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Abstract— With the rise in remote work culture and 

increased computing capabilities of head-mounted displays 
(HMDs), more immersive, collaborative experiences are desired 
in remote-local mixed/augmented (MR/AR) reality. 
Photorealistic full-body avatar representations of users in remote 
workspace interactions have shown to have increased social 
presence, non-verbal behavior, and engagement. However, a 
direct mapping of the body pose angles from local to the remote 
workspace will, in most cases, result in positional errors during 
human-object interaction, caused by the dissimilarity between 
remote and local workspaces. Hence the interaction must be 
retargeted, but it should be retargeted in such a way that the 
original intent of the body pose should be preserved. However, 
these two objectives sometimes contradict each other. As a result, 
a multi-objective optimization (MO) problem can be formulated 
where the primary objective is to minimize positional errors and 
the secondary objective is to preserve the original interaction 
body pose. The current state-of-the-art solution uses an 
evolutionary computation-based inverse kinematic (IK) 
approach to solve the MO problem where the weights between 
the objectives must be set by the user based on trial and error, 
leading to a suboptimal solution. In this paper, we present a new 
dynamic weight allocation approach to this problem, where a 
user has the flexibility to set a chosen minimum error tolerance, 
and the weights will be distributed between the objectives based 
on a dynamic allocation algorithm. We have tested the 
adaptability and robustness of this mechanism on motion 
captured human animations of varying levels of speeds, error 
tolerances, and redirections. Compared to the static weighting, 
the dynamic weighted mechanism shows a net (primary + 
secondary objective) decrease in error ranging from 20.5 % to 
34.4% across varying animation speeds and redirections 
resulting in decreased positional errors and better pose 
preservation across interactions. 

Keywords— Collaborative mixed reality, multi-objective 

optimization (MO), logistic function, remote-local workspaces, 

inverse kinematics. 

I. INTRODUCTION 

Remote work and interactions have gained significant 
attention, especially due to the ongoing COVID-19 pandemic, 
with the most common form of remote interactions being 2D 
audio-video applications such as Zoom, Facetime, etc. These 
interactions, however, can be more collaborative and 
engaging when experienced through mixed/augmented 
(MR/AR) reality using head-mounted displays (HMDs) [1]. 
Modern HMDs have the capability to track many user features 
such as eye gaze, the user’s position and orientation, and the 
user’s hands, which can then be mapped onto photo-realistic 
avatars making the interaction more naturalistic [2], [3]. As 
we transition into the post-pandemic world, many analysts 
predict that remote work will be a permanent part of the 
upcoming hybrid work culture [4]–[6]. Post pandemic, remote 
interactions are also extending to non-work related areas such 
as   entertainment, education and health [7], [8]. Hence there 

is a need for and opportunity towards creating more 
immersive full-body interactions in mixed reality. One 
important aspect of full-body interaction is the body pose of 
the avatar representing a user. Body pose has been shown to 
convey increased social presence and also display many 
personal traits of humans, making it an important component 
of a person’s non-verbal behavior [9]–[13].  

Body pose angles can be captured by color-depth cameras 
(e.g., Kinect) and then mapped onto an avatar representation 
of a user in the remote workspace. However, a direct one-to-
one mapping of the joint angles of the user to the avatar may 
result in erroneous positional interaction with the remote 
workspace due to factors such as differences in physical 
dimensions between the user and their avatar representation, 
differences in positions of virtual objects between the remote 
and local environments, and localization and drift errors.  
Hence the end effectors, which are in most cases the user’s 
hands, need to be redirected to minimize the error between the 
end effector and the interaction object (goal target). At the 
same time, the new pose resulting from the redirection should 
be as similar to the original pose of the user in the local 
workspace as possible to preserve important nonverbal cues 
regarding the person's intent (Fig. 1). However, these two 
objectives increasingly conflict with each other as the 
difference between the original and goal targets increases 
between the remote and local workspaces, making it necessary 
to find a suitable compromise between the two objectives. In 
this work, we frame this problem as a multi-objective 
optimization (MO) problem with the primary objective being 
to minimize the positional error between the end effector and 
goal target and the secondary objective being to preserve the 
original body pose while redirecting the effector to the goal 
target. 

Inverse kinematic (IK) approaches have been used for 
redirecting a kinematic chain to a goal target position. The 
human body can be modeled as an interaction of several 
kinematic chains under specific constraints as shown in Fig. 
2, where five individual kinematic chains have been centered 
around the hip joint. Using kinematic chain models allows IK 
techniques to redirect any joint towards a goal target. 
Although there have been various IK techniques proposed to 
obtain this redirection (described in more detail in Section II), 
a new approach using memetic evolutionary algorithms has 
shown to be highly effective in finding valid solutions. This 
approach [14] has also shown to be flexible, as multiple 
objectives can be added to the optimization fitness function. 
However, one of the limitations of this method is that the 
weights used in the fitness function among the different 
objectives must be manually found by trial and error, which 
may lead to a suboptimal solution. The solution space for 
kinematic chain redirections can vary wildly depending on the 
extent of the error or difference in the remote local workspace 
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environment. For example, redirection due to slight changes 
in physical size between the user and their avatar will be minor 
when compared to redirections where the interaction object is 
placed 180-degree opposite (relative to the user) between the 
remote and local workspaces. Hence there is a need for 
dynamically adjusting the weights of each objective so that an 
improved solution can be obtained. 

