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ABSTRACT

Near-eye light field displays provide a solution to visual discomfort
when using head mounted displays by presenting accurate depth and
focal cues. However, light field HMDs require rendering the scene
from a large number of viewpoints. This computational challenge of
rendering sharp imagery of the foveal region and reproduce retinal
defocus blur that correctly drives accommodation is tackled in this
paper. We designed a novel end-to-end convolutional neural network
that leverages human vision to perform both foveated reconstruction
and view synthesis using only 1.2% of the total light field data. The
proposed architecture comprises of log-polar sampling scheme fol-
lowed by an interpolation stage and a convolutional neural network.
To the best of our knowledge, this is the first attempt that synthesizes
the entire light field from sparse RGB-D inputs and simultaneously
addresses foveation rendering for computational displays. Our algo-
rithm achieves fidelity in the fovea without any perceptible artifacts
in the peripheral regions. The performance in fovea is comparable
to the state-of-the-art view synthesis methods, despite using around
10× less light field data.

Index Terms— Light field, foveated rendering, view synthesis,
RGB-D, 3D/VR/AR/MR, head-mounted display, convolutional neu-
ral network.

1. INTRODUCTION

Emerging Virtual Reality (VR) and Augmented Reality (AR) head-
mounted displays (HMDs) are revolutionizing many different fields
such as gaming, entertainment, medicine, education, etc. Two main
features are critical in HMDs to display stunningly vivid virtual ob-
jects right in front of the viewer: 1) reproduce an extended depth-of-
focus (eDoF) with sharp imagery over the user’s full accommodation
range, 2) drive correct accommodation by depicting perceptually ac-
curate retinal defocus blur. However, existing HMDs display vir-
tual objects at a fixed optical focus and do not accurately reproduce
retinal blur all over the extended scene. This leads to vergence-
accommodation conflict (VAC) [1]. Sustained VAC in long hour
wearing of HMDs has been associated with potential health concerns
caused by biased depth perception and visual fatigue.

Computational displays are evolving which integrate optics and
rendering algorithms to enhance the capabilities of conventional head
mounted displays [2, 3, 4, 5, 6]. Douglas Lanman and David Luebke
[3] designed a light field based thin, lightweight HMD that enables
correct convergence, accommodation, binocular disparity, and reti-
nal defocus depth cues. Itoh et al. [2] configure a completely dif-
ferent category of attenuation display with polarized optics to enable
both see-through and color interference capabilities. They realize a

spatially programmable color filter in the optics that perform color
intensity image correction by spatially subtracting background en-
vironmental light pixel-wise in the user’s see-through view. They
aim to display multispectral images in a see-through system. Kim et
al. [28] presented a near-eye augmented reality display with resolu-
tion and dynamically-foveated focal depth driven by gaze tracking.
The display is made up of a traveling microdisplay, which relayed
off a concave half-mirror magnifier to produce the high-resolution
foveal region. It supports a wide field-of-view peripheral using a
projector-based Maxwellian-view display. The viewer’s pupil is fol-
lowed by translating the nodal point of Maxwellian-view display
during eye movements by employing a traveling holographic opti-
cal element. Their display supports accommodation cues by means
of optics, varying the focal depth of the microdisplay in the foveal
region. Simultaneously, they render simulated defocus on a scanning
laser projector for peripheral region display. In general, their design
drives the foveal and peripheral display location using the optics.

To facilitate accommodation and make the entire experience feel
natural, there are three main contenders of computational display
technologies which receive particular attention in the VR/AR com-
munity: Varifocal, Multifocal, and Light field displays [10]. The
Varifocal and Multifocal displays create eDoF. Varifocal HMDs con-
tinuously adjust the virtual image distance, whereas, Multifocal dis-
plays generate multiple focal planes across the viewing zone. These
advanced HMDs partially depend on synthetically rendered blur. But,
they do not account blur created optically due to the natural ac-
commodative response of the user. These displays may produce in-
correct focus cues without rendered blur. Recent findings establish
that rendered blur is critical to effectively drive the accommodation.
While promising, synthesizing retinal defocus blur with perceptual
accurateness is computationally expensive. In addition, accurate eye
tracking is required in HMDs based on synthetically rendered blur-
ring.

