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Figure 1: We present FaceVR, a novel method to perform real-time gaze-aware facial reenactment with a virtual reality device
(left). In order to capture a face, we use a commodity RGB-D sensor with a frontal view; the eye region is tracked using a new
data-driven approach based on data from an IR camera located inside the head-mounted display. Using the 3D reconstructed
face as an intermediate, we can modify and edit the face in the target video, as well as re-render it in a photo-realistic fashion,
allowing for a variety of applications; e.g., removal of VR goggles or gaze re-targeting. In addition, we render our output in
stereo (right), which enables display on stereo devices such as other VR headsets.

ABSTRACT
We propose FaceVR, a novel image-based method that enables video
teleconferencing in VR based on self-reenactment. State-of-the-art
face tracking methods in the VR context are focused on the anima-
tion of rigged 3d avatars [Li et al. 2015; Olszewski et al. 2016]. While
they achieve good tracking performance the results look cartoonish
and not real. In contrast to these model-based approaches, FaceVR
enables VR teleconferencing using an image-based technique that
results in nearly photo-realistic outputs. The key component of
FaceVR is a robust algorithm to perform real-time facial motion cap-
ture of an actor who is wearing a head-mounted display (HMD), as
well as a new data-driven approach for eye tracking from monocular
videos. Based on reenactment of a prerecorded stereo video of the
person without the HMD, FaceVR incorporates photo-realistic re-
rendering in real time, thus allowing arti�cial modi�cations of face
and eye appearances. For instance, we can alter facial expressions
or change gaze directions in the prerecorded target video. In a live
setup, we apply these newly-introduced algorithmic components.

CCS CONCEPTS
•Computing methodologies→ Computer vision; Computer
graphics;

KEYWORDS
face tracking, virtual reality, eye tracking

1 INTRODUCTION
Modern head-mounted virtual reality displays, such as the Oculus
Rift™ or the HTC Vive™, are able to provide very believable and
highly immersive stereo renderings of virtual environments to a
user. In particular, for teleconferencing scenarios, where two or
more people at distant locations meet (virtually) face-to-face in
a virtual meeting room, VR displays can provide a far more im-
mersive and connected atmosphere than today’s teleconferencing
systems. These teleconferencing systems usually employ one or
several video cameras at each end to �lm the participants, whose
video(s) are then shown on one or several standard displays at the
other end. Imagine one could take this to the next level, and two
people in a VR teleconference would each see a photo-realistic
3D rendering of their actual conversational partner, not simply an
avatar, but in their own HMD. The biggest obstacle in making this a
reality is that while the HMD allows for very immersive rendering,
it is a large physical device which occludes the majority of the
face. In other words, even if each participant of a teleconference
was recorded with a 3D video rig, whose feed is streamed to the
other end’s HMD, natural conversation is not possible due to the
display occluding most of the face. Recent advancements in VR
displays are �anked by great progress in face performance capture
methods. State-of-the-art approaches enable dense reconstruction
of dynamic face geometry in real-time, from RGB-D [Bouaziz et al.
2013; Hsieh et al. 2015; Li et al. 2013; Siegl et al. 2017; Weise et al.
2011; Zollhöfer et al. 2014] or even RGB cameras [Cao et al. 2015,
2014a; Thies et al. 2016]. A further step has been taken by recent
RGB-D [Thies et al. 2015] or RGB-only [Thies et al. 2016] real-time
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facial reenactment methods. In the aforementioned VR teleconfer-
encing setting, a facial self-reenactment approach can be used to
show the unoccluded face of each participant on the VR display
at the other end. Unfortunately, the stability of many real-time
face capture methods su�ers if the tracked person wears an HMD.
Furthermore, existing reenactment approaches cannot transfer the
appearance of eyes, including blinking and eye gaze - yet exact
reproduction of the facial expression, including the eye region, is
crucial for conversations in VR.

In our work, we therefore propose FaceVR, a new real-time fa-
cial reenactment approach that can transfer facial expressions and
realistic eye appearance between a source and a target actor video.
Eye movements are tracked using an infrared camera inside the
HMD, in addition to outside-in cameras tracking the unoccluded
face regions (see Fig. 1). Using the self-reenactment described above,
where the target video shows the source actor without the HMD,
the proposed approach, for the �rst time, enables live VR teleconfer-
encing. In order to achieve this goal, we make several algorithmic
contributions:

• Robust real-time facial performance capture of a person
wearing an HMD, using an outside-in RGB-D camera
stream, with rigid and non-rigid degrees of freedom, and
an HMD-internal camera.

• Real-time eye-gaze tracking with a novel classi�cation
approach based on random ferns, for video streams of an
HMD-internal camera or a regular webcam.

• Facial reenactment with photo-realistic re-rendering of
the face region including the mouth and the eyes, using
model-based shape, appearance, and lighting capture.

• An end-to-end system for facial reenactment in VR, where
the source actor is wearing an HMD and the target actor
is recorded in stereo.

2 RELATEDWORK
A variety of methods exist to capture detailed static and dynamic
face geometry with specialized controlled acquisition setups [Klehm
et al. 2015]. Some methods use passive multi-view reconstruction
in a studio setup [Beeler et al. 2011; Borshukov et al. 2003; Fy�e
et al. 2014; Pighin and Lewis 2006], optionally with the support
of invisible makeup [Williams 1990] or face markers [Huang et al.
2011]. Methods using active scanners for capture were also devel-
oped [Weise et al. 2009; Zhang et al. 2004].

Many approaches employ a parametric identity model [Blanz
et al. 2003; Blanz and Vetter 1999], and face expression [Tena et al.
2011]. Blend shape models are widely used for representing the ex-
pression space [Lewis et al. 2014; Pighin et al. 1998], and multi-linear
models jointly represent the identity and expression space [Shi et al.
2014; Vlasic et al. 2005]. Newer methods enable dense face perfor-
mance capture in more general scenes with more lightweight setups,
such as a stereo camera [Valgaerts et al. 2012], or even just a single
RGB video at o�-line frame rates [Fy�e et al. 2014; Garrido et al.
2013; Shi et al. 2014; Suwajanakorn et al. 2014]. Garrido et al. [2016]
reconstruct a fully controllable parametric face rig including re-
�ectance and �ne scale detail, and [Suwajanakorn et al. 2015] build
a modi�able mesh model of the face. [Ichim et al. 2015] recon-
struct a game-type 3D face avatar from static multi-view images

and a video sequence of face expressions. More recently, methods
reconstructing dense dynamic face geometry in real-time from a
single RGB-D camera [Bouaziz et al. 2013; Hsieh et al. 2015; Li et al.
2013; Weise et al. 2011; Zollhöfer et al. 2014] were proposed. Some
of them estimate appearance and illumination along with geom-
etry [Thies et al. 2015]. Using trained regressors [Cao et al. 2015,
2014a], or parametric model �tting, dense dynamic face geometry
can be reconstructed from monocular RGB video [Thies et al. 2016].
Recently, Cao et al. [2016] proposed an image-based representation
for dynamic 3D avatars that supports various hairstyles and parts
of the upper body.