In this paper, we present a dynamic weight allocation 
approach that optimizes between the objectives of body joint 
redirection and preserving the body pose of the original 
interaction. The presented approach is flexible in that the user 
can specify a minimum error tolerance, which will then be 
used for dynamically calculating objective weights. We 
compare the performance of this dynamic approach with the 
current state-of-the-art static weight allocation mechanism 
[14] for different types of configurations, speeds and 
redirections. The results are shown on motion captured human 
animation. We test for two general cases of error tolerance: 
when the margin of error required by the user is 1) strict, and 
2) lenient. The main contributions of this paper can be 

summarized as: i) the development of a dynamically weighted 
MO approach for positional interactions in remote-local 
MR/AR environments; ii) the demonstration of the flexibility 
of the approach according to the user’s requirements of 
minimum tolerance of error, and iii) superior performance of 
the approach over the current state of the art static approach. 

II. RELATED WORK 

A. Remote-Local AR/MR Interactions 

There are two types of data that can be communicated 
across remote-local MR/AR systems, namely data related to 
the workspace and human-oriented data. Systems that can not 
only send these two types of data but also preserve the 
interactions between the two are desirable. During its early 
development, AR involved expert-novice scenarios where a 
video feed was sent from the remote worksite and the expert 
provided guidance, mainly through audio and annotations 
[15].  These types of expert-novice scenarios have been 
extended to involve multiple users, situated both in the co-
located and remote workspace to be able to view the 
interaction environment [16]. Systems have also been 
developed that send both a headset’s field of view (FOV) and 
360-degree panoramic videos captured using mobile devices 
that allow users to communicate with each other using hand 
gestures[17]. This is especially useful when collaboration 
takes place outdoors. There have also been systems where 
multiple RGBD cameras capture a complete room scene and 
transport it across to the remote side [18]. In other situations, 
where human gestures play a more important part than the 
workspace, mixed reality has been used as a platform for 
common remote meetings, conducting multi-modal therapy 
activities[19], [20] and biometric identification [21]. These 
have included setups where only the head gaze has been 
redirected [22] to collaborative sketching using avatar bust 

 
Fig. 2. Body pose modelled as a combination of 5 serial kinematic 

chains with constraints. 

    
(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

 
Fig. 1. The motivation for the need of a multi-objective optimization (MO) approach for an interaction involving remote avatars, remote objects (a, b, c, 

d), and for the specific case of positional interactions(e, f, g, h) in remote-local mixed/augmented reality: (a) Local workspace A - the robot body pose 

indicates it is talking about the vessel on the table; (b) Remote workspace A - direct body pose mapping from (a) erroneously conveys that the robot is 
talking about the human due to slight positional changes of human and virtual object from (a); (c) Remote-workspace A – redirection with no optmization 

belies the orginal intent. Here it seems as if the robot is more authorative when compared to (a) ; (d) Remote workspace A – with a MO approach both the 

redirection and the body pose non verabal interaction is preserved; (e) Local workspace B – the robot is hesitantly interacting with the human; (f) Remote 
workspace B – direct body pose mapping results in erroneous interaction, due to slight positional change of the human from (e); (g) Remote workspace B 

– redirection with no body pose optmization seems the robot is confidently interacting; (h) Remote workspace B – the hesistancy of the robots interaction 

and its handshake is preserved with a MO based body pose optmization. 
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representations [1], [23] where users’ position, orientation, 
and hands have been tracked [24], [25]. The avatars have also 
been customized according to the user's nonverbal behaviors 
to increase their sense of social presence [26]. There are two 
common ways to convey full-body non-verbal behavior. First, 
the RGBD data of the human can be captured using a 3D point 
cloud, which are then transported and replayed on a remote 
device. Second, human data can be overlayed onto a 3D model 
to create photo-realistic avatars. Although the 3D point cloud 
is realistic and accurately depicts the person, these data cannot 
be manipulated or redirected to the correct locations in the 
remote environments. Hence error correction using a 
photorealistic avatar is preferred. In terms of preserving the 
workspace and gestures,  recent work includes “Mini-me” 
[27], where gaze, body orientation and hand redirection are 
explored in mixed reality. However, the redirection in [27], 
only considers that of the hand (as a 2 joint manipulator) and 
not that of the whole body. Moreover, it is not generalizable 
to any joint on the body.  The generalized framework for full-
body interactions has been provided in [14] (which our paper 
is based on), where the whole body is modeled using 
kinematic chains and its redirection is considered to multiple 
goal targets. 

