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Figure 1. Our model can disentangle geometry, appearance, and pose in synthesized images. This figure visualizes results on FFHQ [15]
(first 5 columns) and Cats [46] (last 5 columns). Each row shows images rendered with the same pose and geometry, but with different
appearances. Each column shows images rendered with different poses and geometry, but with the same appearance.

Abstract

Learning 3D generative models from a dataset of monoc-
ular images enables self-supervised 3D reasoning and con-
trollable synthesis. State-of-the-art 3D generative models
are GANs that use neural 3D volumetric representations for
synthesis. Images are synthesized by rendering the volumes
from a given camera. These models can disentangle the 3D
scene from the camera viewpoint in any generated image.
However, most models do not disentangle other factors of
image formation, such as geometry and appearance. In this
paper, we design a 3D GAN which can learn a disentan-
gled model of objects, just from monocular observations.
Our model can disentangle the geometry and appearance
variations in the scene, i.e., we can independently sample
from the geometry and appearance spaces of the genera-
tive model. This is achieved using a novel non-rigid de-
formable scene formulation. A 3D volume that represents
an object instance is computed as a non-rigidly deformed
canonical 3D volume. Our method learns the canonical
volume, as well as its deformations, jointly during train-
ing. This formulation also helps us improve the disentan-
glement between the 3D scene and the camera viewpoints

using a novel pose regularization loss defined on the 3D de-
formation field. In addition, we model the inverse deforma-
tions, enabling the computation of dense correspondences
between images generated by our model. Finally, we design
an approach to embed real images into the latent space of
our model, enabling editing of real images.

1. Introduction

State-of-the-art generative models directly operate in the
image space using 2D CNNs. These models, such as Style-
GAN and its variants [14–16] have achieved a high level
of photorealism. However, image-based models do not of-
fer direct control over the underlying 3D scene parame-
ters, such as camera and geometry. While some methods
add camera viewpoint control over pretrained image-based
GAN models [1, 5, 17, 37], the results are limited by the
quality of 3D consistency of the pretrained models.

In contrast to the image-based methods, recent ap-
proaches learn GAN models directly in the 3D space [2,
8, 25, 27, 33]. In this case, the generator network synthe-
sizes a 3D representation of the scene as output, which can
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then be rendered from a virtual camera to generate the im-
age. Since the 3D scene is explicitly modeled, the cam-
era parameters are disentangled from the scene itself in
the image synthesis process. However, other scene proper-
ties such as geometry and appearance remain entangled and
cannot be controlled independently. While some 3D GAN
approaches have attempted to disentangle geometry from
appearance [27,33], their design choices are not physically-
motivated, which leads to inaccurate solutions where ap-
pearance information can leak through the geometry com-
ponent. In contrast, our proposed approach is inspired by
recent non-rigid formulations for novel viewpoint synthesis
of dynamic scenes [29, 39]. These methods model the de-
formations in a scene observed across time, by separating
the 3D reconstruction of each frame into a canonical 3D re-
construction and its deformations. Yet, even though these
methods can learn to synthesize novel viewpoints of a de-
forming scene, they are limited to modeling a single scene,
and they cannot control the appearance of the scene.

In this work, we propose D3D, a GAN with two separate
and independent components for geometry and appearance.
We extend the non-rigid formulation to the case of model-
ing multiple instances of a deformable object category, such
as human heads, cats, or cars. Each instance of the object
class is modeled as a deformation of a canonical volume,
which is shared across the object category. Our method
learns the canonical volume, as well as the instance-specific
geometric deformations jointly from datasets of monocular
images. The canonical volume has a fixed geometry while
its appearance can be changed independent of the geomet-
ric deformations. This formulation by design motivates dis-
entanglement between the geometric deformations and ap-
pearance variations, which has been a challenging task, es-
pecially as we are limited to monocular images for training.

In addition to the disentanglement of geometry and ap-
pearance, our formulation allows for other advantages over
state-of-the-art methods. Since our geometric deformations
are explicit Euclidean transformations, we can enforce use-
ful properties in the model, such as pose consistency over
the generated 3D volumes. Existing 3D GANs do not al-
ways manage to disentangle the camera viewpoint and the
generated 3D volumes, especially when the hand-crafted
prior camera distribution does not match the real distribu-
tion of the training dataset. We design a pose regularization
loss, which can enforce the consistency of the object pose,
improving the quality of camera and scene disentanglement.
In addition, we learn an inverse deformation network, al-
lowing us to compute dense correspondences between im-
ages generated by our model. Finally, we allow editing of
input photographs using D3D by mapping a given image to
the corresponding geometry and appearance latent codes,
as well as the camera pose. In summary, this paper presents
the following contributions:

1. A generative model which can disentangle geometry,
appearance, and camera pose in the generated images.
This is enabled by a generalization of the non-rigid
scene formulation to deformable object categories.

2. A novel training framework for 3D GANs, which en-
ables pose consistency of the generated volumes, as
well as the computation of dense correspondences be-
tween generated images.

3. Editing of real images by computing their embedding
in our GAN space. This enables intuitive control over
the camera pose, appearance and geometry in images.