The ability to reconstruct face models from monocular input
data enables advanced image and video editing e�ects. Given a
portrait of a person, a limitless number of appearances can be
synthesized [Kemelmacher-Shlizerman 2016] based on face replace-
ment and internet image search. Examples for video editing e�ects
are re-arranging a database of video frames [Li et al. 2012] such
that mouth motions match a new audio stream [Bregler et al. 1997;
Taylor et al. 2015], face puppetry by reshu�ing a database of video
frames [Kemelmacher-Shlizerman et al. 2010], or re-rendering of
an entire captured face model to make mouth motion match a
dubbed audio-track [Garrido et al. 2015]. Other approaches replace
the face identity in a target video [Dale et al. 2011; Garrido et al.
2014]. When face expressions are modi�ed, it is often necessary
to re-synthesize the mouth and its interior under new or unseen
expressions, for which image-based [Kawai et al. 2014; Thies et al.
2016] or 3D template-based [Thies et al. 2015] methods were exam-
ined. Recently, Suwajanakorn et al. [2017] presented a system that
learns the mapping between audio and lip motion. This learning
based approach requires a large amount of person speci�c training
data and cannot control the gaze direction. Vlasic et al. [2005] de-
scribe a model-based approach for expression mapping onto a target
face video, enabling o�-line reenactment of faces under controlled
recording conditions. While Thies et al. [2015] enable real-time
dense tracking and photo-realistic expression mapping between
source and target RGB-D video, Face2Face [Thies et al. 2016] en-
ables real-time expression cloning between captured RGB video
of one actor and an arbitrary target face video. Under the hood,
they use a real-time tracker capturing dense shape, appearance and
lighting. Expression mapping and image-based mouth re-rendering
enables photo-realistic target appearance.

None of the aforementioned capture and reenactment ap-
proaches succeeds under strong face occlusion by a VR headset, nor
can combine data from several cameras – inside and outside the
display – and thus cannot realistically re-render the eye region and
appearance, including correct gaze direction. Parts of our method
are related to image-based eye-gaze estimation approaches. Com-
mercial systems exist for eye gaze tracking of the unoccluded face
using special externally placed cameras, e.g., from Tobii1, or IR
cameras placed inside a VR headset, e.g., from Pupil Labs2, FOVE3

or SMI4.
Appearance-based methods for gaze-detection of the unoc-

cluded face from standard externally placed cameras were also

1www.tobii.com
2www.pupil-labs.com
3www.getfove.com
4www.smivision.com
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researched [Sugano et al. 2014; Zhang et al. 2015]. Wang et al. [2016]
simultaneously capture 3D eye gaze, head pose, and facial expres-
sions using a single RGB camera at real-time rates. However, they
solve a di�erent problem from ours; we need to reenact – i.e.,
photo-realistically synthesize – the entire eye region appearance
in a target video of either a di�erent actor, or the same actor under
di�erent illumination, from input video of an in-display camera.
Parts of our method are related to gaze correction algorithms for
teleconferencing where the eyes are re-rendered such that they look
into the web-cam, which is typically displaced from the video dis-
play [Criminisi et al. 2003; Kononenko and Lempitsky 2015; Kuster
et al. 2012]. Again, this setting is di�erent from ours, as we need
to realistically synthesize arbitrary eye region motions and gazes,
and not only correct the gaze direction.

Related to our paper is the work by Li et al. [2015] who capture
moving facial geometry while wearing an HMD with a rigidly
attached depth sensor. In addition, they measure strain signals
with electronic sensors to estimate facial expressions of regions
hidden by the display. As a result, they obtain the expression
coe�cients of the face model which are used to animate virtual
avatars. Recently, Olszewski et al. [2016] propose an approach
for HMD users to control a digital avatar in real-time based on
RGB data. The user’s mouth is captured by a camera that is rigidly
attached to the HMD and a convolutional neural network is used
to regress from the images to the parameters that control a digital
avatar. They also track eyebrow motion based on a camera that is
integrated into the head mounted display. Both of these approaches
only allow to control a virtual avatar – rather than a real video –
and do not capture the eye motion. Our approach takes this a step
further and captures facial performance as well as the eye motion
of a person using an HMD. In addition, we allow to re-render and
reenact the face, mouth, and eye motion of a target stereo stream
photo-realistically and in real-time.

Recently, Google presented an approach for HMD removal in
the virtual/mixed reality setting [Frueh et al. 2017], which shows
the great interest in such technology. Instead of removing the
entire HMD, they use translucent rendering techniques to reveal
the occluded eye region. They synthesize the eye region similar to
our method [Anonymous 2016], based on the gaze estimation of
an HMD-integrated SMI eye tracker and static face geometry. In
contrast, our approach based on self-reenactment produces a stereo
video of the person completely without the HMD. Furthermore, we
present a lightweight eye tracking approach that is able to track
eye motions and enables us to synthesize new eye motions in a
photo-realistic fashion.

3 HARDWARE SETUP
Our approach requires two di�erent inputs. One is called source,
it is the live video feed of the person wearing a head-mounted
display (HMD). We call the person in this video source actor. In
addition to this live video, we require a prerecorded stereo video of
the person without the HMD. This stereo video is the target video
and the person in that video is called target actor. Note that for
self-reenactment the source and target actor are the same person.
The source actor is wearing a head-mounted display (HMD), and
we use a lightweight hardware setup to reconstruct and track the

Figure 2: Hardware setups: a source actor experiences VR
wearing an Oculus DK2 headset (left). We track the source
actor using a commodity RGB-D sensor (front-facing), and
augment the HMDwith ArUco markers, as well as an IR we-
bcam in the inside (mounted with Add-on Cups2). The tar-
get actor footage is captured with a lightweight stereo rig,
which is composed of two webcams (right).

source actor’s face. To this end, we augment commodity VR goggles
with a simple IR webcam on the inside for tracking one eye. For
tracking the rigid pose and facial expressions, we use outside-in
tracking based on a real-time RGB-D sensor (Asus Xtion Pro), as
well as ArUco AR markers on the front panel of the HMD.

The tracking and reconstruction pipeline for the target actor
di�ers. Here, we use a stereo setup which is composed of two
commodity webcams. This allows for robust face tracking and
generation of 3D video content that we can display on an HMD
(which is the case for VR teleconferencing). We pre-record the
target actor’s video stream, but we modify and replay it in real-
time. In addition, we assume that the face in the target video is
mostly unoccluded.

3.1 Head-Mounted Display for the Source Actor
To enable VR teleconferencing, we use an Oculus Rift DK2 head-
mounted display, and we integrate a simple IR webcam to track
the source actor’s eyes. The camera is integrated inside the HMD
with Oculus Rift DK2 Monocular Add-on Cups, which allows us
to obtain a close-up camera stream of the right eye [Labs 2016];
see Fig. 2, left. Although we present results on this speci�c setup,
our method is agnostic to the head-mounted display, and can be
used in combination with any other VR device, such as the VR Box,
Samsung Gear VR, or HTC Vive. The monocular camera, which
we integrate in the DK2, captures an IR stream of the eye region
at a resolution of 640 × 480 pixels at 120Hz. IR LEDs are used as
active light sources such that bright images can be obtained, and
the camera latency is 5.7ms. The camera is mounted on the top of
the VR device lens and an IR mirror is used to get a frontal view
of the eye without interfering with the view on the display. The
camera is located close to the lenses (see Fig. 2, left), and captures
images IE of the eye at real-time rates. Note that our prototype has
only one internal camera. Thus, we use the stream of the right eye
to infer and reenact the motion of both the left and the right eye.
This is feasible as long as we can assume that the focus distance
is the same as during calibration, that is eye vergence (squinting)
does not change. If this assumption does not hold, a second internal
camera for the left eye can be easily integrated into our design.
In addition, we augment the DK2 by attaching two ArUco AR
markers to the front of the HMD to robustly track the rigid pose.
During face tracking, this allows us to decouple the rigid head pose
from the facial expression parameters by introducing additional
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soft constraints obtained from the markers. The combination of
marker tracking and joint optimization allows to further stabilize
the estimates of the rigid head pose, leading to much higher tracking
accuracy (see Fig. 3).

