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ABSTRACT
Accurately discovering user intents from their written or spoken
language plays a critical role in natural language understanding and
automated dialog response. Most existing research models this as a
classification task with a single intent label per utterance, grouping
user utterances into a single intent type from a set of categories
known beforehand. Going beyond this formulation, we define and
investigate a new problem of open intent discovery. It involves
discovering one or more generic intent types from text utterances,
that may not have been encountered during training. We propose
a novel domain-agnostic approach, OPINE, which formulates the
problem as a sequence tagging task under an open-world setting. It
employs a CRF on top of a bidirectional LSTM to extract intents in
a consistent format, subject to constraints among intent tag labels.
We apply a multi-head self-attention mechanism to effectively learn
dependencies between distant words. We further use adversarial
training to improve performance and robustly adapt our model
across varying domains. Finally, we curate and plan to release an
open intent annotated dataset of 25K real-life utterances spanning
diverse domains. Extensive experiments show that our approach
outperforms state-of-the-art baselines by 5-15% F1 score points. We
also demonstrate the efficacy of OPINE in recognizing multiple,
diverse domain intents with limited (can also be zero) training
examples per unique domain.
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1 INTRODUCTION
Recent advances in natural language understanding (NLU) and
speech recognition technologies have triggered the advent of a
wealth of conversational agents such as Apple’s Siri, Microsoft’s
Cortana and Amazon’s Alexa. To effectively interact with people
and answer their diverse questions, such agents need to parse and
interpret human language utterances, especially people’s inten-
tions or intents, and respond accordingly. Progress in the field of
deep learning has led to the emergence of numerous user intent
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detection models [3, 9, 10, 17, 20, 30, 32, 39, 67, 70, 71, 74]. Most
existing research including commercial NLU engines detect user in-
tents via multi-class classification, by categorizing input utterances
into pre-defined intent classes for which sufficient labeled data is
available during model training. Such works cannot address new
or previously unseen intent categories, i.e., they work with a closed
world assumption [9, 10, 17, 30, 39]. They further assume that an
input text expresses only a single intent [10, 17, 30, 39, 70]. This
is unlike real-world scenarios where users can express multiple,
distinct intentions in a single utterance.

In this work, we propose a framework called OPINE (OPen INtent
Extraction) that automatically discovers user intents in natural lan-
guage, without prior knowledge of a comprehensive list of intent
classes that the text may contain. In other words, OPINE is not
restricted to a pre-defined set of intent categories. It can recognize
instances of novel or newly emerging intent types that it has never
seen before. Tackling such an open world case is much more chal-
lenging than the closed-world classification setting predominantly
found in literature. We name this novel task of identifying and
extracting explicit user intentions from text utterances, without
any information about the potential intent schema, as Open Intent
Discovery. Recognizing open intents from users’ text or speech
inputs has several downstream applications, especially when it is
unfeasible, expensive and restrictive to enumerate or possess prior
knowledge about all possible intents during model development
and training. Open intent discovery can help summarize the com-
mon or frequent user objectives and functions associated with a
business or a product. It can highlight and help prioritize common
bugs and issues reported to customer support or public forums,
and spot action items in emails or meeting transcripts. It can also
aid the discovery of novel or newly emerging characteristics, skills
or functionalities. To illustrate, the text “Please make a 10:30 sharp
appointment for a haircut" contains a single user intent of making
a haircut appointment; whereas the text “I would like to reserve a
seat and also if possible, request a special meal on my flight" contains
multiple intents – a seat reservation and a meal request. Contrarily,
the sentence “Anyone knows the battery life of iPhone?" merely re-
quests information on a particular topic and does not contain an
explicit intent action, such as buying an iPhone. We do not consider
such ambiguous or questionable utterances in this work.

Recent efforts [29, 37, 70] have a similar objective as ours, i.e.,
recognizing intents outside of the labeled training data. Xia et
al [70] treat this as a zero-shot classification problem, under the
assumption that a list of new or unseen (during training) intent
classes is available at test time along with some prior knowledge
about them, and classifies the input text into one of these classes.
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Other techniques [29, 37] do not have this limitation. But they can
only identify if an input utterance is likely to contain a new intent
or domain. They do not ‘discover’ or specify what the new intents
are. Further, all above mentioned approaches can only handle the
basic case of an input utterance containing a single intent. Our
work does not have any of the above restrictions, and to the best
of our knowledge, is the first work to address the aforementioned
limitations. It gives a fine-grained picture of the diverse intents in
user utterances, rather than merely recognizing the presence of
novel intents or classifying new intents into high level categories.

Unlike the prior literature, our proposed approach, OPINE, mod-
els the open intent discovery problem as a sequence tagging task
(Section 2). We develop a neural model consisting of a Conditional
Random Field (CRF) on top of a bidirectional LSTM with a multi-
head self-attention mechanism. A crucial challenge associated with
developing a generic technique for open intent discovery is ensur-
ing its effectiveness across several task domains or fields. For this
purpose, OPINE represents all kinds of user intents extracted from
the textual input in a consistent and generalizable format, indepen-
dent of their domain. We further employ adversarial training at the
lower layers of our model, and unsupervised pre-training in the
target domain under consideration. These strategies empower our
model for cross-domain adaptation even in the absence of sufficient
labeled training data, as we show empirically in Section 4.

Commonly used labeled datasets in the intent detection literature
such as SNIPS [10] or ATIS [11, 24] largely have concise, coher-
ent and single-sentence texts. They are not very representative of
complex, real-world dialog scenarios (e.g. customer support conver-
sations) which could be verbose and ungrammatical, with intents
scattered throughout their content. Thus, we develop and plan to
make available a large dataset with 25K real-world utterances from
the online Stack Exchange1 forum. They span several genres and
have been annotated with intents by crowd workers. To summarize,
the key contributions of our work are:
• We formulate and solve a novel problem of open intent dis-
covery in text. Our proposed technique OPINE is flexible,
generalizable, and agnostic of the domain of the target text.
• OPINE can discover both previously seen as well as unseen
(during training) user intents in diverse real-world scenarios.
It can identify multiple user intents per utterance, without
any restriction on the number or types of intents possible.
• We curate and present a large intent-annotated dataset of
25K text instances from various real-world task domains.

