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ABSTRACT 

Automatic prediction of salient regions in images is a well de
veloped topic in the field of computer vision. Yet, virtual re
ality omnidirectional visual content brings new challenges to 
this topic, due to a different representation of visual informa
tion and additional degrees of freedom available to viewers. 
Having a model for visual attention is important to continue 
research in this direction. In this paper we develop such a 
model for head direction trajectories. The method consists 
of three basic steps: First, a computed head angular speed is 
used to exclude the parts of a trajectory where motion is too 
fast to fixate viewer's attention. Second, fixation locations of 
different subjects are fused together, optionally preceded by a 
re-sampling step to conform to the equal distribution of points 
on a sphere. Finally, a Gaussian based filtering is performed 
to produce continuous fixation maps. The developed model 
can be used to obtain ground truth experimental data when 
eye tracking is not available. 

Index Terms- visual attention, fixation maps, omnidi
rectional visual content, virtual reality, 360-degree images 
and video 

1. INTRODUCTION 

Omnidirectional visual content or cinematic virtual reality is a 
technology which provides immersive experience to viewers 
by displaying still images or video with a full spherical cover
age of the field of view. Content of such type is acquired with 
special devices performing a particular work-flow. Certain 
omnidirectional acquisition systems, e.g. multi-lens and cata
dioptric cameras, produce ready-to-display images or video, 
whilst others, e.g. multi-camera systems, require an addi
tional step of off-line stitching. The latter combines signals 
from several image sensors into a panoramic planar represen
tation, such as an equirectangular or cubic projection. Om-
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nidirectional images and video are typically consumed using 
a virtual reality (VR) head-mounted display (HMD). Visual 
content represented in one of the projections is rendered on 
a viewport of an HMD where data from acceleration and ori
entation sensors is used to define which part of the content 
is to be displayed. This data, if stored, can then be used for 
analysis of human visual attention in VR imaging. 

Computational prediction methods for human visual at
tention have been studied for decades in conventional flat im
ages. The first theoretical computational model of human 
visual attention was introduced by Koch and Ullman in [1], 
and the first practical implementation was presented by Clark 
and Ferrier in [2]. Detailed descriptions and classifications of 
state-of-the-art visual attention models can be found in [3-5].  
There exist two main approaches for modeling human visual 
attention, namely, bottom-up and top-down. The former starts 
by computing different features in images, typically intensity, 
color and orientation characteristics. These features are then 
fused together to produce a saliency map. The latter approach 
takes into account certain high level information about the 
scene which is used, for example, by incorporating face, ob
ject, and text detection. Top-down methods are often com
bined with bottom-up models. 

Visual attention for spherical images has been studied 
in [6,7]. Bogdanova et al. propose bottom-up methods to 
obtain saliency maps from omnidirectional images for static 
and dynamic cases. Features are computed and fused in a 
spherical domain. However, these studies do not provide any 
detailed descriptions about interpretation of experimental vi
sual attention data for omnidirectional images. 

Experimental visual attention data, unlike prediction 
models, does not provide saliency maps. After initial process
ing, one can obtain fixation locations, i.e. points in the image 
where observers fixated their attention. This data can be fur
ther processed to produce continuous fixation maps. The first 
step is to analyze eye movements using one of the methods 
based on velocity and distance criteria. Methods to obtain 
fixation locations are described in [8-10]. Typically the next 
step is to produce a continuous fixation map by applying to 
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fixation locations a Gaussian filter with a certain standard de
viation corresponding to the high acuity vision area [11]. 

In VR environment, in addition to eye movements, ob
server's head direction must be taken into consideration. One 
can find studies on eye-head coordination in humans during 
different tasks in [12, l3]. The main findings in these stud
ies support a hypothesis that the human eye movement range 
is restricted not physiologically but neurologically and this 
range is narrower when a subject's head is not fixed. Nonethe
less, there is no commonly adopted model for interpretation 
of eye-head position data in visual attention fixation maps for 
omnidirectional visual content. 

In this paper, we propose a simple approach to treat raw 
experimental head direction trajectories in virtual reality con
tent. The proposed approach implies three basic steps: First, 
a computed head angular speed is used to exclude the parts of 
a trajectory where motion is too fast to fixate viewer's atten
tion. Second, fixations of different subjects are fused together. 
If needed, this step is preceded by re-sampling track coordi
nates in order to conform to the equal distribution of points 
on a sphere. Finally, a Gaussian based filtering is performed 
to produce continuous fixation maps. 