B. Inverse Kinematics and Optimization 

Humanoid characters are extensively used in computer 
games and animations, where they perform a variety of 
common motions such as walking and running. Many of these 
animations have been modeled from motion capture systems. 
A very common application in these games and animations is 
the inverse kinematics problem, i.e., given a goal target, what 
joint configurations of the humanoid will make the end 
effector reach that goal target. Obtaining a solution to the 
inverse kinematics problem for a humanoid modeled using 
kinematic chains is not straightforward, and a unique solution 
is not guaranteed to exist. The complexity of the problem also 
increases with the increase in the degrees of freedom (DOF) 
of the kinematic structure.   On top of this, naturalistic human 
motion has many joint and soft motion constraints making the 
IK problem a highly nonconvex one. Several approaches 
have been proposed to solve IK problems that include 
analytic, heuristic, gradient-based, sampling-based, and 
learning approaches, where each method performs well for a 
specific type of application [14]. For a given kinematic 
geometry, analytic methods provide solutions in closed-loop 
form that are exact and return all the solutions for any joint 
configuration. Although exact solutions may be available 
using analytic methods, they are only practical for simple 
geometries due to the increase in complexity for each 
additional DOF. For complex kinematic geometries, the 
focus has been on heuristic and iterative methods. These 
methods are fast and can be used for real-time applications. 
Well known heuristic algorithms include cyclic co-ordinate 
descent (CCD) [28] and Forward and Backward Reaching 
Inverse Kinematics (FABRIK) [29]. These heuristic 
algorithms are also implemented in modern game engines 
such as Unity, Unreal and Maya. One of the drawbacks of 
using heuristic solutions is that they only optimize for 
position and are not efficient if the goal is for a kinematic 
chain to reach a particular orientation. This problem is 
overcome by gradient-based IK, which involve the 
computationally expensive calculation of first or second 
order derivatives and operate directly in joint space. Recently, 
evolutionary computing-based IK solutions have found to be 
effective. In [14], a hybrid implementation of genetic 

algorithm (GA) and particle swarm optimization (PSO) have 
been compared with analytic, heuristic and gradient-based 
methods and shown to be highly effective in finding valid 
solutions. It has also been shown to be flexible in satisfying 
position, orientation, and displacement objectives while 
finding the solutions.  

III. PROBLEM FORMULATION AND OPTIMIZATION 

FRAMEWORK 

In order to represent the human body’s pose, we have used 
the model as shown in Fig. 2, which consists of 5 serial 
kinematic chains with constraints and 20 joints [14]. A body 
pose can be represented as a joint variable configuration � 

� = ���|��|��| … … … |�
��|�
) (1) 

where n represents the number of joints in the model and ��, ��  … . . �
 represent the individual 3D joint angles. Each of 
the joints also have realistic human body pose constraints  

����� ≤  �� ≤  �����       ∀� = 1, … … . � (2) 

where ����
  and �����  are the minimum and maximum 
angles for the ���  joint. The goal of our optimization 
framework is to find �  for the remote workspace such that 
the primary objective error between the end effector and goal 
target is minimized, i.e., it should be within the minimum error 
tolerance specified by the user. Once this primary objective is 
satisfied, among these  �s, the one set of angles that keeps the 
pose as similar to the local workspace pose, is selected 
(secondary objective). This MO is carried out for every frame. 
The primary and secondary objective errors are defined 
below. 

A. Primary and secondary objective errors 

Several distance metrics have been proposed to compare 
body poses [30]. Among these, we choose the weighted joint 
co-ordinate distance (WJCD) metric to compare different 
body pose interactions since it is based on Euclidean 
distances, the same metric that we use to measure our input 
errors for positional interactions. This is important because in 
MO problems, if the objectives have differing units and scale, 
these values have to be normalized to a common unit and 
scale, which is not a trivial task [31]. For example, if one 
objective is measured in Euclidean distance and the other in 
radian angles, the distance error not being bounded, tends to 
overshadow the angle error which is bounded between 0 and 2" , causing a difficult normalization problem. Since 
positional errors are already calculated in Euclidean distances, 
using WJCD we can quantify body poses (secondary error) 
also using Euclidean distances, preventing the normalization 
problem. The primary objective error (#$%) can be defined as 

#$% =  & ' ()�

*

�+�
�,� , -�) (3) 
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where ,� , -�  ∈  /� represent the Cartesian co-ordinates of the 
primary objective for joint i of the current candidate solution 
of the optimization framework and its respective goal target, 
respectively. ()  �,�  , -�) represents the Euclidean distance 
between ,�  , -�  and �$  represents the number of primary 

objectives. The primary error is multiplied by the primary 
weight (calculation described in a later section). Similarly, the 
secondary objective error ( #0%  ) based on WJCD can be 
defined as  

#0% =  1 ' ()�

2

�+�
�,�3 , ,�4) (4) 

where ,�3 , ,�4  ∈  /� represent the Cartesian co-ordinates of 
the secondary objective for joint i in local and remote 

workspace, respectively. ()  5,�3  , ,�46represents the Euclidean 

distance between ,�3 , ,�4 and �0  represents the number of 
secondary objectives. The secondary error is multiplied by the 
secondary weight 1 (calculation described in a later section). 

To obtain ,�4 , we first record the temporary joint positions �,��  , ,�� … … ,
���  , ,
� ) given by the optimization framework 
that minimizes the primary error in the remote workspace (5)  

7��389�3) = �,�� , ,�� … … ,
���  , ,
� ) (5) 

If ,:3  is the root node (in this case, the hip joint) position in the 
local workspace co-ordinates and ,488�4  is the root node in 
remote workspace co-ordinates, then we can get the offset 
position ,8;;  between the two workspace avatar root nodes 

as: 

,8;;  = ,488�4 − ,:3  (6) 

we can then compute  ,�4 as follows: 

,�4  =  ,�� + �,8;;� , ,488�>4 , ,8;;?)     ∀� = 1, … … . � (7) 

where ,8;;� , ,8;;?  are the x and z co-ordinates of the remote-

local workspace offset, and  ,488�>4  is the y-coordinate 

(height) of the root node of the remote workspace avatar.  

B. Cost function and Optimization framework 

We choose the cost function to obtain smooth optimization 
solution that does not exhibit sudden fluctuations for small 
changes in objective errors.  To this end, we have used the 
method of combining the multiple objectives into a single 
scalar root mean squared (RMS) value shown in (8,9). By 
representing the cost function (@�#)) as an RMS equation, we 
convert the optimization problem from a linear to a quadratic 
one, which has an approximate convex solution. 

