
Figure 1: Thumbring, sliding and
touching on the finger segments.
10 items are arranged on the 10
finger segments. The panel is
shown on the smart glass. Right:
prototype with 2 IMUs on the
thumb and back of the hand.

ThumbRing: Private Interactions Using
One-handed Thumb Motion Input on
Finger Segments

Hsin-Ruey Tsai
National Taiwan University
Taipei, Taiwan
hsnuhrt@gmail.com

Lee-Ting Huang
National Yang-Ming University
Taipei, Taiwan
himitsu320@gmail.com

Cheng-Yuan Wu
National Taiwan University
Taipei, Taiwan
iedawind@gmail.com

Yi-Ping Hung
National Taiwan University
Taipei, Taiwan
hung@csie.ntu.edu.tw

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MobileHCI ’16 Adjunct, September 06-09, 2016, Florence, Italy
©2016 ACM. ISBN 978-1-4503-4413-5/16/09$15.00
DOI: http://dx.doi.org/10.1145/2957265.2961859

Abstract
We propose an input device, ThumbRing, for items selec-
tion on head-mounted displays (HMDs) or smart glasses.
ThumbRing is a ring with an inertial measurement unit
(IMU) worn on the thumb to track the motion. By arrang-
ing an item to a finger segment, users touch and slide fin-
ger segments to select the items. To resist shake in mobile
conditions such as walking, another IMU is attached to the
back of the hand to compute relative angles between the
hand and the thumb. Sliding and touching the segments
with the thumb in the hand provide privacy, subtlety, natu-
ral haptic feedback and similar input area to smartphones.
A pilot study is performed to obtain users’ preference fin-
ger segments. We evaluate the performance of ThumbRing
in different conditions and commitment approaches in a
user study. The results show that accuracy are 92.3% and
89.7% in the sitting and walking conditions, respectively.

Author Keywords
Mobile; private input; subtle; finger ring.

ACM Classification Keywords
H.5.2. [Information Interfaces and Presentation (e.g. HCI)]:
Input devices and strategies (e.g., mouse, touchscreen)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2957265.2961859&domain=pdf&date_stamp=2016-09-06


Introduction
Head-mounted displays (HMDs) and smart glasses have
good visual output but unsatisfied input approaches. Google
Glass provides voice input with little privacy and a touch
pad on the side offering limited gestures, making users fa-
tigued when lifting the hand to touch. Other HMDs require
extra wired controllers held, which is inconvenient. We pro-
pose a wearable input device for HMDs and smart glasses
providing privacy, subtlety and high mobility. Many studies
provide input methods using wearable devices which can
be used as HMDs and smart glasses input. Using a mag-
netometer [1, 3, 4, 7] or a camera [2, 11, 12, 14, 15] to track
finger motion and pose are common approaches.

In this paper, we propose a wearable input device Thum-
bRing for HMDs and smart glasses. ThumbRing detects
thumb motion and pose using a ring with an inertial mea-
surement unit (IMU). The finger segments, nature land-
marks, are arranged with items so users slide and touch the
segments to select items on HMDs or smart glasses with
the thumb. The pose is the similar to use smartphones with
one hand. To make ThumbRing work in mobile conditions
such as walking, another IMU attached on back of the hand
in Figure 1 is used to obtain relative angles between the
thumb and the hand. We observe users preference of fin-
ger segments in a pilot study at first, and further evaluate
performance ThumbRing in different conditions and com-
mitment approaches in a user study.

ThumbRing provides following contributions. (1) Privacy
and subtlety using sliding and touching gestures on the
segments in the hand. (2) Sufficient input area is similar
to smartphones. (3) Haptic feedback is provided by finger
segments, natural landmarks, on the hand. (4) High social
acceptance wearable device due to the ring form-factor. (5)
High mobility is supported by relative angles from two IMUs.

Related Work
We discuss wearable devices for gesture input, private and
subtle input, and input methods using finger segments.

Wearable Devices for Gesture Input
Magnet motion tracking is widely used to track a single fin-
ger. Two devices are worn to attach a magnet and a mag-
netometer, respectively. The magnet is attached to the fin-
ger tip to track the finger motion and pose. The magne-
tometer is worn on the wrist in Abracadabra [7], nail in Fin-
gerPad [3] or ring finger in uTrack [4] to provide 1D, 2D and
3D input, separately. Magnet motion tracking is usually in-
terfered by magnetic field noise. The magnetometer moving
also affects the tracking such as the ring finger in uTrack.