2 PROBLEM FORMULATION
This work introduces and addresses the novel problem of Open
Intent Discovery in asynchronous text conversations. The objective
of this problem is to identify all possible actionable intents from text
utterances. These may be underlying goals, activities or tasks that
a user wants to perform or have performed. We define an intent
as consisting of two parts: (i) an action, which is a word or phrase
representing a tangible purpose, task or activity which is to be
requested or performed, and (ii) an object, which represents those
entity words or phrases that the action is going to act or operate
upon. A similar definition has been used to define intention posts in
1www.stackexchange.com

social media and discussion forums [9, 67]. For instance, the intent
of the text “Please make a 10:30 sharp appointment for a haircut" is
to make or schedule a haircut appointment. It consists of an action
“make" and an object “appointment", “appointment for haircut", or
“haircut appointment". Similarly, for the utterance “I would like to
reserve a seat and request a special meal on my flight", the actions
are “reserve" and “request" and the objects are seat and special meal,
for the respective intents of seat booking and meal request.

We concede that there may be user utterances that indicate an
intent by implying an object, without explicitly mentioning it. An
example of this case is the statement “I want to arrive by 8:30". We
clarify that such utterances are outside the scope of this work. We
focus primarily on actionable intents that explicitly contain the
presence of one or more action phrases as well as object phrases,
since we believe that both of these are essential to holistically
and unambiguously understand a user’s intent. We choose such
a definition for user intents to address commonly available user
interactions within help or customer support forums and with
smart speaker devices (e.g. Amazon Alexa, Apple Siri), which often
contain user requests for assistance on a particular task.

Following our two-part definition of an intent, we formulate
the open intent discovery problem as a sequence tagging task over
three tags: Action, Object, and None (the remaining words that
are neither an Action nor an Object). A user intent then consists
of a matching pair of an Action phrase and an Object phrase. As
previous illustrations show, the Action component of an intent is
likely to consist of a verb or infinitive phrase that follows a noun
or a subject. The Object component often comprises of a noun or
compound noun (i.e., an expression with multiple nouns) phrase,
possibly qualified by adverbs or adjectives. However, we cannot
simply use a part-of-speech (POS) tagger, or a semantic parser to
identify Action-Object tags due to the following reasons. First,
a POS tagger or a parser cannot distinguish between the Action-
Object pairs associated with intents, and those that are merely
part of the descriptive text. They will hence suffer from a low preci-
sion problem (Table 2). Second, corresponding Action and Object
phrases may be spatially distant from each other in the input text
and may even span multiple sentences (Table 5). Having said that,
we do notice the efficacy of initially pre-training the model weights
of OPINE with the verb-object tags obtained from a dependency
parser (Table 3). It helps our model learn generic indicators for var-
ious kinds of intents independent of the input domain, especially if
there is insufficient annotated training data. We then fine-tune our
model with labeled data specific to our problem.

An extension to the intent discovery task involves slot filling,
that identifies entities semantically relevant to the identified intents
to fill embedded ‘slots’ in a semantic frame. The frame corresponds
to a specific task or goal. Actions can be programmed based on
each predefined semantic frame. In this work, we only focus on
identifying intents from text utterances. Further analysis of fre-
quently occurring intents or relationships between the discovered
intents can be used to speed up curation and creation of novel
frames for further application-specific downstream analysis. We
provide examples of such analysis in Sections 4.3 and 5).

The task that we describe in this work, and our approach to solve
it is also different from the Open Information Extraction (OpenIE)
tasks (e.g. [2]) and Semantic Role Labeling (SRL) tasks (e.g. [61])
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in the following ways: (i) OpenIE is used to extract relation triples
from text, with the constituents occurring in the input sentence,
whereas we define intent in the form of Action-Object pairs.
(ii) SRL aims to label and relate constituents in input sentences
with their semantic meanings. Not all such constituents pertain to
expressed user intent; we focus on intent relations only. (iii) Typical
OpenIE and SRL tasks use individual sentences as inputs in their
frameworks. Our approach does not have such a restriction, and
can distinguish sentences that contain extraneous information and
do not express users’ intent. Therefore, the algorithms proposed
for the OpenIE or SRL tasks are not directly applicable to the Open
Intent Discovery task. However for the purposes of evaluation, we
compare OPINE with an SRL baseline in Table 2.
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Figure 1: Our OPINE open intent extraction model

3 THE OPINE FRAMEWORK
Figure 1 displays the architecture of OPINE. Given an input text
x consisting of a sequence of words [x1,x2, ...,xn ], we first trans-
form it into a feature sequence by constructing the character level
representation of each word xi . This is because incorporating char-
acter level representations of words can boost the effectiveness
of sentence representations by capturing morphological informa-
tion present in the language [42, 75]. For this purpose, we build
a CNN consisting of convolutional and max pooling layers with
dropout [56], similar to [26]. We also obtain pre-trained word level
embeddings for each token. Such low-dimensional and dense em-
beddings are highly effective in capturing both syntactic and seman-
tic information. Character-level information can often be overshad-
owed by word-level embeddings if both are simply concatenated to
produce a combined representation for each word. We thus adopt
a highway network [57] to combine both the character level and
word level embeddings in a balanced manner and retain the impact
of the both kinds of embeddings. Let ecwi be the concatenation of
the character and word level representations eci and ewi of word xi .
The combined embedding e is given by:

e = r ⊙ tanh(WH e
cw + bH ) + (1 − r ) ⊙ ecw

r = σ (WRe
cw + bR )

where tanh is the hyperbolic tangent function, ⊙ denotes element-
wise multiplication,WR andWH are weight matrices, and bR and
bH are bias vectors. r (transform gate) and 1 − r (carry gate) are

non-linear transformations indicating the proportion of output
produced by transforming the input, and carrying it. Every word
xi is thus transformed into an embedding ei , which is input to the
next layer, namely a bidirectional LSTM layer [19, 25]. This layer
generates a sequence of word-level representations [h1,h2, ...,hn ]
from forward (

−→
ht ) and backward (

←−
ht ) sequence contexts, based on

the recurrences of an LSTM cell [25].

Adversarial Training: We employ adversarial training to regu-
larize our model [18, 46], improve its robustness to slight input
perturbations, and discover features and structures common across
multiple domains [14, 33, 40]. We generate adversarial input ex-
amples that are very close to the original inputs and should yield
the same labels, yet are likely to be mispredicted by the current
model. These examples are created by adding small worst case per-
turbations or noise to the inputs in the direction that significantly
increases the model’s loss function. OPINE is then trained on the
mix of original and adversarial examples to improve its stability to
input perturbations. Since adversarial training considers continuous
perturbations to inputs, we add adversarial noise at the embedding
layer [46]. Let input text x = [x1, . . . ,xn ] be represented by em-
bedding e . We generate its worst case perturbation η of a small
bounded norm ϵ , which is a tunable hyperparameter. It maximizes
the loss function L of the current model with parameters θ as:

η̃ = argmax
| |η | | ≤ϵ

L(e + η;θ )

Since the exact computation of η̃ is intractable in complex neural
networks, we use the first order approximation via the fast gradient
method [18] to obtain an approximate worst case perturbation of
norm ϵ . We also normalize the word and character embeddings,
so that the model does not trivially learn the embeddings of large
norms and make the perturbations insignificant [46].