Tracking of the Source Actor. For tracking the source actor in
real-time, we use a commodity RGB-D camera. Speci�cally, we use
an Asus Xtion Pro RGB-D sensor that captures RGB-D frames of
640×480 pixels at 30 fps (both color and depth). In every frame, the
camera captures an RGB image II and a depth image DI , which
we assume to be spatially and temporally aligned. Both images are
parameterized by pixel coordinates p, each RGB value is II (p) ∈ R3.
Depth DI (p) ∈ R is reprojected into the same space as II . Note
that we are only considering visible pixel locations p ∈ P on the
face that are not occluded by the HMD.

3.2 3D Stereo Rig for Target Actor Tracking
In order to obtain a 3D reconstruction of the target actor, we use
the binocular image stream of a lightweight stereo rig. Our setup is
composed of two commodity webcams (Logitech HD Pro Webcam
C920), which are rigidly mounted side-by-side and facing the same
direction on a stereo bar; see Fig. 2 (right). The camera rig captures
a stereo stream of two RGB pairs I(c)I , c ∈ {1, 2} at real-time rates.
The two cameras are synchronized up to 33ms and capture images
at the resolution of 800 × 600 pixels at 30Hz. This stereo content is
used to capture the target 3D video content. We calibrate the stereo
rig intrinsically and extrinsically using standard OpenCV routines.

4 SYNTHESIS OF FACIAL IMAGERY
We parameterize human heads under general uncontrolled illumi-
nation based on a multi-linear face and an analytic illumination
model. A linear PCA basis is used for facial identity [Blanz and
Vetter 1999] (geometry and re�ectance) and a blendshape basis for
the expression variations [Alexander et al. 2009; Cao et al. 2014b].
This results in the spatial embedding of the underlying mesh and
the associated per-vertex color information parameterized by linear
models, F (T,α , β,δ) and C(β,γ ), respectively. The mesh has 106K
faces and 53K vertices. Here, T ∈ R4×4 models the rigid head pose,
α ∈ R80 the geometric identity, β ∈ R80 the surface re�ectance
properties, δ ∈ R76 the facial expression, and γ ∈ R3·9 the incident
illumination situation. The 3×9 illumination coe�cients encode the
RGB illumination based on 9 Spherical Harmonics (SH) [Ramamoor-
thi and Hanrahan 2001] basis functions. For convenience, we stack
all parameters of the model in a vector X = (T,α , β,δ ,γ ) ∈ R269.
Synthetic monocular images IS and synthetic stereo pairs (I(1)S , I

(2)
S )

of arbitrary virtual heads can be generated by varying the param-
eters X and using the GPU rasterization pipeline to simulate the
image formation process. To this end, we use a standard pinhole
camera model Π (•) under a full perspective projection.

Mouth Interior. The parametric head model does not contain
rigged teeth, a tongue or a mouth interior, since these facial features
are challenging to reconstruct and track from stereo input due to
strong occlusions in the input sequence. Instead, we propose two
di�erent image-based synthesis approaches (see Sec. 7). The �rst
is speci�cally designed for the self-reenactment scenario, where
source and target actor are the same person; here we cross project

the mouth interior from the source to the target video. For arbitrary
source and target actor pairs we improved the retrieval strategy of
Thies et al. [2016]. This retrieval approach �nds the best suitable
mouth frame in a mouth database, captured in a short training
sequence. In contrast to their approach, our retrieval clusters frames
into static and dynamic motion segments leading to temporally
more coherent results. The output of this step is then composited
with the rendered model using alpha blending (see Sec. 7).

Eyeball and Eyelids. We use a uni�ed image-based strategy to
synthesize plausible animated eyes (eyeball and eyelid) that can be
used for photo-realistic facial reenactment in VR applications. This
novel strategy is one of the core components of this work and is
described in more detail in Section 6.

5 PARAMETRIC MODEL FITTING
Our approach uses two di�erent tracking and reconstruction
pipelines for each (source and target) actor, respectively. The source
actor, who is wearing the HMD, is captured using an RGB-D cam-
era; see Sec. 3.1. Here, we constrain the face model F by the visible
pixels on the face that are not occluded by the HMD, as well as
the attached ArUco AR markers. The target actor reconstruction
– which becomes the corresponding VR target content that is ani-
mated at runtime – is obtained in a pre-process with the lightweight
stereo setup described in Sec. 3.2. For both tracking pipelines, we
use an analysis-by-synthesis approach to �nd the model parame-
ters X that best explain the input observations. The underlying
inverse rendering problem is tackled based on energy minimization
as proposed in [Thies et al. 2015, 2016].

The tracking for the source and the target actor di�er in the
energy formulation. The source actor is partly occluded by the
HMD, there we measure dense color and depth alignment based
on the observations of the RGB-D camera. We restrict the dense
reconstruction to the lower part of the face using a prede�ned
visibility mask. In addition, we use ArUco markers that are attached
to the HMD to stabilize the rigid pose of the face (seen Fig. 3).

As the target videos are recorded in stereo, we adapted the energy
formulation to work on binocular RGB data. The results show that
our new stereo tracking approach leads to better tracking accuracy
than the monocular tracking of [Thies et al. 2016].

For simplicity, we �rst describe the energy formulation for track-
ing the target actor in Sec. 5.1. Then, we introduce the objective
function for �tting the face model of the source actor in Sec. 5.2.

5.1 Target Actor Energy Formulation
In order to process the stereo video stream of the target actor,
we introduce a model-based stereo reconstruction pipeline that
constrains the face model according to both RGB views per frame.
In other words, we aim to �nd the optimal model parameters X
constrained by the input stereo pair {I(c)I }

2
c=1. Our model-based

stereo reconstruction and tracking energy Etarget is a weighted
combination of alignment and regularization constraints:

Etarget(X) =
[
wsteEste(X) +wlanElan(X)

]
︸                               ︷︷                               ︸

alignment

+
[
wregEreg(X)

]
︸            ︷︷            ︸

regularizer

. (1)
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We use dense photometric stereo alignment Este and sparse stereo
landmark alignment Elan in combination with a robust regulariza-
tion strategy Ereg. The sub-objectives of Etarget are scaled based
on empirically determined, but constant, weights wste = 100,
wlan = 0.0005, and wreg = 0.0025 that balance the relative im-
portance.

Dense Photometric Stereo Alignment. We enforce dense pho-
tometric alignment of the input I(c)I and the synthetic imagery I(c)S .
For robustness against outliers, we use the `2,1-norm [Ding et al.
2006] instead of a traditional least-squares formulation:

Este(X) =
2∑

c=1

1
|P(c) |

∑
p∈P(c )

I(c)S (p) − I(c)I (p)2 . (2)

Here, P(c) is the set of visible model pixels p from the cth -camera.
The visible pixels of the model are determined by a forward ren-
dering pass using the old parameters. We normalize based on the
total number of pixels |P(c) | to guarantee that both views have the
same in�uence. Note that the two sets of visible pixels are updated
in every optimization step, and for the forward rendering pass we
use the face parameters of the previous iteration or frame.

Sparse Stereo Landmark Alignment. We use sparse point-to-
point alignment constraints in 2D image space that are based on
per-camera sets L(c) of 66 automatically detected facial landmarks.
The landmarks are obtained by a commercial implementation5 of
the detector of Saragih et al. [2011]:

Elan(X) =
2∑

c=1

1
|L(c) |

∑
(l,k)∈L(c )

wl,k ‖l − Π(Fk (T,α , β,δ)‖22 . (3)

The projected vertices Fk (T,α , β,δ) are enforced to be spatially
close to the corresponding detected 2D feature l. Constraints are
weighted by the con�dence measures wl,k , which are provided by
the sparse facial landmark detector.

Statistical Regularization. In order to avoid implausible face
�ts, we apply a statistical regularizer to the unknowns ofX that are
based on our parametric face model. We favor plausible faces where
parameters are close to the mean with respect to their standard
deviations σid, σalb, and σexp.