Near-eye light field displays provide a solution to these issues
while maintaining a thin form factor and optimal field-of-view. Light
field based HMDs approximate retinal blur by displaying an optical
superposition of many novel viewpoints. However, still requires to
render the scene from tens or even hundreds of viewpoints. This is
yet another formidable computational challenge.

In this paper, we present a novel unified learning framework
for efficient rendering of sparse light fields to reduce the compu-
tational cost associated with light field based HMDs. Our proposed
end-to-end convolutional neural network architecture FVS-ResUNet
(Foveated View Synthesis - ResUNet) effectively solves the compu-
tational tasks associated with sharp foveated reconstruction, repro-
duce retinal defocus blur to drive the natural accommodation and
high quality multi-view rendering using modest RGB-D light field



inputs. The main contributions of our proposed model are:

• We propose a new method that renders virtual content for
near-eye light field displays, contingent on the user gaze, us-
ing only a fraction of the total light field data, maintaining
acceptable rendering quality.

• A novel FVS-ResUNet network architecture which is flexible
in terms of sampling the patterns, handling varying receptive
field sizes, and performs foveated reconstruction of the full
light field with high foveal fidelity from sparse color image(s)
and depth map(s) inputs.

2. RELATED WORK

In this section, we briefly review light field view synthesis and foveated
rendering algorithms designed for VR/AR head mounted displays.

2.1. Light Fields & View Synthesis

Conventional 2D displays fail to provide accurate visual cues for
comfortable 3D perception. In human visual perception, Vergence
and Accomodation (VA) are neurally coupled which helps maintain
a fused sharp image. In the real world, VA is matched to the distance
of the object of fixation. As the eye accommodate to the object, natu-
ral depth-of-field blur is generated on the retina for rest of the scene.
In HMDs, no blur is generated on the retina. The virtual scene ap-
pears at different distance, but light comes from the fixed distance
of the display. Thus, VA is generally not matched because the eye
accommodates to the fixed distance of the display screen, while con-
verging to the varying distance of the virtual object. This VA con-
flict often causes visual discomfort and nausea. Koulieris et al. [1]
results demonstrate that only focus-adjustable-lens combined with
gaze-contingent depth-of-field blur successfully drives accommoda-
tion to the simulated distance of virtual object. Other conditions
alone, such as, depth-of-field rendering and monovision are not very
effective.

An alternate solution, 4D light field based displays provide nat-
ural viewing experience by presenting virtual objects at the correct
focus to match their distance. It allows users to accommodate at dif-
ferent depths, while approximating retinal defocus blur. However,
rendering content for such a setup requires a large computation cost
and typically has high latency. View Synthesis is an approach to
reduce the number of rendered views. Wu et al. [7] reconstructs a
9× 9 light field using nine input views, Kalantari et al. [8] use only
four corner views. Srinivasan et al. [9] render the 4D light field by
sampling the input central view image. Xiao et al. [10] proposes a
network architecture for generating all the views using nine or five
sampled views, which produce state-of-the-art results with low la-
tency for real-time applications.

2.2. Foveated Rendering

Humans have a 135◦ vertical and 160◦ horizontal field of view. How-
ever, the perception of details is not uniform. The highest resolution
vision occurs in a 5◦ central circle [11], where the highest concen-
tration of color receptors occurs. Acuity quickly falls off radially as
the sampling period decreases roughly linearly with eccentricity, i.e.,
the angular distance from the centre.

Araujo and Dias [12] estimate the cortical activation using a log-
polar mapping, which has been used for GPU rendering of 2D im-
ages [13] and 3D images [14]. Sun et al [15] proposed a scheme
for foveated rendering of light fields using 16% to 30% of light

(a) (b)

Fig. 1: Example binary sampling masks. White pixel locations are
sampled. (a) Log-buffer scale 2, Gaze location is top left, (b) Log-
buffer scale 4, Gaze location is the centre.

(a) (b) (c)

Fig. 2: Example interpolation. (a) Original image, (b) Sampled im-
age using a binary mask (log-buffer scale 2, gaze location at the cen-
tre), (c) Interpolated image.

rays while maintaining perceptual quality. DeepFovea [16] performs
foveated reconstruction of images corrupted by a random binary
mask using learned statistics from natural images. These approaches
require fast gaze-tracking to drive the displays without degradation
in visual quality. With recent advances in eye tracking technology,
it is now possible to track user gaze in real-time often leveraging
learning based techniques.