η̃ = ϵ
д
| |д | | ; where д = ∇e (L(e;θ ))

ẽ = e + η̃

L′ = αL(e;θ ′) + (1 − α)L(̃e;θ ′)
where ẽ represents the perturbed embedding of an adversarial ex-
ample generated from embedding e and ∇e denotes the gradient
operator. L(e ;θ ′) and L(̃e ;θ ′) represent the loss functions from the
original training instance and its adversarial transformation respec-
tively. α is a weighting parameter. The new loss function L′ can be
optimized in the same way as the original loss L. While generating
adversarial examples, we measure the semantic (cosine) similarity
between the original and adversarial embeddings, and only choose
those adversarial examples where the similarity is greater than a
threshold. Adversarial training ensures that the meaning of a sen-
tence cannot be inverted via a small change. So, words with similar
grammatical role but different meanings are still separable.

Attention Mechanism: We employ attention to select and focus
on the important and essential hidden states of the Bi-LSTM layer.
In particular, we use a multi-head self-attention mechanism [38,
60, 62] that jointly attends to information at different positions of
the input sequence, with multiple individual attention functions
and separately normalized parameters called attention heads. This
enables it to capture different contexts in a fine-grained manner
and learn long-range dependencies effectively. Each attention head
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computes a sequence z from the output h = [h1,h2, ...,hn ] of the Bi-
LSTM layer by projecting it to a key k , a value v , and a query q via
distinct affine transformations with ReLU activations [15]. Here k ,
v and q each belong to the space Rd/P , where P is the total number
of attention heads. The attention weights ai jp for attention head p
between word tokens i and j are computed as:

ai jp = softmax(
qTipkjp√
(d )
)

zip =
∑
j vjp ⊙ ai jp

zi = ⊕zip ;∀p
Here ⊙ denotes an element-wise product and softmax indicates the
softmax function along the j-th dimension. The individual attention
head outputs zip are concatenated into zi for token i . The scaled
dot product above enhances the optimization process by better
distributing the gradients and flattening the softmax function [62].

3.1 Sequence Tagging via CRFs
The output of the attention layer serves as input to the next layer
of OPINE’s intent extraction model, namely a CRF [36]. CRFs effec-
tively utilize the correlations between labels in a sequence neigh-
borhood to predict the best label sequence for a given input. As
mentioned earlier, the task of the CRF layer is to predict one of
three tags for each word of the input sequence: Action, Object, or
None. The input to the CRF layer is the sequence z = [z1, z2, ..., zn ]
from the attention layer, where zi represents the i-th word token. y
represents a certain output label sequence for z, and Y ′(z) denotes
the possible set of label sequences. The conditional probability func-
tion for the CRF, P(y |z;W ,b), over all possible label sequences y
given input sequence z is given by:

P(y |z;W ,b) =

n∏
i=1

Ψi (yi−1,yi ,z)∑
y′∈Y ′(z)

n∏
i=1

Ψi (y′i−1,y
′
i ,z)

where Ψi (y′i−1,y
′
i , z) = exp(WT

y′,yzi +by′,y ) are potential functions
to be learned.WT

y′,y and by′,y are weight and bias matrices corre-
sponding to the label pair (y′,y) respectively. We use linear chain
CRFs with maximum conditional log-likelihood estimation.

Constraint-enhanced CRFs: The Viterbi algorithm [13] used for
decoding the CRF layer only considers interactions between se-
quentially adjacent tag labels. However, we encounter additional
constraints in our problem. First, we want to ensure that the CRF
never predicts only an Action tag or only an Object tag, since
our definition mandates the occurrence of both an action and the
object it acts upon to constitute a valid intent. Next, it is often
useful to identify intent indicator phrases that suggest the presence
of an intent in the corresponding text, or are characteristic of an
action following them. Since it is challenging to construct a com-
prehensive list of all such intent indicators, we pick a small number
of highly indicative cues [20, 67]. These include: (i) presence of a
first-person pronoun (e.g. i, we) within a three-word window of an
infinitive verb phrase (‘to’ followed by a verb) in the utterance; and
(ii) phrases denoting an ‘action plan’ (e.g. plan to, want to etc). For
each such phrase, we selectively choose candidates having labelled
intent tags in a small contextual neighbourhood (up to five words)
following the intent indicator. These constraints operate at the level

of the fully inferred sequence, and cannot be easily integrated into
the Viterbi decoding algorithm by straightforward techniques like
modifying its transition matrix [35, 52]. We circumvent this in two
ways during the tag inference phrase of the CRF (Table 2). The first
is using a beam search that penalizes sequences in the beam not
satisfying the aforementioned constraints, and falls back to using
the next most probable tag predictions.

Second, we use the fact that the solution output by the Viterbi
algorithm is in fact the shortest path in a graph constructed among
the sequence tokens and the possible tag values each token can
take [52]. A sequence of length n with m possible tag labels is
mapped to a graph with nm+2 nodes and (n−1)m2+2m edges. We
reduce this shortest path problem to an Integer Linear Programming
problem, with added tag-specific constraints to it as inequalities
between the graph node variables. These ensure that action and
object tags do not occur in isolation, and certain indicator words
increase the likelihood of a sequence being tagged with an action
tag. This modified algorithm is then used to decode the CRF.

3.2 Generating Intents from Tag Sequences
Once the CRF predicts Action, Object and None tags for each
input word, our final step is to match appropriate Action and
Object tag phrases to generate meaningful intents. As specified
earlier, we define an intent as a combination of Action tagged
phrases followed by Object tagged phrases. We develop two tech-
niques for this. First, we employ the simple but effective technique
of linking Action and Object tagged phrases with respect to their
word-based proximity in the input text. This distance-based heuris-
tic assumes that related action-object phrases are likely to occur
spatially close to each other. For instance, in the statement “I would
like to reserve a seat and also if possible, request a special meal on my
flight", the action ‘reserve’ is more likely to match with the nearer
object ‘seat’, than with the farther object ‘special meal’. But, this
assumption may not hold depending on the way the text is worded.