Ereg(X) =
80∑
i=1

[(
αi
σid,i

)2
+

(
βi

σalb,i

)2]
+

76∑
i=1

(
δi

σexp,i

)2
. (4)

σid and σalb are the standard deviations of the statistical face model,
σexp is set to a constant value (= 1).

5.2 Source Actor Tracking Objective
At runtime, we track the source actor who is wearing the HMD
and is captured by the RGB-D sensor. The tracking objective for
visible pixels that are not occluded by the HMD is similar to the
symmetric point-to-plane tracking energy in Thies et al. [2015]. In
addition to this, we introduce rigid stabilization constraints which
are given by the ArUco AR markers in front of the VR headset.
These constraints are crucial to robustly separate the rigid head
motion from the face identity and pose parameters (see Fig. 3). The
5TrueVisionSolutions Pty Ltd

Figure 3: Trackingwith andwithoutArUcoMarker stabiliza-
tion.

total energy for tracking the source actor at runtime is given by
the following linear combination of residual terms:
Esource(X) = wrgbErgb(X) +wgeoEgeo(X) +wstaEsta(X) +wregEreg(X) .

(5)
The �rst term of this objective Ergb measures the photometric
alignment of the input RGB image II from the camera and the
synthetically-generated rendering IS :

Ergb(X) =
1
|P |

∑
p∈P

IS(p) − II (p)2 . (6)

This color term is de�ned over all visible pixels P in the bottom
half of the face that are not occluded by the HMD, and we use the
same `2,1-norm as in Eq. 2.

In addition to the photometric alignment, we constrain the face
model by the captured range data:

Egeo(X) = wpointEpoint(X) +wplaneEplane(X) . (7)

Similar to Ergb, geometric residuals of Egeo are de�ned over the
same set of visible pixels on the face. The geometric term is com-
posed of two sub-terms, a point-to-point Epoint term, where DI
is the input depth and DS is the rendered depth (both are back-
projected into camera space),

Epoint(X) =
∑
p∈P

DS(p) − DI (p)22 , (8)

as well as a symmetric point-to-plane term

Eplane(X) =
∑
p∈P

[
d2plane(NS(p), p) + d

2
plane(NI (p), p)

]
, (9)

where dplane(n, p) =
[
(DS(p) − DI (p))T · n

]
, NI (p) is the input

normal and NS(p) the rendered model normal.
In addition to the constraints given by the raw RGB-D sensor

data, the total energy of the source actor Esource incorporates rigid
head pose stabilization. This is required, since in our VR scenario
the upper part of the face is occluded by the HMD. Thus, only the
lower part can be tracked and the constraints on the upper part of
the face, which normally stabilize the head pose, are missing. To
stabilize the rigid head pose, we use the two ArUco markers that
are attached to the front of the HMD (see Fig. 3).

We �rst extract a set of eight landmark locations based on the
two markers (four landmarks each). In order to handle noisy depth
input, we �t two 3D planes to the frame’s point cloud that bound
each marker, respectively. We then use the resulting 3D corner
positions of the markers, and project them into face model space.
Using these stored reference positions Ak we establish the rigid
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head stabilization energy Esta:

Esta(X) =
1
|S|

∑
(l,k)∈S

‖l − Π(TAk )‖22 . (10)

Here, S de�nes the correspondences between the detected 2D land-
mark positions l in the current frame and the reference positions
Ak . In contrast to the other data terms, Esta depends only on the
rigid transformation T of the face and replaces the facial landmark
term used by Thies et al. [2015]. Note that the Saragih tracker is
unable to robustly track landmarks in this scenario since only the
lower part of the face is visible. The statistical regularization term
Ereg is the same as for the target actor (see Eq. 4).

5.3 Data-Parallel Optimization
We �nd the optimum of both face tracking objectives X∗source =
argminX Esource(X) and X∗target = argminX Etarget(X) based on
variational energy minimization, leading to an unconstrained non-
linear optimization problem. Due to the robust `2,1-norm used to
enforce photo-metric alignment, we �nd the minimum based on
a data-parallel Iteratively Re-weighted Least Squares (IRLS) solver
[Thies et al. 2016]. At the heart of the IRLS solver, a sequence of
non-linear least squares problems are solved with a GPU-based
Gauss-Newton approach [DeVito et al. 2016; Thies et al. 2015, 2016;
Wu et al. 2014; Zollhöfer et al. 2015, 2014] that builds on an iterative
Preconditioned Conjugate Gradient (PCG) solver. The optimization
is run in a coarse-to-�ne fashion using a hierarchy with three lev-
els. We only run tracking on the two coarser levels using seven
IRLS steps on the coarsest and one on the medium level. For each
IRLS iteration, we perform one GN step with four PCG steps. In
order to exploit temporal coherence, we initialize the face model
with the optimization results from the previous frame. First, this
gives us a good estimate of the visible pixel count in the forward
rendering pass, and second, it provides a good starting point for
the GN optimization. Note that we never explicitly store JT J , but
instead apply the multiplication of the Jacobian (and its transpose)
on-the-�y within every PCG step. Thus, the compute cost for each
PCG iteration becomes more expensive for multi-view optimization
of Etarget; although materialization is still less e�cient, since we
only need a small number of PCG iterations.

6 AN IMAGE-BASED EYE AND EYELID
MODEL

We propose a novel image-based retrieval approach to track and
synthesize the region of the eyes, including eyeballs and eyelids.
This approach is later used in all presented applications,especially
in the self-reenactment for video conferencing in VR (see Sec. 8.1).
We chose an image-based strategy, since it is speci�c to a person;
it not only models the behavior of the eyeballs, but also captures
idiosyncrasies of eyelid movement while enabling photo-realistic
re-rendering. Our approach uses a hierarchical variant of random
ferns [Ozuysal et al. 2010] to robustly track the eye region. To
this end, we propose a novel actor-speci�c and fully automatic
training stage. In the following, we describe our fully automatic
data generation process, the used classi�er and the optimizations
that are required to achieve fast, robust, and temporally stable gaze
estimates.

Figure 4: Left: the eye calibration pattern used to gener-
ate training data for learning our image-based eye-gaze re-
trieval. In the training phase, we progress row-by-row in a
zig-zag order; each grid point is associated with an eye-gaze
direction. Right: to obtain robust results, we perform a hi-
erarchical classi�cation where classes of the �ner level are
accumulated into a smaller set of super classes.

6.1 Training Data Generation
To train our image-based eye regression strategy, we require a
su�ciently large set of labeled training data. Since manual data
annotation for every new user is practically infeasible, we propose
a very e�cient approach based on a short eye calibration sequence.