2. Related Work
2.1. 3D Generative Adversarial Networks

2D Generative adversarial networks (GANs) [7] have
achieved great success in synthesizing high-fidelity images,
but lack explicit control over scene parameters, and do
not guarantee 3D consistency. Several attempts have been
made to incorporate GANs with 3D representations for 3D-
aware image synthesis. Some works directly train on 3D
data [3, 40], while others only use 2D images by leveraging
differentiable 3D-2D projection [2, 9, 11, 20, 25–27, 33, 36].
In this work, we focus on the latter paradigm, which is
more practical, as collecting 3D scans is resource-intensive.
Many methods [9, 20, 25–27] synthesize 3D features which
are converted into the final images using image-based net-
works. This limits the quality of 3D consistency in the ren-
dered results. Henzler et al. [11] and Szabo et al. [36] learn
to generate explicit 3D voxels and meshes respectively, but
produce shapes and images with limited quality. Recently,
there has been a surge of interest in adopting coordinate-
based neural volumetric representations [24], defined using
MLPs, as the 3D representation for GANs [2, 28, 33, 44].
These approaches have achieved high-quality 3D-aware im-
age synthesis with high-quality 3D consistency. However,
the disentanglement between geometry and appearance has
not been fully explored.

2.2. Disentanglement

Monocular Approaches: Zhu et al. [47] proposed a GAN
that can disentangle the shape, appearance, and camera vari-
ations in images. The final appearance is synthesized using
a 2D network, which can limit the 3D consistency in the
synthesized images. The closest approach to our work is
GRAF [33]. The network consists of a shared backbone
MLP, with separate color and density heads. The appear-
ance latent code is provided as an input to the color head,
while the shape latent code is provided as an input to the
backbone. The backbone MLP corresponds to the deforma-
tion network in our design. However, unlike our deforma-
tion network, GRAF does not explicitly model 3D defor-
mations, and the output of the backbone network lives in a



higher-dimensional space. This leads to lower-quality dis-
entanglement, where the color information can leak into the
backbone network, and the appearance code can be ignored.
Unlike GRAF, our framework also enables the computation
of dense correspondences, which is made possible by our
explicit modeling of the forward and inverse deformation
fields. GIRAFFE [27] uses the same disentanglement strat-
egy as GRAF, however, it also relies on a 2D rendering net-
work which limits 3D consistency.

Multi-View: Other approaches disentangle these factors
using multi-view imagery. Multi-view images provide more
information about the 3D geometry which makes this task
easier. Xiang et al. [43] proposed NeuTex, which can dis-
entangle the shape from appearance by learning the appear-
ance information on a texture map. The mapping between
the 3D scene coordinates and 2D texture coordinates is also
learned by the method. However, NeuTex is scene-specific
and is thus not a generative model, i.e., we cannot randomly
sample realistic scenes from their model. Liu et al. [22]
proposed a method for editing radiance fields. Their net-
work is trained on a class of objects and enables control-
lable editing at test time. CodeNeRF [13] also achieves in-
dependent control over the shape and appearance compo-
nents. Both these approaches share a similar design choice
with GRAF, i.e., their canonical shape space does not re-
ceive a 3D input. Instead, it lives in a higher-dimensional
space, which is not interpretable. Our method, in contrast,
is physically inspired, as it models explicit 3D deformations
between different object instances. In addition, our method
is the only one that enables dense correspondences between
synthesized images.

2.3. Non-Rigid NeRFs

Another category of papers [19, 29, 31, 39, 42] addresses
the problem of time-varying novel-view synthesis given
monocular videos. Xian et al. [42] extend the NeRF for-
mulation to parameterize the network with time to model
time-dependent view interpolation. D-NeRF [31], NR-
NeRF [39], and Nerfies [29] learn a canonical representa-
tion of the entire scene from which the other frames can be
obtained by learning deformations to the canonical space.
These methods also propose a number of regularizers to
control the deformation space. Li et al. [19] takes a different
approach by learning a 3D flow field between neighbouring
time samples. They supervise their method with 2D optical
flow and depth predictors. In contrast to these approaches,
our method is a generative model and is not limited to a
given scene. In addition, we can also disentangle appear-
ance from geometry.

3. Method
We use a neural volumetric representation to represent

objects, i.e., an MLP network encodes the 3D coordinates
and regresses the density and radiance values of the 3D vol-
ume [24]. The output volume can be rendered from a virtual
camera using volumetric integration to produce the final im-
age. The network is trained in an adversarial manner using
monocular images as the training data.

3.1. Network Architecture

The pipeline of our method is shown in Fig. 2, which in-
cludes a generator and a discriminator. Since we want to
disentangle the geometry and appearance in the scene, we
model these components as individual MLP networks, rep-
resented as functions NG(·) and NA(·) . In addition, we
use another MLP network, represented as function NC(·),
to model the canonical object shape. For any object class,
a shared canonical volume defined by NC(·) will represent
a canonical geometry. NG(·) will model the deformation
of a specific object instance with respect to the canonical
geometry, and NA(·) will represent the color of the canoni-
cal volume. Furthermore, we can optionally train an inverse
deformation network NI(·) that models the inverse map-
ping of NG(·), enabling dense correspondence (introduced
in Sec. 3.4). Next, we introduce these components in detail.