3. PROBLEM FORMULATION

ConsiderN RGB-D light field views {Ii, Di}, i = 1, . . . , N , where
I1, . . . , IN and D1, . . . , DN denotes the color images and their cor-
responding depth maps, respectively. Using a fixed set of sparse
input views, each output view is predicted using a view interpolation
function. The view synthesis problem can be formulated as

Îo(p) = F ([Ii], [Di], P ) ∀ o ε {1 . . . N} (1)

where, the subscripts i and o denote input and output views, respec-
tively. [Ii], [Di] are the concatenation of the fixed input views that
represents view sampling, F is the required transformation function
modelled using a convolutional neural network with input patch P ,
whose size depends on the receptive field of the CNN and the output
pixel location p.

Xiao et al. [10] shows a ResNet [21] type architecture that mod-
els view interpolation function F compared to other architectures
such as an encoder-decoder U-Net [17] in terms of speed and num-
ber of parameters. However, the size of patch P in their proposed



CNN is small since it contains only convolutional, but not subsam-
pling layers. This poses a problem when the sparsity is higher in
regions of the image away from the gaze location. The function can-
not correctly predict the output when sparse input patch does not
contain enough information. Our proposed FVS-ResUNet solve this
issue by learning to choose between the receptive field sizes based
on sampling density and maintain high view synthesis quality. Our
approach considers sparsity in the patch P and simultaneously re-
tain the benefits of the ResNet [21]. This is the motivation behind
our choice of the CNN. Mathematically, we formulate the problem
for foveated view synthesis as

Îo(p) = F1([Ii], [Di], S, P1) + F2([Ii], [Di], S, P2) (2)

where, F1 is a residual block chain with a small sized patch P1 and
F2 is a set of encoder-decoder blocks with a large sized patch P2, S
is the binary sampling mask required for foveation rendering. Thus,
the network can learn to choose between two patch sizes based on
the sampling density.

4. PROPOSED FOVEATED RENDERING SCHEME FOR
SPARSE LIGHT FIELDS

There are three broad stages in our proposed foveated rendering
scheme: sampling, interpolation and a convolutional neural network.
At the first stage, the virtual scene is sampled for RGB intensity and
depth data according to the log-polar scheme [12]. Next, in the sec-
ond stage, interpolation of the color intensity image is performed for
unsampled pixels. Finally, at the last third stage, a novel end-to-end
convolutional neural network is employed to predict the full light
field data for each color channel separately. Each stage is described
in the coming sections:

4.1. Log Polar Sampling

We use log-polar mapping to generate a binary mask for sampling
RGB-D pixels [12]. A log-buffer of size R × Θ is defined first.
Then, for each pixel in the buffer, the corresponding pixel in the
image is selected to be part of the mask. The x, y pixels in the image
corresponding to r, θ in log-buffer are related by

x = exp(
r · log(L)

R
) cos(

2πθ

Θ
), (3)

and

y = exp(
r · log(L)

R
) sin(

2πθ

Θ
) (4)

where, L denotes the maximum distance from the centre of fovea to
the corners of the image. Choosing only integral values of x, y lead
to far fewer than R ∗ Θ sampled pixels in the generated mask. We
control the sampling rate using a parameter S dubbed as log-buffer
scale. Further, we chooseR = W

S
and Θ = W

S
, whereW is defined

as the width of the image. Example sampling masks are shown in
Fig. 1.

Incorporating polynomial kernel functions help in achieving an
efficient control over the sampling density [14]. In our proposed
approach, the actual pixels sampled can be varied while using the
same density by selecting offsets r

′
and θ

′
. These parameters are

used to obtain different masks for each of the nine input views. The
proposed new formulation is defined as

x = r
′
× exp(r

1
K · log(L)

R
) cos(

2πθ

Θ
+ θ

′
) (5)

and

y = r
′
× exp(r

1
K· log(L)

R
) sin(

2πθ

Θ
+ θ

′
) (6)

where, K is the kernel parameter. The inverse transformation from
x, y to r, θ can be determined by

r = (
log(

√
x2 + y2 × 1

r
′ ) ·R

log(L)
)K (7)

θ =
arctan( y

x
) ·Θ

2π
− θ

′
(8)

The interpolation stage is described in the next section.