During the training process, we display a small circle at di�erent
positions of a 7 × 5-tiled image grid on the screen in front of the
user; see Fig. 4, left. This allows us to capture the space of all
possible look-at points on the display. In addition, we capture an
image of a closed eye for the synthesis of eye blinks. The captured
image data In is divided into 36 = 7 × 5 + 1 unique classes ln ,
where every class is associated with a view direction. The ground
truth gaze directions are given by the current position of the dot on
the screen in the training data. During training, the user focuses
on the displayed dot with his eye gaze. We show every dot for 2
seconds for each location. The data captured in the �rst 0.4 seconds
is rejected to allow the user a grace period to adjust his eye-gaze to
new positions. In the remaining 1.6 seconds, we capture 50 frames
which we use to populate the corresponding class. After that, we
proceed to the next class, and move the dot to the next position.
Note that the dot location for a given class is �xed, but we obtain
multiple samples within each class (one for each frame) from the
input data. This procedure progresses row-by-row in a zig-zag
order; see Fig. 4, left. Finally, we augment the samples in each class
by jittering each captured source image by ±1 pixels, resulting in
9× 50 training frames per class. Each cluster is also associated with
a representative image of the eye region obtained from the captured
input data. The representative image of each class is given by the
median of the corresponding video clip, which is later used for the
synthesis of new eye movements. Finally, we add an additional class
which represents eye blinks; this class is obtained by asking the user
to close his eyes at the end of the training phase. This calibration
sequence is performed for both the source and target actor. Since
the calibration sequence is the same for both actors, we obtain one-
to-one correspondences between matching classes across actors.
Note, for the source actor we directly use the image data that we
observe from the IR camera that is integrated into the HMD as
training data. For the target actor, we compute a normalized view
of the eye from the stereo video input using the texture space of
the parametric face model. These normalized views are later used
to re-synthesize the eye motions of the target actor (see Sec. 7). As
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detailed in the following subsections, we use the data of the source
actor to train an eye-gaze classi�er which predicts gaze directions
for the source actor at runtime. Once trained, for a given source
input frame, the classi�er identi�es cluster representatives from the
target actor eye data. The ability to robustly track the eye direction
of the source actors forms the basis for real-time gaze-aware facial
reenactment; i.e., we are able to photo-realistically animate/modify
the eyes of a target actor based on a captured video stream of the
source actor. In the following, we detail our eye tracking strategy.

6.2 Random Ferns for Eye-gaze Classi�cation
The training data {In , ln }Nn=1, which is obtained as described in the
previous section, is a set of N input images In with associated class
labels ln . Each label ln ∈ {cl }Cl=1 belongs to one of C classes cl . In
our case, the images of the eye region are clustered based on gaze
direction. We tackle the associated supervised learning problem
by an ensemble of M random ferns [Ozuysal et al. 2010], where
each fern is based on S features. To this end, we de�ne a sequence
of K = MS binary intensity features F = { fk }Kk=1, which is split
into M independent subsets Fm of size S . Assuming statistical
independence and applying Bayes Rule, the log-likelihood of the
class label posterior can be written as:

log P(cl |F) ∼ log
[
P(cl ) ·

M∏
m=1

P(Fm |cl )
]
. (11)

The class likelihoods P(Fm |cl ) are learned using random ferns. Each
fern performs S binary tests, which discretizes the per-class feature
likelihood into B = 2S bins. At �rst, we initialize all bins with one
to prevent taking the logarithm of zero. In all experiments, we use
M = 800 ferns with S = 5 binary tests. Finally, the class with the
highest posterior probability is chosen as the classi�cation result.
Training takes only around 4.9ms per labeled image, thus training
runs in parallel to the calibration sequence. Once trained, the best
class is obtained in less than 1.4ms.

Hierarchical Eye-gaze Classi�cation. In order to e�ciently
handle classi�cation outliers, we perform eye-gaze classi�cation
on a two-level hierarchy with a �ne and a coarse level. The 35 + 1
classes of the �ne level are de�ned by the grid points of the zig-zag
calibration pattern shown in Fig. 4, left. To create the coarse level,
we merge neighboring classes of the �ne level into superclasses.
For a set of four adjacent classes (overlap of one), we obtain one
superclass; see Fig. 4, right. This leads to a grid with 25 = 4 × 6 + 1
unique classes (rather than the 35+ 1 classes; the class for eye blink
is kept the same).

During training, we train the two hierarchy levels independently.
The training data for the �ne level is directly provided by the cal-
ibration pattern, and the data for the coarse level is inferred as
described above. At test time, we �rst run the classi�er of the
coarse level which provides one of the superclasses. Then the
classi�cation on the �ne level only considers the four classes of
the best matching superclass. The key insight of this coarse-to-
�ne classi�cation is to break up the task into easier sub-problems.
That is, the classi�cation on the coarse level is more robust and
less prone to outliers of the fern predictions since there are fewer
classes to distinguish between. The �ne level then complements
the superclass prediction by increasing the accuracy of the inferred

Figure 5: Comparison of a one (orange) and a two level (blue)
classi�er. Ground truth data is obtained by a test subject
looking at a dot that appears every 80 frames (2.6 seconds)
at random (Sample Point); error is measured in normalized
screen space coordinates in [0, 1]2. As shown by the magni-
tude of the positional error, themulti-level classi�er obtains
higher accuracy.

eye-gaze directions. In the end, this multi-level classi�er leads to
high accuracy results while minimizing the probability of noisy
outliers. In Fig. 5, we show a comparison between a one and two
level classi�er. The two level approach obtains a lower error (mean
0.217973, std.dev. 0.168094) compared to the one level approach
(mean 0.24036, std.dev. 0.18595).

Temporal Stabilization. We also introduce a temporal stabi-
lizer that favors the previously-retrieved eye-gaze direction. This
particularly helps in the case of small eye motions, where the switch
to a new class would introduce unwanted jitter. To this end, we ad-
just the likelihood of a speci�c class P(cl ) using an empirically deter-
mined temporal prior such that the previously-predicted eye-gaze
direction cold is approximately 1.05× more likely than changing
the state and predicting a di�erent class:

P(cl ) =
{
p1 =

1.05
1+1.05 ≈ 0.512, if (cl = cold)

p2 = 1 − p1 ≈ 0.488, else
. (12)

We integrate the temporal stabilization on both levels of the clas-
si�cation hierarchy. First, we favor the super class on the coarse
level using the aforementioned temporal prior. If the current and
previous prediction on the coarse level is the same, we apply a
similar prior to the view within the superclass. Otherwise, we use
no temporal bias on the �ne level. This allows fast jumps of the eye
direction, which is crucial for fast saccade motion that pushes the
boundary of the 30Hz temporal resolution of the stereo setup.

7 FACE RIG AND COMPOSITING
Generation of a Personalized Face Rig. At the beginning of

each recording, both of the source and target actor, we compute a
person-speci�c face rig in a short initialization stage. To this end,
we capture three keyframes with slightly di�erent head rotations
in order to recover the user’s facial geometry and skin re�ectance.
Given the constraints of these three keyframes, we jointly optimize
for all unknowns of our face model F – facial geometry, skin
re�ectance, illumination, and expression parameters – using our
tracking and reconstruction approach. This initialization requires
a few seconds to complete; once computed, we maintain a �xed
estimate of the facial geometry and replace the re�ectance estimate
with a person-speci�c illumination-corrected texture map.

7



Figure 6: Building a personalized stereo avatar; from left to right: we �rst jointly optimize for all unknowns of our parametric
facemodel using a non-rigid bundle adjustment formulation on the input of three stereo pairs. For tracking, we only optimize
for expression, lighting, and rigid pose parameters constrained by synchronized stereo input; this optimization runs in real-
time. Next, we train our data-driven eye tracker with data from an eye-calibration sequence. In addition to eye calibration,
we build a database of mouth stereo pairs, which captures the variation of mouth motion. Note, the mouth database is only
required if the mouth cross-projection is not used. As a result, we obtain a tracked stereo target, which is used during live
re-enactment (this is the target actor).

In the stereo case, we compute one re�ectance texture for each
of the two cameras. This ensures that the two re-projections ex-
actly match the input streams, even if the two used cameras have
slightly di�erent color response functions. In the following steps,
we use this high-quality stereo albedo map for tracking, and we
restrict the optimizer to only compute the per-frame expression and
illumination parameters. All other unknowns (the facial identity)
are person-speci�c and can remain �xed for a given user.

To track and synthesize new eye motions in both videos (source
and target), we capture the person-speci�c appearance and motion
of the eyes and eyelids during a short eye-calibration sequence in
the initialization stage as described in Sec. 6.1.