Our second technique ofmatchingAction-Object tagged phrases
is by learning a multi-layer perceptron (MLP) classifier. The input
features for the MLP consist of the sum of the pre-trained GloVe
embeddings [50] of the words in the potential Action-Object in-
tent phrase, concatenated with the normalized word distance value
between the Action and Object phrases in the original input text.
These features account for the word proximity of the intent terms,
and their semantic likelihood of co-occurring in a single phrase. The
input to the MLP is thus the feature representation of all possible
paired combinations of the predicted Action and Object tagged
phrases. The MLP contains two fully connected layers of ReLU
units, followed by a fully connected layer of size one. It outputs a
score ymlp for each potential Action-Object pair under consider-
ation, showing the probability of combining them to produce an
intent. The MLP is trained with a margin-based hinge loss function,
maximizing the separation between the true and the highest scoring
incorrect Object option for the current Action phrase. We present
the performance of both the above techniques in Table 3.

Our OPINE open intent extraction framework thus makes use
of semantic information from the previous and future time steps,
and dependency constraints learned and enforced by the CRF; to
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Table 1: Statistics of our curated Stack Exchange dataset

Name of Genre No. of ut-
terances

Avg utterance
length

Vocab size
per genre

Data science 8184 60 11561
Software engineering 7114 60 23417
Web apps 7048 50 28906
Webmasters 7524 56 18688
Sharepoint 9366 60 40094
Productivity 8968 60 9529
Development ops 1660 60 1871
Open data 2166 60 7952
Server fault 7772 53 16047
Life hacks 1836 50 7837
DIY 2378 35 4140
CRM software2 11723 60 47219

predict open intents for an input text utterance. Multi-head self-
attention enables it to learn dependencies between distant words
(possibly across sentences) effectively. Adversarial training acts as
a powerful regularizer for our model, contributing to its robustness
and resilience to user intents from diverse domains.

4 EVALUATION
4.1 Data Collection
We collected about 75K questions with their top correct answer
on various topical categories, from www.stackexchange.com. We
formulated an Amazon Mechanical Turk experiment to annotate
25K of these with up to three intents that the crowd workers felt
were most important or relevant. We observed an inter-annotator
agreement of 0.73. We used the remaining 50K unlabeled questions
for unsupervised pre-training, by generating verb-object parse tags
for these texts via the Stanford CoreNLP dependency parser [44].
We employed words tagged as verbs and objects as proxies for the
Action and Object tagged phrases that compose an intent. We
then fine-tuned our model on 80% of the intent-labeled data tagged
with Action and Object phrases by the annotators, and tested it
on the remaining 20%. Our curated Stack Exchange dataset consists
of 12 diverse genres with hundreds of unique intent types. (Table 1),

Most (if not all) intent detection benchmark datasets (e.g. SNIPS,
ATIS) are typical of automated voice agents with short, concise text
utterances and a single intent per utterance. These are quite distinct
from help forum or user support style conversations, containing
longer utterances with descriptive background context. We show
empirically that a strength of OPINE is being able to handle both
short utterances with limited to no context (e.g. SNIPS and ATIS
data in Section 5), as well as longer conversational utterances (e.g.
Stack Exchange in Table 2). We choose Stack Exchange as our data
source due to its long and verbose text with background details,
linguistic complexity and diversity, and multiple intents scattered
throughout the text. We hope that such an intent-annotated dataset
would be a novel contribution to the literature.

2A commercial Customer Relationship Management (CRM) software.

Implementation:Weuse the 300-dimensional GloVe embeddings [50]
pre-trained on the Common Crawl dataset3, and character embed-
dings as perMa et al [42].We use 400 LSTM units with L2 regulariza-
tion and dropout [56] at the Bi-LSTM layer with a probability value
of 0.5, to avoid overfitting and co-adaptation of the hidden units.
Parameter optimization is performed via the Adam [34] optimizer
with gradient clipping and early stopping based on the validation
set. We set the initial learning rate to 0.001 with a decay of 0.05.

4.2 Results
Employing a consistent, domain agnostic representation for in-
tents that contains an Action and an Object that it acts upon
enables OPINE to identify and extract all possible intents which fit
in this format, irrespective of their target domain. These include
previously unseen intent types that were not encountered while
training, unlike a classifier that can only address a pre-defined set
of intent categories. This formulation also helps OPINE discover
multiple possible intents for a single utterance and not just a single
intent, unlike most of the current literature. This is crucial since
user queries often consist of multiple tasks to be accomplished to-
gether (e.g. reserve seat and request special meal in the text “I would
like to reserve a seat and also if possible, request a special meal on my
flight"), or a single principal intent accompanying other interlinked
intents. As specified in Sections 2 and 3, we do not consider intents
containing only an action (e.g. play, search) without a qualifying
object, since we believe that knowing the object entity of the action
is equally important to holistically and unambiguously understand
the intent of the user from the corresponding utterance.

Comparative Analysis on Stack Exchange Data: Table 2 shows
the performance of various baseline approaches for open intent
extraction on our curated Stack Exchange dataset. The first baseline
levers a cue-based intent detection strategy [20, 67] that essentially
returns as intents the phrases following the occurrence of ‘intent-
indicator’ cue words or phrases (described in Section 3.1). The
second baseline levers the verb-object tags learned by the Stanford
dependency parser, used as proxies for Action and Object tags
respectively. The third approach is a state-of-the-art deep semantic
role labeling model with self attention [61]. Semantic role labeling
is a shallow semantic parsing task that extracts various ‘semantic
roles’, i.e. event properties and relations among relevant entities
from an input utterance. In this work, we only focus on the two
roles of verb and the object or entity acted upon by the verb as
contributors to user intent. The second column of Table 2 reports
the precision, recall and F1-score of the Action tags for each word
of the input utterance, whereas the third column only assesses the
Object tags. The fourth column displays the results considering the
combination of both tag types to create an intent. The last column
of semantic similarity computes the mean of the cosine similarities
between the embeddings of the predicted and actual (annotated)
intents. Each intent phrase’s embedding is the average of the pre-
trained GloVe [50] embeddings of its constituent words. We ignore
the words whose embeddings do not exist. ‘beam-CRF ’ and ‘constr-
CRF ’ in the last two rows refer to the two CRF enhancements from
Section 3.1 of (i) considering a beam of probable tag sequences, and
(ii) adding additional constraints to the decoding algorithm.
3 nlp.stanford.edu/projects/glove/
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Table 2: OPINE vs. State-of-the-art: precision(P), recall(R), F1-score and semantic similarity on Stack Exchange data

Approach ACTION P/R/F1 OBJECT P/R/F1 Intent P/R/F1 Semantic Similarity
Cue-based Intent Detector [20, 67] 0.65/0.59/0.62 0.6/0.54/0.57 0.63/0.56/0.59 0.67
Stanford CoreNLP dependency parser (SC) [44] 0.56/0.49/0.52 0.51/0.43/0.47 0.53/0.45/0.49 0.59
Deep Semantic Role Labeling (SRL) [61] 0.79/0.63/0.7 0.69/0.62/0.65 0.7/0.62/0.66 0.75
OPINE (beam-CRF) 0.84/0.72/0.77 0.81/0.69/0.75 0.82/0.70/0.76 0.86
OPINE (constr-CRF) 0.84/0.73/0.78 0.81/0.68/0.74 0.82/0.70/0.76 0.86

We observe a significant improvement of OPINE of over 15% in
terms of F1-score and semantic similarity, compared to the simple
intent-indicator based model and the Stanford parser (first two rows
of Table 2). The best performing variant of our proposed approach
also significantly outperforms the SRL model (third row of Table 2)
by about 9% F1-score points. These results show that OPINE can
successfully filter out all the additional “non-intent" background
information present in the input utterance, and only focus on the
text needed to extract the user intent.