@�#) =  A & ∑ ()�
*�+� �,� , -�) + 1 ∑ ()�
2�+� �,�3 , ,�4) �$ + �0  (8) 

which can be simplified and written as  

@�#) =  A #$% +  #0%  �$ + �0  (9) 

where #$% and #0% represent primary and secondary errors, 
respectively.  

IV. DYNAMIC WEIGHTING FUNCTION 

The GA-based IK architecture used in [14] has a manual 
weighting scheme, i.e., the weights have to be adjusted 
according to the user preference. This is mainly done by trial 
and error since finding the exact relation between the objective 
weights is complex and time-consuming. We present a new 
dynamic weight allocation approach to this problem, where 
the weights are distributed dynamically between the primary 
and secondary objectives based on a user-specified tolerance. 
In this section, we describe the function used for the weight 
allocation and the factors that affect it. 

A. Logistic function 

We chose to use the standard logistic function, to dynamically 
allocate weights between the objectives, which is shown in (10): 

7�#) =  C1 + D�E����F) (10) 

where L represents the maximum function value, k represents 
the function growth rate and #:represents the x value at the 
midpoint of f(x). In our application, f(x) represents the weight 
for the primary objective, x represents the primary objective 
error, and k is used to control the steepness of the curve.  
Although there are many dynamic easing functions that can be 
used, the logistic function is the most widely used due to its 
smoothness and monotonic nature, which smoothly transitions 
the weights between the objectives [32]. Logistic functions 
have been used in many optimization and machine learning 
applications [33].   

The two main factors that influence the shape of the 
logistic function are #:  and k. x is the primary error and is 
considered as the input to the logistic function. Hence the 
domain of the function is �0, ∞) and the default range is [0.5L, 
1L], when #: = 0. As #: is increased the x value of f(x) at the 
midpoint increases. The value of k is used to control the 
strictness of the allowed error. Fig. 3 shows the effect of 
different k values keeping all other variables the same. When 
k = 13.81, full weightage is given to the primary objective after 
x ≈ 0.2m whereas when k = 1.00, full weightage is given to 
the primary objective after x ≈ 5m. As for L, the absolute 

 
Fig. 3. Variations of the function growth rate value (k) in the logistic 
function. All other variables between (k = 13.81) and (k = 1) are the 

same. 
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value of the weight does not matter, but the relative 
distribution of weights among the objectives counts. 

V. PRIMARY AND SECONDARY WEIGHTS 

All joints considered as part of the primary objective will 
be multiplied by the primary weight and similarly, all joints 
considered part of the secondary objective will be multiplied 
by the secondary weight in the cost function (8,9). The 
primary weight is set based on the average error of the primary 
objective joints  #$�JK and the user-defined minimum error 

tolerance L�83 (described in the next section). 

#$�JK =  ∑ ()�,�; , -�;)
*�+: �$  (11) 

where ,�; , -�;  ∈  /� represent the Cartesian coordinates 

of the primary objective for joint i and its respective goal 

target. ()  5,�;  , -�;6 represents the Euclidean distance 

between ,�  , -� ,  and �$  represents the number of primary 

objectives. It is important to note the difference between #$�JK  in (11) and #$%  in (3). #$�JK  is calculated once every 

frame and is used to set the primary weight that is then used 
to calculate #$% , which is the error for the current candidate 

solution of the optimization framework cost function, 
calculated many times in a frame and used to find the best joint 
angle configuration. The primary weight (&) is obtained by 
from equation (12). Once the primary weight is determined we 
can calculate the secondary weight ( 1) as shown in (13) 

& �,M�NOMP QD�-ℎS) = C1 + D�ETUV��*�WX) (12) 

1 � DYZ�(OMP QD�-ℎS) = C −  & (13) 

 

VI. USER-DEFINED MINIMUM ERROR TOLERANCE 

CALCULATION 

Different types of avatar-object interactions require different 

levels of accuracy. For example, if an avatar-object 

interaction involves lifting a large virtual ball, the error 

tolerance required may not be very precise when compared to 

a dexterous manipulation of holding and rotating a cup with 

one’s fingers. The differences in error tolerance required for 

different tasks and contexts can be set up using our weighting 

approach. Setting a minimum error tolerance (#�83) amounts 

to letting the dynamic weighting function know how to 

decide on the threshold for allocating the maximum 

weightage to the primary objective. For example, suppose if 

a highly dexterous application requires a minimum error 

tolerance of 0.01 m, then, we need to find a L�83 value in (12), 

for which when  #$�JK > 0.01m the primary weight (&) ≈ C. 

This can be done by rearranging (12) as follows:  

L�83 =  log � 7�#)���C�1 − 7�#)���))
#�83  

(14) 

where  #�83 is the user-defined minimum error tolerance and 7�#)���  ≈  1 to prevent L�83  from being indeterminate if we 
consider 7�#)��� exactly equal to 1. 