Our method models color and volume density in the 3D
space. For a point with coordinate x ∈ R3, we first send it to
the deformation network NG(·) to obtain its corresponding
point x′ ∈ R3 in the canonical space as

x′(x, zG) = NG(x, zG) + x , (1)

where zG ∈ R256 is the geometry latent vector sampled
from a Gaussian distribution. Thus, zG represents differ-
ent object shapes by varying the deformation field. We can
compute the volume density σ ∈ R+ in the canonical space
as:

σ(x, zG) = NC(x′(x, zG)) . (2)

where the canonical network NC does not receive any con-
ditioning other than the input coordinate.

Next, we represent the view-dependent color, i.e., radi-
ance, of the scene in the canonical space as:

c(x,d, zG, zA) = NA(x′(x, zG),d, zA) . (3)

Here, c(x,d, zG, zA) ∈ R3, d ∈ S2 is the viewing direc-
tion, and zA is a randomly sampled 256 dimensional vector.
Thus, we can vary the color without changing geometry by
simply sampling different color latent vectors zA.

Disentanglement The explicit modeling of deformation
fields in our model by design encourages the disentangle-
ment between the geometry and appearance components.
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Figure 2. Method overview. Our generator consists of three main components: 1) a deformation network NG that maps the coordinates
from deformed space to the canonical space conditioned on a shape latent code zG, 2) a canonical shape network NC that models the
canonical volume density, and 3) an appearance network NA that models the color of the canonical space conditioned on a color latent code
zA. We can optionally incorporate a inverse deformation network NI that models the inverse deformation so that dense correspondence
could be obtained. Images are generated by performing volume rendering in the deformed space. A discriminator Dφ is used for adversarial
training. The terms color and appearance are used interchangeably in the paper.

Specifically, our geometry deformation network generates
3-dimensional Euclidean transformations, which is added
to the input coordinate x to obtain the deformed coordinate
in the canonical space. This is in contrast with the state-
of-the-art methods [27, 33], which use a similar network
architecture, but their backbone network directly produces
a high-dimensional output without any physical interpre-
tation. This design choice hinders good disentanglement,
as this high-dimensional space can also encode information
about the color of the object. In contrast, our formulation
strictly restricts the output of the geometry network to a 3-
dimensional vector that models a coordinate offset. This
makes it less likely for our method to leak color informa-
tion compared to previous methods.

While our formulation discourages the color information
from leaking into the geometry channel, this approach does
not completely resolve all geometry-appearance ambigui-
ties. Consider the domain of human heads where the dis-
tinct states of mouth open and mouth closed can be repre-
sented in two ways: one where the geometry component
is responsible for this deformation, another, where the ge-
ometry stays the same, and the color component changes
instead. While only the first solution is physically correct,
both geometry and appearance changes can plausibly lead
to realistic images. Note that we do not have 3D informa-
tion to judge the physically correct 3D solution—we only
rely on monocular images. This ambiguity cannot be re-
solved solely by the separation of geometry and appear-
ance channels into separate networks. Thus, we addition-
ally control the level of disentanglement by using different
sizes of networks for the geometry and appearance com-
ponents. Specifically, when the appearance network is too
large, face expression changes like mouth open would tend
to be represented by the appearance network as it is easier

to optimize. Balancing the depths of the deformation and
appearance networks ensures good disentanglement for all
datasets.

3.2. Volumetric Integration

We use the volumetric neural rendering formulation, fol-
lowing NeRF [24]. Unlike NeRF that has multiple views
of the same scene and their corresponding poses, we only
have unposed monocular images. Thus, during training, a
virtual camera pose is first sampled from a prior distribu-
tion. To render an image under a given camera pose, each
pixel color C is computed via volume integration along its
corresponding camera ray r(t) = o + td with near and far
bounds tn and tf as below:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt

where T (t) = exp(−
∫ t

tn

σ(r(s))ds). (4)

Here the dependence of σ and c on zG and zA is omitted for
clarity. In practice, we implement a discretized numerical
integration using stratified and hierarchical sampling, fol-
lowing NeRF [24]. For each sampled discrete point along
the ray, we obtain σ and c by querying our generator accord-
ing to Eq.(2) and Eq.(3). With this volumetric rendering, we
can render an image Ig under any camera pose ξ using our
model. We summarize this process as Ig = Gθ(zG, zA, ξ),
where the generator Gθ includes the NG, NA, and NC

components mentioned earlier, and θ denotes the learnable
parameters. This rendering process is differentiable and
thus can be trained using backpropagation.



3.3. Loss Functions

Adversarial Loss We train our generator Gθ along with
a discriminator Dφ with parameters φ using an adversar-
ial loss. We use the discriminator architecture from π-
GAN [2]. During training, the geometry latent vector zG,
color latent vector zA, and camera pose ξ are randomly
sampled from their corresponding prior distributions to gen-
erate fake images, while real images I are sampled from the
training dataset of distribution pD. Our model is trained
with a non-saturating GAN loss [23] as:

Ladv(θ, φ) = f
(
Dφ(Gθ(zG, zA, ξ))

)
+ f(−Dφ(I)) + λ‖∇Dφ(I)‖2, (5)

where f(u) = − log(1 + exp(−u)), and λ is the coefficient
for R1 regularization. In practice, zG, zA, ξ, and I are ran-
domly sampled as mini-batches, which is an approximation
of taking expectation over these variables.