OPINE Design Choice Analysis: Table 3 describes the perfor-
mance of different variations (design choices) of OPINE for open
intent extraction on our curated Stack Exchange dataset. Except
for the first row of Table 3, all other variants of OPINE are first
pre-trained on the verb-object tags learned by a dependency parser
(SC), followed by fine-tuning on the intent annotated utterances.
‘train on MTurk’ denotes OPINE being trained only on the human
annotated intent data. ‘att’ and ‘adv’ denote the presence of atten-
tion and adversarial training respectively in the model. ‘w-dist’ and
‘MLP’ denote the two methods of matching appropriate Action-
Object phrases to create a holistic intent, from Section 3.2 based
on (i) word proximity in the input text, and (ii) the score learned by
the MLP classifier. Utilizing the dependency parser data as a pre-
training step for the weights of our model, followed by fine-tuning
on the actual intent-labeled data improves the F1-score by at least
6%. Enhancing the CRF decoding algorithm with added constraints
(beam-CRF and constr-CRF ) benefits the F1-score further by 2-5%.
We find a performance difference of ≤ 3% between using the word
proximity heuristic (w-dist), and the MLP classifier for matching
Action and Object phrases. In general, the unsupervised word
proximity heuristic is more efficient than the MLP classifier be-
cause it does not incur an additional training cost. Overall, OPINE
trained with attention, adversarial training and CRF enhancements
outperforms the alternative variations (Table 3) and state-of-the-art
baselines (Table 2), with an intent F1 score of 76%, and a semantic
similarity of 86% between the true and predicted intents.

Domain Adaptation Capability: Encountering newly emergent
domains with little to no labeled intent categories available is a com-
mon real-world scenario. It is time-consuming and labor-intensive
to obtain sufficient domain-specific annotated training data. It is
thus desirable to adapt and generalize an existing trained model
with minimum re-training effort, each time a new domain with
potentially new intents is added. We investigate in Table 4 the ca-
pability of OPINE in adapting and transferring knowledge across
distinct conversational domains. We consider several different test
domains in the first column. The average overlap in the text vocab-
ularies across pairwise domain combinations is 43%. We evaluate
OPINE trained on utterances from the remaining domains other

than the test domain in the second and fourth columns. The third
and fifth columns indicate the respective F1-score and semantic
similarity achievable for the test domain, when OPINE is trained
using labeled data from the test domain as well. The F1-score and
semantic similarity metrics are computed in a similar manner as
for Tables 2 and 3. The difference in both metrics with and without
using training data from the test domain is ≤ 5%, for most domains.
Only the Life Hacks domain suffers a loss of 6.5% in terms of F1-
score when we eliminate the data from this domain while training.
Interestingly for the DIY domain, its training data is dominated by
other semantically distinct domains. However, OPINE still attains
a good F1-score of 72%, only 4% lesser than what is possible if DIY
domain data is used for training. These results show that OPINE
can effectively detect novel actionable intents in newly emerging
low-resource domains with minimal manual effort.

Role of Attention: Table 3 indicates that the presence of attention
lends OPINE an F1 score gain of at least 4%. We further explore
OPINE’s capability of identifying relevant and meaningful semantic
features from its input utterances, which contribute in discovering
open intents. We examine and visualize in Table 5 the self-attention
values for specific utterances from our Stack Exchange dataset. For
the sake of brevity we display truncated versions of the text in-
puts in the first column, and their associated intents in the second
column. A darker colored highlight on a specific utterance word
indicates that it receives higher attention, and plays a greater role
during intent discovery. Input utterance words that constitute in-
tents are marked in boldface. In all cases, we observe that words
semantically related to and contributing to at least one intent are
successfully identified by an attention head. For instance, the sec-
ond row shows the significance of ‘find out’, ‘retweeted’, ‘tweet’ and
‘what their Twitter IDs are’ in deciding the intent “find retweeted
Twitter IDs". The attention heads are attentive to indicator cues that
are likely to precede an actionable intent, such as ‘possible to’, ‘want
to be able to’, ‘how can I’ and ‘I want to’. Action or object phrases
that are irrelevant to the user’s intent (e.g. ‘watching videos’ in the
fourth row) do not receive a high attention score. Our attention
mechanism can capture the dependency between distant intent
words, such as ‘find’ and ‘retweeted’ in the second row and ‘pub-
lish’ and ‘scheduled’ in the third row. It also associates the action
‘manage’ in the last row with two objects, ‘sick notes’ and ‘absences’,
generating the intents “manage sick notes" and “manage absences".

4.3 Drill-down Analysis
Effect of Human-Annotated Training Data Size: In Tables 2
and 3, we showed that training our OPINE model with absolutely
no human-labeled intent data is detrimental to its performance.
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Table 3: Precision (P), recall (R), F1-score and semantic similarity of OPINE variants on the Stack Exchange dataset.