2. EXPERIMENTAL DATA 

The data used in the present work has been obtained during 
a subjective quality evaluation experiment [14] on omnidirec
tional images. For the current study we selected only the head 
direction tracks recorded from unimpaired stimuli. 

2. 1. Experiment 

Figure 1 depicts the contents used in the experiment. Ob
servers were asked to assess visual quality of four differ
ent omnidirectional images represented in the equirectangular 
projection and compressed with different quality parameters 
and different codecs. In particular, viewers were instructed 
to search for compression artifacts. Overall, 40 subjects par
ticipated in the experiment, 25 male and 15 female subjects, 
between 18 and 32 years old with the average and the median 
of 24.9 and 24.8, respectively. All participants were tested 
for correct color vision and visual acuity using Ishihara and 
Snellen charts respectively. 

The experiment was conducted using the testbed for sub
jective evaluation of omnidirectional visual content proposed 
in [15]. This software has been developed for iOS and is pub
licly available for download I. During the experiment, sub
jects were wearing an HMD composed of a VR head-mount 
with buttons2 and a mobile device installed inside as a screen. 
iPhone 6 was used to display the images. The overall resolu
tion of the phone's screen is 1334 x 750 pixels, which gives 
667 x 750 pixels per eye. The vertical field of view provided 

I https:llgithub.comlmmspg/testbed360 
2https:llmergevr.com 
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(a) Harbor (b) KiteFlite 

(c) PoleVault (d) SkateboardTrick 

Fig. 1: Omnidirectional images used in the experiment 

by the hardware-software solution is 90 degrees, which corre
sponds to 8.33 pixels per degree. All the subjects were sitting 
on a rotatable chair during the experiment. 

2.2. Head direction tracks 

Raw data of a head direction trajectory contains an array of 
yaw and pitch coordinates along with their time-stamps. The 
tracks were recorded for each assessed stimuli, however only 
the trajectories obtained from unimpaired images have been 
selected for the current study. Each presented content has 
head direction tracks from 40 subjects. Two seconds of data 
in the beginning of each track were dropped. This has been 
performed in order to compensate the initial head position im
pact on calculating user gaze fixations. 

3. FIXATION LOCATIONS 

An angular velocity of observer's head evidently impacts his 
ability to fixate attention. Although the fact that human visual 
perception depends on motion is well known, the impact of 
the ocular-vestibular reflex can decrease its effect. Nonethe
less, here we assume there exits a threshold head angular ve
locity beyond which users are not able to focus their attention 
on any object. The value of 15 degrees per second has been 
chosen as the upper boundary for this paper. However, it is a 
parameter and more experimental data is needed to determine 
the optimal threshold angular velocity. 

3. 1. Head angular velocity 

Observer head position is a vector [8 1>], where 8 and 1> repre
sent yaw and pitch respectively. Values of yaw and pitch in 
degrees over time are presented in Figure 2 (top and middle). 
In order to obtain head angular velocity we compute a first 
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Fig. 2: Yaw (top) and pitch (middle) of viewer's head direc
tion trajectory. Head angular velocity (bottom), red horizontal 
line depicts the threshold 

order derivative of the following vector: 

o dt 
[V;] [dO] 

Yang = 

Vq, 
= �f 

Considering only the velocity magnitude, the norm of the vec
tor is taken as: 

The yaw and pitch data is represented in digital format. 
Thus we compute a derivative using a standard method of nu
merical differentiation. For each signal sample the difference 
with its next value is obtained and divided by the sampling 
period: 

I Sn - Sn-l 
S = ----n Tsampl 

Then a 2nd order Butterworth low-pass filter with cutoff fre
quency of Ie = 2 Hz is applied separately to Vo and Vq, in or
der to remove digital differentiation noise. We use a forward
backward numerical implementation of the filter to avoid a 
group delay in the signal [16]. The resulting head angular ve
locity over time is depicted in Figure 2 (bottom). All the head 
direction trajectory data with speed above the threshold (red 
line in Figure 2) is discarded from further analysis. 