Pose Regularization With the adversarial loss, the gen-
erator learns to synthesize realistic images, when rendered
from camera poses sampled from the manually specified
prior camera distribution. Ideally, the network learns to dis-
entangle the pose and the 3D scene in the generated images,
i.e., the generated volumes are in a consistent pose. How-
ever, in many cases, the network converges to a solution
where the generated volumes have the objects in different
poses. This is usually the case when the prior distribution
over camera poses is inaccurate.

In our formulation, the explicit modeling of the defor-
mation field makes it possible to enforce pose consistency
of the generated volumes. To achieve this, we first compute
the global rotation component R ∈ SO(3) of the defor-
mation field D(x, zG) using SVD orthogonalization [18].
Here we only consider sampled points x with a rendering
weight (the scalar factor applied to the color of a 3D point
during integration) greater than a specified threshold. Our
pose regularization loss term is then computed as

Lpose(θ) = ‖R− I‖2, (6)

where I is the identity matrix. We use a differentiable SVD
implementation which allows training using backpropaga-
tion. This term is very different from the regularization
terms introduced in existing non-rigid formulations [29,39],
where local deformations are encouraged to be rotations.
This is not suitable in our case, as we are modeling defor-
mations across object instances, which can include stretch-
ing, compression, and discontinuities. Our loss term, on
the other hand, encourages the deformations to not include
any global rotation, which gives rise to a disentangled solu-
tion where the camera pose variation accounts for all pose
changes in the rendered images.

We first train our networks with a combination of the two
loss functions

L(θ, φ) = Ladv(θ, φ) + λposeLpose(θ). (7)

Then, we further model the inverse deformation field.

3.4. Inverse Deformation

Our network allows us to compute dense correspon-
dences between rendered images. We enable this by train-
ing an inverse deformation network NI with parameters ψ.
Since we are using a volumetric representation, multiple
points in the volume are responsible for the color at any
pixel. Dense correspondences, where a pixel in an image
has a correspondence with only one pixel in another image,
is not trivial to define. Thus, we simplify the formulation for
the training of the inverse network by limiting its domain to
points around the expected surface of the volume, which
can be obtained by taking the expectation of depth using
the volume rendering weights. For any such point x, we can
compute the canonical coordinate x′(x, zG) via Eq. 1 and
use the inverse network to go back to the deformed space as
xI = NI(x

′(x, zG), zG)+x′(x, zG). We can formulate the
following constraint on the inverse deformation network:

Linv(ψ) = ‖xI − x‖2 + λimg‖R(xI)−R(x)‖2. (8)

Here, R is a rendered image of the volume at the resolu-
tion being used for training. x are sampled from the image
using the expected depth value. R(x) is an operation that
computes the color at the pixel which x projects to, using
bilinear interpolation. The first term in Eq. 8 penalizes 3D
geometric deviations, while the second term can also use
color information to refine the correspondences. After pre-
training our networks with the loss as defined in Eq. 7, we
first train the inverse network NI using Linv, and finally
jointly train all components in our architecture with the fol-
lowing loss:

L(θ, φ, ψ) = Ladv(θ, φ) + λposeLpose(θ) + λinvLinv(ψ).
(9)

This joint optimization of both forward and inverse defor-
mation networks further improves dense correspondences.
Note that we do not include the inverse loss from the begin-
ning as it can bias the deformation network to generate very
small deformations, making disentanglement challenging.

3.5. Embedding

Given our trained model and a real image, we could di-
retly optimize for the latent vector and camera pose in an
iterative manner [2, 41]. However, this strategy is ineffi-
cient, and can lead to lower-quality results. We therefore
learn an encoder that takes an image as input and regresses



Figure 3. Qualitative results on VoxCeleb2 [4] and CARLA [6]. Each row shows images rendered with the same pose and geometry, but
different appearances. Each column shows images rendered with different poses and geometry, but with the same appearance.

the latent vectors and camera pose. We make use of a pre-
trained ResNet [10] as our encoder backbone. The encoder
is trained on monocular images (FFHQ [15]), using our
trained GAN as the decoder, in a self supervised manner,
using the following loss function:

Lencoder(Υ) = L1(Υ) + λpercLperc(Υ) + λregLreg(Υ),
(10)

where, Υ denotes the learnable parameters of the encoder.
L1 is an `1 reconstruction term, and Lperc is a perceptual
term defined using the features of the VGG network. Lreg
encourages the predicted latent vectors to stay close to the
average values. The encoded results are robust, but can still
miss fine-scale details. We first refine the results of the
encoder using iterative optimization, and finally fine-tune
the generator network for the given image. We show that
this strategy leads to high-quality results without degrading
the disentanglement properties (see Fig. 7) of the generator.
Please refer to the supplemental for more details.

4. Results
Datasets We demonstrate the results of our method D3D
on four datasets: FFHQ [15], VoxCeleb2 [4], Cats [46],
and CARLA [6, 33]. FFHQ and VoxCeleb2 are datasets of
head portraits. FFHQ includes a diverse set of static images,
while VoxCeleb2 is a large-scale video dataset with larger
viewpoint and expression variations. We randomly sample a
few frames from each video for VoxCeleb2. Cats is a dataset
of cat faces, and CARLA is a dataset of synthetic cars with
large viewpoint variations. While cars are not deformable,
different car instances can be considered as deformations
of a shared template. The instances of these datasets share
a similar geometry with varying deformations, thus, they
are suitable for our task. Since we are only interested in
modeling objects, we remove the backgrounds in portrait
images [45]. However, because cat images have very little
background, we do not segment them.