VII. METHOD 

The rationale we follow to compare the two weighting 
strategies is to keep all other variables in the testing conditions 
equal and closely controlled so that the cases only differed in 
the weighting strategies. Testing for the static weighting case 
is not straightforward, as a body pose action sequence needs 
to be tested with all combinations of primary and secondary 
weights. Hence, we have chosen to test both these weighting 
approaches using motion captured animation cycles of human 
actions. In this way, we can have a combination of weights 
during one animation cycle and then change it for the next 
cycle knowing that the sequence of body joint movements is 
exactly the same as the previous animation cycle. In our case, 
for a positional target location we initially start with the first 
animation cycle having primary weight (&)= 1L (maximum 
weight) and secondary weight ( 1)   = 0. Then for every 
consequent animation cycle we decrement the primary weight 
by 0.01 until it reaches 0 and correspondingly at the same time 
secondary weight reaches 1L. We run the dynamic weighting 
case for the same animation and number of cycles as that of 
the static weighting case, but with the primary weight now 
selected according to (12). All other variables including the 
optimization architecture and avatar models used are the same 
for both the static and dynamic cases. Subsequently, to 
evaluate the robustness and adaptability of the dynamic 

 
Fig. 5. All positions (represented by green dots) tested for redirection 

in the remote workspace 

 
 

Fig. 4. Simulation setup. The local workspace with positional goal 
targets (left) and the remote workspace with its positional goal 

targets(right). The red dots on the remote workspace side are the 

secondary objective goal targets for the respective joints, obtained 

from the local workspace pose. 
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weighting mechanism we have also tested it by varying other 
factors described in the following sections: 

A. Testing with different minimum error tolerances 

Ideally, minimum error in the positional interactions 
(primary objective) is desired during remote-local interactions 
in MR/AR. The dynamic weighting mechanism is focused on 
this task i.e., minimizing the primary objective error for the 
specified minimum error tolerance. Once this is achieved, then 
it optimizes the secondary objective. This algorithm 
sometimes optimizes the primary objective at the expense of 
the secondary objective if the primary error tolerance 
requirement is very precise. To test the performance of the 
dynamic weighting mechanism with varying minimum error 
tolerances we have considered 2 cases of minimum error 
tolerances i) a strict case where L�83 = 13.81 and  ii) a lenient 
case where L�83 = 1 (Fig. 3). These are two representative 
values chosen for comparison; any other values could also be 
chosen for testing. 

B. Redirection position locations 

Although in most cases the dissimilarities between the 
remote and local environments are not large, we wanted to test 
the performance of the dynamic weighted mechanism for 
redirections in all directions within one’s physical reach. The 
complete positional map of all the locations tested is shown in 
Fig. 5. As can be seen, the radial distance of the positions is 
also varied to simulate interacting with near and far objects, 
with the outer radius of this positional map decided by the 
length of the arm kinematic chain. Each position is separated 
by 18 degrees in both horizontal and vertical planes. We have 
redirected the goal target to each of these locations. We test 
the redirections with both one and two goal target cases. In the 
case of two goal targets, the first target follows the same 
sequence as the one target case while for the second target a 
random sequence of target positions is selected from the target 
locations in Fig. 5. This same random sequence of target 
positions is used for all 2 target tests of different error 

tolerances and animation speeds. It is important to note that all 
redirections tested were performed with no locomotion, since 
if locomotion is involved then the optimal pose solution 
changes. 

C. Sample animation speeds 

We have tested the dynamic vs static weighting approach on 
four different speeds of motion capture animations of idling, 
walking, running, and sprinting. The rationale was to simulate 
varied speeds of action that users employ while performing 
tasks in remote-local MR/AR. For example, a sketching and 
painting task requires faster hand movements when compared 
to a book sorting task. These animations also have a varied 
range of body movements with sprinting having the most and 
idling having the least. The animation speed differences can 
be seen in the attached supplemental video. 

D. Trends across various minimum error tolerances 

Our dynamic weighting approach allows the user to set 
the required minimum error tolerance. The weighting 
mechanism is designed in a manner to give full attention to 
the primary objective until the set error tolerance is met, after 
which it gives the remaining weight to the secondary 
objective. Hence, we were interested in seeing the trends in 
the primary and secondary errors as the minimum error 
tolerance values were eased. Different error tolerances were 
tested starting with 0.01m, 0.05m up to 2m. 

VIII. RESULTS 

We present the results in two sections: i) the performance 
of the static vs dynamic weighting approach, and ii) the trends 
of the primary and secondary errors using the dynamic 
weighting approach across different user-defined error 
tolerance values. 

A. Performance of the dynamic vs static approach 

The comparison results are presented in Tables I and II. 
They can be broadly divided into two categories of minimum 

TABLE 1 

COMPARISON OF THE PRIMARY AND SECONDARY ERRORS (PE and SE) FOR STATIC VS DYNAMIC APPROACH FOR STRICT 

MINIMUM ERROR TOLERANCE (#�83= 0.25m, L = 13.81) CONDITION 

Motion capture animation  Average 
static 

PE (m) 

Average static 
SE (m) 

Average 
dynamic 

PE (m) 

Average 
dynamic 

SE (m) 

Reduction in 
PE – static vs 

dynamic (%) 

Reduction in 
SE – static vs 

dynamic (%) 

Net (PE + 
SE) change 

in error (%) 

Idling (1 target) 0.19 0.31 0.05 0.52 71.67 -68.64 3.03 
Idling (2 target) 0.39 0.51 0.07 0.67 80.07 -33.10 46.97 

Walking (1 target) 0.27 0.58 0.08 0.88 70.67 -53.00 17.67 

Walking (2 target) 0.38 0.73 0.11 1.10 70.47 -51.06 19.40 
Running (1 target) 0.20 0.74 0.05 0.94 73.02 -27.39 45.63 