Rather than tracking a single finger, camera-based methods
are usually used to track gestures from the whole hand. An
infrared (IR) camera in Digits [12], PinchWatch [14], prox-
imity sensors in LightRing [11], iRing [15] and a fisheye
camera in Cyclopsring [2] are used to distinguish single-
or multi-fingers gestures. Camera-based methods, such
as Digits, PinchWatch and Cyclopsring, generally suffer
from the occlusion problem. iRing has limited input area.
LightRing is limited in mobile conditions due to a gyroscope.

Except camera-based approaches, various techniques de-
tect the whole hand gestures using slight contour change
or biosignal. Gesturewrist [17] recognizes two gestures
using the bio-capacitive sensing technique based on the
wrist contour change. Electromyography (EMG) [8] and bio-
impedance [18] are also used to detect gestures. Detect-
ing slight form change on the back of the hand using strain
gauges, BackHand [13] provides hand gesture sensing.
These techniques require gesture training after wearing the
devices each time. Slightly changing the wearing position
causes different signals from the same gesture. While re-
producibility is claimed in [8], four gestures are recognized.



Private and Subtle Interactions on Wearable Devices
Nenya [1] provides subtle 1D input by tracking magnet ring
motion when users spin it. The unpowered ring and subtle
interaction are great contributions of Nenya; however, two-
handed commitment and 1D input are the limitations. Fin-
gerPad [3] also provides a subtle interaction using magnet
motion tracking with a nail-mounted magnet. It allows users
to perform 2D input using the pinch gesture. It is similar to
a small 2D touchpad with haptic feedback on the thumb.
However, nail-mounted devices reduce social acceptance.
Similarly, NailO [10] provides touch input on nails using ca-
pacitive sensing technique. Combining with fashionable nail
art stickers, NailO is preferred by female users.

Wearable Devices interacting with Finger Segments
Imaginary Phone [6] propose that using finger segments
and the palm assist users to learn imaginary interface [5].
Users map icons and buttons on smartphones to finger
segments, which are natural landmarks on the hand. The
transfer learning improves the learning performance. Pinch-
Watch [14] also leverages the finger segments as buttons
and provides one-handed smartwatch input. However, both
studies require a camera for detection. The occlusion prob-
lem and camera’s field-of-view (FOV) are the limitations.

(a) (b)
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Figure 2: The results of the pilot
study. Left: red for side and blue for
front part of finger segments. 12
segments are enumerated. Right:
Preference mean scores using a
7-point Likert scale.

Design
Due to ubiquitous smartphones, people are accustomed to
performing touch input with the thumb when using smart-
phones with one hand. We leverage the thumb and finger
segments to propose a subtle input method for item selec-
tion on HMDs in ThumbRing. The users, wearing Thum-
bRing on the thumb, maintain the same pose when using
smartphones but touch finger segments instead of touch-
screen as input. We assign an item to a finger segment, as
shown in Figure 1. Using the IMU in the ring, ThumbRing
is able to track the thumb pose and recognize which finger

segment is touched. Users slide the thumb on fingers to
move to the target segment and commit with the proposed
commitment gesture. Finger segments provide nature land-
marks for touch input. Therefore, during the whole proce-
dure, the users keep the thumb contacting with fingers to
maintain haptic feedback and reduce jitter problem. The
item selection procedure in the hand is private and subtle,
and TumbRing provides similar input area to smartphones.

Pilot Study
Users might not be able to easily and comfortably reach all
finger segments with the thumb due to the thumb length
and dexterity. Therefore, we performed the pilot study to
obtain the proper finger segments, comfort zone, as the
input area. Except a thumb, a total of 12 finger segments
were in one hand, as illustrated in Figure 2. Although Dig-
itSpace [9] also investigated how to use the front part of
finger segments as input area, by observing the pose us-
ing smartphones with one hand, we supposed that the side
part of finger segments might be more proper as the input
area. Therefore, we also compared these two parts in the
pilot study. The results shown which finger segments most
users desired to arrange a button on.