4.2. Interpolation

Kaplanyan et al. [16] employ Generative Adversarial Networks (GAN)
and rely on in-hallucinating the video content based on the learned
statistics to achieve foveated compression. However, the GAN model
used by DeepFovea is not very efficient as it is difficult to train be-
cause of issues related to non-convergence and modal collapse.

We adopted a different strategy to avoid perceptual artifacts in
the periphery. In our sampling strategy, peripheral regions have very
sparse input data to correctly predict the intensity. Due to this nature,
we propose an interpolation step for the color channels and simplify
processing by formulating the problem as an image enhancement.
Inverse distance interpolation using the nearest four pixels is adopted
in our scheme. The formula used in the computation is given by

p =

∑4
i=1

pi
di∑4

i=1
1
di

(9)

where, p is the target pixel intensity, pi is the neighbourhood pixel
intensity, and di is distance from the target to the neighbourhood
pixel. Interpolation strategy works very well, since near the foveal
region, there is adequate information to correctly predict the image
pixels, whereas in the peripheral region only low frequency content
is perceived by our eyes. Our method adequately captures this infor-
mation. An example of our strategy is shown in Fig. 2.

4.3. FVS-ResUNet: Proposed Neural Network Architecture

In this section, we explain our proposed convolutional network ar-
chitecture, dubbed as FVS-ResUNet. A block diagram is illustrated
in Fig. 3. The objective of proposed FVS-ResUNet is to strike a
balance between quality and runtime complexity, while rendering
foveated contents from input sparse RGB-D light fields. The FVS-
ResUNet is built up of two components: 1) a fully efficient convo-
lutional neural network made up of residual blocks, 2) an encoder-
decoder U-Net that induces smoothness in the periphery of rendered
light field images.

As shown in Fig. 3, each convolution layer in proposed FVS-
ResUNet is followed by a batch normalization layer [18] along with
an “exponential linear unit” activation function [19]. The inputs to
the network are sampling mask, sampled depth and interpolated in-
tensity map of a single color image concatenated along the depth
axis. Note that each color channel is processed separately with the
sampling mask and sampled depth duplicated for red, blue and green
channels. Further, the proposed FVS-ResUNet CNN architecture ef-
ficiently learns the viewpoint translations. Applying the CNN pre-
sented by Xiao et al. [10] separately is not effective, since their ar-
chitecture has a small receptive field which makes it difficult for
the network to correctly handle distorted content in the periphery.



Fig. 3: Our proposed FVS-ResUNet network architecture.

To overcome this issue, we introduced the U-Net in parallel with
Residual-Net that helps to smooth out the blocky structures from the
interpolation step.

4.3.1. Interleaving layers

We include an interleaving layer to reduce the spatial dimensions. In
general, CNNs have a roughly linear relationship between run-time
and spatial dimensions [10]. Interleaving layers reshape an input
with dimensions (C,H,W ) to (C × r2, H

r
, W

r
), where r is the in-

terleaving rate. This preserves volume of the input while increasing
the depth. We find using empirical analysis that r = 2 increases
the performance without much degradation in quality. Besides, a
de-interleaving layer in the network restores the outputs to original
spatial dimensions of the input. The individual components of our
network are described below:

4.3.2. Residual Network

A series of the residual blocks [21] with skip connections are em-
ployed in FVS-ResUNet without downsizing. To preserve the high
frequency information of the input image, a long range skip con-
nection from the inputs to the next-to-last layer is presented. The
residual network allows us to train deeper networks. It is beneficial
in learning close to identity mappings with changes such as small
translations. Thus, residual network in present view synthesis for-
mulation proves to be much useful. Next, we introduce a U-Net
architecture to correct the blocky structure introduced in the interpo-
lation step caused by a small receptive field.

4.3.3. U-Net

We proposed a U-Net style network that can effectively handle a
larger receptive field. The proposed U-Net works parallel to the

residual block chain. The average pooling and upsampling layers
are used to downsize and upsize features respectively. Skip connec-
tions from down blocks to up blocks help in better estimating the
gradient flow. The input features after the first convolutional block
are downsized four times. The output of the proposed U-Net is added
to the output of the series of residual blocks. This helps in producing
the smoothness in the periphery of rendered light field images and
reduce the undesired blocky effects.