Running (2 target) 0.41 1.06 0.11 1.37 72.11 -28.33 43.78 

Sprinting (1 target) 0.19 0.84 0.05 1.03 73.50 -21.67 51.83 
Sprinting (2 target) 0.39 1.18 0.11 1.48 72.25 -25.17 47.08 

 
TABLE II 

 COMPARISON OF THE PRIMARY AND SECONDARY ERRORS (PE and SE) FOR STATIC VS DYNAMIC APPROACH FOR LENIENT 

MINIMUM ERROR TOLERANCE (#�83= 5m, L = 1) CONDITION 

Motion capture animation  Average 
static 

PE (m) 

Average static 
SE (m) 

Average 
dynamic 

PE (m) 

Average 
dynamic 

SE (m) 

Reduction in 
PE – static vs 

dynamic (%) 

Reduction in 
SE – static vs 

dynamic (%) 

Net (PE + 
SE) change 

in error (%) 

Idling (1 target) 0.19 0.30 0.15 0.30 19.57 -0.18 19.38 

Idling (2 target) 0.39 0.50 0.32 0.50 17.18 -0.02 17.15 
Walking (1 target) 0.19 0.48 0.15 0.47 19.50 3.36 22.86 

Walking (2 target) 0.39 0.73 0.32 0.70 17.83 3.24 21.08 
Running (1 target) 0.18 0.73 0.15 0.72 14.71 2.26 16.98 

Running (2 target) 0.41 1.05 0.32 1.00 22.61 5.13 27.74 

Sprinting (1 target) 0.19 0.73 0.14 0.84 27.51 -14.94 12.56 
Sprinting (2 target) 0.40 1.19 0.29 1.18 25.68 0.57 26.26 

 

34

Authorized licensed use limited to: GOOGLE. Downloaded on December 29,2021 at 21:15:17 UTC from IEEE Xplore.  Restrictions apply. 



error tolerances i) strict case (Table I) and ii) lenient case 
(Table II). For each of these cases, we tested four different 
animation speeds with the remote-local workspace 
redirection locations as shown in Fig. 5. When reporting the 
% changes, we measure dynamic errors relative to the static 
errors. This is shown in Table I for the strict case where the 
primary error for the dynamic case has decreased by nearly 
70 % (average of all animations and targets). However, the 
secondary error showed an increase of nearly 38% compared 
to the static case (average of all animations and targets). 
Similarly, Table II shows the average primary and secondary 
errors changes for the lenient case where the primary error for 
the dynamic case has decreased by nearly 20.5 % (average of  
all animations and targets) and the secondary error showed a 
very slight increase of 0.5 % compared to the static case 
(average of all animations and targets). The average 
secondary error is nearly double for faster animations of 
running and sprinting when compared to animations of idling 
and walking, though this is not because of the dynamic 
weighting scheme since it is seen in both the static and 
dynamic cases.    

B. Dynamic weighting trends across error tolerances 

The primary and secondary error trends for different 
animations across various error tolerance levels are shown in 
Fig. 6. We see the general expected trends of what the 
dynamic weighting mechanism is designed, i.e., as minimum 
error tolerance for the primary objective eases, the secondary 
objectives get optimized more resulting in a decrease in the 
average secondary error and an increase in the average 

primary error. It must be noted that the x-axis in Fig. 6 is not 
plotted on a linear scale. We also notice similar trends as in 
Tables I and II in Fig. 6 in terms of absolute values of the 
secondary error with slower animations of idling and walking 
having a smaller average error when compared to running and 
sprinting animations. 

IX. DISCUSSION AND LIMITATIONS 

The reduction in the net average error (primary objective 
error + secondary objective error) across various animation 
speeds and number of goal targets for the strict case is 34.4% 
and for the lenient case is 20.5 %. To put it in another way, 
compared to the net average dynamic error, the net average 
static error is 248% and 26% larger for the strict and lenient 
error tolerance cases, respectively. Higher net error reduction 
in the strict case is primarily due to the 72.97 % reduction in 
the primary objective error when compared to the lenient case 
where reduction in primary objective error is only 21%. The 
dynamic weighting approach can adapt across animation 
speeds and number of targets and we observe similar results 
for both one and two goal targets and different animation 
speeds for both the strict and lenient cases. Although the 
percentage errors across animation speeds between the 
dynamic and static cases, are similar, when comparing 
between the animations, faster animations of running and 
sprinting have higher body pose (secondary) error. This is not 
due to more primary objective optimization (in the dynamic 
case) since this trend is also seen for the static case, but 
because these animations have larger range of body 
movements causing increase of the distance error to a 

  

(a) 

 

(b) 

 

(c)                                                                                  (d) 

Fig. 6. Average (Avg) primary and secondary (PE and SE) trends for the dynamic weighted approach with the user defined minimum error tolerance 

values varied for (a) idling (b) walking (c) running (d) sprinting animations. 
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particular target during redirection. This can also be seen in 
the average secondary errors in Fig. 6. 