Training Details We use the same network architecture
for all datasets. Training is done in a coarse-to-fine fashion,
similar to π-GAN [2]. We use the same camera pose dis-
tribution as used in π-GAN. We train at 64× 64 resolution
on FFHQ, VoxCeleb2, and Cats, and 128 × 128 resolution
on CARLA. All quantitative evaluations are performed at
128× 128 resolution (once trained, images can be rendered
at any resolution due to the neural scene representation).
Please refer to the supplemental material for the hyperpa-
rameters.

Qualitative Results We first present qualitative results of
our method on all four datasets in Fig. 1 and Fig. 3. Our
method is capable of synthesizing objects in multiple poses
due to the 3D nature of the generator. We can disentangle
the geometry and appearance variations well for all object
classes. This is true even under challenging deformations,
such as deformations due to hairstyle and mouth expres-
sions. We compare the quality of disentanglement with
GRAF [33] in Fig. 4. Our method significantly outper-
forms GRAF in terms of disentanglement. As explained
in Sec. 3.1, GRAF also encodes appearance information in
the geometry code due to the high-dimensional output of
its backbone. In contrast, our explicit deformation enables
higher-quality disentanglement.

We evaluate the inverse deformation network by visual-
izing the dense correspondences in Fig. 5. We first provide
image-level annotations on one image generated by D3D.
These annotations can then be transferred to any other sam-
ple of the model using the dense correspondences. Our
model learns correspondences without any explicit super-
vision, even for objects with large deformations. This en-
ables applications such as one-shot segmentation transfer
and keypoint annotation. In Fig. 6, we further visualize
the effectiveness of the proposed pose regularization loss.
Without this loss, the geometry component tends to entan-
gle the geometry with camera viewpoint. This is most evi-
dent when training with VoxCeleb2 [4] dataset. While this
dataset has larger pose varrations compared to FFHQ [15],



Figure 4. Comparison with GRAF on FFHQ and Cats datasets.
Each row shows images rendered with a fixed appearance code and
varying geometry codes. Our method can preserve the appearance
better, while modeling large deformations.

FFHQ VoxCeleb2 Cats Carla

GRAF [33] 43.32 35.28 22.64 37.53
Ours 28.18 16.51 16.96 31.13

Table 1. Quantitative comparisons using the FID score metric (a
lower value is better). We outperform GRAF on all datasets.

π-GAN
[2]

Ours
(256-dim)

Ours
(No inverse)

Ours
(Complete)

FFHQ 13.22 13.98 19.99 28.18

Table 2. Ablation results on FFHQ [15] with different baselines,
using FID scores. Our complete method enables disentanglement
of geometry from appearance, in addition to enabling dense corre-
spondences. This leads to a loss of quality, as seen here.

we used the same prior pose distribution, which could lead
to the geometry network also compensating for the inaccu-
rate distribution. Our loss term disambiguates pose and the
3D scene, reducing the burden of estimating a very accurate
pose distribution.

We also show embeddings of real images [34] in Fig. 7.
Using our inversion method, we can achieve high-quality
embeddings which enables several applications such as
pose editing, shape editing, and appearance editing. For ex-
ample, we can transfer the appearance of one portrait image
to another, without changing the geometry. We recommend
readers refer to the supplementary material for more results.

Quantitative Results We first provide the commonly re-
ported FID scores [12] for images generated by our model,
as well as those for GRAF [33] in Table 11. The FID scores

Appearance
Consistency ↓

Geometry
Consistency ↓

Appearance
Variation ↑

π-GAN 0.15 0.96 0.15
GRAF 0.17 0.08 0.04
Ours (256-dim) 0.13 0.11 0.07
Ours (No inverse) 0.06 0.40 0.15
Ours (Complete) 0.05 0.39 0.16

Table 3. Evaluation of disentanglement. The first column mea-
sures appearance consistency for images rendered with the same
appearance code and different geometry codes. The second col-
umn measures the geometry consistency for images rendered with
the same geometry code and different appearance codes. The third
column measures the appearance variation for such images, higher
implies more variation captured in the model.

are computed using 8k image samples. Our approach out-
performs GRAF on all datasets. We also perform an ab-
lation study on FFHQ with several baselines in Table 2.
“Ours (256-dim)” is a baseline that implements the design
of GRAF in our training framework, i.e., NG(·) directly
provides a 256-dimensional vector as output, which is sent
to NA(·) and NC(·). Other network architecture and train-
ing details are equivalent to our method. However, this de-
sign makes it infeasible to use the pose consistency loss and
inverse deformations, so we disable them. This framework
achieves a lower FID compared to our complete model,
however, it does not achieve high-quality disentanglement
due to the same reasons as for GRAF, see the supplemen-
tal document. “Ours (No inverse)” is our method without
the inverse deformations. This architecture constraints the
network by limiting NG(·) to output a 3-dimensional defor-
mation of coordinates. This leads to good disentanglement
at the cost of slightly higher FID. “Ours (Complete)” further
incorporates the inverse deformation network, which allows
us to compute dense correspondences. While this enables
broader interesting applications, it again comes at a cost of
higher FID scores due to stronger regularization of the de-
formation field. We also report the FID score of π-GAN [2],
which is comparable to our 256-dimensional baseline. Note
that π-GAN does not enable any disentanglement between
the geometry and appearance components.

