Figure 14. Inferring relationship between fingers. (a) 
Same hand. (b) Two hands from same user. (c) 
Two hands from different users.  

Knowing the relationship between finger touches can be 
particularly useful for various interactions. Moscovich and 
Hughes [24] experimentally showed that multi-finger 
manipulations by one hand and by two hands are suitable 
for different tasks. Inspired by this, we could assign 
different functionalities for each case. For example, fingers 
from the same hand result in multi-finger inking on a 
digital object; fingers from both hands by the same user 
result in the classic rotation/scaling manipulation; and 
fingers from multiple users could “tear apart” the object to 
create multiple copies. 

Enabling Orientation-Invariant Input 
The direct-touch input on interactive surfaces naturally 
affords using the finger to perform trajectory-based 
gestures, similar to pen gestures that are broadly used on 
tablet PCs or handheld devices. Pen gestures performed on 
those devices usually have an unambiguous upright 
orientation relative to the input panel. However, for 
gestures performed on interactive surfaces, especially 
horizontal tabletops, the orientation of the gesture inputted 
can be arbitrary depending on the user’s position. This 
creates a dilemma for unambiguous gesture recognition on 
interactive tabletops. Either the system has to assume the 
user is inputting from a fixed orientation, which constrains 

the usage of the tabletop. Alternately the system has to 
recognize input in a rotation-invariant way and avoid any 
orientation-specific gesture, which largely limits the 
gesture design space. This problem becomes even more 
prominent if we want to introduce handwriting recognition 
input on tabletops, since many of the English and 
numerical characters are inherently orientation-specific 
(Figure 15).  

 

Figure 15. Ambiguous gestures caused by different 
hand orientations. 

By taking finger orientation into account, this problem 
could be alleviated. Before recognition, the orientation of 
the input gesture can be normalized by a compensated 
rotation determined by the average finger orientation while 
performing the gesture. As a result, the user could perform 
finger gestures or handwrite unambiguously from any side 
of the tabletop. Blasko et al. [5] explored similar concepts 
on a handheld tablet by estimating its own orientation 
through face tracking or stylus pose. 

Another example of orientation-invariant input is to 
support multi-finger mouse emulation on interactive 
tabletops. Matejka et al. [20] presented SDMouse, an 
efficient technique to simulate full mouse functionality by 
mapping different buttons to different fingers on a multi-
touch screen. The technique differentiates “mouse buttons” 
partly by their directional position with reference to the 
index finger. For example, the finger on the left side of the 
index finger is considered the thumb and mapped to the left 
button. This poses a problem for migrating SDMouse onto 
a tabletop surface, where the definition of “a side” is 
ambiguous and varies with the hand orientation. Again, by 
considering the orientation of the index finger, we can 
unambiguously associate fingers to buttons located in a 
reachable location regardless of the user’s position (Figure 
16).  

 

Figure 16. Orientation-invariant mouse emulation. 

DISCUSSION 

Algorithm Limitations 
We have shown that our finger detection algorithm is 
effective and accurate. However a few limitations do exist:  

The algorithm assumes an oblique touch from the user, 
which is the case for most common interaction scenarios. 
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However, as Forlines et al. [12] discussed, such an oblique 
touch may be less obvious when the user touches a vertical 
surface, or in areas of a tabletop that are very close to 
themselves. For these scenarios, the interaction designs 
would need to afford supplemental ways for the user to 
indicate the concept of orientation.  

The orientation disambiguation step relies on the finger 
center displacement during the finger landing process and 
assumes that this displacement is caused solely by the 
deformation of the finger. This requires that the landing 
action should consist of a downward vertical movement of 
the finger only, which is typically true in regular cases. In 
the less frequent case that the finger landing is 
accompanied by a concurrent horizontal finger movement 
(i.e. “sliding down”), the finger disambiguation algorithm 
could be biased. However, the concurrent horizontal 
movement during the short period of finger landing is 
unlikely to be significant enough to reverse the 
disambiguation result.  