Figure 3 (a) shows a typical head direction trajectory. The 
color of the trajectory reflects the head angular velocity. Only 
the regions colored with green are considered as fixations of 
attention. 
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(a) Head motion trajectory 

(b) Viewer's fixations 

Fig. 3: A typical head motion trajectory colored with its an
gular velocity in degrees per second (top), and fixation loca
tions obtained from it (bottom). 

3.2. Equal distribution of points on sphere 

There exist cases when after the head angular velocity restric
tions, a resulting track requires an additional step of process
ing before becoming a set of viewers' fixations. Depending 
on the device used to obtain the raw data, the discrete domain 
of coordinates can distribute points in a non-equidistant man
ner on the surface of a sphere. If so, a re-sampling needs to 
be performed on the data in the following way. 

For each latitude level one re-samples the longitude signal 
s(n) defined on n E N to the signal g(m) defined on mE M, 
where M = N cos ( ¢) and ¢ E ( -7r /2, 7r /2). 

Resulting head fixation locations for a typical trajectory 
of one observation are depicted in Figure 3 (b). 

3.3. Fusion 

Fixation locations obtained from different subjects must be 
fused together in oder to derive statistical information. One 
can propose several ways to perform a fusion: 

l. Add all the points from each subject as unity values to 
a resulting fixation set. 
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(a) Gaussian kernel (b) Gaussian kernel in viewport domain (c) Modified Gaussian kernel 

Fig. 4: (a) Gaussian filter applied in equirectangular domain. (b) Gaussian in viewport domain. (c) Modified Gaussian proposed 
in the paper. Filters are applied to equirectangular image containing three unity points at (-90,-72), (0,0), and (90,45) degrees. 

2. Sum-up all the points in cells with specified size pro
ducing a weighted set. 

3. Only add points if a certain percent of subjects fixated 
in this particular location or a predefined area around it. 

We use the second method to produce fixation locations 
further in the present work because of its moderate computa
tional complexity. 

4. CONTINUOUS FIXATION MAP 

Fixation location data does not typically allow to properly de
pict the regions of visual attention. Because of its discrete 
nature, this information is not consistent even among human 
subjects. Indeed, very rarely a person will fixate their atten
tion in the same exact point as another. Thus there is a need 
to introduce a statistical areas of fixations. For conventional 
images typically a Gaussian filter is applied to model a human 
acuity vision region of 1-2 degrees. In case of head direction 
fixations we assume that the region of possible attention is 30 
degrees. Same as in Section 3 this value is a parameter and 
may be changed after further experimentations. 

4. 1. Gaussian filter in viewport domain 

Omnidirectional content is consumed using an HMD. An ob
server sees a part of panoramic picture rendered in the view
port. Therefore, to highlight viewing area angle we need to 
apply Gaussian filter in the viewport domain. 

where u and v are viewport coordinates. However, one nor
mally works with an equirectangular or other panoramic rep
resentations of omnidirectional image or video. Thus, in the 
equirectangular domain, the kernel becomes: 
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Functions u ( B, ¢) and v ( B, ¢) are calculated as follows: 

!:£ x 
° 

where k and m are the scaling coefficients for viewport coor
dinates, R� and R� are rotations for yaw and pitch respec
tively, and vector [x y z] represents Cartesian coordinates of 
a point on the image sphere: 

[X] [, sin ¢ cos B] 
y = , sin ¢ sin B 
z ,cos ¢ 

The result of applying kernel G eqr (B, ¢) to filter the image 
directly in the equirectangular format is shown in Figure 4 (b). 

Another approach to perform Gaussian smoothing in an 
equirectangular picture is to apply the filter in the rendered 
viewport and then project it back. However, the drawback of 
this method is the interpolation noise added during the trans
formations. 

4.2. Modified Gaussian kernel in equirectangular domain 

The method of filtering proposed in subsection 4.1 is compu
tationally very heavy. To simplify the calculations we propose 
a modified Gaussian kernel. 

where 

1 x2 _� G d(X y) = --e-20"xe 20"y mo , 2 2 7rCJ Y 

CJy CJx = ---

cos( ¢) 

and CJy is a constant value. In the denominator of normal
ization coefficient we use CJ; instead of CJ xCJ y to prevent the 
change of the amplitude with x. 

Figure 4 (c) shows an equirectangular image filtered us
ing kernel Gmod(x, y). As can be seen by comparing Fig
ures 4 (b) and (c), Gaussian filter in the viewport domain and 
Modified Gaussian kernel give visually similar results. 