We quantitatively evaluate the quality of disentangle-
ment in Table 3. We describe two novel metrics to eval-
uate this. To evaluate the consistency of appearance with
changing geometry, we measure the standard deviation of
the average color in a semantically well-defined region,
which could be obtained via an off-the-shelf segmentation
model [45]. We use the hair region for human heads to
compute this metric for networks trained on FFHQ [15].
We sample 100 images from the GAN with a fixed appear-
ance code and varying geometry codes. The standard de-
viation of the average hair color can be used as a metric,
as a lower value would imply consistent appearance across



Figure 5. Our method enables dense correspondences between generated images, using the inverse deformation network. We show
applications of these correspondences by transferring manual annotations on a reference image (left-most column, for each object class) to
other images sampled from the model.

Figure 6. Ablative analysis of the pose regularization loss on Vox-
Celeb2. All images are rendered with a fixed frontal camera. With-
out this loss, the head pose changes even though the camera is
fixed. Pose regularization loss helps in better disentanglement of
the 3D scene from the camera viewpoint.

different shapes. We compute this standard deviation for 10
appearance codes and report the average over the 10 values.
Our approach significantly outperforms GRAF [33] and π-
GAN [2]. Since π-GAN does not have different appearance
and geometry codes, we simply sample 1000 images from
their model and use the numbers as a baseline.

To evaluate the geometry consistency for a fixed geom-
etry code with varying appearances, we use sparse facial
keypoints for evaluation. We measure the standard devia-
tion of 66 facial landmarks computed using an off-the-shelf
tool [32] across 100 samples with a shared geometry code
and different randomly sampled appearance codes. We ren-
der all images in the same pose, in order to eliminate ad-
ditional factors of variance. This evaluation is repeated for
10 different geometry codes and the error is averaged over
these geometry codes, and over the 66 landmarks. A lower
number with the geometry consistency metric implies that
varying the appearance code is less likely to cause geome-
try change in the image. While we outperform the π-GAN
baseline, GRAF [33] achieves a better score. This is due to
the fact that the appearance variations are limited for GRAF,
as the appearance information also leaks into the geome-
try component. We further evaluate this using an appear-
ance variation metric for these images. This metric is de-
fined exactly the same as the appearance consistency metric.
Specifically, for the set of images, we calculate the standard
deviation over the average hair color over the 100 images
with different appearance codes, and average over the 10

Figure 7. Given real images (col 1), we can embed them in our
GAN space (col 2). This enables novel view synthesis (col 3),
color transfer from the other real image (col 4), or shape editing
using a random sample from the GAN.

geometry codes. As shown in Table 3, our method achieves
the highest value, implying that our appearance component
better captures the appearance variations of the dataset. We
also evaluate both baselines using these metrics. As ex-
pected, the “256-dim“ baseline performs similar to GRAF,
while the numbers are similar without the inverse network

5. Conclusion & Discussion

We have presented an approach to learn disentangled 3D
GANs from monocular images. In addition to disentan-
glement, our formulation enables the computation of dense
correspondences, enabling exciting applications. Although
we have demonstrated compelling results, our method has
several limitations. Like other 3D GANs, our results do not
reach the photorealism quality and image resolutions of 2D
GANs. The disentanglement and correspondences come at
the cost of a drop in image quality (see Table 2). In addi-
tion, we use an off-the-shelf background segmentation tool
which limits us from being completely unsupervised. Nev-
ertheless, our approach achieves high image quality and dis-
entanglement, significantly outperforming the state of the
art. We hope that it inspires further work on self-supervised
learning of 3D generative models.
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Input Layer Activation Output Dim.
zG or zA Linear LeakyReLU (0.2) 256
- Linear LeakyReLU (0.2) 256
- Linear LeakyReLU (0.2) 256
- Linear None 256 × 2 ×(dG or dA)

Table 4. Mapping Network, denoted as Map(·). We use separate
mapping networks for the geometry and appearance networks.

A. Training Details

Network Architecture Our generator network consists of
a geometry deformation network NG, an appearance net-
work NA, and a canonical geometry network NC . Both
NG and NA include a mapping network and a main net-
work following the design of π-GAN [2]. The mapping net-
works are implemented as MLPs with LeakyReLU activa-
tions, see Table 4. The randomly sampled inputs zG ∈ R256

and zA ∈ R256 are used as inputs to the mapping networks.
The output of the mapping networks are one-dimensional
vectors of dimensions 256×2×dG and 256×2×dA, where
dG and dA are the number of SIREN layers in the main net-
works of NG and NA respectively. The main networks are
implemented as MLPs with SIREN layers [35] and FiLM
conditioning [30], see Table 6 and Table 7. Each layer of
the main network receives one 256 × 2-dimensional com-
ponent of the output of the mapping network. The canon-
ical network NC does not receive any input other than the
co-ordinates in the canonical space. We follow the initial-
ization method of [35] for NG, NA, and NC , where the
first layer is initialized with larger values. The final layer
of NG is initialized such that the deformations at the first
iteration are all zeros. The inverse deformation network is
implemented exactly as NG, except that it receives the input
in the canonical space and models the inverse deformation.
As for the discriminator, we adopt the same model architec-
ture as in [2], which is a convolutional neural network with
residual connections [10] and CoordConv layers [21].