A total of 16 participants (12 male) aged 23-58 (mean 27.63)
were recruited. The 12 finger segments were enumerated,
as shown in Figure 2 in left hand, and the numbers were in
mirrored positions in right hand. A finger segment was fur-
ther divided into two parts: front and side. The participants
were required to press on both parts with the thumb. During
the pilot study, they slid the thumb back and forth on the fin-
ger and stayed on the certain finger segment for a few sec-
onds. Based on comfort and ease to touch or press, they
gave a score to each segment orderly in both parts, blue
one and red one in Figure 2, using a 7-point Likert scale. At
last, we interviewed them for feedback and comments.



The mean scores of the segments in front and side parts
were shown in Figure 2. The segments around the thumb
got higher scores because the participants did not need
to bend the thumb hard to touch. In terms of the parts of
segments, the mean scores in segment 1 to 6 (index and
middle fingers) in the side parts were higher. However, the
scores in segment 7 to 12 (ring and pinky fingers) in the
front parts were higher. We found that the thumb rotated in-
ward gradually when bending toward the pinky finger. When
the thumb bended toward the fingers around it (index and
middle fingers), the front part of the thumb were approxi-
mately parallel to the side part of the fingers. On the con-
trary, when the thumb bended toward the fingers far from
it (ring and pinky fingers), the front part of the thumb were
approximately parallel to the front part of the fingers. Thus,
different scores for different parts on the same segment.

The side part of segment 1 to 9, i.e. index, middle and ring
fingers, were chosen as the comfort zone. The segments
were acceptable for most participants and the side parts got
higher scores in these segments. In fact, the side part of
the segments were closer to the thumb than the front part
so it was easier to touch on them. Segment 10 to 12 (pinky
finger) had lower scores. Besides, we observed that when
touching the pinky finger, many participants slightly moved
the pinky finger toward the thumb. This made the pinky fin-
ger position similar to the ring finger position. Nevertheless,
we still adopted the front part of segment 12, less affected
by pinky finger moving, as a special segment to assign the
item less frequently used or required to avoid false positive
(e.g., the activation button) in our design. As a result, ten
finger segments including the side part of segment 1 to 9
and the front part of segment 12 were used in ThumbRing.

Finger Segments Recognition
Touching different segments with the thumb causes differ-
ent thumb poses. The IMU in ThumbRing detects the ori-
entation of the thumb in three degrees of freedom (3DoF),
including yaw, pitch and roll angles. Nevertheless, in mo-
bile conditions such as walking, the body or hand shake. It
results that different orientations are detected in the same
touch gesture. To overcome the problem, we leverage an-
other IMU attached to the back of the hand to construct a
relative angular coordinate system. These two IMUs obtain
similar relative angles in different hand poses only if touch-
ing on the same segment, which means that the relation
between the thumb and the segment does not change a lot.

To obtain relative angles from these two IMUs, we use the
rotation matrix, Direction Cosine Matrix (DCM) [16], of each
IMU to further compute a transform matrix. The transform
matrix allows us to obtain the relative angles of one IMU
based on the other. The definition of DCM:

VG = RVS (1)

where V is certain kinds of vector, including directions, ve-
locities or accelerations. VS , a vector V based on a sensor
coordinate, can be transformed from the sensor based co-
ordinate to the ground based coordinate, VG, by multiplying
R, a DCM rotation matrix. We obtain angles based on the
ground coordinate from elements in R. Based on definition
of R, the transform matrix can be further deduced as:

RB
A = RG

AR
B
G = (RA

G)
−1RB

G = (RA
G)

TRB
G (2)

where RA
G and RB

G represent R from sensor A and B based
on the ground coordinate G, which are what we know. RB

A

means R in sensor B based on sensor A coordinate, the
transform matrix we desire. R−1 is equal to RT based on
the definition of rotation matrix R. With the transform ma-
trix, we get relative angles of IMU B based on IMU A.



Although touching the same segment, different relative an-
gles might be detected due to slightly different thumb poses
and noise from IMUs. Thus, after collecting relative angles
when touching each finger segment, we build a training
model using a machine learning approach K-nearest neigh-
bors algorithm (KNN). When performing item selection, the
relative angles are classified into proper segments.