(a) (b) (e) (d) 

(e) (f) (g) (h) 

Fig. 5: Fixation locations (top row) and continuous fixation maps (bottom row) computed for the contents. 

4.3. Generic statistical kernel in equirectangular domain 

Faced with a lack of statistical data on eye-head relative 
movements, we assumed a Gaussian distribution of eye fix
ations around the center of a viewport. However, if we have 
such statistics it can be applied to form a kernel in the view
port domain: 

K == f(u, v) 
where f(u, v) is a probability density function on (u,v) E 
IR2, which can be estimated from statistical frequency distri
bution of eye fixations in the viewport by applying a regres
sion to its two-dimensional histogram mi,j with k2 the num
ber of bins: 

f(u, V)IU=(i-k/2)W � "E.,mi,j 
v=(j-k/2)w mi,j i,jEN 

where i, j E N are the indexes of each histogram bin, and 
w E IR+ is the bin width. The histogram is calculated as: 

mi,j = 

U-I-k/2)w<up s;u- k/2)w 
(j-l-k/2)w<vp<:(j -k/2)w iE[l,kl 

jE [l,kl 

where X[up, vp] is the relative frequency distribution of 
fixation locations (up, vp) E IR2, which are determined as a 
shift from the viewport center for p E [1, MJ, p E Z and M is 
finite. The number of bins must be chosen according to one of 
the criteria described in [17,18] depending on the distribution 
law. 

Moving to the equirectangular domain can be performed 
as in Subsection 4.1: 

Keqr(B, ¢) = K(u(B, ¢), v(B, ¢)) 
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A filter with the kernel Keqr(B, ¢) can be applied to fixa
tion locations directly in the equirectangular domain. 

5. RESULTS AND DISCUSSION 

We apply the proposed approach to compute fixation loca
tions and continuous fixation maps as interpretation of the 
raw experimental data described in Section 2. A head angu
lar velocity threshold equal to 15 degrees per second is used. 
The Gaussian filtering is performed using (J = 15 in the base 
function. In order to fuse individual fixation locations, the 
points are sununed up in cells of 1 x 1 degree. The modified 
Gaussian kernel Gmod (x, y) is used to filter the data in the 
equirectangular domain. Figure 5 shows the fixation locations 
and the continuous fixation maps for four contents used in the 
experiment. 

In the present work we apply Gaussian filtering in 
equirectangular projection. However, the proposed approach 
can be easily generalized to cope with other panoramic rep
resentations of omnidirectional visual content, such as cubic 
mapping and other convex polyhedron projections. Only the 
calculation of u = u(x, y) and v = v(x, y) must be changed 
to comply with a new projection. 

In more theoretically oriented work [6,7], authors develop 
a mathematical model for Gaussian filtering in the geome
try of the two-dimensional surface of a sphere. We consider 
these to be unnecessary complications, due to the fact that an 
observer sees only a rendered rectilinear viewport of an om
nidirectional content and not the entire image. Thus applying 
vision range models in the viewport geometry appears to re
flect better user experience and perception. 

Head motion information is typically available without 
any additional cost during rendering of omnidirectional visual 
content in VR environments. For instance, during broadcast-



ing, a content provider can obtain anonymized head direction 
trajectory statistics of consumers. This information can be 
further used to adapt compression parameters when adaptive 
coding is applied. An example of such an adaptive coding 
method has been proposed in [19] for conventional images. 

6. CONCLUSION 

In this paper we have described a simple model to obtain fixa
tion locations and continuous fixation maps from head direc
tion trajectories for virtual reality content. The model incor
porates analysis of a head angular velocity and provides the 
idea of a generic solution to produce continuous fixation maps 
for omnidirectional images represented in panoramic projec
tions. Those fixation maps obtained from head position data 
can be a suitable first order approximation when eye tracking 
data is not available. 

Furthermore, we applied the above approach to the raw 
experimental data and obtained the visual attention results for 
four omnidirectional images as a proof of concept. 

Future work will focus on quantification of the approxi
mation error when compared to true gaze detectors data. It 
may concern also refining the parameters of a threshold head 
angular velocity and statistical distribution of attention in a 
viewport by conducting additional subjective experiments. 
More specifically, generic statistical kernel for data smooth
ing can be estimated practically from experimental data. 
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