It is critical to note that our proposed FVS-ResUNet architecture
is different from Diakogiannis et al. [27] ResUNet-a network. Di-
akogiannis et al. [27] presents a deep learning modeling framework
for semantic segmentation of high resolution aerial images. Their
ResUNet-a architecture consists of a U-Net backbone with modified
residual blocks of convolutional layers used in the place of encoder-
decoder blocks. Besides, the multiple parallel atrous convolutions
are employed within each residual building block in their ResUNet-
a architecture. However, our proposed FVS-ResUNet architecture
has a unique configuration made up of residual blocks and a U-Net
in parallel. It is specifically designed to address foveated rendering
and novel view synthesis using modest RGB-D light fields.

4.3.4. Losses

The final prediction in our FVS-ResUNet is done using a tanh acti-
vation function. The function is normalized to [0, 1]. The loss func-
tion used in the proposed model is defined as

Loss =
∑
N

(−10 log‖ŷ − y‖22 − 10 log‖∇ŷ −∇y‖22) (10)

where, ŷ is the predicted output and y is the target. ∇y in the loss
function denotes the image gradient. The loss is computed by mea-
suring the pixel-wise PSNR and a pixel-wise gradient PSNR com-
ponents using the predicted output ŷ and target y. The components



(a) (b)

Fig. 4: Different radial regions at near (a) and far (b) focus. Blue:
Boundary of Fovea, Green: Boundary of P1, Red: Boundary of P2.

of ∇y can be found by subtracting the image shifted by one pixel
from the original image in the horizontal and vertical axes. Mathe-
matically, we computed∇y as

∇y(i, j) = (y(i, j)− y(i− 1, j))̂i+ (y(i, j)− y(i, j − 1))ĵ

where, (i, j) denotes the (i, j)th pixel location. The î and ĵ denotes
the horizontal and vertical axes, respectively.

5. IMPLEMENTATION

The dataset provided by [10] is used for the experiments and training
our network. A procedural scene generator Houdini [20] is used
to create the dataset. The dataset consists of 85 rendered scenes
consisting of light field data with 81 (9 × 9) intensity and depth
images. The RGB-D images are of resolution 512× 512 pixels.

A sampling mask as described in section 4.1 is selected by ran-
domly choosing a location for gaze from a set of nine predetermined
locations. The inputs to the network are generated using the mask
by sampling pixels from the RGB-D images. Unsampled pixels are
assigned the value 0 by default. The color intensity maps are in-
terpolated by our proposed scheme explained in section 4.2. The
robustness of proposed model is improved by training with multiple
sampling rates at once. Sampling rate is varied by changing log-
buffer scale S as defined in section 4.1. We choose S = 4 (∼ 3.6%
pixels) for 40% of scenes, S = 2 (∼ 10.6% pixels) for 40% of
scenes and S = 0 (100% pixels) for the remaining. The depth and
sampling mask is replicated for each color channel. We extract over-
lapping patches of size 128×128 pixels from each scene to produce
147 data points (49 patches × 3 color channels). This resulted in a
training dataset of size 4,165. The training data size is not affecting
our model performance, since the receptive field is smaller than the
individual patches. We used 75 scenes for training and the rest for
evaluation. Testing is performed on additional scene provided in the
dataset. We trained our model using the TensorFlow open-source
software library. The weights in our proposed FVS-ResUNet model
are initialized following He et al. [21]. We used Adam gradient-
based stochastic optimization algorithm [22] with the recommended
hyperparameters for around 300 epochs with learning rate 0.0001,
choosing a batch size of 16.

6. EXPERIMENTS

We simulate the retinal image by refocusing light field image to the
gaze position using shift and add algorithm [26]. The light field
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Fig. 5: Qualitative results at the near focus. Red dot in the original
image shows gaze location (centre of the head).

views used for experiments have a spatial resolution of 512 × 512.
A maximum disparity of 2.5 pixels between adjacent views is con-
sidered.

The quality assessment is performed by measuring standard Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
metrics on the synthesized foveated images. We evaluated SSIM for
perceptual quality and PSNR for pixel-wise accuracy. We estimated
PSNR and SSIM measures at three radial regions: Fovea, Periphery
1 (P1) and Periphery 2 (P2). The generated images could be per-
ceived through a near-eye light field display with a 35◦ field of view.
We computed the diameter of fovea as 0.1L considering 5◦ central
foveal region [11], where L is the diagonal length of the display.
The diameters of P1 and P2 are considered to be 0.4L and 1L. An
illustration is provided in Fig. 4.