Figure 3: A totol of 1100 relative
angles collected from the 11
classes from a participant for
training. Three axes are angle of
yaw, pitch and roll in degrees.

Commitment Approach
After moving the thumb to the target segment, the users
perform a tap gesture to commit the target. In our design,
when touching on the target segment, the users lift the
thumb to the position similar to the thumbs-up gesture.
After it is detected, commitment is ready to be triggered.
The thumb then taps back to the finger segment. No mat-
ter it taps on the target segment or not, the commitment is
triggered. Certainly, when lifting, the thumb may be mis-
classified into incorrect the finger segments. Therefore, we
infer the target segment using a short pause that the users
stay the thumb on the target segment to check whether it
is the right one and change the gesture from touch to com-
mitment. The pause is usually longer than 120 ms. If the
thumb stays on a segment longer than the time threshold
and successfully lifts to the required position, the target
is committed after tapping back. Combining the ten finger
segments and tap gesture, eleven classes are required for
training using the machine learning approach KNN.

User Study
To obtain performance of ThumbRing in different conditions
and commitment approaches, we designed the user study.

Apparatus and Participant
Two 9DoF IMUs were used. The IMU, SparkFun 9DoF
Sensor Stick, consisted of an ADXL345 accelerometer, a
HMC5883L magnetometer, and an ITG-3200 gyroscope.

Each IMU was connected to an Arduino Nano. Each DCM
element and 3DoF orientation data were further delivered to
a laptop in sample rate 50Hz. The laptop also was used to
simulate the HMD and smart glass visual feedback. The vi-
sual feedback was displayed on the sub-region of the laptop
in 3 inches. A total of 12 participants (9 male) aged from
23-36 (mean 26) were recruited to the experiment. Three of
them worn ThumbRing on the right thumb. They received
some incentives after the experiment.

Experiment Design and Procedure
Two main factors, including conditions and commitment
approaches were considered in the experiment.

Condition
Sitting and walking conditions were considered. In the sit-
ting condition, the participants sat in front of the laptop and
were allowed to lay the hand on the leg to reduce fatigue.
We expected to obtain the performance in a static condition.
In walking condition, the participants trod in the same path
when walking in front of the laptop as walking on a tread-
mill. They were allowed to lean the elbow on the side of the
body similar to the pose using smartphones to reduce fa-
tigue. It was used to simulate the shake caused by walking.

Commitment Approach
Although tap was proposed to commit in this paper, we did
not want the performance of commitment to influence the
performance of finger segment selection. Consequently, we
added keyboard commitment as a baseline. It represented
the performance of segment selection with the best commit-
ment approach. Participants pressed SPACE to commit.

Procedure
The experiment was a 2 x 2 x 10 (Condition x Commitment
Approach x Segment Position) with-in subject design. Each
combination had 5 repetitions so there were a total of 200



trials for each participant. Conditions and Commitment Ap-
proaches were counterbalanced, and segment positions
were randomized. 2 IMUs were worn on the thumb and at-
tached to the back of the hand respectively, as shown in
Figure 1. The visual feedback was displayed on the sub-
region of the laptop. Before the experiment, we collected
3DoF relative angles from the 2 IMUs in 11 classes from
each participant for training. In data collection, participants
stood in front of the laptop and touched with the thumb on
side of the finger segments from class 1 to 10 and lifted
the thumb as a thumbs-up gesture in class 11 orderly. We
suggested them to divide the space in five planes in five
pitch orientations. 200 data in each plane. They moved the
forearm or hand leftwards and rightwards on each plane
while maintaining the gesture in each class. It simulated the
relative angles in different hand positions in front of the lap-
top caused by walking, jittering and noise from the IMUs.
A total of 11000 labeled data, 3DoF relative angles (Fig-
ure 3), were trained by KNN using the function provided by
OpenCV. After the training data collection from each par-
ticipant, we randomly chose 100 data from each class to
perform the leave-one-out-validation and obtained the train-
ing data accuracy. The mean accuracy was 92.10% (SD =
8.27%) from all participants.