As explained in the main paper, we control the level of
disentanglement using the number of SIREN layers in NG

and NA, i.e., dG and dA, respectively. We set dG = 5 and
dA = 3 for FFHQ [15], VoxCeleb2 [4], and Cats [46]. For
Carla [6], we set dG = 3 and dA = 6. We will show results
where changing the relative depths of these networks can
lead to poor disentanglement.

Hyperparameters We describe the hyperparamters used
in our method in Table 8. The training curriculum is de-
scribed in Table 9. Our networks are trained in a coarse-to-
fine manner.

Embedding Architecture Our encoder network consists
of a pretrained ResNet-18 [10] as the backbone. We add

Input Layer Activation Output Dim.
x′ Linear Sine 256
- Linear Sine 256
- Linear Sine 256
- Linear Sine 256
- Linear None 1

Table 5. Canonical Network, denoted as NC (·). The input x′

is a point in the canonical space, computed using the goemetry
deformation network.

Input Layer Activation Output Dim.
x, Map(zG) Linear FiLM+Sine 256
-, Map(zG) ... ... ...
-, Map(zG) ... ... ...
-, Map(zG) Linear None 3

Table 6. Geometry Deformation Network, denoted as NG(·). The
input x is a point in the deformed or world space. The output can
be added to x to compute x′, the corresponding 3D point in the
canonical space. The output of the shape mapping network is also
provided as input for each layer.

Input Layer Activation Output Dim.
x′, Map(zA) Linear FiLM+Sine 256
-, Map(zA) ... ... ...
-, Map(zA) ... ... ...
-, Map(zA), d Linear FiLM+Sine 256
-, Map(zA) Linear Sigmoid 3

Table 7. Appearance Network, denoted as NA(·). The input x′

is a point in the canonical space, computed using the goemetry
deformation network. The output is the color at this point. The
other inputs are the output of the color mapping network, and the
viewing direction.

two linear layers to regress the camera pose and latent vec-
tors. Inspired by π-GAN [2], we learn to directly regress
the frequencies and phase shifts, i.e., the output space of the
mapping networks for the geometry and appearance compo-
nents. We train the encoder on FFHQ [15]. We set λperc = 1
and λreg = 10 and use a learning rate of 0.01.

At test time, to further improve the result, we fine-tune
the regressed latent vectors using iterative optimization for
1.8k iterations with a learning rate of 0.01. We finally fine-
tune the generator network for another 200 iterations with a
learning rate of 0.0001. We show that this strategy leads to
high-quality results without degrading the disentanglement
properties (see Fig. 14) of the generator.

We also show that this approach works better than
optimization-only method (see Fig. 13), where we itera-
tively optimize for the latent vectors and camera pose us-
ing reconstruction loss. For optimization-only approach, we



Hyperparameter Dataset Value
λ FFHQ 1.0

VoxCeleb2 1.0
Cats 0.5
Carla 10.0

λpose FFHQ 50.0
VoxCeleb2 50.0
Cats 5.0
Carla 50.0

λimg FFHQ 0.001
VoxCeleb2 0.001
Cats 0.001
Carla 0.001

λinv FFHQ 1.0
VoxCeleb2 1.0
Cats 1.0
Carla 1.0

Table 8. Hyperparameters of our method.

update the latent vectors and camera pose while keeping the
GAN fixed for 1.8k iterations with a learning rate of 0.01.
And then finetune GAN as well for another 200 iterations
with a learning rate of 0.0001. We can observe (Fig. 13,
14) that using encoder initialization helps obtain better re-
sults while still preserving the disentanglement properties
of our model.

B. Results

Qualitative Results We show more results of our method
along with visualizations of the learned canonical volume
in Fig. 8. We present more visualizations of the learned
correspondences in Fig. 9. The appearance of one sample
is transferred to another using the correspondences. This
shows the applicability of the correspondences for any task
where one image annotation can be transferred to all other
samples of the model. As mentioned earlier, the level of
disentanglement is controlled using the relative depths of
the geometry and appearance networks. We show in Fig. 10
that a large appearance network can lead to lower-quality
disentanglement, where geometric features such as expres-
sions are compensated by the appearance component. We
set dG = 3 and dA = 5 for these results. In the main paper,
we presented quantitative results of a baseline where the
canonical network receives a high-dimensional input like
GRAF [33]. Fig. 11 shows qualitative results of this base-
line. As explained in the main paper, this baseline has sim-
ilar limitations as GRAF, where the geometry network also
changes the appearance of the object. Fig. 12 shows more
results for evaluation of the pose regularization. Without
our proposed regularization, the model does not properly
disentangle the object and the camera pose. This limitation

is also shared with π-GAN [2]. We further show some
results of correspondence and depth visualizations on real
images in Fig. 15. Unlike the encoders used in other re-
sults, we trained the encoder for this result on the generator
which was trained with the inverse network. We also com-
pare to GIRAFFE [27] in Fig. 16. Our method maintains
the consistency of both pose and shape components better.
Quantitatively, GIRAFFE achieves similar scores compared
to our method on FFHQ using the metrics defined in the
main paper. It achieves an appearance consistency score of
0.05, geometry consistency score of 0.32, and appearance
variation score of 0.09. However, ours results have better
multi-view consistency, and better qualitative disentangle-
ment as shown in Fig. 16. We show several more results of
our GAN in Fig. 17.