7. RESULTS & ANALYSIS

The performance of our proposed scheme is compared with latest
work DeepFocus [10]. The visual results are depicted in Fig. 5 and
Fig. 6. The quantitative results are shown in Table 1 and Table 4.
The results reported here are obtained from a single trained model.
The network differs in sampling patterns for the input.

To perform quantitative comparison with DeepFocus [10], we
computed results considering 11.11% sampling (9 out of 81 selected
light field views; 100% pixels of the selected full views similar to
DeepFocus) of light field data, and achieves comparable quality re-
sults for the whole image. The critical advantage of our network
FVS-ResUNet is that it performs both foveated reconstruction and
view synthesis using as low as 0.38-1.18% of the total light field
data with acceptable rendering quality. On the other hand, view syn-
thesis methods like DeepFocus [10] are not designed, specifically,
for foveated rendering. Therefore, it is not possible to render with
DeepFocus [10] network architecture, considering very low sam-
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Fig. 6: Qualitative results at the far focus. Red dot in the original
image shows gaze location (on the chair).

pling rates. At both near and far focus, our model has comparable
foveal SSIM score, when per view sampling is greater than 10.6%.
The SSIM map in Fig. 5 and Fig. 6 shows error near the eyes since
it is most sensitive at 0 pixel intensity. Most of the errors are vis-
ible around the edges. Our model is flexible in terms of log-polar
sampling patterns. Quite encouraging results are shown in Fig. 5-6
at both focal distances with S = 2. The reconstruction in P1 and P2
regions is of lower quality compared to the fovea. This is acceptable
because of lower visual acuity in these regions.

The graphs analysing quality vs sampling rate using our pro-
posed FVS-ResUNet architecture is shown in Fig 8. The plots for
foveal quality depict that there is no significant drop in quality over
various sampling rates. The SSIM and PSNR quality in fovea is high
for most sampling rates. However, the overall quality decrease is
mainly due to fall-off in quality of the peripheral region. Lower sam-
pling rates result in lower peripheral quality, which is an expected
result. Finding a trade-off solution in our settings requires a sub-
jective user study to determine the quality thresholds detectable by
human eyes in different regions of vision. This is a part of our future
work. Based on our SSIM/PSNR analysis in Fig 8, a sampling rate
can be chosen which does not produce any perceivable distortions in
the image.

In Table 3, the runtime of our FVS-ResUNet CNN for perform-
ing both view synthesis and foveation rendering is reported. This is
compared with DeepFocus [10] CNN runtime for performing view
synthesis. The model’s performance is tested on Nvidia GTX 1080
processor without TensorRT optimization. Our FVS-ResUNet runs
slightly slower than [10]. However, the number of light field rays to
be sampled are considerably lower. We would, further, optimize our
network architecture runtime performance by tuning hyperparame-
ters.

Some more results are shown in Fig. 7 and reported in Table 2
of our model using S = 2. These results are computed on additional
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Fig. 7: Qualitative results for additional scenes. Red dots in original
images point to the gaze locations.

scenes provided by [24], which consists of color(s) and depth map(s)
obtained using the Blender renderer [25].

8. CONCLUSION

In this paper, we have proposed a novel flexible computational scheme
that synthesizes realistic light field contents and foveated reconstruc-
tion using only modest RGB-D light field data. The rendered light
field images are contingent on the gaze location that leverages hu-
man vision. The potential advantage of our model is that it greatly
reduces the number of pixels rendered, while producing imagery for
near-eye light field accommodation-supporting HMDs. We would
only need to render approximately 1.2% of the total light fields.
Thus, substantially reducing computational burden compared to the
state-of-the-art algorithms without compromising with the recon-
struction quality. Further, our model is also flexible in terms of sam-
pling patterns and handling varying receptive field sizes. The results
demonstrate that reconstruction in the foveal region is of high qual-
ity. Simultaneously, it avoids perceptible artifacts in the peripheral
regions. Since light field facilitates natural defocus blur, and thus
approximating full light field using modest inputs by FVS-ResUNet
is critical for effectively addressing sharp foveated reconstruction,
reproducing retinal defocus blur that drives the natural accommoda-
tion and computational tasks associated with high quality multi-view
synthesis. We will further explore these aspects in-depth with new
light field display tech with mixed reality applications.
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