Although our experimental evaluation only examined the 
algorithm performance with the index finger, in practice we 
observed that the algorithm also works well with most 
other fingers, with the only exception being the thumb. 
Restricted by the anatomy of the human hand, a user would 
typically touch the surface with the side face of the thumb, 
instead of its pad. This does not display the usual center 
displacement pattern as with other fingers, and usually 
results in an incorrect detection by our algorithm. On the 
other hand, when users do touch the surface with the pad of 
the thumb, they usually do so with the thumb pointing 
towards themselves, as opposed to it being away from 
themselves as with other fingers. Our algorithm can 
correctly detect the thumb orientation in this case. However 
this action is less informative for inferring the user’s 
position.  

It should be noted that using finger orientation alone is not 
the final answer for novel interaction designs on interactive 
surfaces. By combining finger orientation with other input 
properties of the hand such as size, shape, or pressure, the 
limitations of our algorithms would be overcome in 
interaction scenarios.  

Technology Compatibility 
We have tested our algorithm on a representative 
computer-vision-based technology. Our algorithm requires 
solely the contact shape of the finger to work. This input 
requirement makes our algorithm largely compatible with a 
variety of other sensing technologies, such as capacity-
based sensing or embedded optical sensor arrays [16]. 
However given the nature of the different technologies, the 
parameters of the algorithm may need to be adjusted 
accordingly. For example, FTIR-based devices often 
require the user to press slightly harder to generate enough 
touch area for processing. On the other hand, technologies 
that provide certain additional information such as hover 
state, as in ThinSight [16], can utilize these to further 
improve the reliability of our algorithm. 

3D Finger Orientation 
In this paper we focused on the 2D orientation of the finger. 
However, 3D finger orientation may also be interesting for 
interacting with digital surfaces. This information could 
potentially be acquired by using new sensing technologies 
such as depth cameras (www.3dvsystems.com). For 
example, with knowledge of the full 3D orientation of the 
contact finger, we could enable tilt-based interactions such 
as those explored with the TiltMenu [31] for pen-based 
interactions. Alternatively, intuitive 3D manipulations of 
digital objects may be explored on interactive surfaces by 
using the finger as a proxy.  

FUTURE WORK 
Several open questions remain to be explored in the future: 

First, we would like to further improve our algorithm to 
overcome the limitations discussed previously, for example 
by considering the detailed geometry of the fingers’ touch. 
This would be led by a deeper investigation of the 
properties of finger contact, including less typical scenarios 
such as when the user touches with the side of a finger. 
Particular attention would be given to the thumb, which has 
several unique properties compared to other fingers. This is 
especially important as some multi-touch manipulations 
often involve the movement of both thumb and index 
finger.  

Additionally, based on the inference made from the 
structural interrelationship of the fingers, we are interested 
in experimenting with extracting higher-level information, 
to cluster touch points into congruent hand configurations. 
Continuous tracking of the user’s full hands may also be 
possible by considering the dynamics of the fingers even 
when they are not always touching the surface.  

At the current time, most of our designs have been 
implemented as proof-of-concepts, while “aim and grab” 
and “orientation-sensitive widgets” are in design stage. In 
the future we will iterate on these prototypes to improve 
the design details. We have not yet implemented an 
orientation-invariant gesture/handwriting recognition 
engine as we proposed. We plan to develop and 
experimentally evaluate such an engine, and also explore 
its applications in other scenarios such as with handheld 
devices. 

CONCLUSION 
Our contribution in this paper is two-fold. We first 
presented a simple and generally applicable algorithm to 
unambiguously detect the directed orientation of user’s 
fingers on interactive surfaces from contact information 
only. Researchers can apply this algorithm on various 
direct-touch surfaces to serve their own applications. We 
then explored user interface designs that leverage this 
finger orientation information, as well as further inferences 
that can be made from finger orientations. These designs 
and inferences can be useful for interaction with a variety 
of direct-touch devices that generate finger orientation 
information, either using our general algorithm or other 
more specialized sensing technologies. Our work shows 
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that finger orientation is a feasible and valuable input 
dimension that can be utilized for novel interactions on 
interactive surfaces. 
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