One limitation of the study is that we have tested with 
motion captured human actions, which are smooth and have 
clean body motions. When capturing body pose angles with 
off-the-shelf RGBD cameras many factors may cause the data 
to be jittery. These include tracking problems, variable frame 
rates, and packet dropping during remote-local 
communication. Another limitation of the dynamic approach 
is the added computing requirement when compared to the 
static approach since the weights are calculated for every 
frame according to the current joint and goal configurations. 
This is an important factor considering that real-time joint 
redirection itself is a computationally intensive process. One 
solution to ease the computing requirement would be to 
calculate the dynamic weights once for a larger interval of 
frames. Although this would reduce the MO performance, it 
would not be perceptible to humans if the frame interval is not 
too large. Finally, even though the presented optimization 
framework includes human joint constraints, we have not 
evaluated the perception of the redirection using dynamic 
weighting for its naturalness and realness.   

X. CONCLUSION AND FUTURE WORK 

We presented a dynamic weight allocation approach for 
the MO problem of minimizing positional errors and 
preserving the pose of interactions in remote local MR/AR. 
The minimization of positional errors is considered as the 
primary objective in the optimization framework while pose 
preservation is the secondary objective. Prior work used a 
static method to distribute the weights among the primary and 
secondary objectives. These weights were set by the user on 
a trial and error basis. In our approach, the weighting is done 
dynamically considering the current joint and goal target 
configurations according to the minimum error tolerance 
which can be set by the user. We have tested our approach on 
motion captured human animations using different 
redirection positions, number of targets, and error tolerances. 
Our approach has shown a decrease in net average error 
ranging from 20.5% to 34.6 % when compared to the static 
approach. In the future, we plan to test the dynamic weighting 
approach on data collected when users are performing a task 
in mixed reality. We are also working on developing a 
framework to find optimal pose redirection for actions that 
also involve locomotion.   

REFERENCES 

[1] Z. He, R. Du, and K. Perlin, “CollaboVR: A Reconfigurable 
Framework for Creative Collaboration in Virtual Reality,” Proc. - 2020 
IEEE Int. Symp. Mix. Augment. Reality, ISMAR 2020, pp. 542–554, 
2020, doi: 10.1109/ISMAR50242.2020.00082. 

[2] D. Ungureanu et al., “HoloLens 2 Research Mode as a Tool for 
Computer Vision Research,” arXiv Prepr. arXiv2008.11239, 2020. 

[3] S.-E. Wei et al., “Vr facial animation via multiview image translation,” 
ACM Trans. Graph., vol. 38, no. 4, pp. 1–16, 2019. 

[4] J. M. Amis and R. Greenwood, “Organisational change in a (post‐) 
pandemic world: Rediscovering interests and values,” J. Manag. Stud., 
vol. 58, no. 2, pp. 582–586, 2021. 

[5] H. Joly, “Lead your team into a post-pandemic world,” Harvard Bus. 
Rev. https//hbr. org/2020/05/lead-your-team-into-a-post-pandemic-
world, 2020. 

[6] G. C. Kane, R. Nanda, A. Phillips, and J. Copulsky, “Redesigning the 
Post-Pandemic Workplace,” MIT Sloan Manag. Rev., vol. 62, no. 3, pp. 
12–14, 2021. 

[7] B. Maturana, A. M. Salama, and A. McInneny, “Architecture, urbanism 
and health in a post-pandemic virtual world,” Archnet-IJAR Int. J. 

Archit. Res., 2021. 

[8] S. H. Mackenzie and J. Goodnow, “Adventure in the age of COVID-
19: Embracing microadventures and locavism in a post-pandemic 
world,” Leis. Sci., vol. 43, no. 1–2, pp. 62–69, 2020. 

[9] J.-S. Lee and S.-H. Lee, “Automatic path generation for group dance 
performance using a genetic algorithm,” Multimed. Tools Appl., vol. 
78, no. 6, pp. 7517–7541, 2019. 

[10] C. Beyan, V.-M. Katsageorgiou, and V. Murino, “Moving as a leader: 
Detecting emergent leadership in small groups using body pose,” in 
Proceedings of the 25th ACM international conference on Multimedia, 
2017, pp. 1425–1433. 

[11] B. Yoon, H. Il Kim, G. A. Lee, M. Billinqhurst, and W. Woo, “The 
effect of avatar appearance on social presence in an augmented reality 
remote collaboration,” 26th IEEE Conf. Virtual Real. 3D User 
Interfaces, VR 2019 - Proc., pp. 547–556, 2019, doi: 
10.1109/VR.2019.8797719. 

[12] H. Hung and D. Gatica-Perez, “Estimating cohesion in small groups 
using audio-visual nonverbal behavior,” IEEE Trans. Multimed., vol. 
12, no. 6, pp. 563–575, 2010, doi: 10.1109/TMM.2010.2055233. 

[13] D. Sanchez-Cortes, O. Aran, M. S. Mast, and D. Gatica-Perez, “A 
nonverbal behavior approach to identify emergent leaders in small 
groups,” IEEE Trans. Multimed., vol. 14, no. 3 PART 2, pp. 816–832, 
2012, doi: 10.1109/TMM.2011.2181941. 

[14] S. Starke, N. Hendrich, and J. Zhang, “Memetic Evolution for Generic 
Full-Body Inverse Kinematics in Robotics and Animation,” IEEE 
Trans. Evol. Comput., vol. 23, no. 3, pp. 406–420, 2019, doi: 
10.1109/TEVC.2018.2867601. 

[15] C. Hoffmann, S. Büttner, M. Prilla, and K. Wundram, “Impact of 
augmented reality guidance for car repairs on novice users of AR: a 
field experiment on familiar and unfamiliar tasks,” in Proceedings of 
the Conference on Mensch und Computer, 2020, pp. 279–289. 