Reenactment and Real-time Compositing. At run-time, we
use the reconstructed face model along with its calibration data
(eye and mouth; see Fig. 6) to photo-realistically re-render the face
of the target actor. We �rst modify the facial expression parameters
of the reconstructed face model of the target actor to match the face
expression of the source actor. The expressions are transfered from
source to target using the subspace deformation transfer approach
of Thies et al. [2016].

In the �nal compositing stage, we render the mouth texture, the
eye textures, and the (potentially modi�ed) 3D face model on top
of the target video using alpha blending. Instead of a static face
texture, we use a per-frame texture based on the current frame of
the target video. This leads to results of higher resolution, since
slight misalignments during the generation of the personalized face
rig have no in�uence on the �nal texture quality.

Synthesis of Mouth Interior. In order to enable high-quality
reenactment of the mouth in the target video, we propose two dif-
ferent approaches. The method of choice depends on the speci�c
use-case. In the self-reenactment scenario, which is the case for
HMD removal (see Sec. 8.1), we directly project the mouth interior
of the source video to the target video. We use Poisson image blend-
ing [Pérez et al. 2003] to seamlessly blend the mouth texture into
the modi�ed target video. This ensures an accurate reproduction of

Figure 7: Comparison in the case of self-reenactment be-
tween the two proposed image-basedmouth interior synthe-
sis strategies: Cross-projection (right) leads to more natural
and higher quality mouth interiors than the retrieval-based
approach.

the correct mouth shape and interior in the case of identical source
and target identity. The Poisson equation is solved on the GPU
using the Jacobi iterative method.

In the case of stereo reenactment, where the source and the target
actor di�er, we built a database of target mouth interiors using a
short calibration sequence as proposed by Thies et al. [2016]. In
this scenario, cross-projection cannot be applied, since this would
change the identity of the target actor. The mouth motion database
is clustered into static and dynamic motion segments based on
the space-time trajectory of the sparse 2D landmark detections.
We select the mouth frame from the database that has the most
similar spatial distribution of 3D marker positions. In contrast
to Thies et al. [2016], we prefer frames that belong to the same
motion segment as the previously retrieved one. This leads to
higher temporal coherence and hence less visual artifacts. The
retrieved mouth frames do not exactly match the transfered facial
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Figure 8: Eye Blinking: consecutive frames from left to right.
The IR input image captured by the camera mounted inside
the HMD (top row) is used to retrieve realistic eye textures
(middle row). In the �nal compositing stage, the texture is
seamlessly blended with the target face (bottom row).

expression. To account for this, Thies et al. [2016] stretch the texture
based on the face parameterization leading to visual artifacts, i.e.,
unnaturally stretched teeth, which are temporally unstable. To
alleviate this problem, we propose a new strategy and match the
retrieved texture to the outer mouth contour of the target expression
using a saliency preserving image warp [Wang et al. 2008]. For
a comparison of both approaches, we refer to the accompanying
video. We use a modi�ed as-rigid-as-possible regularizer that takes
local saliency of image pixels into account. The idea is to deform
the mouth texture predominantly in regions that will not lead to
visual artifacts. Stretching is most noticeable for the bright teeth,
since they are perfectly rigid in the physical world, while it is
harder to detect in the darker regions that correspond to the mouth
interior. Therefore, we use pixel intensity as a proxy to determine
local rigidity weights (a high value for bright and low value for
dark pixels) that control the amount of warping in di�erent texture
regions. This is based on the assumption that the teeth are the
predominant white pixels in the mouth region.

As can be seen in Fig. 7, the mouth cross-projection approach
leads to more natural results and captures more details such as the
movement of the tongue compared to the retrieval-based approach.

Synthesis of the Eye Region. Our eye gaze estimator is specif-
ically developed to allow a one-to-one correspondence between
the source and the target actor (cf. Sec. 6). Thus, after tracking
the source actor, we know the index of the gaze class in the eye
database of the target actor. To synthesize temporally coherent
and plausible eye motion, we temporally �lter the eye motion by
averaging the retrieved view direction of the gaze class in a small
window of frames. Afterwards, we use the average view direction
to perform the texture lookup. As described earlier (Sec. 6.2), we
use an additional class in our eye gaze classi�cation strategy to
represent lid closure. To obtain temporally smoother transitions
between an open and closed eye, we temporally �lter the eye tex-
ture based on an exponential average (a factor 0.8 for the retrieved
texture and 0.2 for the last result). Fig. 8 shows an exemplary eye
blink transition. Since the eye images of the target live in the space
of the face model texture space, they can directly be used in the
�nal rendering process.

8 RESULTS
In this section, we evaluate our gaze-aware facial reenactment
approach in detail and compare against state-of-the-art tracking
methods. All experiments run on a desktop computer with an

Nvidia GTX1080 and a 3.3GHz Intel Core i7-5820K processor. For
tracking the source and target actor, we use our hardware setup as
described in Sec. 3. Our approach is robust to the speci�c choice
of parameters, and we use a �xed parameter set in all experiments.
For stereo tracking, we set the following weights in our energy
formulation: wste = 100.0, wlan = 0.0005, wreg = 0.0025. Our RGB-
D tracking approach uses wrgb = 100.0, wgeo = 10000.0, wsta = 1.0,
wreg = 0.0025.

As our main result, we demonstrate self-reenactment for VR
goggles removal. In Appendix A we also show gaze correction in
monocular live video footage and gaze-aware facial reenactment.
All three applications share a common initialization stage that is
required for the construction of a personalized face and eye/eyelid
model of the users; see Sec. 7. The source video content is always
captured using the Asus Xtion depth sensor. Depending on the
application, we use our lightweight stereo rig or the RGB-D sensor
to capture the target actor.

8.1 Self-Reenactment for VR Video
Conferencing

Our real-time facial reenactment approach can be used to facilitate
natural video chats in virtual reality. The major challenge for video
conferencing in the VR context is that the majority of the face is
occluded by the HMD; therefore, the other person in a VR con-
versation is unable to see the eye region. Using self-reenactment,
the users can alter both the facial expression and the eye/eyelid
motion of the pre-recorded video stream. This virtually removes
the HMD from the face and allows users to appear as themselves
in VR without su�ering from occlusions due to the head mounted
display; see Fig. 9. In addition, the output video stream mimics the
eye motion, which is crucial since natural eye contact is essential in
conversations. Additionally, we show HMD removal examples with
a matching audio stream in the supplemental video. This shows
that, the �nal result is well aligned with the voice of the source
actor.

Although compression is not the main focus of this paper, it
is interesting to note that the reenactment results can be easily
transferred over a network with low bandwidth. In order to transmit
the 3D video content at runtime to the other participants in a video
chat, we only have to send the model parameters, as well as the
eye and mouth class indices. The �nal modi�ed stereo video can be
directly synthesized on the receiver side using our photo-realistic
re-rendering. Given that current video chat software, such as Skype,
still struggles under poor network connections, our approach may
be able to boost visual quality.

Evaluation of Face Identity Estimation. The identity of the
target actor is obtained using our model-based stereo bundle adjust-
ment strategy. We compare our identity estimate with the approach
of Thies et al. [2016] (Face2Face); see Fig. 10. As a reference, we use
a high-quality structured light scan of the same person taken with
a David 3D scanner. Our approach obtains a better reconstruction
of the identity, especially the chin, nose, and cheek regions are of
higher quality. Note that we estimate the identity by model-based
bundle adjustment over three stereo pairs. Face2Face uses only the
three images of one of the two RGB cameras.
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Figure 9: Self-Reenactment for VR Video Conferences: our
real-time facial reenactment approach allows to virtually re-
move the HMD by driving a pre-recorded target video of the
same person. Note, these results employ the mouth cross-
projection strategy to �ll in the mouth interior

Evaluation of Face Tracking Accuracy. In Fig. 11, we eval-
uate the stereo alignment accuracy of our approach and compare
to the monocular face tracker of Face2Face [Thies et al. 2016]. As
input, we use the binocular image stream captured by our custom
stereo setup; see Sec. 3. We measure the photometric error between
the input frames and the re-projection of the tracked face model.
The tracking of Face2Face is based on the left camera stream, since
this approach uses only monocular input data. Thus, Face2Face
obtains a good �t with respect to the left camera (average error
of 0.011), but the re-projection regarding the right camera su�ers
from strong misalignments (average error of 0.019). In contrast,

Figure 10: Accuracy of reconstructed identity: we compare
our result against Face2Face [Thies et al. 2016]. Note that our
approach obtains a better shape estimate of the chin, nose,
and cheek regions. For reference, we use a structured light
reconstruction from a David 3D scanner. The mean Haus-
dor� Distance of Face2Face is 3.751mm (RMSE 4.738mm). Our
approach has a mean distance of 2.672mm (RMSE 3.384mm).