OPINE design variant ACTION P/R/F1 OBJECT P/R/F1 Intent P/R/F1 Semantic Similarity
att+adv + train on MTurk + w-dist 0.75/0.59/0.66 0.74/0.52/0.61 0.74/0.55/0.63 0.74
att + SC (pre-train) + MTurk (fine tune) + w-dist 0.78/0.62/0.69 0.79/0.56/0.66 0.78/0.58/0.67 0.80
adv + SC + MTurk + w-dist 0.81/0.60/0.68 0.76/0.54/0.63 0.78/0.56/0.65 0.77
att+adv + SC + MTurk + w-dist 0.84/0.66/0.73 0.81/0.63/0.71 0.82/0.64/0.72 0.83
att+adv+beam-CRF + SC + MTurk + w-dist 0.84/0.70/0.76 0.81/0.67/0.73 0.82/0.68/0.74 0.84
att+adv+constr-CRF + SC + MTurk + w-dist 0.84/0.72/0.77 0.81/0.67/0.73 0.82/0.69/0.75 0.85
att+adv + SC + MTurk + MLP 0.84/0.68/0.75 0.81/0.67/0.73 0.82/0.67/0.74 0.84
att+adv+beam-CRF + SC + MTurk + MLP 0.84/0.72/0.77 0.81/0.69/0.75 0.82/0.70/0.76 0.86
att+adv+constr-CRF + SC + MTurk + MLP 0.84/0.73/0.78 0.81/0.68/0.74 0.82/0.70/0.76 0.86

Table 4: Studying OPINE’s domain adaptation capability on
multiple test domains. ‘+td’ in the columns indicates that
data from that particular test domain row is included while
training, while ‘-td’ indicates its exclusion while training.

Test Domain Name F1 -td F1 +td Sim -td Sim +td
Data science 0.76 0.8 0.84 0.88
Software engineering 0.69 0.74 0.81 0.86
Web apps 0.73 0.77 0.83 0.88
Webmasters 0.75 0.79 0.83 0.86
Sharepoint 0.71 0.76 0.82 0.85
Productivity 0.73 0.78 0.81 0.86
Development ops 0.71 0.73 0.78 0.83
Open data 0.69 0.73 0.84 0.87
Server fault 0.67 0.72 0.75 0.8
Life hacks 0.635 0.7 0.74 0.8
DIY 0.72 0.76 0.81 0.86
CRM software 0.79 0.83 0.88 0.91

Table 5: Effect of attention. Darker coloredhighlight shows a
higher attention value. Boldface denotes presence of intent.

Input Text Utterance Intents

Is it possible tonavigate back ... to previous
page after save processing? ... I have a page where
I click on a link and use navigateURL ... want to be
able to go back to the previous calling page and
complete theprocessingof the save...

navigate
previous page,
complete
processing save

The "Your tweets retweeted" page ... findout all
the users who retweeted a tweet of mine? ... have
retweeted a tweet and what their Twitter IDsare?

find retweeted
Twitter IDs

Is there a WordPress plugin that will tweet when
a scheduled post is posted? ... will tweet when you
publisha post, but none I have tried will do it on a
scheduled post.

tweet when
publish
scheduled post

How can I keepmy phone from just falling over
when watching videos? ... I also want tohave my
hands free to do other things ...

keep phone from
falling, have
hands free

I’m starting a micro-school... I want tomanage
sick notes and absences ... How can I
synchronizeone central GoogleCalendar ...
Parents should be able to schedule future absences
and excuse past absences...

manage sick
notes, manage
absences,
synchronize
central calendar
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Figure 2: Effect of varying the amount of human labeled
training data on the model performance of OPINE.

We now examine the effect of varying the amount of human anno-
tated intent data while training OPINE. Figure 2 shows the F1-score
(blue solid plot) and semantic similarity (red dashed plot) values
for the predicted intents achieved by OPINE, as the number of hu-
man annotated training instances varies. We find that both plots
are monotonically increasing. When the total number of human
labeled training instances across various domains is less than 1000,
the values of the F1-score and semantic similarity are below 50%.
Both metrics rise to about 70% and 75% respectively at 1000 anno-
tated training examples (less than 50 labeled examples per unique
domain on average). Beyond this point, there is a steady perfor-
mance improvement, with a less sharper gain than earlier. These
observations reinforce OPINE’s domain adaptivity and show that it
does not require a large number of labeled examples per domain
(less than 50 on average) to successfully perform intent discovery.

Grouping Related Intent Categories: The output of OPINE is
an intent phrase for each input user utterance, and might therefore
use distinct phrases to express similar intents. For instance, for
the following semantically equivalent utterances: (i) “Make a new
haircut appointment for next Saturday” and (ii) “Can you reserve
a time slot in the hair salon on Saturday?”, OPINE predicts their
intents as “make haircut appointment” and “reserve time hair sa-
lon”. We might want to group together such semantically similar
intents into a unified intent category. Therefore, as an additional
post-processing step, we provide the deep features output by the
attention layer of OPINE as input to an agglomerative hierarchi-
cal clustering algorithm, where the number of clusters is given
by the number of distinct intent categories or domains that we
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Figure 3: Visualizing the deep features learned by OPINE for
four randomly selected Stack Exchange domains.

would like to obtain (e.g. 12 from Table 1 in the case of our Stack
Exchange dataset). We visualize the output vectors of the attention
layer of OPINE for four random test domains from our curated
Stack Exchage dataset in Figure 3. We use t-SNE [43] to reduce the
vector dimensionality to two dimensions, and color the data points
according to their domain labels. Some sample intents discovered
by our method for each domain are also denoted in Figure 3. Do-
main names are treated as ground truth labels for the purpose of
evaluation with respect to standard clustering metrics. We obtain
a normalized mutual information (NMI) [58, 66] score of 0.71, a
silhouette coefficient [53] of 0.69, a cluster purity [51] value of 0.78,
and an F-measure [51] of 0.72. Figure 3 and the high purity value of
our clustering arrangement demonstrate that good quality features
are learnt by OPINE, which are largely compact within domains and
separable across domains. Utterances belonging to similar intents
and the same domain are also located close by in the embedding
space (except for some domains likeWebapps and Data Science that
contain some utterances with similar intents). OPINE can thus be
used to group together semantically or functionally related intents
into higher level categories (the task of domain discovery).

5 CASE STUDIES
We now present qualitative and quantitative evaluations of OPINE
on additional datasets. Note that we trained OPINE on unrelated,
out-of-domain intent categories from Stack Exchange, before testing
on these datasets to examine the performance of OPINE. This repre-
sents a challenging environment, akin to zero-shot learning [49, 55],
where no information about the test data is known during training.

Ubuntu Dialog Corpus:We evaluate OPINE on a real, multi-turn
conversation from the Ubuntu Dialog Corpus [41], a snippet of
which is shown in Table 6. This dataset contains about one million
technical support conversations related to the Ubuntu Linux op-
erating system, and highly resembles real-world dialog exchanges
between users and customer support agents. The original dialog
from which this snippet has been truncated contains more than 100

Table 6: Performance ofOPINE on a technical support dialog
snippet. Words that make up intents are shown in bold.