[16] M. Norman, G. Lee, R. T. Smith, and M. Billinqhurs, “A mixed 
presence collaborative mixed reality system,” 26th IEEE Conf. Virtual 
Real. 3D User Interfaces, VR 2019 - Proc., pp. 1106–1107, 2019, doi: 
10.1109/VR.2019.8797966. 

[17] J. Young, T. Langlotz, M. Cook, S. Mills, and H. Regenbrecht, 
“Immersive Telepresence and Remote Collaboration using Mobile and 
Wearable Devices,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 5, 
pp. 1908–1918, 2019, doi: 10.1109/TVCG.2019.2898737. 

[18] D. Lindlbauer and A. D. Wilson, “Remixed reality: manipulating space 
and time in augmented reality,” in Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems, 2018, pp. 1–13. 

[19] J. Fan, A. Ullal, L. Beuscher, L. C. Mion, P. Newhouse, and N. Sarkar, 
“Field Testing of Ro-Tri, a Robot-Mediated Triadic Interaction for 
Older Adults,” Int. J. Soc. Robot., pp. 1–17, 2021. 

[20] J. Fan, L. C. Mion, L. Beuscher, A. Ullal, P. A. Newhouse, and N. 
Sarkar, “SAR-connect: a socially assistive robotic system to support 
activity and social engagement of older adults,” IEEE Trans. Robot., 
2021. 

[21] K. Pfeuffer, M. J. Geiger, S. Prange, L. Mecke, D. Buschek, and F. Alt, 
“Behavioural biometrics in vr: Identifying people from body motion 
and relations in virtual reality,” in Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems, 2019, pp. 1–12. 

[22] T. Kim, A. Kachhara, and B. Maclntyre, “Redirected head gaze to 
support AR meetings distributed over heterogeneous environments,” 
Proc. - IEEE Virtual Real., vol. 2016-July, pp. 207–208, 2016, doi: 
10.1109/VR.2016.7504726. 

[23] T. Piumsomboon, A. Dey, B. Ens, G. Lee, and M. Billinghurst, 
“CoVAR: Mixed-Platform Remote Collaborative Augmented and 
Virtual Realities System with Shared Collaboration Cues,” Adjun. 
Proc. 2017 IEEE Int. Symp. Mix. Augment. Reality, ISMAR-Adjunct 
2017, pp. 218–219, 2017, doi: 10.1109/ISMAR-Adjunct.2017.72. 

[24] R. Henrikson, T. Grossman, S. Trowbridge, D. Wigdor, and H. Benko, 
“Head-coupled kinematic template matching: A prediction model for 
ray pointing in vr,” in Proceedings of the 2020 CHI Conference on 
Human Factors in Computing Systems, 2020, pp. 1–14. 

[25] K. Pfeuffer et al., “ARtention: A design space for gaze-adaptive user 
interfaces in augmented reality,” Comput. Graph., vol. 95, pp. 1–12, 
2021. 

[26] A. J. Cowell and K. M. Stanney, “Manipulation of non-verbal 
interaction style and demographic embodiment to increase 
anthropomorphic computer character credibility,” Int. J. Hum. Comput. 
Stud., vol. 62, no. 2, pp. 281–306, 2005, doi: 
10.1016/j.ijhcs.2004.11.008. 

36

Authorized licensed use limited to: GOOGLE. Downloaded on December 29,2021 at 21:15:17 UTC from IEEE Xplore.  Restrictions apply. 



[27] T. Piumsomboon et al., “Mini-me: An adaptive avatar for Mixed 
Reality remote collaboration,” Conf. Hum. Factors Comput. Syst. - 
Proc., vol. 2018-April, pp. 1–13, 2018, doi: 
10.1145/3173574.3173620. 

[28] A. A. Canutescu and R. L. Dunbrack Jr, “Cyclic coordinate descent: A 
robotics algorithm for protein loop closure,” Protein Sci., vol. 12, no. 
5, pp. 963–972, 2003. 

[29] A. Aristidou, Y. Chrysanthou, and J. Lasenby, “Extending FABRIK 
with model constraints,” Comput. Animat. Virtual Worlds, vol. 27, no. 
1, pp. 35–57, 2016. 

[30] C. Chen, Y. Zhuang, F. Nie, Y. Yang, F. Wu, and J. Xiao, “Learning a 
3D human pose distance metric from geometric pose descriptor,” IEEE 
Trans. Vis. Comput. Graph., vol. 17, no. 11, pp. 1676–1689, 2010. 

[31] Y. Liu, H. Ishibuchi, G. G. Yen, Y. Nojima, N. Masuyama, and Y. Han, 
“On the Normalization in Evolutionary Multi-Modal Multi-Objective 
Optimization,” in 2020 IEEE Congress on Evolutionary Computation 
(CEC), 2020, pp. 1–8. 

[32] C. Shen, Y. Shi, and B. Buckham, “Path-Following Control of an AUV: 
A Multiobjective Model Predictive Control Approach,” IEEE Trans. 
Control Syst. Technol., vol. 27, no. 3, pp. 1334–1342, 2019, doi: 
10.1109/TCST.2018.2789440. 

[33] S. Menard, Logistic regression: From introductory to advanced 
concepts and applications. Sage, 2010. 

 

37

Authorized licensed use limited to: GOOGLE. Downloaded on December 29,2021 at 21:15:17 UTC from IEEE Xplore.  Restrictions apply. 