Figure 11: Stereo alignment: we compare the photometric
alignment accuracy of our approach to Face2Face [2016].
Face2Face only obtains a good �t to the image captured by
the left camera (average error of 0.011), but the re-projection
to the right camera su�ers from strong misalignments (av-
erage error of 0.019). In contrast, our stereo trackingmethod
obtains consistently low errors for both views (average error
of 0.011 left and 0.012 right).

Photometric Geometric
left right left right

RGB Mono 0.0130 0.0574 0.2028 0.1994
RGB-D Mono 0.0123 0.0183 0.0031 0.0031
RGB Stereo (Ours) 0.0118 0.0116 0.0046 0.0046

Table 1: Tracking accuracy of our approach (RGB Stereo)
compared to Thies et al. [2015] (RGB-D Mono) and
Face2Face [2016] (RGB Mono). Our approach achieves low
photometric and geometric errors for both views since we
directly optimize for stereo alignment.

our stereo tracking approach obtains consistently low errors for
both views (average error of 0.011 left and 0.012 right), since we di-
rectly optimize for the best stereo overlap. For the aforementioned
re-enactment applications in VR, it is crucial to obtain high-quality
alignment with respect to both camera streams of the stereo setup.

We evaluate the accuracy of our approach on ground truth data;
see Fig. 12. As ground truth, we use high-quality stereo reconstruc-
tions obtained by Valgaerts et al. [2012]. To this end, we synthet-
ically generate a high-quality binocular RGB-D stream from the
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Figure 12: Ground truth comparison: we evaluate the pho-
tometric and geometric accuracy of our stereo tracking ap-
proach (RGB Stereo). As ground truth, we employ the high-
quality stereo reconstructions of Valgaerts et al. [2012]. Our
approach achieves consistently low photometric and geo-
metric error for both views. We also compare to Thies et
al. [2015] (RGB-D Mono) and Face2Face [2016] (RGB Mono).
Both approaches show consistently higher photometric er-
ror, since they do not optimize for stereo alignment. Note
that the RGB-D tracker uses the ground truth depth as in-
put.

reference data. Our approach achieves consistently low photometric
and geometric errors. We also compare against the state-of-the-art
face trackers of Thies et al. [2015] (RGB-D Mono) and Face2Face
[Thies et al. 2016] (RGB Mono) on the same dataset. All three ap-
proaches are initialized using model-based RGB-(D) bundling of
three (stereo) frames. The RGB Mono and RGB-D Mono trackers
show consistently higher photometric errors for the right input
stream, since they do not optimize for stereo alignment; see also
Tab. 1. Given that Face2Face [Thies et al. 2016] only uses monoc-
ular color input, it su�ers from depth ambiguity, which results in
high geometric errors. Due to the wrong depth estimate, the re-
projection to the right camera image does not correctly �t the input.
The RGB-D based tracking approach of Thies et al. [2015] resolves
this ambiguity and therefore obtains the highest depth accuracy.
Note, however, that this approach has access to the ground truth
depth data for the sake of this evaluation. Since the two cameras
have slightly di�erent response functions, the reconstructed model
colors do not match the right image, leading to high photometric
error. Only our model-based stereo tracker is able to obtain high-
accuracy geometric and photometric alignment in both views. This
is crucial for the creation of 3D stereo output for VR applications,
as demonstrated earlier. None of the two other approaches achieves
this goal.

Figure 13: Comparison to the commercial Tobii EyeX eye
tracking solution. The ground truth data is obtained by a
test subject looking at a dot on the screen that appears every
80 frames (2.6 seconds) at random (Sample Point); error is
measured in normalized screen space coordinates in [0, 1]2.
We plot the magnitude of the positional error of Tobii EyeX
(orange) and our approach (blue). Our approach obtains a
consistently lower error.

Figure 14: Comparison to Wang et al. [2016]. From left to
right: RGB input, output ofWang et al., our phong rendered
output with retrieved eyes, �nal realistic face re-rendering
using our approach.

8.2 Evaluation of Eye Tracking Accuracy
We evaluate the accuracy of our monocular eye gaze classi�cation
strategy on ground truth data and compare to the commercial Tobii
EyeX eye tracker6. To this end, a test subject looks at a video
sequence of a dot that is displayed at random screen positions
for 80 successive frames (2.6 seconds given 30Hz input) – this
provides a ground truth dataset. During this test sequence, we
capture the eye motion using both the Tobii EyeX tracker and our
approach. We measure the per-frame magnitude of the positional
2D error of Tobii and our approach with respect to the known
ground truth screen positions; see Fig. 13. Note that screen positions
are normalized to [0, 1]2 before comparison. As can be seen, we
obtain consistently lower errors. On the complete test sequence
(more than 74 seconds), our approach has a mean error of 0.206
(std. dev. 0.178). In contrast, the Tobii EyeX tracker has a higher
error of 0.284 (std. dev. 0.245). The high accuracy of our approach
is crucial for realistic and convincing eye reenactment results. Note,
the outside-in tracking of Tobii EyeX does not generalize to the
VR context, since both eyes are fully occluded by the HMD. In the
supplemental video we also evaluate the in�uence of head motion
on the retrieved eye texture. As can be seen in the video sequence,
the head motion has less impact on the eye texture retrieval.

We also compare our reconstructions to the state-of-the-art ap-
proach of Wang et al. [2016], see Fig. 14 (left). For the complete
sequence, we refer to the supplemental video. Our reconstructions
6www.tobii.com/xperience/
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Figure 15: Perceptual side-by-side comparison for the self-
reenactment scenario.

are of similar quality in terms of the obtained facial shape and the
retrieved gaze direction. Note, in contrast to Wang et al. [2016], our
approach additionally enables realistic re-rendering of the actor, see
Fig. 14 (right), which is the foundation for VR goggles removal and
reenactment in virtual reality at the cost of a short person speci�c
calibration sequence.

8.3 Perceptual Evaluation
To quantify the quality of our approach, we perform a side-by-side
ground truth comparison for the self-reenactment scenario, see
Fig. 15. To this end, we employ the same sequence as source and as
target. This enables us to measure the color di�erence between the
real video and the synthesized output. In the VR scenario, the source
is wearing an HMD, thus we are only able to track and transfer
the expressions of the lower part of the face. To measure the loss
of information, we evaluate both scenarios, full reenactment and
reenactment of only the lower part of the face. We refer to the
supplemental video for the complete video sequence. Full facial
reenactment results in a mean error of 0.01067 measured in RGB
color space. Due to the lack of eyebrow motion, the reenactment of
only the lower part of the face has a slightly higher error of 0.01086.