User: Can someone please help? I’m trying to fix a broken ubuntu.
Agent: ... how did you break it?
User: i’m on the cd and i’m trying to mount and then chroot my hd, which
worked fine. I installed some new libs and now it no longer reboots.
User: what’s the easiest way to get a working boot on my drive again?
Agent: ... sounds like something might be screwed up in your
/etc/apt/sources.list file, if it’s failing on apt-get update
User: how can i fix my sources.list file?
Agent: open /etc/apt/sources.list. see if you notice any obvious errors
User: a question on the mounting issue - when i loaded the cd, my local
hard drive was mounted in media, can’t i just use that as the chroot?
Agent: ... assuming your flgrx is hosed, move the x conf file out of the
way so that the radeon driver will be used instead ...
User: drivers all back to normal. thank you so much my friend.
User: ... what do you suggest for a good backup program for ubuntu?
User: ... i installed the latest radeon drivers manually. how do i upgrade
to the newest kernel and default radeon drivers?
Agent: first you’d uninstall 10.6 fglrx driver. then you’d grab the three
2.6.34 deb packages and then install xorg-edgers repo. run grub-update
so it finds the new kernel and done.
User: where do i get the debs? and i know how to uninstall the fglrx
drivers ..., and then do i copy back the xorg.conf.original to xorg.conf?
User: ... do i need to add a source to my source list?
Agent: yes you need xorg-edgers (google it)
User: ok cool. how do i get rid of xorg, or is that already done?
Agent: ... if you used jockey-gtk to install fglrx and no other method,
then you should be able to use the same method to remove them

turns with a lot of extraneous background information. It is between
a user with technical issues and another who helps resolve them.
Such data is often asynchronous with diverse and informal intents,
dialog domains and semantic slots; which increases the difficulty of
intent discovery. As mentioned earlier, we used OPINE pre-trained
on unrelated intent genres from our Stack Exchange dataset, before
testing on this multi-turn dialog. Our goal here is to understand the
actionable intents of the user requesting support (User in Table 6),
and not the one providing it (Agent in Table 6). We also seek to
handle utterances containing intents with both an action and an
object. The words constituting intents inferred by OPINE have been
highlighted in boldface. Though each training utterance has up to
three labeled intents, OPINE can detect more than three intents
for an input if applicable. OPINE recognizes the following user
intents in the conversation: fix broken ubuntu, mount hd, chroot hd,
get working boot, fix sources.list file, upgrade newest kernel, upgrade
radeon drivers, get debs, uninstall fglrx drivers, copy xorg.conf orig-
inal and get rid xorg. Once these fine-grained intents have been
recognized, they can be subsequently grouped into coarser level
intents or domains (for instance, using the technique for Figure 3),
depending on the downstream application task. Categorizing such
a multi-turn dialog is typically outside the scope of existing intent
classification systems, but OPINE provides a fine-grained summary
of user intents throughout the dialog. Besides, having a common
format to represent an intent contributes immensely in finding user
intents irrespective of their target domain or topic.

Performance on SNIPS and ATIS: We next discuss the perfor-
mance of OPINE on standard intent detection datasets used in the
literature, namely the SNIPS NLU [10] and ATIS [11] datasets. We
highlight in Figure 4 the benefit of OPINE in drilling down into high-
level intent categories, to understand, summarize or hierarchically
organize the specific fine-grained intents that they comprise of. An
additional side benefit of discovering intents using OPINE is that
it can identify relevant accompanying slots apart from the intents,
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(d) BookReservation

Figure 4: Fine-grained intents discovered by OPINE for four
intent categories in the SNIPS NLU dataset. The length of
the bars represents the relative frequency of that particular
intent in the input data.
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Figure 5: Visualizing the clustering arrangement for utter-
ances belonging to four intent categories in the SNIPS NLU
dataset. This illustrates OPINE’s ability to conflate different
intent phrases mapping to the same or similar intent cate-
gory. E.g. ‘book spot tea house’, ‘need table’, ‘need reserva-
tion’ and ‘book reservation bistro’ map to the same cluster.

without performing a dedicated slot filling task. For instance, in
the PlayMusic category of the SNIPS dataset in Figure 4(a), OPINE
not only recognizes the basic intents of ‘hear song’ or ‘play album’;
but also the corresponding names of singers (e.g. Leroi Moore, Eddie
Vinson), song albums (e.g. Curtain Call, Concerto), and music plat-
forms (e.g. Youtube, Zvooq). In Figure 4(c), users wish to search for
screenings of events. OPINE accurately predicts this via keywords
like search, locate, find and look. Moreover, OPINE also provides
added information on the specific events that need to be searched,
such as the Chump Change saga and the movie Heart Beat.

We emphasize here that OPINE cannot be directly compared
to existing intent detection techniques in general since these are
formulated as classification tasks over a fixed set of pre-defined
intent categories, that need to be known at training time. They also

Table 7: F1 score of various intent classification approaches
on the SNIPS and ATIS datasets.

Approach SNIPS ATIS
Joint Seq [21] 0.95 0.91
Attention BiRNN [39] 0.95 0.90
Slot-Gated Full Atten. [17] 0.95 0.92
DR-AGG [16] 0.95 0.90
IntentCapsNet [70] 0.96 0.94
OPINE + classifier 0.96 0.93
OPINE + Joint-Seq 0.95 0.91
OPINE + Attention Bi-RNN 0.95 0.90
OPINE + Slot-Gated Full Atten. 0.95 0.92
OPINE + IntentCapsNet 0.95 0.93

typically require sufficient labeled training data for each intent cate-
gory. In contrast, OPINE can handle an unlimited number of distinct
intent classes, and has no restrictions on the number of training
examples needed per intent type. However, to compare OPINE with
existing intent classification approaches, we reformulate it to per-
form intent detection, using the output of the multi-head attention
layer (OPINE + classifier in Table 7). As detailed earlier, we provide
the deep features output by the attention layer of OPINE as input
to an agglomerative hierarchical clustering algorithm, where the
number of clusters is given by the number of distinct intent classes
in the test set. Thus “OPINE + classifier” works as a good feature
extraction layer across datasets without additional training, which
is a benefit over current state-of-art techniques.

Note that OPINE was trained on out-of-domain intent data (Stack
Exchange), since we do not have Action-Object annotations avail-
able for SNIPS or ATIS. In other words, this represents a challenging
environment to examine the performance of OPINE (akin to zero-
shot learning [49, 55]), where no information is available about
the test data. Similar to what we showed in Figure 3 for the Stack
Exchange dataset, in Figure 5 we show OPINE’s ability to conflate
different intent phrases mapping to the same or similar intent cate-
gory. We show a 2-D t-SNE visualization of the deep features output
by the attention layer of OPINE for the SNIPS dataset. For instance,
the intent phrases play Burnley artist and hear rock genre map to
the same intent category (called PlayMusic in the SNIPS dataset),
while the phrases book reservation bistro and need table Quaryville
map to the same SNIPS category of BookRestaurant.