Quantitative results We present FID scores for
FFHQ [15], VoxCeleb2 [4], and Cats [46] evaluated
at 64× 64 image resolution in Table 11. All FID scores are
calculated using 8k samples. We also present a quantitative
evaluation of the pose regularization loss in Table 10.
Specifically, we first render 1000 images from each method
with a fixed camera. We then compute the head pose in the
rendered results using the Model-based Face Autoencoder
(MoFA) [38] method. The pose consistency metric is
computed as the standard deviation over the yaw angles.
A lower number indicates good disentanglement of the
camera pose and the 3D object. We can see that the
proposed pose regularization loss significantly improves
such disentanglement.



Dataset Iteration (in k) Batch Size Image Size Glr Dlr

FFHQ 0-20 208 32 2e-5 2e-4
20-60 52 64 2e-5 2e-4
60- 52 64 1e-5 1e-4

VoxCeleb2 0-20 208 32 2e-5 2e-4
20-60 52 64 2e-5 2e-4
60- 52 64 1e-5 1e-4

Cats 0-10 208 32 6e-5 2e-4
10- 52 64 6e-5 2e-4

Carla 0-10 60 32 4e-5 4e-4
10-26 20 64 2e-5 2e-4
26- 18 128 10e-6 10e-5

Table 9. Training curriculum

Figure 8. Results of our method on FFHQ (top-left), VoxCeleb2 (top-right), Cats (bottom-left) and Carla (bottom-right). Each row shows
the canonical volume, and multiple rendered images with the same appearance and pose, but with different geometry. All canonical
volumes for a dataset are rendered from the same pose. Notice that only the color of the canonical volume changes.



Figure 9. Appearance transfer using the learned correspondences. For each object class, the first row shows different random samples
from our GAN. The left-most sample is used as the source texture. This texture is transferred to all other samples, visualized in the
second row. Note that we only the source image, and not the full 3D model, in order to visualize pixel-to-pixel correspondences. We
can faithfully transfer the source appearance while preserving the target geometry. Also note that not all pixels in the target image have
a valid correspondence to the source image. For example, if the shirt is not visible in the source image, the shirt pixels in the target
image do not have a valid correspondence. Thus, only the pixels whose corresponding points are visible in the source image achieve the
correct appearance transfer. This visualization shows the applicability of our approach to various applications, such as one-shot semantic
segmentation and sparse keypoint detection.

Pose Consistency ↓
pi-GAN 0.34
Ours (no pose reg.) 0.16
Ours 0.03

Table 10. Quantitative evaluation of pose consistency. Pose con-
sistency is measured as the standard deviation of the 3D yaw-
component of head pose computed over 1000 images rendered
from a fixed camera. The pose regularization significantly im-
proves pose consistency, helping disentangle the camera pose from
the scene.

Figure 10. Results on FFHQ with a larger appearance network.
Each row shows results with a fixed geometry and different appear-
ances. With a large appearance network, geometric features such
as expressions can be compensated incorrectly by the appearance
component.



Figure 11. Results of the 256-baseline on FFHQ. Each row shows
results with a fixed appearance and different geometry. This base-
line uses a 256-dimension vector as input to the canonical volume.
This results in poor disentanglement, where changing the geome-
try also changes the appearance. GRAF [33] uses a similar design
choice and thus, suffers from the same limitation.

Figure 12. Evaluation of our pose regularization loss on Vox-
Celeb2. All images are rendered with a fixed frontal camera. With-
out pose regularization, the model cannot disentangle between the
scene and the camera pose. This issue is also evident in pi-GAN.

Figure 13. Here we show that our embedding method which uses
encoder output as initialization (row 3) results in higher-quality
output (row 4) compared to optimization-only approach (row 2)
for real in-the-wild input images (row 1).

Figure 14. Given real images (col 1), we can embed them in our
GAN space (col 2). This enables novel view synthesis (col 3),
color transfer from the other real image (col 4), or shape editing
using a random sample from the GAN. For color transfer results in
col 4, we transfer the embedded color between 2 pairs ( rows 1,2
and rows 3,4).

Figure 15. Results on real images. Reference from Fig.5-main is
used for correspondences. Depth is rendered from a novel view.

Figure 16. Comparisons with GIRAFFE. Visualized are three im-
ages with the same appearance code but different geometry codes.

FFHQ VoxCeleb2 Cats

GRAF [33] 25.36 21.76 18.26
Ours 15.87 8.86 12.35

Table 11. Quantitative comparisons using the FID score metric (a
lower value is better) at 64× 64 image resolution. We outperform
GRAF on all datasets.



Figure 17. More results of our method on FFHQ (rows 1-3), VoxCeleb2 (rows 4-6), Cats (rows 6-8) and Carla (rows 10-12). Each row
shows a fixed geometry with three different appearances and poses.
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