We also conducted a pilot study with 18 participants (working
in the �eld of computer graphics) to evaluate the realism of our
results. A variety of di�erent stereoscopic videos were shown. The
�rst video is a real video of an actor wearing an HMD, followed by
result videos of our approach. The participants were asked to rate
the realism and the impression of sitting face-to-face to a person
(from 1 (very good) to 6 (very bad)). The original video achieved a
score of 1.75 and a score of 2.5625, respectively. The videos created
with our stereoscopic reenactment method achieved a score of 2.281
and 2.09. Our approach produces good quality and the preliminary
perceptual evaluation shows that we improved the impression of
sitting face-to-face to a person, which is of paramount importance
for making VR teleconferencing viable.

9 LIMITATIONS
Although FaceVR is able to facilitate a wide range of face appearance
manipulations in VR, it is one of the early methods in a new �eld.
As such, it is a �rst step and thus constrained by several limitations.
While our eye tracking solution provides great accuracy with little
compute cost, it is speci�cally designed for the VR scenario. In con-
trast to [Wang et al. 2016] our approach is person-speci�c, but the
allows us to re-synthesis eye motion photo-realistically. Since our
eye tracking approach is only based on one eye in the VR device, we

Figure 16: A setupwith a rigidlymountedRGB-D camera (In-
tel Realsense F200) allows for cross-projection of the mouth
independently of the head rotation.

correctly capture vergence and squinting; one would need to add a
second IR camera to the head mounted display, which is a straight-
forward modi�cation. As discussed in Sec. 7, we only employ one
class for lid closure and apply a simple blending between open
and closed eyes, explicitly modeling inbetween states can further
improve the results [Bermano et al. 2015]. The cross-projection of
the mouth interior, which is used in the self-reenactment scenario,
requires a similar head rotation in the source and target sequence.
If the head rotations di�er too much, noticeable distortions might
occur in the �nal output. Therefore, we also tested a setup similar
to Li et al. [2015], where the camera is rigidly attached to the HMD
(see Fig. 16). Note that the original system of Li et al. is only able
to animate a digital avatar and it does not allow for photo-realistic
gaze-aware self-reenactment of a person. The setup decreases the
ergonomics of the HMD, but ensures a frontal view of the mouth
that can be easily transfered to a front facing virtual stereoscopic
avatar.

The major limitation of our approach is that we cannot modify
the rigid head pose of the target videos. This would require a
reconstruction of the background and the upper body of the actor
including hair etc., which we believe is an interesting research
direction.

Our VR face tracking is based on the rigid head pose estimates
and the unoccluded face regions. Unfortunately, the �eld of view
of the IR camera attached to the inside of the device is not large
enough to cover the entire occluded face region. Thus, we cannot
track most of the upper face except the eyeballs. Here, our method
is complementary to the approach of Li et al. [2015]; they use addi-
tional sensor input from electronic strain measurements to �ll in
this missing data. The resulting constraints could be easily included
in our face tracking objective; note however, that their approach
does not enable gaze-aware facial reenactment. In the context of
facial reenactment, we have similar limitations as Thies et al. [2015]
and Face2Face [Thies et al. 2016]; i.e., we cannot handle occlusions
in the target video such as those caused by microphones or waving
hands. We believe that this could be addressed by computing an ex-
plicit foreground-face segmentation; the work by Saito et al. [2016]
already shows promising results to speci�cally detect such cases.

10 CONCLUSION
In this work, we have presented FaceVR, a novel approach for real-
time gaze-aware facial reenactment in the context of virtual reality.
The key components of FaceVR are robust face reconstruction and
tracking, data-driven eye tracking, and photo-realistic re-rendering
of facial content on stereo displays. Therefore, we are able to show
a variety of exciting applications, especially, self-reenactment for
teleconferencing in VR. We believe that this work is a stepping stone
in this new �eld, demonstrating some of the possibilities of the
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upcoming virtual reality technology. In addition, we are convinced
that this is not the end of the line, and we believe that there will
be even more exciting future work targeting photo-realistic video
editing in order to improve the VR experience, as well as many
other related applications.
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A APPENDIX
In this appendix we show additional use-cases of FaceVR. Beside
self-reenactment for video conferences in VR, FaceVR produces
compelling results for a variety of other applications, such as gaze-
aware facial reenactment, reenactment in virtual reality, and re-
targeting of somebody’s gaze direction in a video conferencing
call.

A.1 Gaze-aware Facial Reenactment
Our approach enables real-time photo-realistic and gaze-aware
facial reenactment of monocular RGB-D and 3D stereo videos; see
Fig. 19, 17 and 18.

Figure 17: Gaze-aware facial reenactment of monocular
RGB-D video streams: we employ our real-time perfor-
mance capture and eye tracking approach in order tomodify
the facial expressions and eye motion of a target video. In
each sequence, the source actor’s performance (top) is used
to drive the animation of the corresponding target video
(bottom). Note, these results employ the mouth retrieval
strategy to �ll in the mouth interior.

In both scenarios, we track the facial expressions of a source actor
using an external Asus Xtion RGB-D sensor, and transfer the facial
expressions – including eye motion – to the video stream of a target
actor. The eye motion is tracked using our eye-gaze classi�er based
on the data captured by the external camera (monocular RGB-D
reenactment) or the internal IR camera which is integrated into the
HMD (stereo reenactment). We transfer the tracked facial motion
to a RGB-D or stereo target video stream using the presented facial
reenactment approach. The modi�ed eye region is synthesized
using our uni�ed image-based eye and eyelid model (see main
paper for more details). This allows the source actor to take full
control of the face expression and eye gaze of the target video
stream at real-time frame rates. Our approach leads to plausible

Figure 18: Self-Reenactment for VR Video Conferences: our
real-time facial reenactment approach allows to virtually re-
move the HMD by driving a pre-recorded target video of the
same person. Note, these results employ themouth retrieval
strategy to �ll in the mouth interior

reenactment results even for greatly di�ering head poses in the
target video, see Fig. 20.

A.2 Gaze Correction for Video Conferencing
Video conference calls, such as Skype chats, su�er from a lack of
eye contact between participants due to the discrepancy between
the physical location of the camera and the screen. To address this
common problem, we apply our face tracking and reenactment ap-
proach to the task of online gaze correction for monocular live video
footage; see Fig. 21. Our goal is the photo-realistic modi�cation of
the eye motion in the input video stream using our image-based
eye and eyelid model. To this end, we densely track the face of the
user, and our eye-gaze classi�er provides us with an estimate of the
gaze direction; i.e., we determine the 2D screen position where the
user is currently looking. Given the eye tracking result, we modify
the look-at point by applying a delta o�set to the gaze direction
which corrects for the di�erent positions of the camera and screen.
Finally, we retrieve a suitable eye texture that matches the new
look-at point and composite it with the monocular input video
stream to produce the �nal output. A gaze correction example is
shown in Fig. 21.
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Figure 19: Gaze-aware facial reenactment of stereo target
video content. We employ our real-time gaze-aware facial
reenactment approach to modify the facial expressions and
eye motion of stereo 3D content. The input (i.e., source ac-
tor) is captured with a frontal view and an internal IR cam-
era. With our method, we can drive the facial animation of
the stereo output videos shown below the input – the facial
regions in these images are synthetically generated. We em-
ploy the mouth retrieval strategy to �ll in the mouth inte-
rior. The �nal results are visualized as anaglyph images on
the right.

Figure 20: Reenactment results for di�erent rigid head
poses of the target actor. The mouth interior in the frontal
view is of highest quality, since the mouth database consists
of front facing mouth textures. Rigid rotations of the target
actor’s face still lead to plausible results with only minor
distortions.

Figure 21: Gaze Correction: a common problem in video
chats is the discrepancy between the physical location of
the webcam and the screen, which leads to unnatural eye ap-
pearance (left). We use our eye tracking and retrieval strat-
egy to correct the gaze direction in such a scenario, thus en-
abling realistic video conversations with natural eye contact
(right).
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