In addition to this qualitative analysis, we present a quantitative
evaluation on SNIPS and ATIS in Table 7. It shows that the F1-
score of OPINE is on par with state-of-the-art intent classification
approaches on these datasets, despite not having seen any SNIPS or
ATIS data during training. The SNIPS and ATIS utterance lengths
are also about 2-6 times shorter than the Stack Exchange texts.
This shows that OPINE is equally effective at finding intents in
shorter inputs with no or limited additional context. The last four
rows in Table 7 show the performance of the baselines when the
intent-tagged words from the output of OPINE are fed to them as
inputs. These inputs only contain the words tagged as Action or
Object by OPINE, without any additional context. Their lengths
range from 20-50% of the original input utterance. We find that
just using OPINE as an initial step before intent classification has
near identical performance as the baselines themselves (rows 1, 2,
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3 and 5 of Table 7), despite OPINE not having seen any SNIPS or
ATIS data during training. This further demonstrates the domain
adaptation capability and effectiveness of OPINE.

6 RELATEDWORK
We discuss prior work on intent detection, as well as the related
tasks of information extraction and semantic parsing.
Intent Detection: Prior work on intent detection encompasses
two avenues: asynchronous, written communication (forums, blogs,
tweets) and synchronous dialog. In both cases, intent detection is
largely modeled as a classification problem, with each class rep-
resenting the presence or absence of a specific kind of intent. Su-
pervised and semi-supervised learning models based on linguistic
and sentiment features have been used to model racial intent [1],
and purchase intent online [9, 20, 67]. Wang et al [67] proposed
a graph-based optimization approach for semi-supervised classi-
fication of tweets with a purchasing intent. Recent approaches
including automated dialog response agents like Microsoft LUIS4
and Google Dialogflow5 have drawn upon progress in CNN, RNN,
and transformer based language models to improve intent detec-
tion [6, 17, 30, 32, 39, 45, 54, 71] and domain detection [29, 31, 73].
Performing slot filling jointly with intent detection has improved
the performance of both tasks [12, 30, 39, 68, 74]. However, the
above approaches are either supervised or semi-supervised, assume
a closed-world setting, and require sufficient quantities of labeled
data for each intent type to perform intent detection.

In the open world setting, several interesting techniques were
proposed to recognize input texts belonging to unseen or novel
domains [29] and intents [37, 70] respectively. Xia et al [70] model
intent detection as a zero-shot classification problem, but they
assume that a list of new or unseen (during training) intent classes
is available at test time along with some prior knowledge about
the new intents to be discovered. Similarly, the methods proposed
by Lin et al [37] and Kim et al [29] can only identify if an input
utterance is likely to contain a novel intent. They do not discover
the number of new intents, or specify what the new intents are.
OPINE takes the next step in this regard.

Cai et al [5] used hierarchical clustering to learn a taxonomy of
intent classes [28, 63, 64], and applied a hybrid CNN-LSTM model
to classify the intent of medical queries. We take this idea further
and learn to identify arbitrary intents beyond even a predefined
taxonomy or schema. Improvements in intent detection and slot
filling based on adversarial learning have been explored [33, 40, 72].
We exploit adversarial training to generate adversarial input exam-
ples to improve the performance of OPINE, and for cross-domain
adaptation. Further, adding linguistic structure to existing models
has improved their performance across related NLU tasks such as
word embedding [47], machine translation [8], named entity recog-
nition [27], and semantic role labelling [23]. We impose linguistic
constraints on the CRF layer of OPINE to preserve the semantics
of intent actions and their associated objects (Section 3.1).
Open Information Extraction and Semantic Parsing: There
has been a lot of recent work in the literature in the areas of Open

4www.luis.ai
5https://dialogflow.com/

Information Extraction (IE) (see [48] for a recent survey). IE ad-
dresses the task of information extraction, i.e., of relating arguments
and phrases expressed in unstructured text using a relation of the
form <arg1, rel, arg2>. OpenIE refers to the task of building domain
independent IE frameworks, where the relations to be extracted
need not be specified in advance. In OpenIE frameworks, relations
are expressed as triples and each component of the triple must be
present in the input text. However, this is quite different from the
open intent discovery task we define in this paper in the follow-
ing ways: First, an OpenIE model does not distinguish between
pieces of information that express an intent, and those that do not.
Post-processing of relevant relations would be necessary to identify
expressed intent before OpenIE systems could be used for the intent
discovery task. Second, existing OpenIE systems extract informa-
tion only at the level of sentences, unlike our proposed approach
which can extract intents spanning multiple sentences (see Table 5
for examples). For these reasons, we do not compare our proposed
approach OPINE with existing OpenIE models.

Semantic Role Labeling (SRL) (and also slot filling) approaches
aim at creating shallow semantic parses, assigning roles to different
phrases in input sentences. Semantic roles typically correspond
to slots in predefined frames/templates (eg. Propbank [4]). Recent
work on SRL aims to relax the assumption of pre-specified tem-
plates to move towards out-of-domain SRL [22, 23, 59]. Though
SRL is a task related to intent discovery, SRL labels are typically
more dense, requiring not just the intent labels, but other subject-
predicate, named entity, etc. relations to be labeled. However for
the purpose of completeness in evaluation, we do compare our
framework against a state-of-the-art SRL baseline [61] in Table 2.
OPINE siginificantly outperforms this baseline for intent discovery.

7 CONCLUDING REMARKS
We introduce and address the novel problem of open intent dis-
covery via a sequence tagging approach, OPINE, in contrast to
the common method of detecting intents via classification. OPINE
harnesses a Bi-LSTM and a CRF coupled with self-attention and
adversarial training. It can extract multiple actionable intent types
from user utterances, many of which may be unseen during train-
ing. Extensive experiments on real-world datasets show substantial
improvements of OPINE over competitive baselines. We also devel-
oped and plan to release a large collection of 25K intent-annotated
instances from diverse domains on Stack Exchange.We demonstrate
OPINE’s ability to adapt across domains, minimizing the labeling
effort needed on encountering a new domain with potentially new
intents. OPINE provides an in-depth, fine-grained understanding of
users’ prospective actions and intentions from their text utterances,
which can greatly benefit downstream conversational applications.
Promising future directions include (i) learning generative rather
than extractive models for open intents; (ii) inferring implicitly men-
tioned, or more generic non-actionable (e.g. information-seeking)
intents from user utterances; and (iii) using visual and/or auditory
inputs to learn intents in a multimodal way (e.g. [65, 69]).
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