In the experiment, 10 blue rectangles representing 10 seg-
ments were shown on the laptop screen. One of them
turned into yellow meaning the target button. A red dot on
one of the rectangles was a cursor representing which fin-
ger segment the thumb touched. The committed rectangle
turned into green, and the next target was shown. Selection
time (ST) and error rates (ER) were recorded during the ex-
periment. The experiment, including data collection, took
approximately an hour for each participant.

Figure 4: The experiment results.
Selection time (up) and error rate
(down) in different conditions and
commitment approaches.

Results and Discussion
Mean selection time (ST) for all trials without errors was
1763.59 ms (SD = 386.89 ms), and the error rate (ER) was
16.13 %. The details were shown in Figure 4. Repeated
measures ANOVA (RM-ANOVA) and Bonferroni correction
for post-hoc pairwise tests were used for the analysis.

In terms of conditions, there was a significant effect on
ST (F1,9 = 9.43, p = 0.01) but not on ER (F1,9 = 0.08, p =
0.79). We observed the unexpected results that the ST and
ER in the walking condition was better than in the sitting
condition except ER in keyboard commitment. The possi-
ble reason was that the participants laying the hand on the
leg caused the hand squeezed and deformed. Therefore,
the hand pose was no longer the same as the pose in data
collection. It increased ST and ER in the sitting condition.

Regarding commitment approaches, significant effects were
revealed on both ST (F1,9 = 39.24, p < 0.01) and ER (F1,9

= 17.18, p < 0.01). Some participants indicated that the tap
gesture was intuitive. Due to the proposed tap detection,
they had to lift the thumb in to the certain position. It made
the segments around the thumb (index finger) were com-
mitted easily and even a little bite prone to cause false pos-
itives. On the contrary, touching the segments on fingers
far from the thumb, they had to lift the thumb in a long dis-
tance to trigger the tap detection. It caused fatigue easily.
Furthermore, some participants accidentally supinated the
hand when lifting the thumb. It caused that the 2 IMUs ro-
tated to the same direction and the relative angles were not
classified to the tap gesture class. We believed that it could
be improved using better tap detection or commitment ap-
proaches. The keyboard commitment showed the Thum-
bRing performance that was not affected by commitment
approaches in the sitting (ST: 1522.47 ms, ER: 7.67%) and
walking (ST: 1343.41 ms, ER: 10.33%) conditions.



Limitations and Future Work
Due to noise from the IMUs, a training model is needed for
classification. The sample rate, 50Hz, of our IMUs is not
high enough to provide more accurate orientation. We will
use IMUs with a higher sample rate to alleviate the prob-
lem. For the attachment problem, we will fabricate a 3D
printed ring to fix the IMU. In terms of the machine learn-
ing method, we observed that KNN outperformed support
vector machine (SVM) with linear and radial basis function
(RBF) kernels. However, other machine learning methods
(e.g., SVM with polynomial kernel and sigmoid kernel) will
be compared in the future. We will also improve the tap de-
tection using angular velocity and time thresholds instead
of the thumb-up position. Thus, users will not have to lift the
thumb in a far distance from middle finger and ring finger.

Although Visual feedback is provided in the current Thum-
bRing design, ThumbRing providing haptic feedback from
the natural landmarks, finger segments, can also offer eyes-
free interactions. In addition, discrete input is provided in
current ThunbRing. With more accurate classification meth-
ods above-mentioned, ThumbRing can recognize more
classes, which means that we can arrange more than an
item on a finger segment. ThumbRing can even provide
continuous 2D input using a regression model in the future.

Conclusion
ThumbRing is a wearable input device provides privacy,
subtlety and sufficient input area. It tracks the thumb motion
using relative angles from two IMUs, which makes Thum-
bRing tolerant in mobile conditions such as walking. By
leveraging the finger segments arranged with items, Thum-
bRing provides haptic feedback. 10 finger segments (9 side
and 1 front parts) are defined as the comfort zone in the
pilot study. The results, as shown in Figure 2, can be guide-
lines in item arrangement on the finger segments for app

developers. The user study evaluates the performance of
ThumbRing in different conditions and commitment ap-
proaches. The proposed commitment approach tap is an
intuitive gesture but the detection approach can be further
improved. We also envision that ThumbRing provides eyes-
free interactions and continuous input in the future.
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